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5 ABSTRACT: Spin—orbit coupling enables the realization of topologically nontrivial ground states. As spin—orbit coupling increases
6 with increasing atomic number, compounds featuring heavy elements such as lead offer a pathway toward creating new topologically
7 nontrivial materials. By employing a high-pressure flux synthesis method, we synthesized single crystals of Ni3Pb2, the first 
s structurally characterized bulk binary phase in the Ni—Pb system. Combining experimental and theoretical techniques, we examined
9 structure and bonding in Ni3Pb2, revealing the impact of chemical substitutions on electronic structure features of importance for

10 controlling topological behavior. From these results, we determined that Ni3Pb2 completes a series of structurally related transition- 
n metal-heavy main group intermetallic materials that exhibit diverse electronic structures, opening a platform for synthetically tunable 
12 topologically nontrivial materials.

13 Z^\ ver the past decade, the field of topological materials
14 grew at an explosive pace, fundamentally reshaping our
15 depiction of solid-state systems.1-5 Topologically nontrivial
16 materials host band structures that enforce transport along
17 specific paths, for example through spin-momentum locking 
is and surface currents.6-8 This phenomenon offers the potential
19 to protect electron transport from sources of noise9,10 with
20 spintronic11,12 and fault-tolerant quantum computing applica-
21 tions.13-16 Recent computational studies demonstrate that
22 topologically nontrivial classifiers are shared by ~30% of
23 known materials.17 Flowever, progressing from the classifica-
24 tion of band structures to the application of useful transport
25 properties, dependent on the overall electronic structure of
26 each system, remains a key hurdle in the field. Amelioration of
27 this challenge requires the creation of topologically nontrivial
28 single crystal compounds, where the response of the material’s
29 band structure to chemical changes can be predicted, designed,
30 and harnessed.18
31 Topological character is defined by the symmetry of the
32 electronic wave functions of a material, reflecting two
33 chemically intertwined effects: the real space symmetry of
34 the system, as well as the interaction and identity of the atoms
35 that comprise it.19-21 Together they determine the band
36 dispersions and crossings as well as the position of the Fermi
37 energy relative to features of interest. To uncover the principles
38 underpinning topological behavior, we pursued an approach to
39 maintain physical structure and symmetry while introducing
40 degrees of chemical freedom, allowing for minute adjustments.
41 Targeting binary phases, whereby doping with a third element
42 would be synthetically accessible, promises the requisite
43 combination of precise chemical tunability and structural
44 control.
45 Fligh-pressure techniques are powerful tools for synthesizing
46 new binary intermetallic materials, as they effectively add
47 another axis to temperature—composition phase space 22-26
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Pressure also changes chemical heuristics,27 promoting 48 

reactivity of high atomic number elements that introduce 49 
large amounts of spin—orbit coupling (SOC),28-31 a key so 
component in creating the targeted topological band structures 51 
motifs of interest.32,33 To search for new topologically 52 
nontrivial phases, we explored the Ni—Pb system in which 53 
no bulk and thermodynamically stable materials are known, yet 54 
a report of bimetallic films accessed via vapor deposition 55 
suggests metastable reactivity.34-36 Since Pb is the heaviest 56 

element stable to radioactive decay, we anticipated a strong 57 
SOC contribution to the band structure from Pb 37-39 58 

Employing high-pressure techniques, we synthesized and 59 
recovered the new Ni—Pb binary intermetallic phase, Ni3Pb2, 60 
elucidating its structure. Computational comparison of Ni3Pb2 61 
with chemically related systems reveals its flexible topologically 62 
nontrivial character. 63

To synthesize Ni3Pb2, we performed high-pressure reactions 64 

using a Kawai-type multianvil press (MAP). We pressurized a 65 
pellet composed of a mixture of Ni and Pb to 8.4(f) CP a (see 66 
Supporting Information (Si) for details, Figure S4),40 67 

monitoring the reaction progress using synchrotron powder 68 
X-ray diffraction (PXRD) (A = 0.1923 A, MAXPD Endstation 69 

at NSLS-II, 28-ID-2-D). While heating the mixture to ~1123 70 
K, we observed the formation of new diffraction peaks 71 
corresponding to a pseudohexagonal structure41 (Figure 1 72 fi 
and Si). Notably, decompression experiments revealed that the 73 
material persists to ambient conditions (Figure S9). 74
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Figure 1. In situ PXRD data collected while heating a mixture of 
elemental nickel and lead at 8.4(1) GPa (2 = 0.1923 A). The PXRD 
patterns (bottom) show the structural evolution with increasing 
temperature up to and beyond the lead melt (~1123 K) as well as the 
ambient temperature data (green). The P63/mmc ticks (pink) 
correspond to the new phase. The unrolled cake image (top) shows 
a slice of the 2D PXRD pattern collected at ambient temperature.

