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Abstract: In this study, we explored machine learning approaches for predictive diagnosis using 

surface-enhanced Raman scattering (SERS), applied to the detection of COVID-19 infection in bio-

logical samples. To do this, we utilized SERS data collected from 20 patients at the University of 

Maryland Baltimore School of Medicine. As a preprocessing step, the positive-negative labels are 

obtained using Polymerase Chain Reaction (PCR) testing. First, we compared the performance of 

linear and nonlinear dimensionality techniques for projecting the high-dimensional Raman spectra 

to a low-dimensional space where a smaller number of variables defines each sample. The appro-

priate number of reduced features used was obtained by comparing the mean accuracy from a 10-

fold cross-validation. Finally, we employed Gaussian process (GP) classification, a probabilistic ma-

chine learning approach, to correctly predict the occurrence of a negative or positive sample as a 

function of the low-dimensional space variables. As opposed to providing rigid class labels, the GP 

classifier provides a probability (ranging from zero to one) that a given sample is positive or nega-

tive. In practice, the proposed framework can be used to provide high-throughput rapid testing, 

and a follow-up PCR can be used for confirmation in cases where the model’s uncertainty is unac-

ceptably high. 

Keywords: surface-enhanced Raman spectroscopy; machine learning; COVID-19; Gaussian pro-

cesses 

 

1. Introduction 

Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, is a viral infec-

tion that is primarily spread when people breathe in air contaminated with the virus, ei-

ther through aerosolized particles or droplets expelled by infected persons [1]. Due to the 

severity of this disease and its rapid spread, there is a pressing need for high-throughput 

and quick and reliable testing methods. To enable the better management of patients and 

implementation of proactive steps to limit transmission rates, timely identification of 

SARS-CoV-2 infection in affected patients is essential [2]. Several COVID-19 testing meth-

ods have been developed to diagnose the disease, including the polymerase chain reaction 

test (PCR) [2], antigen-based tests [3], and serological enzyme-linked immunosorbent as-

say (ELISA) [4]. However, while the PCR is the most accurate and frequently used as a 

benchmark against which other tests are measured, it has certain drawbacks, including 

being time-consuming [5] and being a sample-dependent method with a high false-nega-

tive ratio [6]. This makes it unsuitable for situations where rapid medical and personal 
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decisions need to be made. Furthermore, the ELISA approach is based on immunoassay 

sensitivity and requires accurate coupling between an enzyme-coupled antibody and nu-

merous viral-specific antigens [7]. In response to the limitations, a number of previous 

studies have utilized Raman spectroscopy (RS) for diagnoses. In their study, Desai et al. 

used Raman spectroscopy for SARS-CoV-2 detection through the saliva. In their research 

[8], Yin et al. proposed a method of detecting COVID-19 based on Raman spectroscopy, 

concluding that it is a safe and effective method for the detection of the disease [6]. In 

another study, Carlomagno et al. developed a Raman-based classification model that was 

able to distinguish COVID-19 patients with an accuracy range of about 89–92% [9]. 

Raman spectroscopy is a non-invasive diagnostic method that can reveal chemical 

and biochemical information embedded in cells [10]. It is based on the interaction of pho-

tons in an incident beam with a material’s chemical bonds. Raman (or inelastic) scattering 

occurs when light photons make direct contact with the sample. This causes molecular 

excitations that lead to vibrations. The difference in energy between the incident and scat-

tered photons correlates to the energy of molecular vibrations in the sample, and these 

show up as spikes in the resulting spectra [11]. The spectra provide information about the 

presence of some biochemicals in the sample based on the intensity of the spikes. One 

limitation, however, of Raman spectroscopy is its low sensitivity arising from low sigmals. 

In response to this issue, the Raman signal is sometimes amplified using plasmonic parti-

cles in a process known as surface-enhanced Raman scattering (SERS). The spectral infor-

mation from Raman spectroscopy (and SERS) has been used in previous studies for tasks 

such as detecting the occurrence of cancerous cells [12] hepatitis B virus [13], tuberculosis 

[14], dengue virus [15], and the influenza virus A [16], to mention a few. 

