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Abstract

We consider a transform, called Derive-then-Derandomize, that hardens a given signature
scheme against randomness failure and implementation error. We prove that it works. We then
give a general lemma showing indifferentiability of Shrink-MD, a class of constructions that
apply a shrinking output transform to an MD-style hash function. Armed with these tools, we
give new proofs for the widely standardized and used EdDSA signature scheme, improving prior
work in two ways: (1) we give proofs for the case that the hash function is an MD-style one,
reflecting the use of SHA512 in the NIST standard, and (2) we improve the tightness of the
reduction so that one has guarantees for group sizes in actual use.
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1 Introduction

In designing schemes, and proving them secure, theoreticians implicitly assume certain things,
such as on-demand fresh randomness and correct implementation. In practice, these assumptions
can fail. Weaknesses in system random-number generators are common and have catastrophic
consequences. (An example relevant to this paper is the well-known key-recovery attack on Schnorr

signatures when signing reuses randomness. Another striking example are Ps and Qs attacks [24,
28].) Meanwhile, implementation errors can be exploited, as shown by Bleichenbacher’s attack on
RSA signatures [14].

In light of this, practitioners may try to “harden” theoretical schemes before standardization and
usage. A prominent and highly successful instance is EdDSA, a hardening of the Schnorr signature
scheme proposed by Bernstein, Duif, Lange, Schwabe, and Yang (BDLSY) [13]. It incorporates
explicit, simple key-derivation, makes signing deterministic, adds protection against sidechannel
attacks via “clamping,” and for simplicity confines itself to a single hash function, namely SHA512.
The scheme is widely standardized [33, 26] and used [25].

There is however a subtle danger here, namely that the hardening attempt introduces new
vulnerabilities. In other words, hardening needs to be done right; if not, it may even “soften”
the scheme! Thus it is crucial that the hardened scheme be vetted via a proof of security. This
is of particular importance for EdDSA given its widespread deployment. In that regard, Brendel,
Cremers, Jackson and Zhao (BCJZ) [15] showed that EdDSA is secure if the Discrete-Log (DL)
problem is hard and the hash function is modeled as a random oracle. This is significant as a first
step but has at least two important limitations: (1) Due to the extension attack, a random oracle is
not an appropriate model for the SHA512 hash function EdDSA actually uses, and (2) the reduction
is so loose that there is no security guarantee for group sizes in use today.

Extrapolating EdDSA, the first part of this paper defines a general hardening transform on
signature schemes called Derive-then-Derandomize (DtD), and proves its soundness. Next we
prove the indifferentiability of a general class of constructions, that we call shrink-MD; it includes
the well-studied chop-MD construction [18] and also the modulo-a-prime construction arising in
EdDSA. Armed with these results, the second part of the paper returns to give new proofs for
EdDSA that in particular fill the above gaps. We begin with some background.

Respecting hash structure in proofs. Recall that the MD-transform [30, 19] defines a hash
function H = MD[h] : {0, 1}∗ → {0, 1}2k by iterating an underlying compression function h :
{0, 1}b+2k → {0, 1}2k. (See Section 2 for details.) SHA256 and SHA512 are obtained in this way, with
(b, k) being (512, 128) and (1024, 256), respectively. This structure gives rise to attacks, of which the
most well known is the extension attack. The latter allows an attacker given t ←MD[h](e2‖M),
where e2 is a secret unknown to the attacker and M ∈ {0, 1}∗ is public, to compute compute
t′ = MD[h](e2‖M ′), for some M ′ ∈ {0, 1}∗ of its choice. This has been exploited to violate the
UF-security of the so-called prefix message authentication code pfMACe2(M) = H(e2‖M) when H

is an MD-hash function; HMAC [4] was designed to overcome this.

A proof of security of a scheme (such as EdDSA) that uses a hash function H will often model H as
a random oracle [9], in what we’ll call the (H,H)-model: scheme algorithms, and the adversary, both
have oracle access to the same random H. However the presence of the above-discussed structure
in “real” hash functions led Dodis, Ristenpart and Shrimpton (DRS) [20] to argue that the “right”
model in which to prove security of a scheme that uses H = MD[h] is to model the compression
function h —rather than the hash function H = MD[h]— as a random oracle. We’ll call this the
(MD[h], h)-model: the adversary has oracle access to a random h, with scheme algorithms having
access to MD[h]. There is now widespread agreement with the DRS thesis that proofs of security
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of MD-hash-using schemes should use the (MD[h], h) model.

Giving from-scratch proofs in the (MD[h], h) model is, however, difficult. Maurer, Renner and
Holenstein (MRH) [29] show that if a construction F is indifferentiable (abbreviated indiff) and a
scheme is secure in the (H,H) model, then it remains secure in the (F[h], h) model. (This requires
the game defining security of the scheme to be single-stage [37], which is true for the relevant ones
here.) Unfortunately, F = MD is provably not indiff [18], due exactly to the extension attack.
So the MRH result does not help with MD. This led to a search for indiff variants. DRS [20]
and YMO [41] (independently) offer public-indiff and show that it suffices to prove security, in the
(MD[h], h) model, of schemes that use MD in some restricted way. However, EdDSA does not
obey these restrictions. Thus, other means are needed.

The EdDSA scheme. The Edwards curve Digital Signature Algorithm (EdDSA) is a Schnorr-based
signature scheme introduced by Bernstein, Duif, Lange, Schwabe and Yang [13]. Ed25519, which
uses the Curve25519 Edwards curve and SHA512 as the hash function, is its most popular instance.
The scheme is standardized by NIST [33] and the IETF [26]. It is used in TLS 1.3, OpenSSH,
OpenSSL, Tor, GnuPGP, Signal and WhatsApp. It is also the preferred signature scheme of the
Corda, Tezos, Stellar and Libra blockchain systems. Overall, IANIX [25] reports over 200 uses of
Ed25519. Proving security of this scheme is accordingly of high importance.

Figure 4 shows EdDSA on the right, and, on the left, the classic Schnorr scheme [39] on which
EdDSA is based. The schemes are over a cyclic, additively-written group G of prime order p

with generator B. The public verification key is A. The Schnorr hash function has range Zp =
{0, . . . , p− 1}, while, for EdDSA, function H1 has range {0, 1}2k where k, the bit-length of p, is 256
for Ed25519. Functions H2,H3 have range Zp.

EdDSA differs from Schnorr in significant ways. While the Schnorr secret key s is in Zp, the
EdDSA secret key sk is a k-bit string. This is hashed and the 2k-bit result is split into k-bit halves
e1‖e2. A Schnorr secret-key s is derived by applying to e1 a clamping function CF that zeroes
out the three least significant bits of e1. (Note: This means s is not uniformly distributed over
Zp.) Clamping increases resistance to side-channel attacks [13]. Signing is made deterministic by
a standard de-randomization technique [22, 32, 8, 11], namely obtaining the Schnorr randomness
r by hashing the message M with a secret-key dependent string e2. We note that all of H1,H2,H3

are instantiated via the same hash function, namely SHA512.

Prior work and our questions. Recall that the security goal for a signature scheme is UF
(UnForgeability under Chosen-Message Attack) [23]. Schnorr is well studied, and proven UF under
DL (Discrete Log in G) when H is a random oracle [36, 1]. The provable security of EdDSA, how-
ever, received surprisingly little attention until the work of Brendel, Cremers, Jackson and Zhao
(BCJZ) [15]. They take the path also used for Schnorr and other identification-based signature
schemes [36, 1], seeing EdDSA as the result of the Fiat-Shamir transform on an underlying identi-
fication scheme EdID that they define, proving security of the latter under DL, and concluding UF
of EdDSA under DL when H is a random oracle. This is an important step forward, but the BCJZ
proof [15] remains in the (H,H) model. We ask and address the following two questions.

1. Can we prove security in the (MD[h], h) model? The NIST standard [33] mandates
that Ed25519 uses SHA512, which is an MD-hash function. Accordingly, as explained above, the
BCJZ proof [15], being in the (H,H) model, does not guarantee security; to do the latter, we need
a proof in the (MD[h], h) model.

The gap is more than cosmetic. As we saw above with the example of the prefix MAC, a scheme
could be secure in the (H,H) model, yet totally insecure in the more realistic (MD[h], h) model,
and thus also in practice. And EdDSA skirts close to the edge: line 14 is using the prefix-MAC that
the extension attack breaks, and overlaps in inputs across the three uses of H could lead to failures.
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Intuitively what prevents attacks is that the MAC outputs are taken modulo p, and inputs to H

in two of the three uses involve secrets. Thus, we’d expect that the scheme is indeed secure in the
(MD[h], h) model.

Proving this, however, is another matter. We already know that MD is not indiff. It is public
indiff [20, 41], but this will not suffice for EdDSA because H1,H2 are being called on secrets. We
ask, first, can EdDSA be proved secure in the (MD[h], h) model, and second, can this be done in
some modular way, rather than from scratch?

2. Can we improve reduction tightness? The reduction of BCJZ [15] is so loose that, in
the 256-bit curve over which Ed25519 is implemented, it guarantees little security. Let’s elaborate.
Given an adversary AUF violating the UF-security of EdDSA with probability εUF, the reduction
builds an adversary ADL breaking DL with probability εDL = ε2UF/qh where qh is the number of
H-queries of AUF and the two adversaries have about the same running time t. (The square arises
from the use of rewinding, analyzed via the Reset Lemma of [7].) In an order p elliptic curve
group, εDL ≈ t2/p so we get εUF = t ·

√

qh/p. Ed25519 has p ≈ 2256. Say t = qh = 270, which (as
shown by BitCoin mining capability) is not far from attacker reach. Then εDL = 2−116 is small but
εUF = 270 · 2−(256−70)/2 = 2−23 is in comparison quite high.

Now, one might say that one would not expect better because the same reduction loss is present
for Schnorr. The classical reductions for Schnorr [36, 1] did indeed display the above loss, but that
has changed: recent advances for Schnorr include a tighter reduction from DL [38], an almost-tight
reduction from the MBDL problem [5] and a tight reduction from DL in the Algebraic Group
Model [21]. We’d like to put EdDSA on par with the state of the art for Schnorr. We ask, first, is
this possible, and second, is there a modular way to do it that leverages, rather than repeats, the
(many, complex) just-cited proofs for Schnorr?

Contributions for EdDSA. We simultaneously simplify and strengthen the security proofs for
EdDSA as follows.

1. Reduction from Schnorr. Rather than, as in prior work, give a reduction from DL or some
other algebraic problem, we give a simple, direct reduction from Schnorr itself. That is, we show
that if the Schnorr signature scheme is UF-secure, then so is EdDSA. Furthermore, the reduction
is tight up to a constant factor. This allows us to leverage prior work [38, 5, 21] to obtain tight
proofs for EdDSA under various algebraic assumptions and justify security for group sizes in actual
use. But there are two further dividends. First, Schnorr [39] is over 30 years old and has withstood
the tests of time and cryptanalysis, so our proof that EdDSA is just as secure as Schnorr allows the
former to inherit, and benefit from, this confidence. Second, our result formalizes and proves what
was the intuition and belief in the first place [13], namely that, despite the algorithmic differences,
EdDSA is a sound hardening of Schnorr.

