A preliminary version of this paper appears in the proceedings of CT-RSA 2023. This is the full
version.

Flexible Password-Based Encryption: Securing Cloud
Storage and Provably Resisting Partitioning-Oracle
Attacks

MiHIR BELLARE! LAURA SHEAZ

February 18, 2023

Abstract

We introduce flexible password-based encryption (FPBE), an extension of traditional pass-
word-based encryption designed to meet the operational and security needs of contemporary
applications like end-to-end secure cloud storage. Operationally, FPBE supports nonces, asso-
ciated data and salt reuse. Security-wise, it strengthens the usual privacy requirement, and,
most importantly, adds an authenticity requirement, crucial because end-to-end security must
protect against a malicious server. We give an FPBE scheme called DtE that is not only proven
secure, but with good bounds. The challenge, with regard to the latter, is in circumventing
partitioning-oracle attacks, which is done by leveraging key-robust (also called key-committing)
encryption and a notion of authenticity with corruptions. DtE can be instantiated to yield an
efficient and practical FPBE scheme for the target applications.

! Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/ mihir/. Supported in
part by NSF grant CNS-2154272.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: 1mshea@ucsd.edu. Supported by NSF grants CNS-2048563 and CNS-1513671.

Contents

Introduction

1.1 Flexible PBE o
1.2 Motivation and applications oo
1.3 Security of the DtE scheme o
1.4 Extended setting and results oL oo

2 Related work

3 Preliminaries

4 The tool: Symmetric encryption

5 The goal: Flexible password-based encryption
6 Security of the DtE scheme

7 Proving DtE security via composition and PBKDFs
8 Attacks

9 Key-robustness of DtE

References

A Proofs of authenticity lemmas

B Proof of Theorem 5.1

C Proof of Theorem 6.3

D Proof of Theorem 7.1

E Proof of Theorem 7.2

F Proof of Theorem 7.3

G Proofs of attack propositions

H Proof of Proposition 9.1

10

13

16

18

22

23

24

27

29

31

38

40

42

46

48

Security

Type encryption salt
P yp Privacy | Authenticity

TPBE | randomized fresh per encryption v

deterministic, | reusable across encryptions

FPBE | once-based | at discretion of application

v v

Figure 1: Traditional password-based encryption (TPBE) and flexible password-based encryption
(FPBE), contrasted.

1 Introduction

This paper advances password-based encryption (PBE) to meet the operational and security needs
of contemporary applications like end-to-end secure cloud storage. What we call Flexible password-
based encryption (FPBE) adds support for nonces and associated data; ups the privacy requirement
to INDS$; asks for authenticity in addition to privacy; and gives a scheme that is not only proven
secure, but with good bounds. The key challenge, with regard to the latter, is provably resisting
partitioning-oracle attacks [29]. We begin with some background.

TRADITIONAL PBE. PBE, currently, is closely identified with the canonical method of doing it.
As rendered in the PKCS#5 standard [26], the method is: to encrypt message M under password
P, pick a random salt S, obtain a key K < H(P,S) by hashing the salt and password, and return
as ciphertext (S, C') where C' - SE.Enc(K, M) is an encryption of M under K using a conventional
symmetric encryption scheme SE. (We refer to SE as the base scheme.) From this, PBE emerges
simply as randomized symmetric encryption in which the key (shared between sender and receiver)
is a password, and this indeed was the syntax adopted. For this syntax, BRT [12] give a definition
of message-privacy under chosen-plaintext attack, and prove that the canonical scheme meets this
if passwords are unpredictable, the base scheme SE provides privacy and H is a random oracle.
Importantly for what is coming, these results fail to define, or prove, authenticity.

In summary, traditional PBE (which we abbreviate as TPBE) is randomized, privacy-only
encryption with a fresh, per-message salt. We now introduce FPBE. As a quick summary, Figure 1
contrasts TPBE and FPBE.

1.1 Flexible PBE

FPBE involves a new syntax, and security definitions for it, that we discuss in turn. Formal
definitions are in Section 5.

SyYNTAX. Unlike a regular symmetric encryption scheme, an FPBE scheme FPBE has neither a
prescribed key-length nor a key-generation process; the key, now denoted P to connote a password,
can be any string, of any length. (Security will depend on the distribution of P.) Encryption is
deterministic, taking the salt S as input, and now, as in AEAD [39], a nonce N and associated
data A: we write C' <— FPBE.Enc(P, S, N, M, A). Decryption recovers as M < FPBE.Dec(P, S, N,
C, A), with the salt, nonce and associated data being sent out of band.

SECURITY. We consider a multi-user setting where P[i] is the password of user ¢ € {1,...,u}. The
distribution on the vector of passwords, denoted PD, captures the strength of choices made and
parameterizes definitions of privacy and authenticity. Then we formalize the following.

1. Privacy. Denoted PINDS, this asks that ciphertexts under the hidden, target password vector

are indistinguishable from random strings when the salt S is honestly (randomly) chosen by the
game and known to the adversary, and a nonce is not repeated for a given salt. (The adversary
can at any time ask for a salt refresh, and a nonce is allowed to be reused once this happens.)
The game formalizing this gives oracles SALT (to obtain a fresh salt for a given user) and ENC
(that returns a challenge ciphertext, obtained either by encryption under the password of the
indicated user, or chosen at random).

2. Authenticity. Denoted PAUTH, this asks that it be infeasible to produce S, N,C, A that is
valid — meaning FPBE.Dec(P, S, N,C, A) # 1 — except in a trivial way. Note that in the
forgery attempt, the adversary gets to pick the salt; it does not need to be an honest one used
in encryption. The game has oracle ENC return encryptions under the password of the indicated
user, and an oracle VERIFY that allows the adversary to make multiple forgery attempts.

3. PAE. This captures privacy and authenticity in a single, integrated way. The game gives the
adversary oracles SALT, ENC, DEC where SALT, ENC are like in PIND$ and DEC is similar to
VERIFY in PAUTH in the real case and returns L in the ideal case.

PIND$+PAUTH = PAE. Following [11,16], we show in Theorem 5.1 that if an FPBE scheme
separately satisfies PIND$ and PAUTH, then it also satisfies PAE. Importantly, this result only
requires PAUTH to hold for a restricted class of adversaries, called sequential; they make all
their ENC, SALT queries before their VERIFY queries. Nonetheless, PAE holds fully, meaning even
for non-sequential adversaries. This allows us, for PAUTH, to restrict attention to sequential
adversaries, which simplifies proofs.

FEATURES. Our framework allows a salt to be securely reused to encrypt multiple messages, as long
as the nonce is different each time. Associated data could be metadata (such as a file handle) and,
as per [39], is authenticated but not encrypted. Privacy strengthens that of TPBE by requiring
indistinguishability from random rather than indistinguishability of encryptions, which provides
some degree of anonymity. But the main value added is authenticity, not present in TPBE, and
crucial for the applications to which we now turn.

1.2 Motivation and applications

We discuss three motivations or applications for this work.

SECURING CLOUD STORAGE. Almost all cloud storage providers provide some type of encryption
for data at rest. In a first tier, represented by GoogleDrive, DropBox and Microsoft, encryption
is under a key known to the server. More interesting is a second tier of services like MEGA [32]
and Boxcryptor [17] that aim to provide end-to-end secure storage, where the encryption is under
a key known only to the user, so that even the service provider storing the encrypted file cannot
decrypt it. This security goal is coupled with an availability one: a user should be able to access
the server and decrypt her files from any of her devices. A solution has been to encrypt the files
under a user password. This second tier of systems has been highly successful; MEGA alone claims
to be storing 1,000 PB of password-encrypted data [33].

Enormous volumes of data thus are, or will be, password-encrypted for cloud storage. So we
ask, what PBE schemes should we use? The first answer is traditional PBE. But TPBE is a poor
fit for this task because, as we explain below, secure cloud storage doesn’t just require privacy; it
also requires authenticity. TPBE does not provide this; FPBE does.

Why authenticity? In end-to-end security, the intent is to maintain security even when the server
is malicious. (This model reflects a variety of real-world threats. One is insider attacks, mounted by
provider employees. Or, the provider’s systems may be infiltrated by hackers.) Suppose the user has

placed on the server a ciphertext C' encrypting a file M under the user’s password. In the absence
of authenticity, a malicious server could modify C to another ciphertext C’ that, when retrieved by
the user, decrypts under the user password to M’ # M. Considering that in this way the malicious
server could modify financial or personal data, lack of authenticity has critical consequences. The
threat is not merely speculative; there are attacks on MEGA that violate authenticity of stored
encrypted files [6]. Authenticity is thus a core requirement for FPBE.

Besides enhancing security, FPBE can reduce storage cost. Specifically, ¢ messages encrypted
under TPBE with sl-bit random salts add sl - ¢ bits of ciphertext storage overhead. With FPBE,
one can use one random salt, and then a c-bit counter as nonce, for storage overhead sl + gc. The
latter is lower than the former because the counter can be short (say, 16 bits for ¢ < 2'6) while
salts need to resist collisions so would need to be 128 bits or more.

MODERNIZING PBE. Symmetric encryption has evolved. Failures of privacy-only schemes lead
to the consensus that the goal should be authenticated encryption [10]. Alongside, randomized
encryption has given way to nonce-based encryption supporting associated data (AEAD) [39]. Part
of our motivation was to reflect these lessons and advances in PBE and align it with AEAD. Thus,
FPBE adds support for nonces and associated data and, most importantly, provides authenticity in
addition to privacy. The PIND$, PAUTH and PAE definitions we give mimic corresponding ones
for AEAD from the literature [11,39].

PROVABLY RESISTING PARTITIONING-ORACLE ATTACKS. Recall that TPBE uses a (conventional)
symmetric encryption scheme that we call the base scheme. (Our DtE FPBE scheme will too.) Also
recall that such a base scheme is key-robust (also called key-committing) [1,2,7,22,24] if a ciphertext
is a commitment to the key. Surprising new attacks, called partitioning-oracle attacks [29], exploit
lack of key-robustness in the base scheme to speed up password recovery in the corresponding TPBE
scheme. The attacks need access to decryption capability under the target password and thus,
crucially, cannot be captured or understood within the prior, ind-cpa-style privacy-only frameworks
of PBE [12,18]. Our FPBE framework fills this gap; the attacks now emerge as aiming to violate
authenticity. This puts us in a position to ask whether presence of key-robustness in the base
scheme provably provides resistance against partitioning-oracle attacks. (We will show that the
answer is yes.)