75 Using the conditions established during the in situ studies,
76 we scaled up the reaction (Figure S5) (APS, 13-ID-D).40 As a
77 consequence of the formation of a lead flux at high pressure,
78 we found that the recovered samples consisted of high-quality
79 crystallites amenable to structural characterization. Ambient 
so pressure single crystal X-ray diffraction data revealed that 
si Ni3Pb2 crystallizes in the P23(<%0y)0 superspace group with 
82 unit cell constants of a = 4.1705(2) A, b = 5.2881(3) A, c = 
S3 4.1848(2) A, and/3 = 119.881(4)°, q = 0.5a* + 0.2Sc* (Figure
84 2 center; see SI for details). It is a commensurately modulated
85 member of the B8-type structure family and can be reduced to
86 an orthorhombic cell setting, isostructural to the known Pnma
87 superstructures of Ni3Sn2 and Co3Sn, 42 Structural modu- 
ss lations exist presumably due to long-range ordering between 
89 Ni atoms and vacancies.

Ni2ln Ni3Pb2 NiAs

——^►
Decreasing Nickel Content / Increasing Main Group Valence

Figure 2. Comparison of the Ni3Pb2 crystal structure (generated from 
a supercell in the PI space group, a = 8.3410(2) A,b = 5.2881(3) A, c 
= 16.7392(2) A, a = 90, ft = 119.881(4), y = 90) with the NiAs and 
Ni2In structures. Ni, In, Pb, and As are represented by green, purple, 
blue, and teal, respectively. The structures differ by the decrease in the 
occupancy of the Ni2 site from 1 —» 0 across the series.

Many compounds within the B8-type family possess a 90 
nontrivial topological Z-valued invariant, recommending this 91 
example for further investigation 43 Structurally, Ni3Pb2 can be 92 
described as an intermediate between NiAs (B82) and Ni,In 93 
(B8,) if we consider the occupancy of the Ni atoms (Figure 2). 94 
All three structures share several features. They have chains of 95 
Ni atoms (Nil site) running along the c-axis in the P6Jmmc 96 
cell (b-axis in the P21(a0y)0 cell) and triangular layers of main- 97 
group atoms perpendicular to the Ni chains where each layer is 9s 
shifted by half a unit cell. Beyond the NiAs and isostructural 99 
NiSb structure, Ni,In has a second Ni site (Ni2 site) that sits 100 
in the holes within the main group layers creating hexagonal 101 
layers of alternating Ni and main group atoms. In the Ni3Pb2 102 
structure, this Ni2 site is half occupied. The overall similarities 103 
of these structures outside of the occupancy of a single type of 104 
site promise chemical tunability while maintaining overall 105 
structural motifs. 106

Flowever, precise symmetry descriptions are crucial for 107 
evaluating topological character. Single crystal X-ray diffraction 10s 
experiments revealed that the void space introduced by the Ni2 109 
half-occupancy results in a distortion away from hexagonal 110 
symmetry shared by the NiAs and Ni,In examples. This 111 
distortion to lower symmetry is observed in the isostructural 112 
Ni3Sn2 phase,37 suggesting that the malleability of the 113 
hexagonal symmetry is generalizable for this stoichiometry of 114 
B8 compounds. The precise atomic positions revealed by our 115 
structure solution allows for visualization of the atom-specific 116 
interactions that drive the symmetry lowering, seen as 117 
undulations in the chains of Nil. We posit these interactions 11s 
serve to optimize Ni—Pb bond distances and stabilize Ni—Ni 119 
bonding interactions, differentiating the crystal symmetry in 120 
this series of materials based on local interactions. Further, 121 
many of the Ni—Pb distances (2.504(5)—2.9(l) A) fall within 122 
the sum of the metallic radii (Ni, 1.244 A; Pb, 1.746 A) 44 The 123 
persistence of these interactions, despite ~3% changes in 124 
radius ratios of these elements over the pressure range 125 
explored,45'46 suggest a sufficient energy barrier to decom- 126 
position enabling its persistence at ambient pressure. Together, 127 
these observations indicate the power of high-pressure 12s 
synthesis to expand chemical control over structure in this 129 
class of materials. 130

To interrogate the potential topological properties of 131 
Ni3Pb2, we performed electronic structure calculations on the 132 
relaxed Ni3Pb2 structure at ambient pressure (Figure 3 and SI 133 £3 
for details) 47 Examination of the band structure showed that 134 
the Ni d orbitals comprise the majority of bands near the 135 
Fermi level, as is expected for intermetallic phases with sd- and 136 
p-band metals. Below the Fermi energy, Pb p orbitals also 137 
contribute to the structure, suggesting orbital overlap that 13s 
enables Ni-d—Pb-p bonding. Two-band crossings are observed 139 
at the Fermi energy, one at the S-point and one along the F—X 140 
trajectory with potential topological importance. By combining 141 
band structure calculations with elementary band representa- 142 
tions and compatibility relations,17'48 we determined that the 143 
topological classification describing the highest energy 144 
occupied bands in Ni3Pb2 is Z4 = 3, confirming that Ni3Pb2 145 
is a candidate topologically nontrivial material. This 146 
topological index points to the presence of Dirac or Weyl 147 
nodes depending on the inversion and time reversal symmetry 14s 
of the system49-53 Specifically, Ni3Pb2 exhibits avoided 149 
crossing that may engender Dirac nodes at interfaces that 150 
support unusual charge and spin transport properties. 151

B https://doi.org/10.1021 /jacs.2c03485
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Figure 3. Band structure of Ni3Pb2 at ambient pressure where the 
bands are color coded to indicate the contribution of Ni electrons to 
each band. The inset highlights the band crossings near the Fermi 
level with (purple) and without (green) SOC.