The spectra of heterogeneous bio-systems, including many biomolecules, such as 

cells, tissues, and biofluids, are complicated and high dimensional [8]. A Raman spectrum 

is typically made up of 500–3000 features (i.e., Raman intensities) and most datasets con-

tain very few samples [17]. As a result, to extract useful information and gain a deeper 

understanding, it is often necessary to pre-process the data and reduce its dimensionality. 

Many data preprocessing and dimensionality reduction techniques have been applied to 

Raman spectroscopy data, such as non-negative matrix factorization (NNMF), principal 

component analysis (PCA), variational autoencoders (VAEs), and uniform manifold ap-

proximation and projection (UMAP)[11, 12, 17-20]. What these techniques have in com-

mon is that they are used to map data from high-dimensional input spaces to lower-di-

mensional subspaces. Within the low-dimensional subspace, the number of variables that 

defines the dataset is reduced, yet the majority of the variance in the original dataset re-

mains retained. The dimensionality reduction helps alleviate the problem of the curse of 

dimensionality, which as just described, is a frequent difficulty that arises in Raman spec-

tral data analysis. In their research, Desai et al. [8] used PCA to reduce the features from 

Raman spectral data to two principal components, covering 76% of the total variance of 

the dataset. 

The reduced set of variables obtained from the dimensionality reduction techniques 

as described above is often fed as inputs to various machine learning classifiers. Vidales 

et al. [21] showed in their work that PCA and support vector machine (SVM) algorithms 

correctly distinguished between wild and mutant types of the p53 cancer biomarker with 

an accuracy of 94%. Bovenkamp et al. [22] achieved 93% accuracy in distinguishing be-

tween low- and high-grade lesions using PCA followed by KNN, demonstrating that RS 

can be efficiently integrated with machine learning as a preferred strategy for diagnosing 

cancer. Another study examined RS’s capability to distinguish between benign lesions 

and malignant cancer samples, which were gathered from 20 different donors. On the 

spectrum dataset, a number of chemometric techniques were used. Principal component 

analysis-linear discriminant analysis (PCA-LDA), principal component analysis-quad-

ratic discriminant analysis (PCA-QDA), and partial least squares-discriminant analysis 

(PLS-DA) all produced classification results with greater than 80% sensitivity and speci-
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ficity, while principal component analysis-support vector machines (PCA-SVM) pro-

duced classification results with greater than 90% sensitivity and specificity [23]. In order 

to reduce the effects of high feature dimension and noise in RS data, He et al. utilized 

variational autoencoders. The data was then classified using a variety of machine learning 

techniques, with Gaussian Naïve Bayes achieving the best accuracy [19]. 

The aim of this paper was to introduce a methodology for high-throughput and rapid 

COVID-19 detection. Besides an accurate model, it is also of primary concern to have a 

reliable estimate of the model’s uncertainties. In other words, we sought to obtain a model 

that could answer the following question: how much confidence can we place in a pre-

dicted negative or positive diagnosis? To this end, we employed Gaussian processes for 

COVID-19 diagnoses, using data obtained from SERS. Using a Bayesian framework as its 

foundation, Gaussian processes belong to a class of non-parametric techniques. The un-

derlying probability densities are presupposed to have a prior distribution, which ensures 

certain smoothness properties. Given a sample, the GPC approach used in this paper pro-

vided a robust positive–negative probability for each class, from which the uncertainty 

associated with the sample could be estimated. We also evaluated the dimensionality re-

duction effects of PCA, a linear dimensionality reduction technique, and UMAP, a non-

linear dimensionality reduction technique. Grid search and cross-validation were used to 

get the optimal hyperparameter for building the classifier due to the small size of our 

dataset. Finally, we discuss the significance of our results and close the paper with some 

concluding remarks. 