1.3 Security of the DtE scheme

THE DtE sSCHEME. We build FPBE from two ingredients: a conventional AEAD scheme SE [39]
and a password-based key-derivation function (PBKDF) F. Formally our construction is a trans-
form DtE (Derive then Encrypt) that defines FPBE scheme FPBE = DtE[SE, F| as follows:
FPBE.Enc(P, S, N, M, A) derives K + F(P,S) and returns C' « SE.Enc(K, N, M, A). This ex-
tends BRT [12] and the classical PKCS#5 standard [26] to our setting. Practical choices for the
PBKDF F include PBKDF2 [26], BCRYPT [38], SCRYPT [3,4,35] or Argon2 [15]. Some of our re-
sults assume F is a random oracle [13]. The assumptions on SE vary. The assumptions on passwords
are discussed next.

PASSWORD STRENGTH. PBE (whether TPBE or FPBE) can only provide security when passwords
are strong, meaning are hard to guess. (This is due to brute-force dictionary attacks.) Proofs for
TPBE [12] made a necessary “password un-guessability” assumption on the password distribution
PD, and this work will do so as well.

The metric for un-guessability is the guessing probability GPpp(q), defined, for any given
integer parameter ¢ > 1, as the maximum, over all (i1, P1),..., (iq, P;), of the probability that
there is some j such that P; = P[i;] when P «—sPD [12,42]. It emerges that un-guessability is

4

q
u | gs,q | Th. 6.1 Th. 6.2 Th. 6.3
SE: ind$ SE: auth SE: auth-+krob$
xx = pind$ xx = pauth xx = pauth

>1] >0 qn gn + min(qu, u) - gn qn + qu
>1] =0 qn min(gy, u) - gn Qo
=1] >0 an 2qp, qn + Qu
=1] =0 qn qn Qv

Figure 2: Security of DtE[SE,F|] as a function of password strength. For xx €
{pind$, pauth}, our results give bounds of the form Adviigse ppp.u(A) < GPpp(q) + 6. The
table shows the value of the number ¢ of password guesses in this bound for privacy (xx = pind$),
authenticity (xx = pauth) when we assume only auth-security of SE (Th. 6.2) and authenticty
when we also assume key-robustness (krob$) of SE (Th. 6.3). Here u is the number of users and
s, Ge, qn, the number of SALT, ENC, H queries, respectively, of A. Additionally, in the xx = pauth
case, ¢, is the number of VERIFY queries of A. The § term is secondary and is in the theorem
statements.

not a monolithic assumption; the smaller the number ¢ of guesses, the weaker the assumption. An
important element of our bounds is keeping ¢ as low as possible.

SECURITY OF DtE. The scheme we analyze is FPBE = DtE[SE, F| with F(P,S) = H(P, S) where
H is modeled as a random oracle. The analysis can be seen at two levels. The first, more superficial
level, is asymptotic (or qualitative), where we seek to name assumptions that imply security. The
second, technically deeper and in practice more relevant level is concrete (or quantitative), where
we seek to obtain bounds as good as possible. Let us visit these in turn.

ASYMPTOTIC SECURITY. Assuming passwords are un-guessable, (1) Theorem 6.1 says that if base
scheme SE provides privacy, then FPBE meets our PIND$ definition of privacy for FPBE, (2)
Theorem 6.2 says that if base scheme SE provides authenticity, then FPBE meets our PAUTH
definition of authenticity for FPBE, and (3) Theorem 6.3 says that if base scheme SE provides
both authenticity and key-robustness, then FPBE again meets PAUTH. Item (3), at this level,
looks redundant; why do we add an extra assumption (key-robustness) on SE to obtain the same
conclusion as in (2)? The answer is better concrete security and resistance to partitioning-oracle
attacks, which emerges only at the concrete level we discuss next.

CONCRETE SECURITY. The three above-mentioned theorems bound the advantage of a given ad-
versary A, in violating privacy or authenticity of FPBE = DtE[SE, F|, by an expression of the form
GPpp(q) + 0, for a g that depends on adversary resources. The number ¢ of guesses emerges as a
crucial parameter; the lower it is, the better the result. Our quest is to minimize this value. The §
term in the bound, shown in the theorem statements, will involve advantages of constructed adver-
saries in violating the security of SE, as well as a salt-collision term. It is secondary to GPpp(q)
assuming a long enough salt and secure SE.

The primary adversary resource is the number ¢, of H queries, corresponding to offline com-
putations of F = H. Other resources are the number ¢, g, of queries to the above-mentioned
SaLT, ENC oracles, corresponding to the number of encryptions performed, and additionally, for
PAUTH, the number g, of queries to the VERIFY oracle, representing the number of allowed veri-
fication attempts. Relevant below is that, due to throttling or other mitigations, ¢, could be very
small and in particular ¢, < g.

The values of ¢ for our bounds are summarized in Figure 2. For privacy (PINDS$) of FPBE,
the bound of Theorem 6.1 is AdvE?SEyPD’u(A) < GPpp(gn) + 0, meaning ¢ = gq. Furthermore,
we show this bound is tight: leveraging the classical brute-force attack, Proposition 8.1 gives an
attack making g, H queries and violating PIND$ with probability about GPpp(gp). This yields a
full picture for privacy.

Authenticity is more involved. Theorems 6.2 and 6.3 give bounds of the form AdvlﬁliuBtE pD.u(4)
< GPpp(q) + . The table of Figure 2 has two segments, with two rows in each. The first éeg}nent
is the general case with u users, but a simpler example shows the u = 1 case of the second segment.
In both segments, we consider first the case that encryptions are present (gs,qe > 0). But the case
where they are not (¢s = g. = 0) is in fact important; it can arise when FPBE is used in a protocol
aiming for security against dictionary attacks.

We now explain the simplest case, that of the 4th (last) row. While ¢ from Theorem 6.2 is
qn, additionally assuming key-robustness of SE drops it, via Theorem 6.3, to ¢,, which, as noted
above, is usually significantly smaller than ¢; due to throttling or other limitations on verification
attempts. The gap is less, but still present, in row 3. The gap is even more stark in the first
segment, where the ¢ given by Theorem 6.2 has a product term min(g,,u) - g5 that drops to just
¢» with Theorem 6.3.

The conclusion is that key-robustness of SE is significantly improving the quantitative authen-
ticity guarantees for FPBE. This is the proven security against partitioning-oracle attacks that we
have sought.

PAE. We clarify that the above results for PAUTH assume that the adversary is sequential. We
can confine attention to this case due to Theorem 5.1 which (as indicated above) says that PAUTH
for sequential adversaries, combined with PINDS$, implies the integrated PAE definition for all (not
necessarily sequential) adversaries. Theorems 6.4 and 6.5 put things together to show PAE for
DtE for unrestricted adversaries.

BOUND TIGHTNESS VIA ATTACKS. One might worry that the gap above is not real, but rather an
artifact of a loose analysis in Theorem 6.2. In fact, attacks show that our bounds are tight and the
gap is thus real. Moreover, this is where we complete the circle to partitioning-oracle attacks [29].
Proposition 8.2 shows that if SE is not key-robust then these attacks can be used to violate PAUTH
with probability roughly GPpp(g) where ¢ is as shown in the Theorem 6.2 column of Figure 2.
(The actual claim relies on a more fine-grained parameterization.)

TECHNIQUES. A possible perception is that security of FPBE = DtE[SE, F| is trivial due to the
following intuition: the key K <« F(P,S) is random so the assumed security of SE yields the
conclusion. This only scratches the surface, and ignores concrete security, which is where the main
subtleties and challenges arise. In particular, the proof of Theorem 6.3 involves new techniques.
The difficulty is that it is not obvious how key-robustness of SE helps improve the bound or how
to exploit it in the proof. The naive analysis would have a password-guessing adversary make
one guess per hash query of the PAUTH adversary A, returning us to the bound of Theorem 6.2.
Very roughly, key-robustness allows us to avoid this by using decryption instead. The proof of
Theorem 6.3 (in Appendix C) relies on a lemma, of possibly independent interest, concerning
authenticity with corruptions (AUTH-C) of SE. A standard hybrid argument shows that AUTH-C
is implied by AUTH with a factor u loss in advantage, where u is the number of users [25]. We
show in Lemma 4.2 that a tight reduction is possible when there are no encryption queries. Despite
the fact that the given adversary A is allowed encryption queries in the PAUTH game, we are able
to reduce to the AUTH-C security of SE in the absence of encryption queries and thence, by the
lemma, tightly to the regular AUTH security of SE.

INSTANTIATION. To take advantage of the above results in the form of high-security FPBE schemes,
we need base AEAD schemes SE that provide privacy, authenticity and key-robustness. Attacks
from [2,29] show that current schemes like GCM [20] fail to be key-robust; indeed, this is the basis
of partitioning-oracle attacks. However, key-robust schemes have been provided in [2,7,19, 24],
with the last work in particular giving a GCM variant that adds key-robustness with essentially
no overhead. This yields numerous choices of base scheme SE that, when plugged into DtE, yield
efficient, high-security FPBE.

COMMITTING SECURITY OF DtE. We saw above that DtE preserves privacy and authenticity of
the base symmetric encryption scheme SE. We also show that it does the same for robustness, or
committing security. There are various definitions of robustness or committing security for which
we could show this, but we chose to use the strongest, from [7]. They define CMT-{ security
of the base scheme SE for £ = 1,3,4. We extend these to define PCMT-/ security of an FPBE
scheme. Then in Proposition 9.1 we show that if the base scheme SE is CMT-¢ secure and F is
collision-resistant then the FPBE scheme FPBE = DtE[SE, F] is PCMT-/-secure.

1.4 Extended setting and results

What we have discussed above are, for simplicity, special cases of our definitions and results; the
ones in the body of the paper are more general along several dimensions that we now summarize.