2. Accurate modeling of the hash function. As noted above, BCJZ [15] assume the hash
function H is a random oracle, but this, due to the extension attack, is not an accurate model for
the MD-hash function SHA512 used by EdDSA. We fill this gap by instead proving security in the
(MD[h], h) model, where H = MD[h] is derived via the MD-transform [30, 19] and the compression
function h is a random oracle.

Approach and broader contributions. The above-mentioned results on EdDSA are obtained
as a consequence of more general ones.

3. The DtD transform and its soundness. We extend the hardening technique used in
EdDSA to define a general transform that we call Derive-then-Derandomize (DtD). It takes an
arbitrary signature scheme DS, and with the aid of a PRG H1 and a PRF H2, constructs a hardened
signature scheme DS. We provide (Theorem 4.1) a strong and general validation of DtD, showing
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that DS is UF-secure assuming DS is UF-secure. Moreover the reduction is tight and the proof is
simple. This shows that the EdDSA hardening method is generically sound.

4. Indifferentiability of Shrink-MD. It is well-known that MD is not indifferentiable [29]
from a random oracle, but that the Chop-MD [18], which truncates the output of an an MD hash
by some number of bits, is indifferentiable. Unfortunately, we identified gaps in two prominent
proofs of indifferentiability of Chop-MD [18, 31]. EdDSA uses a similar construction that reduces
the MD hash output modulo a prime p sufficiently smaller than the size of the range of MD, due
to which we refer to this construction as Mod-MD. The Mod-MD construction has not been
proven indifferentiable. We simultaneously give new proofs of indifferentiability for Chop-MD

and Mod-MD as part of a more general class of constructions that we call Shrink-MD functors.
These are constructions of the form Out(MD) where Out is some output-processing function, and
we prove indifferentiability under certain “shrinking” conditions on Out.

5. Application to EdDSA. EdDSA is obtained as the result DS of the DtD transform
applied to the DS = Schnorr signature scheme, and with the PRG and PRF defined via MD,
specifically H1(sk) = MD[h](sk) and H2(e2,M) = MD[h](e2‖M) mod p where p is the prime
order of the underlying group. Additionally, the hash function used in Schnorr is also H3(X) =
MD[h](X) mod p. Due to Theorem 4.1 validating DtD, we are left to show the PRG security
of H1, the PRF security of H2 and the UF-security of Schnorr, all with h modeled as a random
oracle. We do the first directly. We obtain the second as a consequence of the indifferentiability of
Mod-MD. (In principle it follows from the PRF security of AMAC [3], but we found it difficult
to extract precise bounds via this route.) For the third, we again exploit indifferentiability of
Mod-MD, together with a technique from BCJZ [15] to handle clamping, to reduce to the UF
security of regular Schnorr, where the hash function is modeled as a random oracle. Putting all
this carefully together yields our above-mentioned results for EdDSA. We note that one delicate
and important point is that the idealized compression function h is the same across H1,H2 and H3,
meaning these are not independent. This is handled through the building blocks in Theorem 4.1
being functors [6] rather than functions.

Discussion and related work. Both BCJZ [15] and CGN [16] note that there are a few versions
of EdDSA out there, the differences being in their verification algorithms. What Figure 4 shows is
the most basic version of the scheme, but we will be able to cover the variants too, in a modular
way, by reducing from Schnorr with the same verification algorithm.

BBT [3] define the function AMAC[h] to take a key e2 and message M , and return MD[h](e2‖M)
mod p. This is the H2 in EdDSA. We could exploit their results to conclude PRF security of H2,
but it requires putting together many different pieces from their work, and it is easier and more
direct to establish PRF security of H2 by using our lemma on the indifferentiability of Mod-MD.

In the Generic Group Model (GGM) [40], it is possible to prove UF-security of Schnorr under
standard (rather than random oracle) model assumptions on the hash functions [34, 17]. But use
of the GGM means the result applies to a limited class of adversaries. Our results, following the
classical proofs for identification-based signatures [36, 35, 1, 27], instead use the standard model for
the group, while modeling the hash function (in our case, the compression function) as a random
oracle.

In an earlier version of this paper, our proofs had relied on a variant of indifferentiability that
we had introduced. At the suggestion of a Crypto 2022 reviewer, this has been dropped in favor of
a direct proof based on PRG and PRF assumptions on H1,H2. We thank the (anonymous) reviewer
for this suggestion.

Theorem 4.1 is in the standard model if the PRG, PRF and starting signature scheme DS are
standard-model, hence can be viewed as a standard-model justification of the hardening template
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underlying EdDSA. However, when we want to justify EdDSA itself, we need to consider the specific,
MD-based instantiations of the PRG, PRF and Schnorr hash function, and for these we use the
model where the compression function is ideal.

Several works study de-randomization of signing by deriving the coins via a PRF applied to the
message, considering different ways to key the PRF [22, 32, 8, 11]. We use their techniques in the
proof of Theorem 4.1.

One might ask how to view the UF-security of Schnorr signatures as an assumption. What is
relevant is not its form (it is interactive) but that (1) it can be seen as a hub from where one can
bridge to other assumptions that imply it, such as DL (non-tightly) [36, 1] or MBDL (tightly) [5],
and (2) it is validated by decades of cryptanalysis.

Our results have been stated for UF but extend to SUF (Strong unforgeability), meaning our
proofs also show SUF-security of EdDSA in the (MD[h], h) model assuming SUF security of Schnorr,
with a tight (up to the usual constant factor) reduction.

EdDSA could be used with other hash functions such as SHAKE. The extension attack does not
apply to the latter, so the proof of BCJZ [15] applies, but gives a loose reduction from DL; our
results still add something, namely a tight reduction from Schnorr and thus improved tightness in
several ways as discussed above.

2 Preliminaries

Notation. If n is a positive integer, then Zn denotes the set {0, . . . , n− 1} and [n] or [1..n] denote
the set {1, . . . , n}. If x is a vector then |x| is its length (the number of its coordinates), x[i] is its
i-th coordinate and [x] = {x[i] : 1 ≤ i ≤ |x| } is the set of all its coordinates. A string is identified
with a vector over {0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its length. We
denote x[i..j] the i-th bit to the j-th bit of string x. By ε we denote the empty vector or string. The
size of a set S is denoted |S|. For sets D,R let AF(D,R) denote the set of all functions f :D → R.
If f :D → R is a function then Img(f) = { f(x) : x ∈ D } ⊆ R is its image. We say that f is
regular if every y ∈ Img(f) has the same number of pre-images under f . By {0, 1}≤L we denote
the set of all strings of length at most L. For any variables a and b, the expression [[a = b]] denotes
the Boolean value true when a and b contain the same value and false otherwise.

Let S be a finite set. We let x←$ S denote sampling an element uniformly at random from S and
assigning it to x. We let y ← A[O1, . . .](x1, . . . ; r) denote executing algorithm A on inputs x1, . . .
and coins r with access to oracles O1, . . . and letting y be the result. We let y←$ A[O1, . . .](x1, . . .)
be the resulting of picking r at random and letting y ← A[O1, . . .](x1, . . . ; r) be the equivalent. We
let OUT(A[O1, . . .](x1, . . .)]) denote the set of all possible outputs of A when invoked with inputs
x1, . . . and oracles O1, . . .. Algorithms are randomized unless otherwise indicated. Running time is
worst case.

Games. We use the code-based game playing framework of [10]. (See Fig. 1 for an example.)
Games have procedures, also called oracles. Among the oracles are Init and a Fin. In executing
an adversary A with a game G, the adversary may query the oracles at will. We require that the
adversary’s first oracle query be to Init and its last to Fin and it query these oracles at most once.
The value return by the Fin procedure is taken as the game output. By G(A)⇒ y we denote the
event that the execution of game G with adversary A results in output y. We write Pr[G(A)] as
shorthand for Pr[G(A)⇒ true], the probability that the game returns true.

In writing game or adversary pseudocode, it is assumed that Boolean variables are initialized
to false, integer variables are initialized to 0 and set-valued variables are initialized to the empty
set ∅.
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We adopt the convention that the running time of an adversary is the time for the execution
of the game with the adversary, so that the time for oracles to respond to queries is included. In
counting the number of queries to an oracle O, we have two metrics. We let QA

O denote the number
of queries made to O in the execution of the game with A. (This includes not just queries made
directly by A but also those made by game oracles, the latter usually arising from game executions
of scheme algorithms that use O.) In particular, under this metric, the number of queries to a
random oracle FO includes those made by scheme algorithms executed by game procedures. With
qAO we count only queries made directly by A to O, not by other game oracles or scheme algorithms.
These counts are all worst case.

Groups. Throughout the paper, we fix integers k and b, an odd prime p, and a positive integer f
such that 2f < p. We then fix two groups: G, a group of order p ·2f whose elements are k-bit strings,
and its cyclic subgroup Gp of order p. We prove in Appendix B that this subgroup is unique, and
that it has an efficient membership test. We also assume an efficient membership test for G. We
will use additive notation for the group operation, and we let 0G denote the identity element of G.
We let G∗

p = G \ {0G} denote the set of non-identity elements of Gp, which is its set of generators.
We fix a distinguished generator B ∈ G

∗
p. Then for any X ∈ G

∗, the discrete logarithm base B of X
is denoted DLG,B(X), and it is in the set Z|G|. The instantiation of G used in Ed25519 is described
in Appendix C.

3 Functor framework

Our treatment relies on the notion of functors [6], which are functions that access an idealized
primitive. We give relevant definitions, starting with signature schemes whose security is measured
relative to a functor. Then we extend the notions of PRGs and PRFs to functors.

Function spaces. In using the random oracle model [9], works in the literature sometimes omit
to say what exactly are the domain and range of the underlying functions, and, when multiple
functions are present, whether or not they are independent. (Yet, implicitly their proofs rely on
certain choices.) For greater precision, we use the language of function spaces of [6], which we now
recall.

A function space O is a set of tuples H = (H1, . . . ,Hn) of functions. The integer n is called the
arity of the function space, and can be recovered as O.arity. We view H as taking an input X that
it parses as (i, x) to return Hi(x).

Functors. Following [6], we use the term functor for a transform that constructs one function from
another. A functor F : SS→ ES takes as oracle a function h from a starting function space SS and
returns a function F[h] in the ending function space ES. (The term is inspired by category theory,
where a functor maps from one category into another. In our case, the categories are function
spaces.) If ES has arity n, then we also refer to n as the arity of F, and write Fi for the functor
which returns the i-th component of F. That is, Fi[h] lets H← F[h] and returns Hi.