2. Materials and Methods 

2.1. Data Collection and Preprocessing 

Standard commercial kits were used to extract and purify RNA from the clinical sam-

ples. Antisense oligonucleotides (ASOs) were designed based on the whole genome se-

quence of SARS-CoV-2 [24-32]. The ASOs were 20 nucleotides in length. Four ASOs were 

used to target the genes (N and E gene) [29]. The thiolated ASOs were used to cap citrate-

stabilized gold nanoparticles (AuNPs). For the Raman experiments, 2 µL of Au-ASO NPs 

(concentration of 2 × 1011 particles/mL) were mixed with 2 µL of SARS-CoV-2 RNA (con-

centration ranging from 1 fg/mL, i.e., 63 copies/mL to 1 μg/mL, i.e., 63 × 109 copies/mL) by 

gentle pipetting a few times on an ice rack [12,30,33,34]. An amount of 2 µL of this mixture 

was drop-casted on a clean stainless-steel slide and then allowed to air-dry at room tem-

perature. Immediately after, Raman spectra of the dried spots were recorded using a Ren-

ishaw inVia Reflex Raman Spectroscope. In the scenario, where Raman spectra were ac-

quired directly from the clinical samples and without the extraction of RNA, the samples 

were first added with lysis buffer containing guanidine isothiocyanate at a 2:1 v/v ratio. 2 

μL of these lysed samples were then added with 2 μL of Au-ASO NPs (concentration of 2 

× 1011 particles/mL) and mixed adequately as discussed earlier. The Raman spectra of 

AuNP, SARS-CoV-2 RNA, and SERS spectra of Au-ASO, Au-ASO-SARS-CoV-2 RNA are 

provided in the Supplementary Information (Figures S1–S3). 

Raman experiments were performed using a laser with excitation wavelengths of λ 

= 785 nm, grating = 1200, power = 10%, exposure time = 10 s, objective = 50X long working 

distance (LWD). At least ten spectra were acquired from each sample for statistical anal-

ysis in the range of 100–3200 cm−1. Raman images were acquired in StreamHR image ac-

quisition mode using a step size (resolution) of 200 × 200 µm for clinical samples and 70 × 

70 µm for RNA samples. During the Raman imaging, the exposure time was set to be 0.5 

s. Renishaw WiRE 4.4 was used for data processing and analysis of Raman signals and 

images. For baseline correction, we used intelligent fitting of WiRE 4.4 with a polynomial 

order of 11 and noise tolerance of 1.5. Subsequent data processing was also performed by 

OriginLab 2018 [28]. We utilized SERS data collected from 20 patients at the University of 

Maryland, with the positive–negative labels obtained using Polymerase Chain Reaction 

(PCR) testing. The data collected were evenly balanced, containing a 50–50 split of positive 
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and negative samples. The raw SERS spectra have intensities collected over 3062 Raman 

shifts, amounting to 3062 features. The entire positive and negative spectra as well as the 

mean spectra have been plotted in Figure 1a,b. 

 
(a) 

 
(b) 

Figure 1. (a) Positive and negative SERS Spectral (b) Mean positive and negative SERS. 

The positive and negative SERS spectra were stacked together in an array, with the 

samples in the rows and intensity for a given Raman shift on the columns. This resulted 

in a dataset X ∈ 𝑅𝑚×𝑛, where m is the number of samples, and n is the number of Raman 

shifts. Before performing dimensionality reduction, the data was normalized between 0 

and 1 to avoid low-magnitude features being weighted unfairly. 

2.2. Dimensionality Reduction 

2.2.1. Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a dimensionality reduction strategy that takes 

advantage of correlations between existing variables to produce a new collection of un-

correlated features known as principal components (PCs). It is an unsupervised technique 

that projects a high-dimensional data matrix onto a lower-dimensional subspace by per-

forming a linear transformation. The high dimensional data is reduced to smaller primary 

components that are orthogonal and uncorrelated, with each successive component cho-

sen based on the direction of maximum variance. In other words, it decreases dimension-

ality while maximizing the retained variance [8]. Dimensionality reduction is important 

for this dataset because of the large number of Raman shifts and the relatively small data 

samples. To build an ML model that performs well on this dataset and minimizes overfit-

ting, dimensionality reduction is key. 