In defining authenticated encryption, we can consider two dimensions. The first dimension
relates to nonce reuse; it is either prohibited (unique-nonce or basic security), or allowed with
the stronger guarantee of nonce-misuse resistance [40], also called advanced security. The second
dimension relates to decryption; in the NBE1 syntax and corresponding AE1 notion of security [11]
the nonce is an explicit decryption input, while in the NBE2 syntax and corresponding, stronger,
AE2 notion of security, it isn’t. With two choices in each of two dimensions, we have four possible
models or definitions. What we discussed above has been the simplest case, namely unique nonces
and NBE1/AE1; this, called AEAD [39], is what was assumed of the base symmetric encryption
scheme, and then extended to FPBE. In the body of the paper, we consider all four models, in
a compact and unified way, first giving a single, parameterized syntax and corresponding security
definitions for regular symmetric encryption and then also for FPBE. Our results are stated and
proved also in a general way, fairly seamlessly covering all these variants. Through DtE and our
results about it, we now obtain FPBE schemes for all four regimes; in particular we can provide
nonce-misuse resistance and AE2 security.

2 Related work

Bellare, Ristenpart and Tessaro (BRT) [12] study PBE in the multi-instance setting, while our
results are in the more classical multi-user setting. Demay, Gazi, Maurer and Tackmann [18] show
limits on multi-instance security in the constructive cryptography setting.

In the applications we consider, notably end-to-end secure storage, the server can run brute-
force attacks, so security is only possible with strong (un-guessable) passwords. Password hardening
through the use of an auxiliary server [21,27,28] could potentially be added to the system to mitigate
these attacks.

Better password-based key-derivation methods could also make brute-force attacks more ex-
pensive. For example, Argon2 [15], the winner of the 2013-2015 Password Hashing Competition,
and other options like BCRYPT [38] and SCRYPT (3,4, 35] are designed to be memory-hard or
otherwise computationally expensive so that brute-force (dictionary) attacks are costly. Our results

in Section 6 (namely, Theorems 6.1, 6.2, 6.3) model the PBKDF as a random oracle, and results
are expressed in terms of the number of queries ¢ to the random oracle. The particular PBKDF
determines how expensive these ¢; queries are for an adversary. We suggest a new property of
PBKDFs, kd security in Section 7, that yields useful results for FPBE in the standard model.

Len, Grubbs and Ristenpart (LGR) [29] introduced the partitioning-oracle attack and imple-
mented a working attack on a PBE application called Shadowsocks [41]. While they observed that
key-robustness can foil the attack, it remained an open question as to how it might provably in-
crease the security of PBE. Our work fills this gap; Theorem 6.3, shows that yes, key-robustness
does concretely improve authenticity (PAUTH) guarantees. In Proposition 8.2 of Section 8, we
additionally prove that the authenticity bound of Theorem 6.2 is tight, using a partitioning-oracle
attack. FPBE thus allows us to resolve how partitioning-oracle attacks and key-robustness fit into
the provable security picture of password-based encryption.

Armour and Cid [5] describe how weak key forgeries can be used to mount partitioning-oracle
attacks. They generalize the setting of LGR [29] and obtain attacks in new settings that are
resistant to the LGR attacks, such as when plaintexts are formatted.

Pijnenburg and Poettering [37] introduce Encrypt-to-Self as a comprehensive model and solution
for secure outsourced storage. Their security requirements are stronger than ours; they aim to
preserve authenticity of data even if the key (password) is compromised, and for this allow the user
to have some amount of local storage for hashes.

Related to robustness, Len, Grubbs and Ristenpart [30] consider AEAD with key identification,
where the decryptor has a list of keys and must identify which one decrypts a given ciphertext.

3 Preliminaries

NOTATION AND TERMINOLOGY. By ¢ we denote the empty string. By |Z| we denote the length of
a string Z. By z||ly we denote the concatenation of strings x,y. If S is a finite set, then |S| denotes
it size. We say that a set S is length-closed if, for any x € S it is the case that {0, 1}|m| C S. (This
will be a requirement for message, header, nonce and salt spaces.) A vector V is denoted in bold.
We denote its length by |V| and entry i by V[i] for 1 <1i <|V].

If X is a finite set, we let <—s X denote picking an element of X uniformly at random and
assigning it to x. Algorithms are deterministic unless otherwise indicated. If A is a deterministic
algorithm, we let y < A[O1,...](z1,...) denote running A on inputs z1,..., with oracle access to
O1, ..., and assigning the output to y. An adversary is an algorithm. Running time is worst case,
which for an algorithm with access to oracles means across all possible replies from the oracles. We
use L (bot) as a special symbol to denote rejection, and it is assumed to not be in {0, 1}*.

To concisely state our results, it will be helpful to define the function zt (zero test) via zt(q) =0
if ¢ = 0 and zt(q) = 1 if ¢ # 0. In some of our games and adversaries, we will use an algorithm
Findl that takes a value S and a vector S to return an integer ¢ < Find1(S,S) € {0,1,...,|S|}
such that: if S € {S[1],...,S[|S|]} then i is the smallest integer such that S[i] = S, and otherwise
i = 0. An extension, algorithm Find2, takes S and a list Sq,...,S, of vectors, returning i <
Find2(S,S1,...,S,) € {0,1,...,n} such that i is the smallest value such that Find1(S,S;) # 0 if
this exists, and otherwise ¢ = 0. That is, Find2 identifies the first vector in which S occurs, if any.

GAMES. We use the code-based game-playing framework of BR [14]. A game G starts with an
optional INIT procedure, followed by a non-negative number of additional procedures called oracles,
and ends with a FIN procedure. Execution of adversary A with game G consists of running A with
oracle access to the game procedures, with the restrictions that A’s first call must be to INIT (if
present), its last call must be to FIN, and it can call these procedures at most once. The output of

pg
Game GPD,u

INIT: TEST(3, g): FIN:
1 P<+sPD 2 If (g = P[i]) then win < true 3 Return win

Figure 3: The guessing game for a u-user password distribution PD.

the execution is the output of FIN. By Pr[G(A)] we denote the probability that the execution of
game G with adversary A results in this output being the boolean true.

Note that our adversaries have no output. The role of what in other treatments is the adversary
output is, for us, played by the query to FIN. Different games may have procedures (oracles) with
the same names. If we need to disambiguate, we may write G.O to refer to oracle O of game
G. In games, integer variables, set variables, boolean variables and string variables are assumed
initialized, respectively, to 0, the empty set (), the boolean false and L. Tables are initialized with
all entries being .

PASSWORD DISTRIBUTIONS. A distribution over passwords, PD, returns a wu-vector of passwords,
where u, a parameter associated to PD, is the number of users; we write P <—s PD. This is neither a
password-generation algorithm nor a prescription for how to generate passwords; rather it attempts
to model and capture choices that people make. The passwords are not assumed to be independent;
reflecting password choices in practice, they may be arbitrarily correlated. (In particular, a person
may use related passwords for different websites.) We do assume that passwords in a vector are
distinct. (Formally, P[1], ..., PJu] are all distinct, for all P that may be generated by PD.) This is
because usage of the same password across different users leads to trivial attacks.

PASSWORD GUESSING. We are interested in an adversary’s ability to guess some entry of a password
vector in some number ¢ of tries. Following [12], we measure this via a guessing game. The game
Gg%,u is in Figure 3. A guess is captured by a TEST query. Note that the TEST oracle returns
no response to the adversary, so that the attack is effectively non-adaptive. For an adversary A,
we define the guessing advantage AdvE%u(A) = Pr[GE%,u(A)] to be the probability that the game
returns true.

In proofs it is convenient to use the game- and advantage-based definition above. However, the
results are best expressed via an equivalent information-theoretic formulation in terms of guessing
probabilities and min-entropy. For a number ¢ of guesses, we define the guessing probability
GPpp(g) and min-entropy HZ (PD) of PD by

GPpp(q) =27 H%PP) — max Pr[3j: Plij]=g; = P«sPD].
(41,91)--5(iq:9q)
These definitions of guessing probability and min-entropy for ¢ guesses generalize the ones of [42],
which correspond to the case u = 1 of the above. Now, the relation with the game-based formulation
is that GPpp(q) = maxy AdvEgDM(A), where the maximum is over all adversaries A that make ¢
TEST queries.

Note that GPpp(1) is the probability of the most likely password in the vector, and GPpp(q) <
q- GPpp(1). In general, however, GPpp(g) can be quite a bit smaller than ¢ - GPpp(1), which is
why we consider the more general definition and parameterization by q.

Suppose the entries of P are uniformly and independently distributed over a set of size IV,
subject to being distinct, and 1 < ¢ < N. Then GPpp(q) = ¢/N. In general, however, there may
not be a simple formula for the guessing probability.

Sometimes we are interested in a finer-grained parameterization of the guessing probability,
which, beyond constraining the total number of guesses to some parameter ¢, also constrains the
number of distinct passwords, and the number of distinct users, to parameters gy, q.,, respectively.
Formally we let

GPpp(q,qp, qw) ~ max Pr(3j : Plijj=9; = P<sPD]
(41,91)--5(iq:9q)
where the maximum is taken over all (i1,91),..., (ig, gq) such that [{g; : 1 < j < ¢}| < ¢, and
{ij:1<j<q}| <qu The relation with the game-based formulation is that GPpp(q, gp, ¢w) =
max4 AdvE%u(A), where the maximum is over all adversaries A that make ¢ TEST queries which
involve at most g, distinct passwords and at most g, distinct users.

4 The tool: Symmetric encryption

We will be building FPBE schemes from symmetric encryption (SE) schemes and accordingly start
with the latter. We give definitions that are novel, unifying the AE1 (AEAD) and AE2 notions [11]
so that our results can easily apply to both. We give the definition of key-robustness we will assume.
We define authenticity with corruptions and give two lemmas about it that we will use.

SE SYNTAX. A symmetric encryption scheme SE specifies a key length SE.kl € N, nonce space
SE.NS, message space SE.MS, and associated data (header) space SE.AS. These spaces are as-
sumed to be length-closed. Deterministic encryption algorithm SE.Enc:{0,1}5EK x SE.NS x
SE.MS x SE.AS — {0,1}* returns a ciphertext C' < SE.Enc(K, N, M, A) that is a string of length
SE.cl(|M]) > |M]|, where SE.cl: N — N is the ciphertext-length function. Deterministic decryption
algorithm SE.Dec : {0, 1}5EK x SE.NIS x {0,1}* x SE.AS — SE.MS U {1} returns an output M <
SE.Dec(K, I,C, A) that is either a string in SE.MS or is L, where SE.NIS is the nonce-information
space. Decryption correctness requires that SE.Dec(K, SE.NI(N),SE.Enc(K, N, M, A), A) = M for
all K € {0,1}°8X N € SE.NS, M € SE.MS and A € SE.AS, where SE.NI: SE.NS — SE.NIS is the
nonce-information function.