MD functor. We are interested in the Merkle-Damg̊ard [30, 19] transform. This transform con-
structs a hash function with domain {0, 1}∗ from a compression function h : {0, 1}b+2k → {0, 1}2k
for some integers b and k. The compression function takes a 2k-bit chaining variable y and a
b-bit block B to return a 2k bit output h(y‖B). In the case of SHA512, the hash function used in
EdDSA, the compression function sha512 has b = 1024 and k = 256 (so the chaining variable is
512 bits and a block is 1024 bits), while b = 512 and k = 128 for SHA256. In our language, the
Merkle-Damg̊ard transform is a functor MD : AF({0, 1}b+2k, {0, 1}2k)→ AF({0, 1}∗, {0, 1}2k). It is
parameterized by a padding function pad that takes the length ` of an input to the hash function
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and returns a padding string such that ` + |pad(`)| is a multiple of b. Specifically, pad(`) returns
10∗〈`〉 where 〈`〉 is a 64-bit, resp. 128-bit encoding of ` for SHA256 resp. SHA512, and 0∗ indicates
the minimum number p of 0s needed to make ` + 1 + p + 64, resp. ` + 1 + p + 128 a multiple of
b. We also fix an “initialization vector” IV ∈ {0, 1}2k. Given oracle h, the functor defines hash
function H = MD[h] : {0, 1}∗ → {0, 1}2k as follows:

Functor MD[h](X)

y[0]← IV
P ← pad(|X|) ; X ′[1] . . . X ′[m]← X‖P // Split X‖P into b-bit blocks

For i = 1, . . . ,m do y[i]← h(y[i− 1]‖X ′[i])
Return y[m]

Strictly speaking, the domain is only strings of length less than 264 resp. 2128, but since this is
huge in practice, we view the domain as {0, 1}∗.
Signature scheme syntax. We give an enhanced, flexible syntax for a signature scheme DS.
We want to cover ROM schemes, which means scheme algorithms have oracle access to a func-
tion H, but of what range and domain? Since these can vary from scheme to scheme, we have
the scheme begin by naming the function space DS.FS from which H is drawn. We see the key-
generation algorithm DS.Kg as first picking a signing key sk←$ DS.SK via a signing-key generation
algorithm DS.SK, then obtaining the public verification key vk ← DS.PK[H](sk) by applying a
deterministic verification-key generation algorithm DS.PK, and finally returning (vk, sk). (For
simplicity, DS.SK, unlike other scheme algorithms, does not have access to H.) We break it up
like this because we may need to explicitly refer to the sub-algorithms in constructions. Con-
tinuing, via σ ← DS.Sign[H](sk, vk,M ; r) the signing algorithm takes sk, vk, a message M ∈
{0, 1}∗, and randomness r from the randomness space DS.SR of the algorithm, to return a sig-
nature σ. As usual, σ←$ DS.Sign[H](sk, vk,M ) is shorthand for picking r←$ DS.SR and return-
ing σ ← DS.Sign[H](sk, vk,M ; r). Via b ← DS.Vf[H](vk,M , σ), the verification algorithm ob-
tains a boolean decision b ∈ {true, false} about the validity of the signature. The correctness
requirement is that for all H ∈ DS.FS, all (vk, sk) ∈ OUT(DS.Kg[H]), all M ∈ {0, 1}∗ and all
σ ∈ OUT(DS.Sign[H](sk, vk,M )) we have DS.Vf[H](vk,M , σ) = true.

UF security. We want to discuss security of a signature scheme DS under different ways in which
the functions in DS.FS are chosen or built. Game Guf

DS,FF
in Fig. 1 is thus parameterized by a

functor FF : SS → DS.FS. At line 1, a starting function h is chosen from the starting space of
the functor, and then the function H ∈ DS.FS that the scheme algorithms (key-generation, signing
and verification) get as oracle is determined as H ← FF[h]. The adversary, however, via oracle
FO, gets access to h, which here is the random oracle. The rest is as per the usual unforgeability
definition. (Given in the standard model in [23] and extended to the ROM in [9].) We define the
UF advantage of adversary A as Advuf

DS,FF
(A) = Pr[Guf

DS,FF
(A)].

PRGs and PRFs. The usual definition of a PRGs is for a function; we define it instead for a
functor P. The game G

prg
P

is in Figure 1. It picks a function h from the starting space SS of the
functor. The functor now determines a function P[h] : {0, 1}k → {0, 1}`. The game then follows
the usual PRG one for this function, additionally giving the adversary oracle access to h via oracle
FO. We let Adv

prg
P

(A) = 2Pr[Gprg
P

(A)]− 1.

Similarly we extend the usual definition of PRG security to a functor F, via game G
prf
F

of
Figure 1. Here, for h in the starting space SS of the functor, the defined function maps as
F[h] : {0, 1}k × {0, 1}∗ → R for some k and range set R. We let Adv

prf
F

(A) = 2Pr[Gprf
F

(A)]− 1.

9



Game Guf
DS,FF

Init:

1 h←$ SS ; H← FF[FO] ; (vk, sk)←$ DS.Kg[H] ; Return vk

Sign(M ):

2 σ←$ DS.Sign[H](sk, vk,M ) ; S ← S ∪ {M } ; Return σ

FO(X):

3 Return h(X)

Fin(M∗, σ∗):

4 If (M∗ ∈ S) then return false

5 Return DS.Vf[H](vk,M∗, σ∗)

Game G
prg
P

Init:

1 h←$ SS ; c←$ {0, 1}

2 s←$ {0, 1}k ; y1 ← P[FO](s)

3 y0←$ {0, 1}`

4 Return yc

FO(X):

5 Return h(X)

Fin(c′):

6 Return (c = c′)

Game G
prf
F

Init:

1 h←$ SS ; c←$ {0, 1} ; K←$ {0, 1}k

FN(X):

2 If YT[X] 6= ⊥ then

3 If (c = 1) then YT[X]← F[FO](K,X)

4 Else YT[X]←$ R

5 Return YT[X]

FO(X):

6 Return h(X)

Fin(c′):

7 Return (c = c′)

Figure 1: Top: Game defining UF security of signature scheme DS relative to functor FF : SS →
DS.FS. Bottom Left: Game defining PRG security of functor P : SS→ AF({0, 1}k, {0, 1}`). Bottom
Right: Game defining PRF security of functor F : SS→ AF({0, 1}k × {0, 1}∗, R).

4 The soundness of Derive-then-Derandomize

We specify a general signature-hardening transform that we call Derive-then-Derandomize (DtD)
and prove that it preserves the security of the starting signature scheme.

The DtD transform. Let DS be a given signature scheme that we call the base signature scheme.
It will be the (general) Schnorr scheme in our application. Assume for simplicity that its function
space DS.FS has arity 1.

TheDtD (derive then de-randomize) transform constructs a signature scheme DS = DtD[DS, CF]
based on DS and a function CF : {0, 1}k → OUT(DS.SK), called the clamping function, that turns
a k-bit string into a signing key for DS. The algorithms of DS are shown in Figure 2. They have
access to oracle H that specifies sub-functions H1,H2,H3. Function H1 : {0, 1}k → {0, 1}2k expands
the signing key sk of DS into sub-keys e1 and e2. The clamping function is applied to e1 to get a
signing key for the base scheme, and its associated verification key is returned as the one for the
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DS.SK:

1 sk←$ {0, 1}k ; Return sk

DS.PK[H](sk):

2 e1‖e2 ← H1(sk) ; sk ← CF(e1)

3 vk ← DS.PK[H3](sk)

4 Return vk

DS.Sign[H](sk, vk,M ):

5 e1‖e2 ← H1(sk) ; sk ← CF(e1)

6 r ← H2(e2,M )

7 σ ← DS.Sign[H3](sk, vk,M ; r)

8 Return σ

DS.Vf[H](vk,M , σ):

9 Return DS.Vf[H3](vk,M , σ)

DS∗.SK:

1 sk←$ {0, 1}k ; Return sk

DS∗.PK[G](sk):

2 sk ← CF(sk)

3 vk ← DS.PK[G](sk)

4 Return vk

DS∗.Sign[G](sk, vk,M ):

5 sk ← CF(sk)

6 σ←$ DS.Sign[G](sk, vk,M )

7 Return σ

DS∗.Vf[G](vk,M , σ):

8 Return DS.Vf[G](vk,M , σ)

Figure 2: Left: The signature scheme DS = DtD[DS, CF] constructed by the DtD transform
applied to signature scheme DS and clamping function CF : {0, 1}k → OUT(DS.SK). Right: The
signature scheme DS = JCl[DS, CF] constructed by the JCl transform.

new scheme at line 4. At line 6, function H2 : {0, 1}k × {0, 1}∗ → DS.SR is applied to the second
sub-key e2 and the message M to determine signing randomness r for the line 5 invocation of the
base signing algorithm. Finally, H3 ∈ DS.FS is an oracle for the algorithms of DS. Formally the
oracle space DS.FS of DS is the arity 3 space consisting of all H = (H1,H2,H3) that map as above.

Viewing the PRG H1, PRF H2 and oracle H3 for the base scheme as specified in the function
space is convenient for our application to EdDSA, where they are all based on MD with the same
underlying idealized compression function.

Just clamp. Given a signature scheme DS and a clamping function CF : {0, 1}k → OUT(DS.SK),
it is useful to also consider the signature scheme DS∗ = JCl[DS, CF] that does just the clamping.
The scheme is shown in Figure 2. Its oracle space is the same as that of DS and is assumed to have
arity 1. On the right of Figure 2 the function drawn from it is denoted G; it will be the same as
H3 on the left.

Security of DtD. We study the security of the scheme DS = DtD[DS, CF] obtained via the DtD

transform.

When we prove security of DS, it will be with respect to a functor FF that constructs all of
H1,H2,H3. This means that these three functions could all depend on the same starting function
that FF uses, and in particular not be independent of each other. An important element of the
following theorem is that it holds even in this case, managing to reduce security to conditions on
the individual functors despite their using related (in fact, the same) underlying starting function.

Theorem 4.1 Let DS be a signature scheme. Let CF : {0, 1}k → OUT(DS.SK) be a clamping
function. Let DS = DtD[DS, CF] and DS∗ = JCl[DS, CF] be the signature schemes obtained by the
above transforms. Let FF : SS→ DS.FS be a functor that constructs the function H that algorithms
of DS use as an oracle. Let A be an adversary attacking the Guf security of DS. Then there are
adversaries A1,A2,A3 such that

Advuf
DS,FF

(A) ≤ Adv
prg
FF1

(A1) +Adv
prf
FF2

(A2) +Advuf
DS∗,FF3

(A3) .
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Games G0,G1,G2

Init:

1 h←$ SS

2 sk←$ {0, 1}k ; e1‖e2 ← FF1[FO](sk) // Game G0

3 e1‖e2←$ {0, 1}2k // Games G1,G2

4 sk ← CF(e1) ; vk ← DS.PK[FF3[FO]](sk) ; Return vk

Sign(M ):

5 If ST[M ] 6= ⊥ then return ST[M ]

6 r ← FF2[FO](e2,M ) // Games G0,G1

7 r←$ DS.SR // Game G2

8 ST[M ]← DS.Sign[FF3[FO]](sk, vk,M ; r) ; Return ST[M ]

FO(X):

9 Return h(X)

Fin(M∗, σ∗):

10 If (ST[M∗] 6= ⊥) then return false

11 Return DS.Vf[FF3[FO]](vk,M∗, σ∗)

Figure 3: Games for proof of Theorem 4.1. A line annotated with names of games is included only
in those games.