 

(b)



Biosensors 2022, 12, x FOR PEER REVIEW 5 of 14 
 

2.2.2. Uniform Manifold Approximation and Projection (UMAP) 

PCA is a linear approach and is, therefore, inefficient when dealing with data that 

contains nonlinear structures. Therefore, we also performed dimensionality reduction us-

ing UMAP [33], a nonlinear manifold learning technique, and compared the results with 

those obtained from PCA. UMAP is a relatively recent dimensionality reduction method 

that assumes the available data samples are evenly distributed across a topological space 

or manifold, which can be approximated from these finite data samples and mapped to a 

lower-dimensional space [20]. This technique excels at capturing nonlinear structures in 

high-dimensional data, particularly at a local level, which means that if two points are 

close together in the high-dimensional space, they are likely to be close together in the 

low-dimensional embedding as well. The UMAP has different hyperparameters that can 

impact the lower dimensional embeddings created, described below. 

I. The number of neighbors: This controls the focus on local or global structure in the 

data. Lower values of this parameter force the UMAP to focus on a very local struc-

ture, while the higher values will make the UMAP focus on larger or global struc-

tures. 

II. The minimum distance: This parameter governs how closely UMAP can pack points 

together. Lower numbers indicate that the points will be tightly clustered and vice 

versa. 

III. The number of components: This determines the dimensionality of the low-dimen-

sional space. 

2.3. Machine Learning Classification 

In this study, a supervised learning approach—Gaussian Process Classifier (GPC) 

was employed to learn the appropriate labels for the samples. Gaussian processes are non-

parametric methods based on the Bayesian methodology. It yields probabilistic classifica-

tion, with each prediction representing a probability over each class. The choice of GPC 

stems from the fact that their prediction is based on more a rigorous treatment of proba-

bility when compared to other approaches. Because of their probabilistic output, uncer-

tainty estimates can be calculated, this would enable one to assess the degree to which the 

prediction can be relied upon. A high confidence value would indicate that the predicted 

class is likely accurate, but a low confidence score would be inconclusive, and would per-

haps, indicate that confirmation via a PCR test is advisable. In general, the quantification 

of uncertainties is important in medical diagnostic applications because of the potential 

significance of a misdiagnosis. Therefore, a model that predicts a confidence score along-

side its predictions is vital to reducing the rate of the wrong diagnosis. The PCA and GPC 

models were created using Scikit-learn v1.0.2 [34], while the UMAP reduction was ob-

tained using the open-source UMAP library on GitHub [35]. 

A k-fold cross-validation approach, where the dataset was partitioned into 10 parts 

(or folds), was employed. An iterative procedure was used to loop over the folds, where 

the kth fold was used for validation at a given iteration, while other folds were used for 

model training. In this way, the model’s performance for various subsets of the dataset 

can be determined. The performance metrics used in this study were accuracy, precision, 

recall, F1-score, and area under the curve (AUC). Accuracy measures the ratio of samples 

that were correctly labeled to the total number of samples in the datasets. Accuracy is 

often reliable when the dataset has balanced classes, which was the case in this study. 

Precision is the ratio of accurately predicted positive observations to the total number of 

predicted positives, while recall (also known as sensitivity) is the ratio of the number of 

correctly predicted positive observations to the number of actual positive occurrences. 

The F1-score is the harmonic mean of both precision and recall. A model with a high F1 

score indicates high precision and recall values. 

3. Results and Discussion 
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Figures 1 and 2 show the SERS spectral and mean intensities of all the positive and 

negative samples, respectively. The mean intensity plot shows a significant distinction 

between the positive and negative samples, with a Raman shift of 1300–1600, 2100–2200 

and 2800–3000 cm−1. As mentioned earlier, each spectrum has 3062 entries, which can be 

interpreted as features with varying intensity levels. Many of these features are redundant 

and do not contribute to the separation of the classes. Therefore, we performed dimen-

sionality reduction using linear (PCA) and nonlinear (UMAP) dimensionality reduction 

techniques, as described in Section 2. 

 

Figure 2. Explained Variance Ratio Plot for PCA. 