The purpose of nonce-information (SE.NI,SE.NIS) is to allow us to recover the NBE1 [39] and
NBE2 [11] syntaxes as special cases, as follows. When SE.NI(N) = N and SE.NIS = SE.NS, the
decryption algorithm is getting the nonce as input, which means we have the NBE1 syntax. When
SE.NI(N) = ¢ and SE.NIS = {¢}, the decryption algorithm gets no information about the nonce,
and we have the NBE2 syntax. Our definition allows us to unify the two and give results that apply
to both. More generally it allows us to consider decryption having partial information about the
nonce.

SECURITY GAMES AND ADVERSARY CLASSES. There are two levels of security. The basic one re-
quires that an encryption nonce not be reused by a particular user. The advanced one is nonce-
misuse resistance, which drops this condition. We want our definitions and results to cover both in
as compact and unified a way as possible. For this we follow [11] by giving a single game per secu-
rity goal and then seeing basic and advanced security as restricting the adversary to an appropriate
class, either A, (basic) or A, (advanced).

The goals (games) we consider are privacy (IND$), authenticity (AUTH) and joint privacy+auth-
enticity (AE). For each, there is basic and advanced security. Known results [11, 16] say that
IND$+AUTH is equivalent to AE (a scheme meets both IND$ and AUTH iff it meets AE) for both
basic and advanced security, and this is true even when AUTH is restricted to adversaries that are
sequential, meaning make their VERIFY queries after their ENC queries. We let Aseq be the class
of sequential adversaries.

10

Game GiS“E‘fi

INIT:

1 d<s{0,1} ; un « true
2 Fori=1,...,udo

3 K;+s{0,1}%EX

Enc(i, N, M, A):
4 Require: CT[¢, N, M, A] = L
5 If (N € UN;) then un < false

auth
Game GSE,U

INTT:

1 un < true

2 Fori=1,...,udo
3 K;+s{0,1}%X

Enc(i, N, M, A):
4 If (N € UN;) then un < false
5 UN; « UN, U {N}

6 UN; + UN; U{N}

7 Cy <+ SE.Enc(K;, N, M, A)
& Co +—s {0, 1}SE<(M])

9 CT[i, N, M, A] + Cy4

10 Return Cy

6 C < SE.Enc(K;, N, M, A)
7 MT[i, SE.NI(N),C, A] + M
8 Return C

VERIFY (i, I,C, A):

o If (MT[i,I,C, A] # L) then
FIN(d'): 10 return L

11 Return (d' = d) 11 M « SE.Dec(K;,I,C, A)

12 If (M # L) then win < true
13 Return (M # 1)

FIN:

14 Return win

Figure 4: Games defining IND$ (left) and AUTH (right) security for symmetric encryption scheme
SE over u users.

Games will use a flag un, for “unique nonce,” that begins true. An adversary A is in the class
A, if its execution with the game never sets un to false. A, is simply the class of all adversaries,
meaning ones setting un to false are included. Games will at various points assert Require: some
condition, which means that all adversaries must obey this condition. This will be used to rule out
trivial wins. We now proceed to the particular definitions.

SE PRIVACY. This is defined via game GiSnEdi in the left panel of Figure 4, where v is the number of

users. (This is the multi-user setting.) If A is an adversary, we let Advisngi(A) =2 Pr[nggi(A)] -1
be its advantage.

SE AUTHENTICITY. This is defined via game Gg‘étg in the right panel of Figure 4, where u is the

number of users. If A is an adversary, we let Advggg(/l) = Pr[Gglétg(A)] be its advantage.

AUTHENTICITY UNDER CORRUPTIONS. This is an extended form of authenticity defined via game
G%Efg’c of Figure 5, where u is the number of users. The new element is the EXPOSE oracle that
allows the adversary to obtain they key of a user i. We let Adv%‘éfg"c(A) = Pr[G‘g‘éfg'C(A)] be the
advantage of adversary A.

We consider authenticity under corruptions because we will use it in the proof of Theorem 6.3.
However, the following lemmas say that it is implied by regular authenticity and thus is not an
additional assumption on SE. The first lemma, which gives up a factor of the number of users u,
is implied by [25]. For completeness we give a proof in Appendix A.

11

auth-c
Game GS¢',

VERIFY (i, I,C, A): EXPOSE(7):
1 If (MT[i, I,C, A] # 1) or ¢ € EU) then return L 5 EU «+ EU U {3}
M «+ SE.Dec(K;,I,C, A) 6 Return K;

2
3 If (M # 1) then win < true
4 Return (M # 1)

Figure 5: Game defining authenticity under corruptions for symmetric encryption scheme SE over
u users. The procedures INIT, ENC, FIN are as in the right panel of Figure 4.

Gkr0b$

Game SE.q

INTT:
1 Fori=1,...,q do K; <s{0,1}5EH
2 Return Ki,..., K,

FIN(I, C, A):
3 Fori=1,...,q do d; + (SE.Dec(K;,I,C, A) # 1)
4 Return (35S C[l..q]:|S|=7A (Vi€ S:d; =true))

Figure 6: Game defining y-way key-robustness for g keys for SE scheme SE.

Lemma 4.1 Let SE be a symmetric encryption scheme andu > 1 a number of users. Let y € {b, a}.
Suppose Aguth-c € Ay is an adversary making qo ENC queries and g, VERIFY queries per user in
the G%‘éfg'c game. Then we can construct an adversary Aaun € Ay such that

AV (Ane) < - AdVEEY (A .

Adversary A,un makes q¢ ENC and q, VERIFY queries. The running time of Aauen s close to that
of Aouth-c- If Aauth 1S sequential, so is Aauth-c-

Our next lemma, which is novel, shows that the factor u blowup above can be reduced to a
constant in the absence of encryption queries. We will exploit this for Theorem 6.3. The proof is
in Appendix A.

Lemma 4.2 Let SE be a symmetric encryption scheme and u > 1 a number of users. Lety € {b, a}.
Suppose Aauth-c € Ay is an adversary making q, VERIFY queries per user, and no ENC queries, in
the G%‘éfg‘c game. Then we can construct an adversary Aaun € Ay such that

Advglét,z_c(Aauth-C) <2 Advglét,g(Aauth) : (2)

Adversary Aautn makes q, VERIFY queries and no ENC queries. The running time of Aautn 1S close
to that of Aauth-c- If Aauth %S sequential, so is Azuth-c-

KEY-ROBUSTNESS. Theorem 6.3 will also assume key-robustness of a symmetric encryption scheme

SE. This is defined via game Gg?gi of Figure 6 associated to scheme SE, number of keys ¢ and

size v of the target collision. If A is an adversary, we let Advls‘EO,;’i(A) = Pr[Glng‘fgi(A)] be its

advantage. Security for v = 2 implies it for higher ~, but we directly consider the latter because it

12

arises in partitioning-oracle attacks [29] and can be proved with better bounds [7]. The “$” in the
notation indicates the random choice of keys at line 1. This choice makes our notion weaker than
others in the literature [1,2,7,22,24], but this makes our results stronger because they assume a
key-robust scheme and the less that is assumed, the better.

5 The goal: Flexible password-based encryption

We give formal definitions for the FPBE primitive that we introduce. We define both privacy and
authenticity, as well as joint authenticated encryption (PAE). In Appendix B, we complete the
proof that PAE for FPBE is equivalent to privacy-+authenticity. While PAE is the overarching
security goal for FPBE, considering privacy and authenticity separately in turn results in more
straightforward theorem statements and proofs.

FPBE synNTAX. A scheme FPBE specifies the following objects and algorithms. The key space
is FPBE.KS = {0,1}*, meaning any string, representing a password and thus denoted P, can
function as the key. We introduce a salt space, FPBE.SS, and as in SE, use nonce, associated
data (header), and message spaces. These spaces are assumed to be length-closed. Deterministic
encryption algorithm FPBE.Enc : FPBE.KS x FPBE.SS x FPBE.NS x FPBE.MS x FPBE.AS — {0,1}*
returns a ciphertext C <+ FPBE.Enc(P, S, N, M, A) that is a string of length FPBE.cl(|M|) >
|M|. Deterministic decryption algorithm FPBE.Dec: FPBE.KS x FPBE.SS x FPBE.NIS x {0,1}* x
FPBE.AS — FPBE.MSU{_L} returns an output M < FPBE.Dec(P, S, I,C, A) that is either a string
in FPBE.MS or is L. Decryption correctness requires that FPBE.Dec(P, S, FPBE.NI(N), FPBE.Enc(
P,S,N,M,A),A) = M for all P € FPBE.KS, S € FPBE.SS, N € FPBE.NS, M € FPBE.MS and
A € FPBE.AS, where FPBE.NI : FPBE.NS — FPBE.NIS is the nonce-information function.

SALTS VERSUS NONCES. One may ask why have both a salt and a nonce. In particular, if there
is a nonce, why do we also need a salt? The purpose of a salt in password-based encryption is
to preclude pre-computation in brute-force attacks, forcing the attacker to do dictionary-size, per-
user online work. Nonces will not accomplish this since they can be predictable and the same
for different users, so we retain the salt. Then one may ask, why the nonce? One benefit is a
shorter amortized ciphertext length, leading to reduced storage cost in cloud encryption. Suppose
q messages My, ..., M, are encrypted and the ciphertexts 1, ..., C, are stored on the server. First
consider encryption under TPBE (traditional PBE, which has a per-message random salt but no
nonce). The salts have to be stored with the ciphertexts to allow decryption. If sl is the salt length,
the storage overhead is sl - q. Now consider using FPBE, where the user picks one random salt S
and encrypts M; with S and, as nonce, (i), a ¢-bit encoding of the integer i. Now one stores the
single salt, and the per-message nonce, so the storage overhead is sl + gc. The latter is lower than
sl - ¢ because ¢ can be small (say, 16 bits for ¢ < 2'6) while salts need to resist collisions so need to
be 128 bits or more. In fact one can do even better. Seeing the nonce as given by the index i of
the ciphertext in the list C, ..., Cy, only the single salt needs to be stored, for storage overhead sl.