The constructed adversaries have QAi

FO = QA
FO (i = 1, 2, 3) and approximately the same running

time as A. Adversary A2 makes QA
Sign queries to FN. Adversary A3 makes QA

Sign queries to Sign.

Recall that QB
O means the number of queries made to oracle O in the execution of the game with

adversary B, so queries made by scheme algorithms, run in the game in response to B’s queries,
are included. The theorem says the number of queries to FO is preserved under this metric. The
number of direct queries to FO is not necessarily preserved. Thus qAi

FO could be more than qAFO.

For example qA1

FO is qAFO plus the number of queries to FO made by the calls to FF3[FO], the
latter calls in turn made by the execution of DS.Sign[FF3[FO]] across the different queries to Sign.
Accounting precisely for this is involved, whence a preference where possible for the game-inclusive
query metric Q·

·.

Proof of Theorem 4.1: The proof uses code-based game playing [10]. Consider the games of
Figure 3. Let εi = Pr[Gi(A)] for i = 0, 1, 2.

Game G0 is the Guf game for DS except that the signature of M is stored in table ST at line 8,
and, at line 5, if a signature for M already exists, it is returned directly. Since signing in DS is
deterministic, meaning the signature is always the same for a given message and signing key, this
does not change what Sign returns, and thus

Advuf
DS,FF

(A) = ε0

= (ε0 − ε1) + (ε1 − ε2) + ε2 .

We bound each of the three terms above in turn.

The change in moving to game G1 is at line 3, where we sample e1‖e2 uniformly from the set
{0, 1}2k rather than obtaining it via FF1[FO] as in game G0. We build PRG adversary A1 such
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that

ε0 − ε1 ≤ Adv
prg
FF1

(A1) . (1)

Adversary A1 is playing game G
prg
FF1

. It gets its challenge via e1‖e2 ← G
prg
FF1

.Init. It lets sk ←
CF(e1) and vk ← DS.PK[FF3[G

prg
FF1

.FO]](sk) where G
prg
FF1

.FO is the oracle provided in its own
game. It runs A, returning vk in response to A’s Init query. It answers Sign queries as do G0,G1

except that it uses G
prg
FF1

.FO in place of FO at lines 6,8. As part of this simulation, it maintains
table ST. It answers FO queries via G

prg
FF1

.FO. When A calls Fin(M∗, σ∗), adversary A1 lets
c′ ← 1 if DS.Vf[FF3[G

prg
FF1

.FO]](vk,M∗, σ∗) is true and ST[M∗] = ⊥, and otherwise lets c′ ← 0. It
then calls G

prg
FF1

.Fin(c′). When the challenge bit c in game G
prg
FF1

is c = 1, the view of A is as in
G0, and when c = 0 it is as in G1, which explains Eq. (1).

Moving to G2, the change is that line 6 is replaced by line 7, meaning signing coins are now chosen
at random from the randomness space DS.SR of DS. We build PRF adversary A2 such that

ε1 − ε2 ≤ Adv
prf
FF2

(A2) . (2)

Adversary A2 is playing game G
prf
FF2

. It picks e1‖e2←$ {0, 1}2k. It lets sk ← CF(e1) and vk ←
DS.PK[FF3[G

prf
FF2

.FO]](sk) where G
prg
FF2

.FO is the oracle provided in its own game. It runs A,
returning vk in response to A’s Init query. It answers Sign queries as does G1 except that it
uses G

prf
FF2

.FN in place of FF2[FO] at line 6 and G
prf
FF2

.FO in place of FO in line 8. As part

of this simulation, it maintains table ST. It answers FO queries via G
prf
FF2

.FO. When A calls

Fin(M∗, σ∗), adversary A2 lets c
′ ← 1 if DS.Vf[FF3[G

prf
FF2

.FO]](vk,M∗, σ∗) is true and ST[M∗] = ⊥,
and otherwise lets c′ ← 0. It then calls G

prf
FF2

.Fin(c′). When the challenge bit c in game G
prf
FF2

is
c = 1, the view of A is as in G1, and when c = 0 it is as in G2, which explains Eq. (2).

Finally we build adversary A3 such that

ε2 ≤ Advuf
DS∗,FF3

(A3) . (3)

Adversary A3 is playing game Guf
DS∗,FF3

. It lets vk ← Guf
DS∗,FF3

.Init. It runs A, returning vk in
response to A’s Init query. When A makes query M to Sign, it answers as per the following:

If ST[M ] 6= ⊥ then return ST[M ]
ST[M ]←$ Guf

DS∗,FF3
.Sign(M) ; Return ST[M ]

Note that memoizing signatures in ST is important here to ensure that the Sign queries of A
are correctly simulated. It answers FO queries via Guf

DS∗,FF3
.FO. When A calls Fin(M∗, σ∗),

adversary A2 calls Guf
DS∗,FF3

.Fin(M∗, σ∗). The distribution of signatures that A is given, and of
the keys underlying them, is as in G2, which explains Eq. (3).

Note that the constructed adversaries having access to oracle FO in their games is important to
their ability to simulate A faithfully.

With regard to the costs (number of queries, running time) of the constructed adversaries, recall
that we have defined these as the costs in the execution of the adversary with the game that
the adversary is playing, so for example the number of queries to FO includes the ones made by
algorithms executed in the game. When this is taken into account, queries to FO are preserved,
and the other claims are direct.

Security of JCl. We have now reduced the security of DS to that of DS∗. To further reduce
the security of DS∗ to that of DS, we give a general result on clamping. Let K = OUT(DS.SK)
and let CF : {0, 1}k → K be a clamping function. As per terminology in Section 2, recall that
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Img(CF) = { CF(sk) : |sk| = k } ⊆ K is the image of the clamping function, and CF is regular if
every y ∈ Img(CF) has the same number of pre-images under CF.

Theorem 4.2 Let DS be a signature scheme such that DS.SK draws its signing key sk←$K at
random from a set K. Let CF : {0, 1}k → K be a regular clamping function. Let δ = |Img(CF)|/|K| >
0. Let DS∗ = JCl[DS, CF] be the signature scheme obtained by the just-clamp transform. Let
FF : SS→ DS.FS be any functor. Let B be an adversary attacking the Guf security of DS∗. Then

Advuf
DS∗,FF

(B) ≤ (1/δ) ·Advuf
DS,FF(B) .

Proof of Theorem 4.2: We consider running B in game Guf
DS,FF

, where the signing key is
sk←$K. With probability δ we have sk ∈ Img(CF). Due to the regularity of CF, key sk now has the
same distribution as a key CF(sk) for sk←$ {0, 1}k drawn in game Guf

DS∗,FF
. Thus Advuf

DS,FF
(B) ≥

δ ·Advuf
DS∗,FF

(B).

5 Security of EdDSA

The Schnorr scheme. Let the prime-order group Gp of k-bit strings with generator B be as
described in Section 2. The algorithms of the Schnorr signature scheme DS = Sch are shown on
the left in Figure 4. The function space DS.FS is AF({0, 1}∗,Zp). (Implementations may use a
hash function that outputs a string and embed the result in Zp but following prior proofs [1] we
view the hash function as directly mapping into Zp.) Verification is parameterized by an algorithm
VF to allow us to consider strict and permissive verification in a modular way. The corresponding
choices of verification algorithms are at the bottom of Figure 4. The signing randomness space is
DS.SR = Zp.

Schnorr signatures have a few variants that differ in details. In Schnorr’s paper [39], the chal-
lenge is c = H(R‖M ) mod p. Our inclusion of the public key in the input to H follows Bernstein [12]
and helps here because it is what EdDSA does. It doesn’t affect security. (The security of the
scheme that includes the public key in the hash input is implied by the security of the one that
doesn’t via a reduction that includes the public key in the message.) Also in [39], the signature
is (c, z). The version we use, where it is (R, z), is from [1]. However, BBSS [2] shows that these
versions have equivalent security.

The EdDSA scheme. Let the prime-order group Gp of k-bit strings with generator B be as before
and assume 2k−5 < p < 2k. Let CF : {0, 1}k → Zp be the clamping function shown at the bottom
of Figure 4. The algorithms of the scheme DS are shown on the right side of Figure 4. The
key length is k. As before, the verification algorithm VF is a parameter. The H available to the
algorithms defines three sub-functions. The first, H1 : {0, 1}k → {0, 1}2k, is used at lines 2,4, where
its output is parsed into k-bit halves. The second, H2 : {0, 1}k × {0, 1}∗ → Zp, is used at line 5 for
de-randomization. The third, H3 : {0, 1}∗ → Zp, plays the role of the function H for the Schnorr
schemes. Formally, DS.FS is the arity-3 function space consisting of all H mapping as just indicated.

In [13, 15], the output of the clamping is an integer that (in our notation) is in the range
2k−2, . . . , 2k−1− 8. When used in the scheme, however, it is (implicitly) modulo p. It is convenient
for our analysis, accordingly, to define CF to be the result modulo p of the actual clamping. Note
that in EdDSA the prime p has magnitude a little more than 2k−4 and less than 2k−3.

There are several versions of EdDSA depending on the choice for verification algorithms: strict,
permissive or batch VF. We specify the first two choices in Figure 4. Our results hold for all choices
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DS.SK:

1 s←$ Zp

2 Return s

DS.PK(s):

3 A← s · B ; Return A

DS.Sign[H](s, A,M ):

4 r←$ Zp ; R← r · B

5 c← H(R‖A‖M )

6 z ← (sc+ r) mod p

7 Return (R, z)

DS.Vf[H](A,M , σ):

8 (R, z)← σ

9 c← H(R‖A‖M )

10 Return VF(A, R, c, z)

DS.SK:

1 sk←$ {0, 1}k ; Return sk

DS.PK(sk):

2 e1‖e2 ← H1(sk) ; s ← CF(e1)

3 A← s · B ; Return A

DS.Sign[H](sk, A,M ):

4 e1‖e2 ← H1(sk) ; s ← CF(e1)

5 r ← H2(e2,M ) ; R← r · B

6 c← H3(R‖A‖M )

7 z ← (sc+ r) mod p

8 Return (R, z)

DS.Vf[H](A,M , σ):

9 (R, z)← σ

10 c← H3(R‖A‖M ) mod p

11 Return VF(A, R, c, z)

CF(e) // e ∈ {0, 1}k:
12 t← 2k−2

13 for i ∈ [4..k − 2]

14 t← t+ 2i−1 · e[i]

15 s← t mod p

16 return s

sVF(A, R, c, z):

1 Return (z · B = c · A+ R)

pVF(A, R, c, z):

1 Return 2f(z · B) = 2f(c · A+ R)

Figure 4: Top Left: the Schnorr scheme. Top Right: The EdDSA scheme. Bottom Left:

EDDSA clamping function (generalized for any k; in the original definition, k = 256). Bottom

Right: Strict and Permissive verification algorithms as choices for VF.

of VF, meaning EdDSA is secure with respect to VF assuming Schnorr is secure with respect to VF.
It is in order to make this general claim that we abstract out VF.