152 Crucially, this nontrivial topological classifier differs from the
153 NiAs and Ni2In systems, which are predicted to have enforced
154 semimetal character.54-57 In comparison, at the S point of the
155 band structure for Ni3Pb2 we observe a gap that introduces
156 topological insulating character. To explore the origin of this
157 gap, we made a series of comparisons. First, we observed that
158 when SOC is not included in our calculation, this gap of ~10
159 meV disappears (Figure S47). Similarly, examining the
160 previously determined topological character of Ni3Sn2 reveals
161 a similar phenomenon, although the gap at the S point is
162 significantly smaller (<1 meV), further reflecting the
163 importance of SOC in tuning topological character.58
164 Complementarily, we computationally enforced a hexagonal
165 primitive cell in Ni3Pb2 equivalent to having ordered half-
166 occupied Ni2 sites in the P63/mmc primitive cell of Ni,In,
167 resulting in a P6ml structure in which topological semimetal
168 character is recovered (Figures S49 and S50). Thus, the nature
169 of the topologically protected crossing at the S point reflects
170 both the overall symmetry of the Ni2 site occupations as well 
m as the amount of SOC engendered by the main group atom.
172 Controlling the extent of site occupancy in a material can
173 pose a synthetic challenge. However, in B8-type Ni—main
174 group phases, the main group element identity is known to
175 determine the amount of Ni incorporated, which, in turn,
176 determines the symmetry of the structure.59 Namely, the
177 amount of Ni incorporated decreases as the valence electron
178 count on the main group element increases, such that main
179 group elements requiring more electrons to achieve full orbital 
iso configurations incorporate more Ni into their structure, 
isi Indeed, Ni3Pb2 falls within this trend. One physical
182 manifestation of this model is the expected charge transfer
183 from the Ni center to the Pb, compensating for unfilled p-band
184 electronic states. Examination of the electron density around
185 each metal using X-ray absorption spectroscopy (XAS)
186 revealed a shift of the Pb L3-edge (13030(2) eV) to lower
187 energy than the reference (13035 eV), and the Ni K-edge 
iss (8339(2) eV) to higher energy than the reference (8333 eV).60
189 These data are consistent with XAS spectra for known Ni—
190 main group B8-type compounds61-65 as well as calculated
191 projected charges (Table S32), confirming that there is a
192 partial negative charge transfer from the Ni to the main group
193 element. Thus, the role of the main group metal is twofold: its

atomic number directly determines the amount of band mixing 194 
in the avoided crossings and its electron count indirectly 19s 
influences the overall symmetry of the material based on the 196 
amount of Ni incorporated into the structure, creating a 197 

tractable synthetic handle to control topology. 19s
In parallel, we also explored computationally the electronic 199 

structure of the hypothetical Co3Pb2 material inspired by the 200 
known isostructural Co3Sn2 phase. Although we were not able 201 
to synthesize any phase in this system under analogous 202 
conditions in a diamond anvil cell (up to 16 GPa, ~1123 K), 203 
this is consistent with calculations that show its enthalpy of 204 
formation only becomes negative under higher pressure 205 
conditions (Figures S52—S56). Notably, electronic structure 206 
calculations revealed that a magnetic ground state is predicted, 207 
suggesting an additional handle for expanding topological 20s 
behavior in systems without time-reversal symmetry. However, 209 
by enforcing nonmagnetic ordering in the predicted Co3Pb2 210 
phase to allow for direct comparison with Ni3Pb2, we found 211 
that its hypothetical density of states is well-described within a 212 
rigid-band approximation. The Fermi level is shifted by ~+0.75 213 
eV relative to that in Ni3Pb2. This result combined with the 214 
analogous chemistry of Co3Sn2 suggests that transition metal 215 
identity provides another parameter for tuning topological 216 
properties, determining the energy of the Fermi level relative to 217 
topological electronic states while maintaining the overall 21s 
symmetry. Explorations of chemical substitution through 219 
alloying at both the Ni and the main group metal site are of 220 
interest for future studies. 221

Our high-pressure discovery of Ni3Pb2 completes a series of 222 
B8-type compounds to reveal a chemical phase space in which 223 
overall structural motifs are maintained while electronic 224 
structure factors relevant for topology are tuned. This 225 
approach is promising for the creation of new families of 226 
flexible topologically nontrivial materials. Future studies will 227 
focus on doping this material to tune its Fermi energy and 22s 
extending this conceptual approach to create new topologically 229 
nontrivial materials. 230
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