SECURITY GAMES AND ADVERSARY CLASSES. We aim to bring PBE in line with modern symmetric
encryption by treating both basic and advanced security. As above, we give a single game per
security goal and then restrict to adversary classes that we continue to denote A, (basic) or A,
(advanced) but are redefined for the password-based case. Again, the goals we consider are privacy
(PINDS), authenticity (PAUTH) and joint privacy+authenticity (PAE). Games will again use a
flag un, for “unique nonce,” and adversary A is in the class A, if its execution with the game
never sets un to false. A, is simply the class of all adversaries. We now proceed to the particular
definitions.

13

Game GII:):DHBdg,PD,u Game Gllzg‘ll%tél,PD,u

INIT: INIT:

1 d<«s{0,1} ; un < true 1 un < true

2 P<+sPD | u-vector of passwords 2 P<+sPD | u-vector of passwords
Enc(i, N, M, A): ENc(i, N, M, A):

3 Require: s(7) #0 3 Require: s(7) #0

4 Require: CTi, s(¢), N, M, Al = L 4 If (N € UN; 4(;)) then un < false
5 If (N € UN, (;)) then un < false 5 UN, 5) < UN; 50y U {N}

6 UN; (i) < UN; o) U{N} 6 C « FPBE.Enc(P[i], Si, N, M, A)
7 C) « FPBE.Enc(P[i], S, N, M, A) 7 MTJ[i, S;, FPBE.NI(N), C, A] + M
8 Cp s {0, 1}FPBEA(MD 8 Return C

9 CTI¢,s(i), Ny M, Al + Cq

VERIFY (i, S,I,C, A):

10 Return Cy o If (MT[s,S,1,C, A] # 1) then

SALT(2): 10 return L

11 s(i) - s(i) +1; S; «s FPBE.SS 11 M « FPBE.Dec(P[i], S,I,C, A)
12 Return S; 12 If (M # 1) then win « true
FIN(d): 13 Return (M # 1)

13 Return (d' = d) SALT(i):

14 s(i) < s(i) +1; S; <—s FPBE.SS
15 Return S;

FIN:

16 Return win

Figure 7: Games defining PIND$ (left) and PAUTH (right) security for FPBE scheme FPBE over
U users.

FPBE PRIVACY. Let PD be a distribution over passwords, as above, for u users. Then privacy
is defined by game GEEISE’PD# of Figure 7. If A is an adversary, we let Advgglgngm(A) =

2 Pr[GIF)iFI,lgE pp.y(A)] — 1 be its advantage.

FPBE AUTHENTICITY. Let PD be a distribution over wu-vectors of passwords. Authenticity is
defined by game Gllgglll;l}zl,PD,u on the right of Figure 7. If A is an adversary, we let AdvgglggPD’u (A) =
PT[GE%UB%PD,U(A)] be its advantage.

In this setting, we call an adversary sequential if all its VERIFY queries come after all its SALT
and ENC queries. We continue to denote the class of such adversaries as Ag.,. Theorem 5.1 allows
us to restrict attention to sequential adversaries when proving PAUTH.

FPBE AUTHENTICATED ENCRYPTION. For a password distribution PD over u users, authenticated
encryption (PAE) is defined by game GRpge pp ,, Of Figure 8. For an FPBE scheme, the advantage
of an adversary A is Advipge pp,,(4) = 2Pr[GEpge pp ,(A)] — 1.

Recall that results from [11,16] say that if a standard symmetric encryption scheme SE is both
IND$-secure and AUTH-secure then it is also AE-secure, and moreover this is true even if AUTH is

assumed only for sequential adversaries. In the following theorem we give the analogue of this result
for FPBE. Namely, the theorem says that if FPBE is both PINDS$-secure and PAUTH-secure, then

14

pae
Game Gepge pp

INIT:

1
2

d<+3s{0,1} ; un < true
P «+sPD / u-vector of passwords

ENC(i, N, M, A):

Require: s(i) # 0

Require: CT[é,s(), N,M, Al = L

If (N € UN; 4(;)) then un < false

UNi,s(i) — UNi,s(i) U {N}

C1 < FPBE.Enc(P[i], Si, N, M, A)
CO s {O’I}FPBE.CI(|M|)

DEec(3, S, I1,C, A):

12 If (MTJs,S,1,C, A] # 1) then
13 return MT[, S, I, C, A]

14 If (d = 0) then return L

15 M < FPBE.Dec(P[i], S, I,C, A)
16 Return M

SALT(%):
17 s(i) < s(i) + 1 ; S; <—s FPBE.SS
18 Return S;

Fin(d'):

© 00 N O 0 P W

CTJi, s(2), N, M, A] + Cq
10 MT[i, S:, FPBE.NI(N), Cq, A] < M
11 Return Cy

19 Return (d' = d)

Figure 8: Game defining PAE security for FPBE over w users.

it is also PAE-secure, and this is true even if PAUTH is assumed only for sequential adversaries.
This result allows us, in later analyses of PAUTH, to restrict attention to sequential adversaries,
and thereby simplify analyses and proofs. The proof of the following, which is in Appendix B,
follows the proof of [11].

Theorem 5.1 Let FPBE be an FPBE scheme over u > 1 users, password distribution PD, and
salt length sl > 1, with access to a random oracle H : D — R. Let y € {b,a}. Suppose A € A,
1s an adversary making qs SALT queries, qc ENC queries, qq DEC queries and qn, H queries in
the GEpge pp., game in the ROM. Then we can construct adversaries Apings € Ay and Apautn €
AyN A, in the ROM such that

seq
ind$ th
Advipge pp,(A) < AdVEpge pp , (Apinas) + 2 - AdVEpge pp u (Apauth) - 3)

The running times of Apinas, Apauth are close to that of A. Apinqg makes qs,qe SALT, ENC queries,
respectively while Apautn makes gs, ge, qa SALT, ENC, VERIFY queries, respectively. Both Apingg and
Apautn make qn, H queries.

Theorem 5.1 allows us to prove PAE (the end goal of FPBE) by proving PIND$ and PAUTH
independently, which simplifies proofs. Most importantly, it demonstrates the utility of defining
sequential adversaries. Crucially, we make no restriction on whether the PAE adversary A is
sequential or not; A can be non-sequential. Despite this, the constructed adversary Apauin always
is sequential. This means we need to prove PAUTH only for sequential adversaries, a simplification
we take advantage of in Theorems 6.2, 6.3.

The above theorem is stated in the random oracle model because our later results will be;
however the statement holds in the standard model as well. We note that the other direction,
PAE = PINDS$ + PAUTH also holds, and is a simple proof that we omit; an adversary breaking
PINDS$ or PAUTH can already break PAE with little change beyond notation.

15

Algorithm FPBE.Enc(P, S, N, M, A): Algorithm FPBE.Dec(P, S,1,C, A):

1 K+ F(P,S) 4 K+ F(P,S)
2 C <+ SE.Enc(K,N, M, A) 5 M < SE.Dec(K,I,C,A)
3 Return C 6 Return M

Figure 9: Encryption and decryption algorithms of the scheme FPBE = DtEI[SE, F| constructed
from symmetric encryption scheme SE and PBKDF F via the DtE transform.

6 Security of the DtE scheme

DtE TRANSFORM. We specify a transform DtE that, given a symmetric encryption scheme SE and
a function F : {0, 1}* x {0,1}*! — {0, 1}5EK returns a password-based scheme FPBE = DtEJ[SE, F].
The name DtE stands for “derive-then-encrypt.” The encryption and decryption algorithms of
FPBE are shown in Figure 9. The salt space is FPBE.SS = {0, 1}*!. The message, nonce and header
spaces are those of SE, as is the nonce-information algorithm. We refer to F as the password-based
key-derivation function (PBKDF). Choices include PBKDF2 [26], BCRYPT [38], SCRYPT [3,4,35]
or Argon2 [15]. The results in this section model F as a random oracle [13], but some of the overlying
results (Theorems 7.1, 7.2) are under a standard-model assumption on F.

Privacy oF DtE. The following theorem says that if the base scheme SE is IND$-secure and
the password distribution PD has low guessing probability then the constructed scheme FPBE =
DtE[SE, F] is PIND$-secure when F is modeled as a random oracle.

Theorem 6.1 Let SE be a symmetric encryption scheme and let PBKDF F:{0,1}* x {0,1} —
{0,133 be defined by F[H](P, S) = H(P, S), where we model H : {0,1}* x {0,1}%! — {0, 1}5EK g5
a random oracle. Let FPBE = DtE[SE, F]. Let PD be a password distribution for u > 1 users. Let
y € {b,a}. Suppose A € A, is an adversary making gs, ge, qn queries to its SALT, ENC, H oracles,
respectively, in the G’E?SEPD,U game in the ROM. Then we can construct an adversary Asg € A,
such that
pind$ ind$ ds (QS -]—)
AdVERgE pp o (4) < GPeo(gh) + AV (Ase) + = . (4)
Adversary Asg makes qo ENC queries and has running time close to that of A.

The proof of Theorem 6.1 is obtained by combining Theorems 7.1 and 7.3, and is given at the end
of Section 7. Note that in Theorem 6.1 the assumed IND$ security of SE is for a number of users
that is equal to the number g5 of SALT queries of A, with Asg making ¢. ENC queries across all
these users.

AUTHENTICITY OF DtE. Our first authenticity theorem says that if the base scheme SE is AUTH-
secure and PD has low guessing probability, then the derived scheme FPBE = DtE|SE, F| is PAUTH-
secure when F is modeled as a random oracle. The statement below uses the extended parameteri-
zation of the guessing probability; in Section 1 we had discussed only the ¢ parameter. We assume
A € Ay, meaning A is sequential, which is justified by Theorem 5.1.