Security of EdDSA with independent ROs. As a warm-up, we show security of EdDSA when
the three functions it uses are independent random oracles, the setting assumed by BCJZ [15].
However, while they assume hardness of DL, our result is more general, assuming only security
of Schnorr with a monolithic random oracle. We can then use known results on Schnorr [36, 1] to
recover the result of BCJZ [15], but the proof is simpler and more modular. Also, other known
results on Schnorr [38, 5, 21] can be applied to get better bounds. Following this, we will turn to
the “real” case, where the three functions are all MD with a random compression function.

The Theorem below is for a general prime p > 2k−5 but in EdDSA the prime is 2k−4 < p < 2k−3

so the value of δ below is δ = 2k−5/p > 2k−5/2k−3 = 1/4, so the factor 1/δ is ≤ 4. We capture
the three functions of EdDSA being independent random oracles by setting functor P below to the
identity functor, and similarly capture Schnorr being with a monolithic random oracle by setting
R to be the identity functor.

Theorem 5.1 Let DS = Sch be the Schnorr signature scheme of Figure 4. Let CF : {0, 1}k → Zp be
the clamping function of Figure 4. Assume p > 2k−5 and let δ = 2k−5/p. Let DS = DtD[DS, CF]
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Functor S1[h](sk): // |sk| = k

2 e ←MD[h](sk) ; Return e // |e| = 2k

Functor S2[h](e2,M ): // |e2| = k

3 Return MD[h](e2‖M ) mod p

Functor S3[h](X): // also called Mod-MD

4 Return MD[h](X) mod p

Figure 5: The arity-3 functor S for EdDSA. Here h : {0, 1}b+2k → {0, 1}2k is a compression function.

be the EdDSA signature scheme. Let R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp) be the identity functor.
Let P : DS.FS → DS.FS be the identity functor. Let A be an adversary attacking the Guf security
of DS. Then there is an adversary B such that

Advuf
DS,P

(A) ≤(1/δ) ·Advuf
DS,R(B) +

2 ·QA
FO

2k
.

Adversary B preserves the queries and running time of A.

Proof of Theorem 5.1: Let DS∗ = JCl[Sch, CF]. By Theorem 4.1, we have

Advuf
DS,P

(A) ≤ Adv
prg
P1

(A1) +Adv
prf
P2

(A2) +Advuf
DS∗,P3

(A3) .

It is easy to see that

Adv
prg
P1

(A1) ≤
qA1

FO

2k
≤ QA

FO

2k

Adv
prf
P2

(A2) ≤
qA2

FO

2k
≤ QA

FO

2k
.

Under the assumption p > 2k−5 made in the theorem, BCJZ [15] established that |Img(CF)| = 2k−5.
So |Img(CF)|/|Zp| = 2k−5/p = δ. Let B = A3 and note that P3 = R. So by Theorem 4.2 we have

Advuf
DS∗,P3

(A3) ≤ (1/δ) ·Advuf
DS,R(B) . (4)

Collecting terms, we obtain the claimed bound stated in Theorem 5.1.

Analysis of the S functor. Let DS be the result of the DtD transform applied to Sch and a
clamping function CF : {0, 1}k → Zp. Security of EdDSA is captured as security in game Guf

DS,S
when

S is the functor that builds the component hash functions in the way that EdDSA does, namely
from a MD-hash function. To evaluate this security, we start by defining the functor S in Figure 5.
It is an arity-3 functor, and we separately specify S1,S2,S3. (Functor S3 will be called Mod-MD

in later analyses.) The starting space, from which h is drawn, is AF({0, 1}b+2k, {0, 1}2k), the set of
compression functions. The prime p is as before, and is public.

We want to establish the three assumptions of Theorem 4.1. Namely: (1) S1 is PRG-secure
(2) S2 is PRF secure and (3) security holds in game Guf

Sch∗,S3
where Sch∗ = JCl[Sch, CF]. Bridging

from Sch∗ to Sch itself will use Theorem 4.2.

Lemma 5.2 Let functor S1 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}k, {0, 1}2k) be defined as in Fig-
ure 5. Let A1 be an adversary. Then

Adv
prg
S1

(A1) ≤
qA1

FO

2k
≤ QA1

FO

2k
. (5)

Proof of Lemma 5.2: Since the input sk to S1[h] is k-bits long, the MD transform defined
in Section 3 only iterates once and the output is e = h(IV ‖sk‖P ), for padding P ∈ {0, 1}3k and
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Games G0, G1

Init:

1 sk←$ {0, 1}k ; e←$ {0, 1}2k

2 Return e

FO(X):

3 If FT[X] 6= ⊥ then return FT[X]

4 Y ←$ {0, 1}2k

5 If X = IV ‖sk‖P then bad← true ; Y ← e

6 FT[X]← Y ; Return FT[X]

Fin(c′):

7 Return (c′ = 1)

Figure 6: Games G0 and G1 in the proof of Lemma 5.2. Boxed code is only in G1.

initialization vector IV ∈ {0, 1}2k that are fixed and known. Now consider the games in Figure 6,
where the boxed code is only in G1. Then we have

Adv
prg
S1

(A1) = Pr[G1(A1)]− Pr[G0(A1)]

≤ Pr[G0(A1) sets bad]

≤ QA1

FO

2k
.

The second line above is by the Fundamental Lemma of Game Playing, which applies since G0,G1

are identical-until-bad.

We turn to PRF security of the S2 functor. Note that the construction is what BRT called
AMAC [3]. They proved its PRF security by a combination of standard-model and ROM results.
First they showed AMAC is PRF-secure if the compression function h is PRF-secure under leakage
of a certain function of the key. Then they show that ideal compression functions have this PRF-
under-leakage security. Putting this together implies PRF security of S2. However, we found it
hard to put the steps and Lemmas in BRT together to get a good, concrete bound for the PRF
security of S2. Instead we give a direct proof, with an explicit bound, using our result on the
indifferentiability of Mod-MD from Theorem 6.1 together with the indifferentiability composition
theorem [29].

Lemma 5.3 Let functor S2 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}k × {0, 1}∗,Zp) be defined as in
Figure 5. Let ` be an integer such that all messages queried to FO are no more than b · (`− 1)− k
bits long. Let A2 be an adversary. Then

Adv
prf
S2

(A2) ≤
QA2

FO

2k
+

2p(qA2

FO + `QA2

FN)

22k
+

(qA2

FO + `QA2

FN)
2

22k
+

pqA2

FO · `QA2

FN

22k
.

Proof of Lemma 5.3: In Section 6, we prove the indifferentiability of functor S3 (c.f. Figure 5),
which we also call Mod-MD. Define R : AF({0, 1}∗,Zp) → AF({0, 1}k × {0, 1}∗,Zp) to be the
identity functor such that R[H](x, y) = H(x ‖ y) for all x, y,H in the appropriate domains. Notice
that when R is given access to the Mod-MD functor as its oracle, the resulting functor is exactly
S2. Using this property, we will reduce the PRF security of functor S2 to the indifferentiability of
Mod-MD.
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For any simulator algorithm S, the indifferentiability composition theorem [29] grants the existence
of distinguisher D and adversary A5 such that

Adv
prf
S2

(A2) ≤ Adv
prf
R

(A5) +Advindiff
Mod-MD,S(D).

We let S be the simulator guaranteed by Theorem 6.1 and separately bound each of these terms.
Adversary A5 simulates the PRF game for its challenger A2 by forwarding all FN queries to its
own FN oracle and answering FO queries using the simulator, which has access to the FO oracle
of A5. Since the simulator is efficient and makes at most one query to its oracle each time it is
run, we can say the runtime of A5 is approximately the same as that of A2. A5 makes the same
number of FN and FO queries as A2.

Next, we want to compute Adv
prf
R

(A5). When R is evaluated with access to a random function h,
its outputs are random unless the adversary makes a relevant query involving the secret key. The
adversary can only distinguish if the output of FN is randomly sampled or from R[h] if it queries
FO on the k-bit secret key (e2), which has probability 1

2k
for a single query. Taking a union bound

over all FO queries, we have

Adv
prf
R

(A5) ≤
QA2

FO

2k
.

Distinguisher D simulates the PRF game for A2, by replacing functor Mod-MD with its own Priv
oracle within the FN oracle and forwarding A2’s direct FO queries to Pub. D hence makes QFN

A2

queries to Priv of maximum length b ·(`−1) and qFOA2
to Pub. To bound the second term, we apply

Theorem 6.1 on the indifferentiability of shrink-MD transforms. This theorem is parameterized by
two numbers γ and ε; in Section 6, we show that Mod-MD belongs to the shrink-MD class for
γ = b22k

p
c and ε = p

22k
. Then the theorem gives

Advindiff
Mod-MD,S(D) ≤ 2(QD

Pub + `QD
Priv)ε+

(QD
Pub + `QD

Priv)
2

22k
+

QD
Pub · `QD

Priv

γ
.

By substituting QD
Pub = qA2

FO and QD
Priv = QA2

FN, we obtain the bound stated in the theorem.

Finally we turn to S3. The following considers the UF security of DS∗ = JCl[Sch, CF] with
the hash function being an MD one, meaning with S3, and reduces this to the UF security of the
same scheme with the hash function being a monolithic random oracle. Formally, the latter is
captured by game Guf

DS∗,R where R is the identity functor. One route to this result is to exploit
the public-indifferentiability of MD established by DRS [20]. However we found it simpler to give
a direct proof and bound based on our Theorem 6.1.

Lemma 5.4 Let functor S3 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}∗,Zp) be defined as in Figure 5.
Assume 2k > p. Let DS∗ = JCl[Sch, CF] where CF : {0, 1}k → Zp is a clamping function. Let
R : AF({0, 1}∗,Zp)→ AF({0, 1}∗,Zp) be the identity functor, meaning R[H] = H. Let A3 be a Guf

adversary and let ` be an integer such that the maximum message length A3 queries to Sign is at
most b · (`− 1)− 2k bits. Then we can construct adversary A4 such that

Advuf
DS∗,S3

(A3) ≤ Advuf
DS∗,R(A4) +

2p(qA3

FO + `QA3

Sign)

22k
(6)

+
(qA3

FO + `QA3

Sign)
2

22k
+

pqA3

FO · `QA3

Sign

22k
. (7)

Adversary A4 has approximately equal runtime and query complexity to A3.