Figure 2 shows the ratio of the variance captured as a function of the number of re-

tained variables. A higher ratio of variance captured means that most of the information 

in the dataset has been captured by the retained PCs, and therefore, it is desirable to cap-

ture a high variance ratio in the first few leading PCs. From the figure, we can see that 

over 90% of the variance in the data is captured by using just 50 features. On the other 

hand, using only two principal components only captures 55% of the variance, or put dif-

ferently, loses 45% of the variance in the original dataset. For visualization purposes, the 

first two components for both PCA and UMAP were plotted for comparison in Figure 

3a,b, respectively, with red symbols depicting positives and cyan symbols depicting neg-

ative cases. In both cases, some degree of separation can be seen, but significant regions 

of overlap between positive and negative cases exist. For instance, for PCA in Figure 3a, 

positive cases are concentrated between PC2 = −2.5 and 2.5, but below 2.5, positive and 

negative cases co-exist in close proximity. The imperfect separation of the two classes 

should come as no surprise since only 55% of the variance in the data was captured by 

two PCs. Some degree of overlap can also be seen in Figure 3b, suggesting that even when 

nonlinear projections are employed, the dimensionality required to find reasonable sepa-

ration boundaries between positive and negative cases is higher than two. 
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(a) (b) 

Figure 3. (a) 2D scatter plot of first and second principal components from PCA (b) 2D scatter plot 

of first and second components from UMAP. 

Therefore, to select the optimum number of reduced variables that enable easy sepa-

ration of the classes, various numbers of components (ranging from 2 to 20) were retained 

and used as input features for the classifier. Figure 4a shows that for PCA, the mean k-

fold accuracy (computed by averaging the performance across all folds) increased as the 

number of PCs increased, and there was no significant increases in the mean validation 

accuracy after 11 PCs. Thus, 11 was selected as the number of PCs that gives the model 

satisfactory information to classify our dataset. Figure 4b shows the mean accuracy versus 

UMAP number of dimensions; the average k-fold accuracy peaks at four dimensions and 

gradually declines when increased from this point. Therefore, four was selected as the 

optimal number of reduced dimensions for the model. Furthermore, a grid search process 

was used to find the optimal number of neighbors and minimum distance. Using the ac-

curacy score as the search objective, optimal values of 10 and 0.1 were found for the num-

ber of neighbors and minimum distance, respectively. 

 
(a) (b) 

Figure 4. (a) Comparison of different number of principal components from PCA with the model’s 

mean accuracy across 10 folds (b) Comparison of different number of components from UMAP with 

the model’s mean accuracy across 10 folds. 

The GPC model was tested separately for the reduced set of variables obtained from 

PCA and UMAP. The kernel (or covariance function) selected for both the PCA-GPC and 

UMAP-GPC models was the Matérn kernel, which requires the selection of a length scale, 

l, and a smoothness-controlling parameter, ν. For the PCA case, l was chosen as 6.51, while 

ν was 1.5. For the UMAP-GPC the parameters chosen were l = 0.646 and ν = 1.5. The 

model’s accuracy, precision, recall, F1-score, and AUC have been summarized in Tables 1 

and 2. The table shows that UMAP-GPC and PCA-GPC result in similar accuracies and 
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F1 scores, while for precision and recall, the UMAP-GPC model produces higher values 

when compared to PCA-GPC. 

Table 1. Results from the 10-fold validation of GPC model with 7 PCs. 

Folds Accuracy Precision Recall F1 Score ROC_AUC 

Fold 1 0.800 1.000 0.600 0.750 0.920 

Fold 2 0.900 0.900 0.900 0.900 0.980 

Fold 3 1.000 1.000 1.000 1.000 1.000 

Fold 4 0.750 0.727 0.800 0.762 0.860 

Fold 5 0.700 0.750 0.600 0.667 0.810 

Fold 6 0.950 1.000 0.900 0.947 0.970 

Fold 7 0.850 1.000 0.700 0.824 0.920 

Fold 8 0.800 0.875 0.700 0.778 0.950 

Fold 9 0.900 0.900 0.900 0.900 0.990 

Fold 10 0.900 1.000 0.800 0.889 0.980 

Mean 0.855 0.915 0.740 0.842 0.941 

Table 2. Result from 10-Fold validation of GPR model with 4 UMAP Dimensions. 