Theorem 6.2 Let SE be a symmetric encryption scheme and let PBKDF F:{0,1}* x {0,1} —
{0,133 be defined by F[H](P, S) = H(P, S), where we model H : {0,1}* x {0,1}*! — {0, 1}5EK g5
a random oracle. Let FPBE = DtE[SE, F|. Let PD be a password distribution for w > 1 users. Let
y € {b,a}. Suppose A e A,NA,, is a sequential adversary making qs, v, qn queries to its SALT,

seq

16

VERIFY, H oracles, respectively, in the GE?SE pp. game in the ROM. Then we can construct an

adversary Asg € Ay N A,,, such that

seq

au au qs(gs — 1
AdVIEPBtE,PD,u(A) < GPPD(Qa dh Qw) + AdVSEt}]ls+qy (ASE) + (281) ? (5)

where g, = min(qs + q,u) and q = zt(qs) - gn + min(qy, u) - qn. Adversary Asg makes the same
number of ENC and VERIFY queries as A, and has running time close to that of A.

The proof of Theorem 6.2, given at the end of Section 7, is obtained by combining Theorems 7.2
and 7.3. We note that the security of FPBE over u users is based on the security of SE over g5 + ¢,
users, corresponding to keys arising from salts in SALT or VERIFY queries.

BETTER AUTHENTICITY FROM KEY-ROBUSTNESS. Our second authenticity result strengthens the
first by showing that if the base scheme additionally is key-robust then the strength of passwords
required to guarantee authenticity is reduced. This shows up in the guessing probability term of the
bound. The authenticity-under-corruptions term Adv%EEE;C(Aauth_c) below can be tightly bounded
using standard authenticity via Lemma 4.2, exploiting the fact that the constructed adversary
Aauth-c makes no ENC queries. Recall that zt(gs) is 0 if gs = 0 and is 1 otherwise. As before we
assume A € A, meaning A below is sequential, which is justified by Theorem 5.1.

seq?

Theorem 6.3 Let SE be a symmetric encryption scheme and let PBKDF F:{0,1}* x {0,1} —
{0,133 be defined by F[H](P,S) = H(P,S), where we model H:{0,1}* x {0,1}*' — {0, 1}°EX
as a random oracle. Let FPBE = DtE[SE,F|. Let PD be a password distribution for u > 1 users.
Let v > 2 be the key-robustness width parameter. Let y € {b,a}. Suppose A € A, N Aseq is a
sequential adversary making qs, ge, Gu, qn queries to its SALT, ENC, VERIFY, H oracles, respectively,
in the GE?’?EPDM game in the ROM. Then we can construct an adversary Aypong, and adversaries

Aauth, Aauth-c € Ay N Aseq, such that
AdVESEE pp o (A) < GPep(2t(gs) - an + (Y—1) - q0) + gs(gs — 1) - 2797

+ AdVERS (Arons) + AAVEEDR L (Aaun) + AdVEED (Aquth-c) - (6)

Adversaries Aauth, Aauth-c make ¢y, qn VERIFY queries, respectively. Aauwn makes ¢ ENC queries,
but Aauth-c makes none. The running times of Aauth, Aauth-cs Axrobg ar€ close to that of A.

The simplest choice for parameter v above is v = 2, which is what we assumed in Section 1 and
Figure 2. We are more general in Theorem 6.3 because there are schemes SE for which slightly
increasing 7, even from 2 to 3, will significantly reduce Advlggsfﬁ(Akmw) [7], and one may benefit
from this tradeoff. We prove Theorem 6.3 in Appendix C.

AUTHENTICATED ENCRYPTION FROM DtE. Given the above theorems on the privacy and authen-
ticity of DtE, and Theorem 5.1 showing the equivalence of PAE and privacy+authenticity, we can
consider the impact of key-robustness on PAE overall. The first theorem below combines Theo-
rems 6.1 and 6.2, along with Theorem 5.1. Note that the given adversary A is not restricted to be
sequential.

Theorem 6.4 Let SE be a symmetric encryption scheme and let PBKDF F:{0,1}* x {0,1} —
{0,133 be defined by F[H](P, S) = H(P, S), where we model H : {0,1}* x {0,1}*! — {0, 1}5EK g5
a random oracle. Let FPBE = DtE[SE, F|. Let PD be a password distribution for w > 1 users. Let
y € {b,a}. Suppose A € A, is an adversary making qs, ge, 44, qn queries to its SALT, ENc, DEC, H

17

oracles, respectively, in the GPpgg pp. game in the ROM. Then we can construct adversaries
Aijnas € Ay and Aguen € AyN A,,, such that

seq

ae 3 s(qs — 1
AdVEPBE,PD,u(A) < GPPD(Qh) +2- GPPD(‘L qn, qw) + Q(gsl)
+ AdVISnEd7§.5 (Alnd$) + 2 ’ Advisﬂét’;ls +q4 (Aauth)) (7)

where g, = min(qs + qq,u) and ¢ = zt(qs) - g + min(qq, w) - qn. Adversary Ajnqg makes g ENC
queries and adversary Aautn maokes ge, qq ENC, VERIFY queries. The running times of Ainas, Aauth
are close to that of A.

Our next theorem reconsiders PAE using the authenticity bound in Theorem 6.3 rather than
that in Theorem 6.2. Again the given adversary A is not restricted to be sequential. We see that
in our goal to minimize the guessing probability parameter in PAE, the most influential term is
2 - GPpp(q) for a particular ¢ that arises from authenticity. PAE thus maintains the benefits of
key-robustness as discussed in Section 1 and Figure 2.

Theorem 6.5 Let SE be a symmetric encryption scheme and let PBKDF F:{0,1}* x {0,1}*! —
{0, 1}5EX be defined by F[H|(P,S) = H(P,S), where we model H:{0,1}* x {0,1}*! — {0, 1}5EX
as a random oracle. Let FPBE = DtE[SE,F|. Let PD be a password distribution for uw > 1 users.
Let v > 2 be the key-robustness width parameter. Let y € {b, a}. Suppose A € A, is an adversary
making qs, ge, q4, qn queries to its SALT, ENC, DEC, H oracles, respectively, in the GII;?’QBE,PD,u game
in the ROM. Then we can construct adversaries Ayobs, Ainag € Ay and Aauth, Aauth-c € AyN .Aseq
such that

QS(QS - 1)

Adv‘F)?,eBEPD’u(A) < GPpp(qn) +2- GPpp(zt(gs) - qn + (y—1) - qq) + ool

+ AdViSnlg,is (Aind$) +2- AdVlS{E)vl‘;i'y(Akmb$)

+2- AdvEED | (Aaun) + 2 - AdVEED(Aguine) - (8)

Adversaries Aauths Aauth-c make qq, g, VERIFY queries, respectively. Adversary Ajnqg makes ge ENC
queries, and Auun makes go ENC queries, but Aauth-c makes none. Their running times, and that
of Ayxrong, are close to that of A.

TIGHTNESS OF BOUNDS VIA ATTACKS. The bounds in Theorems 6.1, 6.2 and 6.3 all involve a term
GPpp(q) or GPpp(q, g, quw) for parameters ¢, ¢, that vary across the results. Our quest to under-
stand the strength of the password needed for the security of FPBE = DtE[SE, F] comes down to
the question of whether these parameters are optimal. In Section 8 , we assess this by consideration
of attacks. Briefly, we find that they are indeed essentially optimal in all our theorems, in some
cases due to the classical brute-force attack and in other cases due to partitioning-oracle attacks.

7 Proving DtE security via composition and PBKDFs

We give new definitions for password-based key-derivation functions (PBKDFs). Then we give
composition theorems that show that if F meets our definition then DtE[SE, F] retains both the
privacy and authenticity of SE. We then analyze security, under our definition, of a PBKDF modeled
as a random oracle, with particular attention to minimizing the number of password guessing queries
used to bound adversary advantage. Putting all this together will yield Theorems 6.1 and 6.2 (of
Section 6) as corollaries, avoiding ad hoc proofs of the same.

18

kd
Game Ggpp

INIT:
1 d<+s{0,1} ; P<«+sPD

RIO(4):
2 8 «s{0,1}*
3 K1« F(P[i],S) ; Ko +s{0,1}* ; FT[4,S] + Kq ; Return (S, K4)

C10(i, S):
4 If (FT[i, S] # L) then return FTi, S]
5 Ky + F(P[i],S) ; Ko +s{0,1}* ; FT[i, S] + K4 ; Return K4

Fin(d'):
6 Return (d' = d)

Figure 10: Game defining kd-security of PBKDF F relative to u-user password space PD.

PBKDF synTax. A PBKDF F:{0,1}* x {0,1}*! — {0,1}¥ takes a password P and an input S
(the notation reflecting that in our usage it will be the salt) to deterministically return an output
F(P,S). (In our usage, the derived symmetric key.) In the random oracle model, F will have oracle
access to a random function H : D — R where D, R could depend on the scheme. In Theorems 6.1,
6.2 and 7.3, D = {0,1}* x {0,1}*! and R = {0,1}°%* where kl is the key length of the underlying
scheme SE.

PBKDEF SECURITY. Security of a PBKDF F is measured, not in isolation, but relative to a u-user
password distribution PD from which passwords are drawn. The game, denoted Glléfipr is in
Figure 10, and the kd-advantage of adversary Af is Adle?po(A,:) = 2Pr[Gl,§‘7iPD,u(A|:)] —1. We
refer to RIO, CIO as the random-input oracle and chosen-input oracle respectively. Oracle RIO is
queried with just a user index i. The game picks a random input S and returns either F(P[i], S)
or a random string, depending on the challenge bit d. It also returns the input S. Oracle CIO is
queried with both a user index and an input S (the chosen input) and then returns either F(P[i], S)
or a random string, depending on d. In the ROM, the game adds a procedure H for the random
oracle.

Intuitively, kd-security is asking for prf-security in a multi-user setting in which the keys are
passwords, and passwords of different users may be related. This can be seen as a form of security
under related-key attack [9], correlated-input hash functions [23] or UCE [8]. Oracle CIO is the
usual one for a prf-like setting, while RIO can be seen as representing weak-PRF security [34, 36].

A natural question is, isn’t RIO redundant given CIO? Indeed, queries to the former can be
simulated via queries to the latter. This means RIO can be dropped without a qualitative change in
the kd notion, but quantitatively there is an important difference that is a key point of Theorem 7.3,
namely that RIO queries are “cheaper” in the sense that the number of password guesses needed to
bound adversary advantage is less for RIO queries than for CIO queries. Eventually, this translates
to better proven quantitative security guarantees for privacy than for authenticity for FPBE.

We say that adversary Af is sequential if it makes its CIO queries after its RIO queries. (That
is, once the first CIO query has been made, no further RIO queries are allowed.) It will suffice to
prove kd-security of F (as in Theorem 7.3) for sequential adversaries because that is all we need for
our applications, as simplified by Theorem 5.1.