Proof of Lemma 5.4: Again, we rely on the indifferentiability of functor S3 = Mod-MD, as
shown in Section 6. The general indifferentiability composition theorem [29] states that for any
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simulator S and adversary A3, there exist distinguisher D and adversary A4 such that

Advuf
DS∗,S3

(A3) ≤ Advuf
DS∗,R(A4) +Advindiff

S3,S (D).
Let S be the simulator whose existence is implied by Theorem 6.1. The distinguisher runs the
unforgeability game for its adversary, replacing S3[FO] in scheme algorithms and adversarial FO
queries with its Priv and Pub oracles respectively. It makes qA3

FO queries to Pub and QA3

Sign queries
to Priv, and the maximum length of any query to Priv is b · (`− 1) bits because each element of
group Gp is a k-bit string (c.f. Section 2). We apply Theorem 6.1 to obtain the bound

Advindiff
S3,S (D) ≤ 2(qA3

FO + `QA3

Sign)ε+
(qA3

FO + `QA3

Sign)
2

22k
+

qA3

FO · `QA3

Sign

γ
.

Adversary A4 is a wrapper for A3, which answers all of its queries to FO by running S with access
to its own FO oracle; since the simulator runs in constant time and makes only one query to its
oracle, the runtime and query complexity approximately equal those of A3.

Substituting 1
γ ≥

p

22k
and ε = p

22k
gives the bound.

Security of EdDSA with MD. We now want to conclude security of EdDSA, with an MD-hash
function, assuming security of Schnorr with a monolithic random oracle. The Theorem is for a
general prime p in the range 2k > p > 2k−5 but in EdDSA the prime is 2k−4 < p < 2k−3 so the value
of δ below is δ = 2k−5/p > 2k−5/2k−3 = 1/4, so the factor 1/δ is ≤ 4. Again recall our convention
that query counts of an adversary include those made by oracles in its game, implying for example
that QA

FO ≥ QA
Sign.

Theorem 5.5 Let DS = Sch be the Schnorr signature scheme of Figure 4. Let CF : {0, 1}k →
Zp be the clamping function of Figure 4. Assume 2k > p > 2k−5 and let δ = 2k−5/p. Let
DS = DtD[DS, CF] be the EdDSA signature scheme. Let R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp)
be the identity functor. Let S be the functor of Figure 5. Let A be an adversary attacking the Guf

security of DS. Again let b · (`− 1)− 2k be the maximum length in bits of a message input to Sign.
Then there is an adversary B such that

Advuf
DS,S

(A) ≤(1/δ) ·Advuf
DS,R(B) +

QA
FO

2k−1
+

p(qAFO + `QA
Sign)

22k−2

+
(qAFO + `QA2

Sign)
2

22k−1
+

pqAFO · `QA
Sign

22k−1
.

Adversary B preserves the queries and running time of A.

Proof of Theorem 5.5: Let DS∗ = JCl[Sch, CF]. By Theorem 4.1, we have

Advuf
DS,S

(A) ≤ Adv
prg
S1

(A1) +Adv
prf
S2

(A2) +Advuf
DS∗,S3

(A3).

Now applying Lemma 5.2, we have

Adv
prg
S1

(A1) ≤
QA

FO

2k
.

Applying Lemma 5.3, we have

Adv
prf
S2

(A2) ≤
QA2

FO

2k
+

2p(qA2

FO + `QA2

FN)

22k
+

(qA2

FO + `QA2

FN)
2

22k
+

pqA2

FO · `QA2

FN

22k
.

We substitute QA2

FO = QA
FO, q

A2

FO = qAFO and QA2

FN = QA
Sign. By Lemma 5.4 we obtain

Advuf
DS∗,S3

(A3) ≤Advuf
DS∗,R(B) +

2p(QA3

FO + `QA3

Sign)

22k

+
(QA3

FO + `QA3

Sign)
2

22k
+

pQA3

FO · `QA3

Sign

22k
.
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Game Gindiff
F,S

Init():

1 c←$ {0, 1}

2 h←$ SS

3 H←$ ES

Pub(i,Y ):

1 if c = 0 then

2 return S[H](i,Y )

3 else return h(i,Y )

Priv(i,X):

1 if c = 0 then return H(i,X)

2 else return F[h](i,X)

Fin(c′):

1 return [[c = c′]]

Figure 7: The game Gindiff
F,S measuring indifferentiability of a functor F with respect to simulator

S.

Recall that adversary A3 has the same query complexity as A.
Under the assumption p > 2k−5 made in the theorem, BCJZ [15] established that |Img(CF)| = 2k−5.
So |Img(CF)|/|Zp| = 2k−5/p = δ. So by Theorem 4.2 we have

Advuf
DS∗,R(B) ≤ (1/δ) ·Advuf

DS,R(B) . (8)

By substituting with the number of queries made by A as in Theorem 4.1 and collecting terms, we
obtain the claimed bound stated in Theorem 5.5.

We can now obtain security of EdDSA under number-theoretic assumptions via known results on
the security of Schnorr. Namely, we use the known results to boundAdvuf

DS,R(B) above. From [36, 1]
we can get a bound and proof based on the DL problems, and from [38] with a better bound. We
can also get an almost tight bound under the MBDL assumption via [5] and a tight bound in the
AGM via [21].

6 Indifferentiability of the shrink-MD class of functors

Indifferentiability We want the tuple of functions returned by a functor F : SS → ES to be
able to “replace” a tuple drawn directly from ES. Indifferentiability is a way of defining what this
means. We adapt the original MRH definition of indifferentiability [29] to our game-based model
in Figure 7. In this game, S is a simulator algorithm. The advantage of an adversary A against
the indifferentiability of functor F with respect to simulator S is defined to be

Advindiff
F,S (A) := 2Pr[Gindiff

F,S (A)⇒ 1]− 1.

Modifying the Merkle-Damg̊ard Transform Coron et al. showed that the Merkle-Damg̊ard
transform is not indifferentiable with respect to any efficient simulator due to its susceptibility to
length-extension attacks [18]. In the same work, they analysed the indifferentiability of several
closely related indifferentiable constructions, including the “chop-MD” construction. Chop-MD is
a functor with the same domain as the MD transform; it simply truncates a specified number of
bits from the output of MD. The S3 functor of Figure 5 operates similarly to the chop-MD functor,
except that S3 reduces the output modulo a prime p instead of truncating. This small change
introduces some bias into the resulting construction that affects its indifferentiability due to the
fact that the outputs of the MD transform, which are 2k-bit strings, are not distributed uniformly
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over Zp.
In this section, we establish indifferentiability for a general class of functors that includes both

chop-MD and S3. We rely on the indifferentiability of S3 in Section 5 as a stepping-stone to the
unforgeability of EdDSA; however, we think our proof for chop-MD is of independent interest and
improves upon prior work.

The original analysis of the chop-MD construction [18] was set in the ideal cipher model and
accounted for some of the structure of the underlying compression function. A later proof by
Fischlin and Mittelbach [31] adapts the proof strategy to the simpler construction we address here
and works in the random oracle model as we do. Both proofs, however, contain a subtle gap in the
way they use their simulators.

At a high level, both proofs define stateful simulators S which simulate a random compression
function by sampling uniform answers to some queries and programming others with the help of
their random oracles. These simulators are not perfect, and fail with some probability that the
proofs bound. In the ideal indifferentiability game, the Pub oracle answers queries using the simu-
lator and the Priv oracle answers queries using a random oracle. Both proofs at some point replace
the random oracle H in Priv with Chop-MD[S] and claim that because Chop-MD[S[H]](X) will
always return H(X) if the simulator does not fail, the adversary cannot detect the change. This
argument is not quite true, because the additional queries to S made by the Priv oracle can affect
its internal state and prevent the simulator from failing when it would have in the previous game. In
our proof, we avoid this issue with a novel simulator with two internal states to enforce separation
between Priv and Pub queries that both run the simulator.

Our result establishes indifferentiability for all members of the Shrink-MD class of functors,
which includes any functor built by composing of the MD transform with a function Out : {0, 1}2k →
S that satisfies three conditions, namely that for some γ, ε ≥ 0,

1. For all y ∈ S, we can efficiently sample from the uniform distribution on the preimage set
{Out−1(y)}. We permit the sampling algorithm to fail with probability at most ε, but require
that upon failure the algorithm outputs a (not necessarily random) element of {Out−1(y)}.

2. For all y ∈ S, it holds that γ ≤ |{Out−1(y)}|.

3. The statistical distance δ(D) between the distribution

D := z←$ Out−1(y) : y←$ S

and the uniform distribution on {0, 1}2k is bounded above by ε.

In principle, we wish γ to be large and ε to be small; if this is so, then the set S will be substantially
smaller than {0, 1}2k and the function Out “shrinks” its domain by mapping it onto a smaller set.

Both chop-MD and mod-MD are members of the Shrink-MD class of functors; we briefly
show the functions that perform bit truncation and modular reduction by a prime satisfy our three
conditions. Truncation by any number of bits trivially satisfies condition (1) with ε = 0.

Reduction modulo p also satisfies condition (1) because the following algorithm samples from
the equivalence class of x modulo p with failure probability at most p

22k
. Let ` be the smallest

integer such that ` > 22k

p
. Sample w←$ [0 . . . ` − 1] and output w · p + x, or x if w · p + x > 22k.

We say this algorithm “fails” in the latter case, which occurs with probability at most 1
` < p

22k
. In

the event the algorithm does not fail, it outputs a uniform element of the equivalence class of x.
Bellare et al. showed that the truncation of n trailing bits satisfies condition (2) for γ = 22k−n

and reduction modulo prime p satisfies (2) for γ = b22k/pc . It is clear that sampling from the
preimages of a random 2k−n-bit string under n-bit truncation produces a uniform 2k-bit string, so
truncation satisfies condition (3) with ε = 0. Also from Bellare et al. [3], we have that the statistical
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distance between a uniform element of Zp and the modular reduction of a uniform 2k-bit string is
ε = p

22k
. The statistical distance of our distribution z←$ Out−1(Y ) for uniform Y over S from the

uniform distribution over {0, 1}2k is bounded above by the same ε; hence condition (3) holds.
Given a set S and a function Out : {0, 1}2k → S, we define the functor FS,Out as the compo-

sition of Out with MD. In other words, for any x ∈ {0, 1}∗ and h ∈ AF({0, 1}b+2k, {0, 1}2k), let
FS,Out[h](x) := Out(MD[h](x)).