Folds Accuracy Precision Recall F1 Score ROC_AUC 

Fold 1 0.800 1.000 0.600 0.750 0.920 

Fold 2 0.900 0.900 0.900 0.900 0.980 

Fold 3 1.000 1.000 1.000 1.000 1.000 

Fold 4 0.750 0.727 0.800 0.762 0.860 

Fold 5 0.700 0.750 0.600 0.667 0.810 

Fold 6 0.950 1.000 0.900 0.947 0.970 

Fold 7 0.850 1.000 0.700 0.824 0.920 

Fold 8 0.800 0.875 0.700 0.778 0.950 

Fold 9 0.900 1.000 0.800 0.889 0.900 

Fold 10 0.900 1.000 0.800 0.889 0.980 

Mean 0.855 0.925 0.780 0.841 0.929 

In order to further evaluate the model’s performance, the AUC (Area Under the 

Curve) ROC (Receiver Operating Characteristics) curve was also created. AUC represents 

the degree of distinction between classes in our data, i.e., how well our model can predict 

each individual class correctly. The greater the AUC, the better the model distinguishes 

between positive and negative classes. Furthermore, Tables 1 and 2 show the mean AUC 

to be 0.941 and 0.929 for the PCA and UMAP models, respectively, indicating that the 

model is able to predict the class labels with minimum error. Figure 5a,b shows the ROC 

of one-fold chosen randomly from the 10-folds (fold 9 for PCA-derived variables), along-

side the confusion matrix. We see that the model predicted 9 out of the 10 negative classes 

correctly and 9 out of the 10 positive classes when using the PCA-derived variables. Sim-

ilarly, Fig. 6a, b shows the ROC and confusion matrix for fold 10 based on the UMAP-

derived variables. As in Fig 5a, b for the PCA-derived variables, we see that the model 

correctly predicts 90% of all positive and negative samples. 
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(a) (b) 

Figure 5. (a) Confusion Matrix for Gaussian Process Classifier with 7 principal components (b) Area 

Under Curve Receiver Operating Characteristics (AUC_ROC) for Gaussian Process Classifier with 

7 principal components. 

 
(a) (b) 

Figure 6. (a) Confusion Matrix for Gaussian Process Classifier with 4 UMAP components (b) Area 

Under the Receiver Operating Characteristics (AUC_ROC) curve for Gaussian Process Classifier 

with 4 UMAP components. 

Tables 3 and 4 show the prediction probability score and uncertainty for the test pre-

dictions. Given a random variable X with observations {x1, x2, …, xn}, the uncertainty is 

estimated using the Shannon entropy, defined as 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖)

𝑛

𝑖=1

 (1) 

The Shannon entropy measures the amount of information in X and ranges from zero 

to one [36], with a value of one indicating high uncertainties and a value of zero indicating 

high confidence. It is desirable that a model produces high Shannon entropies (low confi-

dence) when it misclassifies a sample, and low uncertainties when it produces an accurate 

label. Tables 3 and 4 show that this is the case with both PCA-GPC and UMAP-GPC—the 

uncertainty estimates for inaccurate predictions are relatively high, compared to the rest. 

In Figure 7, we also visualized the model’s decision boundary for a special case with only 

two components, due to difficulties of visualization with higher dimensions. In the figure, 

the size of the circle point correlates with the prediction confidence (i.e., small symbols 
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indicate low confidence). The plots show that points closer to the decision boundary and 

misclassified points have very small sizes, implying low confidence and high uncertainty. 

As mentioned above, this is useful because when the classifier misclassifies a prediction, 

it signals that the prediction was highly uncertain. In practice, a cutoff uncertainty level 

can be recommended, above which the result from the GPC model cannot be trusted and 

the patient is referred for further testing. 

Table 3. Test predictions, prediction probability and uncertainty for GPR model with PCA. The 

misclassified samples are highlighted in red. 

Samples Class 1 prob Class 2 prob True class Predicted class Uncertainty 

1 0.500 0.500 1 0 1.00 

2 0.376 0.624 1 1 0.95 

3 0.245 0.755 1 1 0.80 

4 0.608 0.392 0 0 0.97 

5 0.196 0.804 1 1 0.71 

6 0.689 0.311 0 0 0.89 

7 0.822 0.178 0 0 0.68 

8 0.179 0.821 1 1 0.68 

9 0.732 0.268 0 0 0.84 

10 0.231 0.769 1 1 0.78 

11 0.257 0.743 1 1 0.82 

12 0.238 0.762 1 1 0.79 

13 0.341 0.659 1 1 0.93 

14 0.466 0.534 0 1 1.00 

15 0.760 0.240 0 0 0.80 

16 0.654 0.346 0 0 0.93 

17 0.870 0.130 0 0 0.56 

18 0.686 0.314 0 0 0.90 

19 0.463 0.537 1 1 1.00 

20 0.764 0.236 0 0 0.79 

Table 4. Test predictions, prediction probability and uncertainty for GPR model with UMAP. The 

misclassified samples are highlighted in red. 