BRT [12] give a simulation-based definition of security for PBKDFs that is related to the

19

indifferentiability framework of [31]. We are giving a somewhat simpler and more direct version of
their definition (no simulator) that can be used in both the standard and random-oracle models,
and we are also introducing the distinction between CIO and RIO queries.

COMPOSITION THEOREMS. The benefit of abstracting the security of the PBKDF via kd-security
is that we can see FPBE = DtE[SE, F| as obtained by composing a PBKDF F with an SE scheme
SE, and give modular security proofs for FPBE via composition theorems. In this vein, our first
composition theorem says that if the base scheme SE is IND$-secure and F is kd-secure relative to
password distribution PD, then FPBE = DtE[SE, F] is PINDS$-secure relative to PD. To facilitate
the application to deriving Theorem 6.1, F is allowed access to a random oracle H that is provided

in game Ggbp ,, and inherited in game GEIF?SEPD,M

Theorem 7.1 Let SE be a symmetric encryption scheme. Let F:{0,1}* x {0,1}s' — {0,1}5EXK
be a PBKDF with access to a random oracle H: D — R. Let FPBE = DtE[SE,F]. Let PD be a
password distribution for uw > 1 users. Let y € {b,a}. Suppose A € Ay is an adversary making

s, Ge, qn queries to its SALT, ENC, H oracles, respectively, in the GIF)?SE,PD,u game in the ROM.
Then we can construct adversaries Asg € A, and Ag such that

ind$ in
Advepge pp,,(4) < AdveEs (Ase) + AdvEpp . (AF) - 9)

Adversary Asg makes q. ENC queries. Adversary Ap makes qs,0,qn queries to its R1IO, CIO, H
oracles, respectively. The running times of Asg, Ap are close to that of A.

As Eq. (9) indicates, we need IND$ security of SE in the presence of g5 users. (To each user-salt
pair, the PBKDF associates a fresh key for SE, effectively creating a fresh user for SE.) We note
that the kd-security of F is needed only for RIO queries, not CIO queries. The proof follows the
natural paradigm in which we move from the real game G; to a game Go in which the outputs of
F are replaced by random keys. The assumed kd-security of F means that the adversary will not
notice this move. The assumed IND$ security of SE then allows us to move from Gg to a game G
where ciphertexts are random strings. A full proof of Theorem 7.1 is in Appendix D.

Analogously, our second composition theorem says that if the base scheme SE is AUTH-secure
and F is kd-secure relative to password distribution PD, then FPBE = DtE[SE, F| is PAUTH-secure
relative to PD. A novel element relative to Theorem 7.1 is that we now need kd-security in the
presence of CIO queries. It suffices, below, to consider sequential A, because of Theorem 5.1.

Theorem 7.2 Let SE be a symmetric encryption scheme. Let F:{0,1}*x{0,1}* — {0,1}55K pe q
PBKDF with access to a random oracle H: D — R. Let FPBE = DtE[SE, F|. Let PD be a password

distribution for u > 1 users. Let y € {b, a}. Suppose A € Ay,NA,,, is a sequential adversary making

s, Ge, Gv, Gn queries to its SALT, ENC, VERIFY, H oracles, respectively, in the GE;%EPD’H game in

the ROM. Then we can construct adversaries Asg € Ay N A,,, and Af such that

seq

seq
auth au
AdVIIzPBtE,PD,u(A) < AdVSEt,gerq,, (Ase) + Advllé,dPD,u(AF) . (10)

Adversary Asg makes qe,q, queries to its ENC, VERIFY oracles, respectively. Adversary Af is
sequential, making qs, qu, qn queries to its R1IO, CI1O, H oracles, respectively. The running times of
Asg, AF are close to that of A.

As Eq. (10) indicates, we need AUTH security of SE in the presence of g5+ g, users, the extra ¢,
arising from VERIFY queries with salts that were not results of SALT queries. In its VERIFY queries,
A can choose the salt, which causes Ar to need to make CIO queries in order to respond to A’s
queries. Note that the constructed Af is itself sequential, making its RIO queries before its CIO

20

queries, which allows us to use this in conjunction with Theorem 7.3. The proof of Theorem 7.2
follows the same paradigm as above, moving from the real game Gg to a game Gp in which the
outputs of F are replaced by random keys. The assumed kd-security of F means that the adversary
will not notice this move, and the assumed AUTH security of SE says the adversary is unlikely to
win Gy1. A full proof of Theorem 7.2 is in Appendix E.

KD-secUrITY OoF H-PBKDF. H-PBKDF is the PBKDF F: {0,1}* x {0,1}*! — {0,1}" defined
by F[H](P,S) = H(P,S) where H:{0,1}* x {0,1}*! — {0,1}¥ is a random oracle. We now want
to study its kd-security. Qualitatively, Theorem 7.3 below says that F is kd-secure as long as the
password distribution PD has high min-entropy and the input length sl is large enough. We discuss
the quantitative interpretation after the theorem statement. Note that Ar below is assumed to be
sequential, meaning it makes its CIO queries after its RIO queries. Recall that zt(q,) is 0 if ¢, = 0
and is 1 otherwise. The proof of Theorem 7.3 is in Appendix F.

Theorem 7.3 Let PBKDF F:{0,1}* x {0,1}*! — {0,1}" be defined by F[H](P,S) = H(P,S),
where we model H:{0,1}* x {0,1}* — {0,1}¥ as a random oracle. Let PD be a password distri-
bution for u > 1 users. Suppose Ap € A, is a sequential adversary making q,qc, qn queries to its
RIO, CIO, H oracles, respectively, in the GIE?PD,u game in the ROM. Then

—1
AdviSp , (AF) < GPpp (¢, ah, quw) + qr(q;Sl) ; (11)

where g, = min(gr + e, u) and q¢ = zt(gr) - gn + min(ge, u) - gp-

We note that the bound of Eq. (11) is not true if Af is not sequential. Indeed, consider the non-
sequential Af that queries L; < CIO(1,5;) for i =1,...,¢. and distinct Sy,...,S,., then queries
(8%, L5) + RIO(1) for j = 1,.. ., gr, and returns 1 iff there is some i, j such that (S;, L;) = (S}, LY).
Then AdvlﬁflpD’u(AF) > qeqr - 2750+ (1 — 275Y), which could exceed the bound of Eq. (11).

In applications, the input .S will be the salt, which can be chosen to have length 128-256 bits,
making the second term in Eq. (11) small, so the focus is the first term, namely GPpp(q, g, quw)-
The zt(q,)-qn term in g covers the RIO queries while the min(g., u)-qp term covers the CIO queries,
indicating that the latter are more costly than the former. The difference impacts the bounds for
FPBE privacy (where ¢. = 0) versus authenticity (where ¢. could be positive). This differentiation
is indeed why we have modeled RIO and CIO separately.

In the proof, the guessing probability is used to bound the probability that a hash query includes
a target password P[i]. The difficulty is that the guessing adversary that we build does not know 4.
A naive analysis accordingly expends q; TEST queries per user to cover the RIO queries, which our
proof reduces to ¢ overall. This reduction exploits the randomness of inputs in the RIO queries,
and does not work for CIO queries.

PROOFS OF THEOREMS 6.1 AND 6.2. We can now easily obtain the proofs of Theorems 6.1 and 6.2
(of Section 6) by combining the composition theorems with Theorem 7.3. In more detail, starting
with Theorem 6.1, we first apply Theorem 7.1 to get adversaries Agg, Ar such that

AdVE?SE,PD,u(A) < AdV}snéi,i (Ase) + AdvEbp , (AF) ,

where Ar makes ¢s,0, qp queries to its RIO, CIO, H oracles, respectively. Now applying Theo-
rem 7.3 with ¢, = ¢s, g = 0 and g5 unchanged, we get

QS(QS - 1)

Advllg(,iPD,u(AF) < GPPD(Q) + 9sl)

21

where ¢ = zt(qs) - g + min(0,u) - g, < qp, which yields Theorem 6.1. Similarly, for Theorem 6.2,
we first apply Theorem 7.2 to get adversaries Agsg, Af such that

auth au
AdvERge pp , (A) < AdVEED L, (Ase) + AdVip , (AF) |

where Ar makes g¢s, ¢y, gn queries to its RIO, CIO, H oracles, respectively. Now applying Theo-
rem 7.3 with ¢. = ¢s, ¢. = ¢, and g unchanged, we get

qs (QS - 1)
9sl ’
where ¢, = min(gs + ¢, u) and ¢ = zt(gs) - gn, + min(qy, u) - g, which yields Theorem 6.2.

AdVIE?pDM(AF) < GPPD(Q? qh, Q’w) +

8 Attacks

We describe attacks to consider whether the terms in our advantage bounds are tight. In particular,
we consider the guessing probability terms GPpp(q), and whether the parameter ¢ in the bound
is optimal.

TIGHTNESS OF THEOREM 6.1. We begin with privacy (PINDS), where the tightness of the GPpp(qp,)
term in Theorem 6.1 is implied by the following proposition. Given ¢, select ¢ large enough so
that the subtracted term in Eq. (12) is negligible, and select Ape, making g, TEST queries, so that
AdvE%u(Apg) = GPpp(qn). Then Proposition 8.1 implies there is an adversary A making ¢, H

queries and achieving Advﬁglgﬁ pD.u(A) close to GPpp(gn). The proof uses the brute-force attack

and for completeness is included in Appendix G.

Proposition 8.1 Let SE be a symmetric encryption scheme and let PBKDF F:{0,1}* x {0,1}%
— {0, 1}3EX be defined by F[H|(P,S) = H(P,S), where we model H : {0,1}* x {0,1}*! — {0, 1}3EX
as a random oracle. Let FPBE = DtE[SE,F|. Let PD be a password distribution for uw > 1 users.
Let y € {b,a}. Let £ > 1. Suppose Apg is a password-guessing adversary making q, TEST queries
n game GEgD,u. Then we can construct an adversary A € A, such that

dhn

ind$
AdvEpge pp , (4) > Advip |, (Apg) — 9SE.Cl(0)

(12)

Adversary A makes qn, H queries and u SALT, ENC queries. Its running time is about that of Apg.