Theorem 6.1 Let k be an integer and S a set of bitstrings. Let Out : {0, 1}2k → S be a function
satisfying conditions (1), (2), and (3) above with respect to γ, ε > 0. Let MD be the Merkle-
Damg̊ard functor(c.f. Section 2) FS,Out := Out◦MD be the functor described in the prior paragraph.
Let pad be the padding function used by MD, and let unpad be the function that removes padding
from its input (i.e., for all X ∈ {0, 1}∗, it holds that unpad(X ‖ pad(|X |)) = X). Assume that
unpad returns ⊥ if its input is incorrectly padded and that unpad is injective on its support. Then
there exists a simulator S such that for any adversary A making Priv queries of maximum length
b · (`− 1) bits then

Advindiff
F,S (A) ≤ 2(QA

Pub + `QA
Priv)ε+

(QA
Pub + `QA

Priv)
2

22k
+

QA
Pub · `QA

Priv

γ
.

Proof of Theorem 6.1: We first give a brief overview of our proof strategy and its differences
from previous indifferentiability proofs for the chop-MD construction [18, 31].

Our simulator, S, is defined in Figure 8. It is inspired by, but distinct from, that of Mittelbach
and Fischlin’s simulator for the chop-MD construction ( [31] Figure 17.4.), which in turn adapts
the simulator of Coron et al [18] from the ideal cipher model to the random oracle model. These
simulators all present the interface of a random compression function h and internally maintain a
graph in which each edge represents an input-output pair under the simulated compression function.
The intention is that each path through this graph will represent a possible evaluation of FS,Out[h].
The fundamental difference between our simulator and previous ones is that we maintain two
internal graphs instead of one: one graph for all queries, and one graph for public interface queries
only. This novel method of using two graphs avoids the gap in prior proofs described above by
tracking precisely which parts of the simulator’s state are influenced by private and public interface
queries respectively.

In the “ideal” indifferentiability game, Priv queries are answered by random oracle H←$ AF{0, 1}∗, S.
Pub queries are answered by the simulator S, which maintains the two graphs Gpub and Gall. We
present pseudocode for this game (G0) in Figure 8. In each graph, the nodes and edges are labeled
with 2k-bit strings. An edge from node y to node z with label m is denoted (y, z,m), and represents
a single value of the simulated compression function; namely, on 6k-bit input y ‖m, the simulated
compression function should output z. Queries made in the process of evaluating MD[S] will form
a path that begins at the node labeled with the initialization vector IV ; the path’s edges will be
labeled with the 4k-bit blocks of pad(M ).

Whenever the simulator receives a fresh query (y,m), it uses a pathfinding algorithm FindPath to
check whether the query extends an existing path from IV and thus continues an existing evaluation
of the MD transform. If so, it reads the message from the path’s edge labels then appends the new
block m to the end. If the result is a properly padded message, the simulator removes the padding
and uses its oracle H to compute the output of functor F on the original message. This output w is
an element of S, and it should be consistent with Out when applied to the 2k-bit simulator output.
The simulator therefore samples its response from the preimages of w under Out. If any of these
steps fail, then the query does not need to be programmed, so the simulator samples a uniformly
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Simulator S[H](Y ,G) :

1 (y,m)← Y

2 if ∃z such that (y, z,m) ∈ G.edges

3 return z

4 M ← G.FindPath(IV, y)

5 if M 6= ⊥ and unpad(M ‖m) 6= ⊥ then

6 if Th[Y ,M ] 6= ⊥ then z ← Th[Y ,M ]

7 else z←$ Out−1(H(unpad(M ‖m)))

8 Th[Y ,M ]← z

9 else if Th[Y ] 6= ⊥ then z ← Th[Y ]

10 else z←$ {0, 1}2k; Th[Y ]← z

11 add (y, z,m) to G.edges

12 add (y, z,m) to Gall.edges

13 return z

Game G0 := Gindiff
F,S |b = 0

Init():

1 H←$ AF{0, 1}∗, S

2 Gall,Gpub ← (IV )

Priv(X):

1 return H(X)

Pub(Y ):

1 z ← S[H](Y ,Gpub)

2 return z

Fin(c′):

1 return c′

Figure 8: Left: Indifferentiability simulator for the proof of Theorem 6.1. Right: The ideal game
Gindiff

F,S measuring indifferentiability of a functor F with respect to simulator S

random response z and updates its graph with the new edge from y. Because we are attempting
to simulate a random function, the simulator must cache its responses to maintain consistency
between repeated queries. It does this in two ways: via the graphs and via table Th. We require
two forms of caching because the simulator may use two graphs and thus responses may not be
cached consistently between private and public queries in the graphs alone.

Our G0 differs from this ideal indifferentiability game only in the Fin oracle, which returns the
adversary’s challenge guess c′. Thus the probability that game G0 returns 1 exactly equals 1 −
Pr[Gindiff

F,S (A)|c = 0].

We move to G1, where the Priv oracle uses S to calculate the output of functor F, then discards
the result. We wish for the adversary’s view of games G0 and G1 to be identical, so we must ensure
that the additional queries to S do not influence its state or its responses to Pub queries. We
therefore call the simulator with different graphs in the two oracles. It responds to public queries
based only on the public graph, and queries made by Priv are private and do not update the public
graph. We do use shared table Th to cache outputs across all queries; in this sense a private query
can affect a public query; however, we cache responses separately for each branch of the simulator,
so our caching does not alter the simulator’s branching behavior and the distribution of public
queries’ responses does not change. The adversary cannot detect at what time a response z is first
sampled, so its view does not change, and

Pr[G0] = Pr[G1].

In game G2, we set a bad flag if the simulator if Gall contains any collisions, cycles, or “duplicate”
edges: edges with the same starting node and label but different ending nodes.

Collisions and cycles are formed only when a new edge is created whose ending node is already
present in the graph; we set bad in this case. The caching in line 2 prevents duplicate edges except
when the Priv and Pub oracles query the simulator on the same input (y,m), in that order. Even
in this case, caching in table Th prevents duplicate edges unless one query detects a path that the
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Game G1

Init():

1 H←$ AF{0, 1}∗, S

2 Gall,Gpub ← (IV )

Pub(Y ):

1 z ← S[H](Y ,Gpub)

2 return z

Priv(X):

1 w ← F[S[H](·,Gall)](X)

2 return H(X)

Fin(c′):

1 return c′

Figure 9: Game G1 in the proof of Theorem 6.1. Highlighted code is changed from the previous
game, and algorithms not shown are unchanged from the previous game.

other did not, or the two queries detect different paths.

If the Pub query detects a path to node y that did not exist during the previous Priv query, or
there are two distinct paths to y in Gall, then Gall must contain a collision or a cycle, and the bad

flag will be set when that is detected. Furthermore, Gpub is a subgraph of Gall, so it cannot contain
a path to y that Gall does not. To catch the formation of duplicate edges, it is therefore sufficient
to set bad if Gall contains a path from IV to y that is not detected by the subsequent Pub query.

The bad flag is internal and does not affect the view of the game, so

Pr[G2] = Pr[G1]

In G3, we force the adversary to lose when the bad flag is set. This strictly decreases their advantage,
so

Pr[G3] ≤ Pr[G2].

In our next game, we stop querying H directly in the Priv oracle and instead return w, the result
of our functor on the query. We claim that in G3, either w = H(X) or bad = true; thus if the
adversary wins G3, then in all Priv queries we have w = H(X). From this claim, we can see that
the change does not affect the view of the adversary and

Pr[G4] = Pr[G3].

To prove the claim, consider a query Priv(X). Let (X1, . . . , Xn) be the b-bit blocks of X ‖ pad(|X |).
By the definition of the MD transform, Priv makes n queries to S of the form (yi,Xi),Gall, where
y1 = IV and yi = S((yi−1, Xi−1),Gall) for all i > 1. These may not be fresh queries, but they must
be made in order or bad will be set: if query S((yi,Xi)) outputs yi+1 and this has already been the
input of a prior query, then yi+1 is a node in Gall; a collision has occurred and the query will set
bad. Unless bad is set, there exists exactly one path in Gall from IV to yi, and the labels on this
path are (X1, . . . ,Xi−1). This is trivially true for i = 1; the path is the empty path. The query
S((yi−1, Xi−1),Gall) creates the edge (yi−1, yi, Xi−1) in Gall. By induction on i, there is always a
path from IV to yi with labels (X1, . . . ,Xi−1). If there exists more than one path from IV to yi,
then Gall must contain either a cycle or two edges with the same ending node; in either case the
bad flag will be set.

Therefore, when Priv first makes the query S((yn−1, Xn),Gall), it will detect the path, compute
unpad(M ‖Xn) = X and output an element z ∈ Out−1(H(X)). By the definition of Out−1, we have
w = Out(z) = H(X), so the claim holds.
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Game G2, G3

Fin(c′):

1 if bad then return 0

2 return c′

Game G4

Priv(X):

1 w ← F[S[H](·,Gall)](X)

2 return w

S[H](Y ,G):

1 (y,m)← Y

2 if ∃z such that (y, z,m) ∈ G.edges

3 return z

4 M ← G.FindPath(IV, y)

5 Mall ← Gall.FindPath(IV, y)

6 if M 6= ⊥ and unpad(M ‖m) 6= ⊥ then

7 if Th[Y ,M ] 6= ⊥ then z ← Th[Y ,M ]

8 else z←$ Out−1(H(unpad(M ‖m)))

9 Th[Y ,M ]← z

10 else if Th[Y ] 6= ⊥ then z ← Th[Y ]

11 else z←$ {0, 1}2k; Th[Y ]← z

12 if (z ∈ Gall.nodes and (y, z,m) 6∈ Gall.edges)

13 or M 6= Mall

14 bad← true

15 add (y, z,m) to G.edges

16 add (y, z,m) to Gall.edges

17 return z

Figure 10: Games G2, G3, and G4 in the proof of Theorem 6.1. Highlighted code is changed from
the previous game, and boxed code is present only in G3 (and subsequent games). Algorithms not
shown are unchanged from the previous game.

At this point, the adversary can no longer directly query random oracle H, so we allow the simulator
to lazily sample the function. Also in this game, the simulator queries H on the path from IV to y
in Gall for all queries, not just private queries. If the path in G is different from the path in Gpub,
then the bad flag will be set and the adversary will lose anyway. Therefore the view in any winning
game is unchanged, and

Pr[G4] = Pr[G5].

In our next game G6, we replace the sampling of z from the preimages of a random point y with
sampling a uniformly random 2k-bit string. The sampling will never fail to be uniform, which means
the adversary can distinguish the game if it were to fail in G5; from condition (1) we have that the
probability of failure was at most ε per query. Otherwise, we have from condition (3) on Out that
the statistical distance of the distribution (z←$ Out−1(y) : : y←$ S) from the uniform distribution
on {0, 1}2k is at most ε. By a hybrid argument over the QA

Pub + `QA
Priv queries to the simulator,

the probability that A can distinguish G5 from G6 is bounded above by 2(QA
Pub + `QA

Priv)ε.