Samples Class 1 prob Class 2 prob True class Predicted class Uncertainty 

1 0.707 0.293 0 0 0.87 

2 0.760 0.240 0 0 0.80 

3 0.361 0.639 1 1 0.94 

4 0.840 0.160 0 0 0.63 

5 0.480 0.520 1 1 1.00 

6 0.696 0.304 0 0 0.89 

7 0.777 0.223 0 0 0.77 

8 0.832 0.168 0 0 0.65 

9 0.351 0.649 1 1 0.93 

10 0.165 0.835 1 1 0.65 

11 0.452 0.548 1 1 0.99 

12 0.587 0.413 0 0 0.98 

13 0.466 0.534 0 1 1.00 

14 0.187 0.813 1 1 0.70 

15 0.329 0.671 1 1 0.91 

16 0.789 0.211 0 0 0.74 
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17 0.544 0.456 1 0 0.99 

18 0.611 0.389 0 0 0.96 

19 0.285 0.715 1 1 0.86 

20 0.336 0.664 1 1 0.92 

 

 
(a) (b) 

Figure 7. (a) GPC model decision boundary plot with uncertainty estimation for PCA (b) GPC model 

decision boundary plot with uncertainty estimation for UMAP. 

4. Conclusions 

In this paper, we proposed an approach based on dimensionality reduction and a 

probabilistic Gaussian process classification model to classify COVID-19 data obtained 

from SERS. Both linear PCA-based dimensionality reduction and a stochastic nonlinear 

UMAP dimensionality reduction technique were compared. A hyperparameter search 

process revealed the optimal number of dimensions for UMAP was four, while PCA per-

formed best when 11 principal components were utilized. Using the optimal number of 

dimensions, both techniques resulted in similar model accuracies and comparable ROC-

AUC curves. Even though the dataset used in this study was relatively sparse, the results 

obtained are promising. For PCA, the leave-out validation accuracy was 85.5%, while the 

average precision was 91.5%. Similarly, UMAP-based reduction resulted in a mean accu-

racy and precision of 85.5 and 92.5%, respectively. It is reasonable to assume that the 

model’s performance would be substantially better if a larger dataset was used for train-

ing. Since GPC provides a probability (ranging from 0—100%) that a given sample is pos-

itive or negative, rather than offering hard class labels, we were able to estimate the un-

certainty of the model’s predictions by computing the Shannon entropies. For both PCA- 

and UMAP-based models, we showed that the uncertainties for misclassified samples 

were the highest (1.0). In practice, when such samples with high uncertainties are de-

tected, patients can be recommended for further PCR testing to confirm or disprove the 

diagnosis. Furthermore, the proposed framework can be utilized to provide high through-

put testing in settings where speed and reliability are critical. The proposed approach is 

also promising for use in miniaturized point of care devices, as opposed to the use of spe-

cialized laboratory testing as done in PCR. A spectra containing specific biochemical 

markers can be collected in as little as a few minutes, while the machine learning inference 

(PCA or UMAP, followed by GPC) to predict the occurrence of a positive or negative sam-

ple can be performed in as little as a few seconds. Overall, the result from this study 
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demonstrates the potential of SERS and machine learning algorithms to effectively diag-

nose COVID-19 infection with an uncertainty measure to inform medical decisions. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1: Raman spectra of SARS-CoV-2 RNA; Figure S2: Raman spectra 

of Au NP and ASO; Figure S3: SERS spectra of Au-ASO, and Au-ASO-SARS-CoV-2 RNA. To com-

pare the relative enhancement in SERS, the Raman spectra of SARS-CoV-2 is also included in the 

figure. 
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