Now that we are caching z in table TH when the check of line 6 holdss true, it has become redundant
to cache it in table Th, so we stop doing this caching. We must be careful since table TH is indexed by
labels of the form unpad(Mall ‖m) where Th was indexed by tuples (Y,Mall). Since Mall is a path
from IV to y in a graph with no duplicate edges provided bad is not set, Mall uniquely determines
its ending node y and unpad(Mall ‖m) uniquely determines a tuple ((y,m),Mall) because unpad is
injective. Thus the entries of TH are in one-to-one correlation with the entries of Th, and we can
safely retain only the former, and

Pr[G6] ≤ Pr[G5] + 2(QA
Pub + `QA

Priv)ε
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Game G5

S(Y ,G):

1 (y,m)← Y

2 if ∃z such that (y, z,m) ∈ G.edges

3 return z

4 M ← G.FindPath(IV, y)

5 Mall ← Gall.FindPath(IV, y)

6 if Mall 6= ⊥

and unpad(Mall ‖m) 6= ⊥ then

7 if Th[Y ,Mall] 6= ⊥ then

8 z ← Th[Y ,Mall]

9 else

10 if TH[unpad(Mall ‖m)] 6= ⊥

11 y ← TH[unpad(Mall ‖m)]

12 TH[unpad(Mall ‖m)]← y

13 z←$ Out−1(y); Th[Y ,Mall]← z

14 else if Th[Y ] 6= ⊥ then z ← Th[Y ]

15 else z←$ {0, 1}2k; Th[Y ]← z

16 if (z ∈ Gall.nodes and (y, z,m) 6∈ Gall.edges)

17 or M 6= Mall

18 bad← true

19 add (y, z,m) to G.edges

20 add (y, z,m) to Gall.edges

21 return z

Game G6

S(Y ,G):

1 (y,m)← Y

2 if ∃z such that (y, z,m) ∈ G.edges

3 return z

4 M ← G.FindPath(IV, y)

5 Mall ← Gall.FindPath(IV, y)

6 if Mall 6= ⊥ and unpad(Mall ‖m) 6= ⊥ then

7 z←$ {0, 1}2k

8 if TH[unpad(Mall ‖m)] 6= ⊥

9 z ← TH[unpad(Mall ‖m)]

10 TH[unpad(Mall ‖m)]← z

11 else if Th[Y ] 6= ⊥ then z ← Th[Y ]

12 else z←$ {0, 1}2k; Th[Y ]← z

13 if (z ∈ Gall.nodes and (y, z,m) 6∈ Gall.edges)

14 or M 6= Mall

15 bad← true

16 add (y, z,m) to G.edges

17 add (y, z,m) to Gall.edges

18 return z

Figure 11: Left: Game G5 in the proof of Theorem 6.1. Right: Game G6 in the proof of Theorem 6.1.
Highlighted code is changed from the previous game, and algorithms not shown are unchanged from
the previous game.

In G7, all queries are sampled randomly from {0, 1}2k and cached in table Th under the input Y ,
instead of some being cached under the message unpad(Mall ‖m). We claim that in G6 if a query
S(y,m) stores z in TH[X ], then a later query S(y′,m′) will return z if and only if (y,m) = (y′,m′)
or bad is set. The forward direction is trivial. If S(y′,m′) returns TH[X ], then either we have

X = unpad(Gall.FindPath(IV, y′) ‖m′) = unpad(Gall.FindPath(IV, y) ‖m),

or there was a bad-setting collision between TH[X ] and the randomly-sampled response z.

In the former case, the function unpad is injective, so we know m = m′, and the paths from IV
to y′ and y′ respectively have the same sequence of edge labels. Unless bad is set, there are no
duplicate edges, so a starting node and sequence of edge labels uniquely identify the ending node
on the path; consequently y = y′ and the claim follows.

Queries in G7 therefore hit a cache indexed by Y if and only if they would hit a cache indexed by
X in G6. We do not need to worry that the new entries in Th overlap with those created in line
11; if the check in line 6 holds true during some query, then it cannot have been false in an earlier
query with the same Y unless bad would be set. Thus no queries are answered from table Th in
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Game G7

S(Y ,G):

1 (y,m)← Y

2 if ∃z such that (y, z,m) ∈ G.edges

3 return z

4 M ← G.FindPath(IV, y)

5 Mall ← Gall.FindPath(IV, y)

6 if Mall 6= ⊥ and unpad(Mall ‖m) 6= ⊥ then

7 z←$ {0, 1}2k

8 if Th[Y ] 6= ⊥ then z ← Th[Y ]

9 Th[Y ]← z

10 else if Th[Y ] 6= ⊥ then z ← Th[Y ]

11 else z←$ {0, 1}2k; Th[Y ]← z

12 if z ∈ Gall.nodes or M 6= Mall

13 bad← true

14 add (y, z,m) to G.edges

15 add (y, z,m) to Gall.edges

16 return z

Game G8

S(Y ):

1 if Th[Y ] 6= ⊥ then z ← Th[Y ]

2 else z←$ {0, 1}2k; Th[Y ]← z

3 return z

Fin(c′):

1 return c′

Figure 12: Left: Game G7 in the proof of Theorem 6.1. Right: Game G8 in the proof of Theorem 6.1.
Highlighted code is changed from the previous game, and algorithms not shown are unchanged from
the previous game.

G7 that would not have been cached in earlier games, and

Pr[G7] = Pr[G6].

Notice that both branches of the simulator now identically sample z←$ {0, 1}2k uniformly, subject
to caching in table Th under Y ; in the next game we will eliminate the redundant check on Mall in
line 6.

In our final game, G8, we remove the bad flag and the internal variables used to set it. This increases
the adversary’s advantage, since it can now win even if the game would set bad. The probability

of a collision among the QA
Pub + `QA

Priv randomly sampled nodes of Gall is at most
(QA

Pub+`QA
Priv)

2

22k

by a birthday bound. The probability that Gall contains a path to y that Gpub does not is the
probability that the adversary A queries Pub on one of the `qPriv intermediate nodes on a path
in Gall, before it learns the label of that node from Pub. A may use Priv to learn the output
y of Out an intermediate node, but it does not learn anything about which of the equally likely
preimages of y is the label; from condition (2) we have that there are at least γ such preimages

to guess from. Then the probability that A sets bad with a single Pub query is at most
`QA

Priv
γ ; a

union bound over all Pub queries gives that a path exists in Gall but not Gpub with probability no

greater than
QA

Pub·`Q
A
Priv

γ .

We also stop maintaining the graphs Gpub and Gall, which are now only used to cache queries whose
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responses are already cached in table Th. This changes nothing about the view of the adversary, so

Pr[G8] ≤ Pr[G7] +
(QA

Pub + `QA
Priv)

2

22k
+

QA
Pub · `QA

Priv

γ
.

If we look closely at G8, we can see that the “simulator” is actually just a lazily-sampled ran-
dom function with domain {0, 1}6k and codomain {0, 1}2k. In fact, G8 is identical to the “real”
indifferentiability game for functor F, save for its choice of challenge bit. Thus

Pr[G8] = Pr[Gindiff
F,S (A)|c = 1].

Collecting bounds across all gamehops gives the theorem.
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A Proof of Indifferentiability for Shrink-MD constructions

B The unique order-p subgroup of G

Here, we briefly prove that our choice in Section 2 of Gp as the unique subgroup of order p of group
G, which has order p · 2f , is well-defined. (We do not prove that Gp is cyclic as this follows directly
from the fact that its order is prime.) We also give an efficient test for membership in Gp.

Proposition B.1 Let p be an odd prime, let 2f < p be a positive integer, and let G be a group of
order 2f · p. Then (1) the group G has a unique subgroup of order p, and (2) For all X ∈ G it is
the case that X is in this subgroup iff p ·X = 0G.

30



(1) Let n be the number of p-order subgroups of G. According to Sylow’s theorem n ≡ 1 mod p.
We now have two cases: either n = 1, or n > 1. We prove that n = 1 by contradiction;
therefore we assume n > 1. It follows that n ≥ p+1. Two distinct groups of prime order can
intersect only at the identity, so each of the n subgroups of G contains p− 1 unique elements.
Consequently the order of G is at least n(p − 1) ≥ (p + 1)(p − 1) ≥ p(p + 1). Since we have
already defined the order of G to be 2f · p, we have that 2f ≥ p + 1. This contradicts our
initial assumption that 2f < p; thus our assumption that n > 1 must be false and G must
have exactly one subgroup of order p. This subgroup is Gp.

(2) Let X ∈ G be a group element and assume that p · X = 0G. This implies that the order
of X divides p. Since p is prime, either the order of X is 1 or it is p. In the first case,
x = 0G. Otherwise, X generates a subgroup with order p, which by part (1) is the unique
such subgroup Gp. Therefore X generates Gp and must belong to it.

For the reverse direction, assume that X is in G
p. The order of X must divide the order of

Gp; so X must either have order p or order 1. In either case, p ·X = 0G.

C Group Instantiation for Ed25519

Ed25519 is EdDSA with twisted Edwards curve which is birationally equivalent to the curve
Curve25519. Curve25519 is of Montgomery form with equation v2 = u3 + 486662u2 + u over the
field Fq, and it is birationally equivalent to the Edwards curve x2 + y2 = 1+ (121665/121666)x2y2

where x =
√
486664u/v and y = (u− 1)/(u+ 1).

In general EdDSA, the group is the set of points on an Edwards curve E, namely the E(Fq) =
{(x, y) ∈ Fq × Fq : −x2 + y2 = 1 + dx2y2}. The Edwards curve in Ed25519 is isomorphic to
−x2 + y2 = 1 − (121665/121666)x2y2, and so it has d = −(121665/121666) ∈ Fq. Then defines
G to be E(Fq) = {(x, y) ∈ Fq × Fq : −x2 + y2 = 1 − (121665/121666)x2y2}. The field size q is
the prime 2255 − 19. Other parameters of the group descriptor include the following: f = 3 is the
log2 of cofactor 2f ; p = 2252 + 27742317777372353535851937790883648493 is the odd prime order
of subgroup Gp; B = (x, 4/5) ∈ E is the generator of Gp, and p · B = 0. The exact implementation
of Ed25519 also fixes b = 256 and FO function to be SHA-512 such that the output of FO is 2b
bits.

For an elliptic curve point (x, y), the encoding function en encodes it as the (b − 1)-bit little-
endian encoding of y followed by a sign bit of x. The sign bit is 1 if and only if x is negative and x
is negative if its (b− 1)-bit encoding is lexicographically larger than that of −x. The output length
el is therefore b = 256. For decoding, de recovers y immediately from its (b− 1)-bit encoding, and
then recovers x via x = ±

√

(y2 − 1)/(dy2 + 1) and the sign bit. If the resulting point is not on the
curve or if taking the square root fails, de returns ⊥.
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