TIGHTNESS OF THEOREM 6.2. Next, we consider authenticity (PAUTH), as expressed in Theo-
rem 6.2. The following proposition implies tightness when ¢; = 0, meaning that there are no
SALT, ENC queries. We additionally assume access to a key-robustness adversary, which finds col-
lisions of arbitrary size with advantage 1; we do so because Theorem 6.2 makes no requirement of
key-robustness. This is in fact the setting of the partitioning-oracle attack, which is detailed in the
proof of Proposition 8.2.

The proposition implies tightness as follows: Given ¢,, < u and gy, select Ape making q,,-q, TEST
queries, covering g5, password guesses over q,, users, so that Advpy , (Apg) = GPpp(qw Ghs Ghs Guw)-
Then Proposition 8.2 implies there is an adversary A, making gy, H7queries and q,, VERIFY queries,
such that A, achieves advantage AdvgglgE7PD7u(Apo) close to GPpp(qw - qh, qh, Gw). This matches
the term in Theorem 6.2 when g5 = 0; in particular GPpp(min(qy,u) - g, gn, min(q,, u)), where

v = quw < U.

Proposition 8.2 Let SE be a symmetric encryption scheme and let PBKDF F:{0,1}* x {0, 1}
— {0, 1}°EX be defined by F[H](P, S) = H(P, S), where we model H : {0,1}* x {0,1}*' — {0,1}5EK

22

cmt-£
Game Ggg

FIN((K1, Nl, A1, Ml), ey (K-\“ N-y, AW? My)):
1 Require: WiC, (K, N;, A;, M;) are all distinct
2 Return (SE.Enc(K1, N1, A1, My) = --- = SE.Enc(K, Ny, Ay, M,))

Game G,E’Erélgf;

FIN((P17 Sl, Nl, ,A17 Ml), ey (P»y, S’Y7 N—WA»\/, M»y))I

1 Require: PWiCy(P;, S;, N;, A;, M;) are all distinct

2 Return (FPBE.Enc(Pi1, S1, N1, A1, My) = --- = FPBE.Enc(Py, Sy, Ny, Ay, M,))

Figure 11: Games defining key-committing security, for symmetric encryption scheme SE (above)
and FPBE (below).

Game G

FIN((Py, St1), (P2, S2)):
1 Return ((P1,S1) # (Pa, S2) AF(P1,S1) = F(P2, S2))

Figure 12: Game defining collision-resistance for PBKDF F.

as a random oracle. Let FPBE = DtE[SE,F]. Let PD be a password distribution for u > 1 users.
Let y € {b,a}. Suppose A,g is an adversary in the GggDu game making (q, qn, qw) TEST queries,
and we are also given an adversary Ayong which violates v-way robustness with advantage 1 for
any . Then we can construct an adversary Apo € Ay achieving advantage

th
AdVE?’LIIBE,PD,u(ApO) 2 Advg%,u(Apg) : (13)
Adversary Ay, makes qn, H queries and q,, < w VERIFY queries.

The proof of Proposition 8.2 is given in Appendix G, along with a formalization of the partitioning-
oracle attack.

9 Key-robustness of DtE

We have seen that DtE preserves privacy and authenticity of the base symmetric encryption scheme
SE. Now we show that it does the same for robustness, or committing security. There are various
definitions of robustness or committing security for which we could show this, but we chose to use
the strongest, from [7]. In this setting, the ciphertext can be a commitment to a key, or to more;
for example it can be a commitment to the key, message, and nonce. BH [7] define CMT-/ security
of the base scheme SE for £ = 1, 3,4. Below we extend these to define PCMT-/ security of an FPBE
scheme. Then in Proposition 9.1 we show that if the base scheme SE is CMT-¢ secure and F is
collision-resistant then the FPBE scheme FPBE = DtE[SE, F] is PCMT-/-secure.

The encryption-based definitions of key-committing AE are in Figure 11. The SE notion is
the same as that of [7], while we have introduced the natural extension to FPBE. We focus on
encryption-based definitions, but note that the decryption-based notions could be used with an
appropriate definition of tidiness for our syntax.

23

The function WiCy, as in [7], represents What is Committed. This categorizes cases where
the ciphertext could be a commitment to only the key (¢ = 1), or a commitment to all of the
key, nonce, associated data and message (¢ = 4). For SE, we consider ¢ € {1,4}. For FPBE, we
consider ¢ = 1, indicating that only the key P is committed; ¢ = 2, indicating that the key P
and salt S are committed; and £ = 5, where all five FPBE encryption inputs are committed. The

cmt-/ cmt-/

key-committing advantage of an adversary A is defined by Advgg? (A) = Pr[GSEﬁ (A)] for SE
and by Advggggfy(A) = Pr[GEggtE_fy(A)] for FPBE.

We additionally define PBKDF collision-resistance in Figure 12. The cr advantage of an adver-
sary A is given by Adv{(A) = Pr[G§(A)]. This is a different requirement than kd (prf) security
as discussed in Section 7.

In the following proposition, we show that the DtE transform preserves key-committing security
of the base scheme, as long as F is collision-resistant. The proof of Proposition 9.1 is in Appendix H.

Proposition 9.1 Let SE be a symmetric encryption scheme, let F:{0,1}* x {0,1}*' — {0, 1}5EK
be a PBKDF, and let FPBE = DtE[SE,F|. Let v > 2. Given adversary A in the GEE@E{Y game,
we can construct Asg, Ap such that

AdvPRge’ (A) < AdvEES” (Ase) + AdvE (AF) (14)
where when ¢ € {1,2} then ¢/ =1, and when ¢ =5 then ¢! = 4.

Acknowledgments

We thank the anonymous reviewers for their feedback and suggestions.

References

[1] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 480-497. Springer, Heidelberg, Feb. 2010. 4, 13

[2] A. Albertini, T. Duong, S. Gueron, S. Kolbl, A. Luykx, and S. Schmieg. How to abuse and
fix authenticated encryption without key commitment. In 31st USENIX Security Symposium,
2022. 4,7, 13

[3] J. Alwen, B. Chen, C. Kamath, V. Kolmogorov, K. Pietrzak, and S. Tessaro. On the complexity
of scrypt and proofs of space in the parallel random oracle model. In M. Fischlin and J.-S.
Coron, editors, FUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 358-387. Springer,
Heidelberg, May 2016. 4, 7, 16

[4] J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro. Scrypt is maximally memory-
hard. In J.-S. Coron and J. B. Nielsen, editors, EFUROCRYPT 2017, Part III, volume 10212
of LNCS, pages 33-62. Springer, Heidelberg, Apr. / May 2017. 4, 7, 16

[5] M. Armour and C. Cid. Partition oracles from weak key forgeries. In M. Conti, M. Stevens,
and S. Krenn, editors, CANS 2021. LNCS, Springer, December 2021. 8

[6] M. Backendal, M. Haller, and K. G. Paterson. MEGA: Malleable encryption goes awry. In
T. Ristenpart and P. Traynor, editors, IEEE S&P 2023. IEEE Computer Society Press, May
2023. 4

24

[7]

M. Bellare and V. T. Hoang. Efficient schemes for committing authenticated encryption. In
O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 845-875. Springer, Heidelberg, May / June 2022. 4, 7, 13, 17, 23, 24

M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. In
R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
398-415. Springer, Heidelberg, Aug. 2013. 19

M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 491-506. Springer, Heidelberg, May 2003. 19

M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, ASTACRYPT 2000,
volume 1976 of LNCS, pages 531-545. Springer, Heidelberg, Dec. 2000. 4

M. Bellare, R. Ng, and B. Tackmann. Nonces are noticed: AEAD revisited. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 235-265.
Springer, Heidelberg, Aug. 2019. 3, 4, 7, 10, 14, 15

M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its application to
password-based cryptography. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 312-329. Springer, Heidelberg, Aug. 2012. 2,4, 7,9, 19

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM
CCS 93, pages 62-73. ACM Press, Nov. 1993. 4, 16

M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, FUROCRYPT 2006, volume 4004 of LNCS,
pages 409-426. Springer, Heidelberg, May / June 2006. 8, 29, 31, 34, 43, 44

A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson. Argon2 memory-hard function for
password hashing and proof-of-work applications. IETF Network Working Group, RFC 9106,
September 2021. 4, 7, 16

P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user security, faster key
derivation, and better bounds. In J. B. Nielsen and V. Rijmen, editors, FUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 468-499. Springer, Heidelberg, Apr. / May 2018. 3, 10,
14

Boxcryptor. Technical overview. https: //www.boxcryptor.com/en/technical-overview/, visited
on October 17, 2022. 3

G. Demay, P. Gazi, U. Maurer, and B. Tackmann. Per-session security: Password-based
cryptography revisited. J. Comput. Secur., 27(1):75-111, 2019. 4, 7

Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage. Fast message franking: From invisible

salamanders to encryptment. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 155-186. Springer, Heidelberg, Aug. 2018. 7

25

[20]

[33]

[34]

M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. National Institute of Standards and Technology SP 800-38D, Nov. 2007.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP /nistspecialpublication800-38d.pdf. 7

A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia PRF service.
In J. Jung and T. Holz, editors, USENIX Security 2015, pages 547-562. USENIX Association,
Aug. 2015. 7

P. Farshim, C. Orlandi, and R. Rogie. Security of symmetric primitives under incorrect usage
of keys. JACR Trans. Symm. Cryptol., 2017(1):449-473, 2017. 4, 13

V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In Y. Ishai, editor,
TCC 2011, volume 6597 of LNCS, pages 182-200. Springer, Heidelberg, Mar. 2011. 19

P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryp-
tion. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 66—-97. Springer, Heidelberg, Aug. 2017. 4, 7, 13

T. Jager, M. Stam, R. Stanley-Oakes, and B. Warinschi. Multi-key authenticated encryption
with corruptions: Reductions are lossy. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 409—441. Springer, Heidelberg, Nov. 2017. 6, 11

B. Kaliski. PKCS #b5: Password-Based Cryptography Specification Version 2.0. RFC 2898,
Sep. 2000. https://datatracker.ietf.org/doc/html/rfc2898. 2, 4, 16

R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Maffei, and D. Schroder. Simple
password-hardened encryption services. In W. Enck and A. P. Felt, editors, USENIX Security
2018, pages 1405-1421. USENIX Association, Aug. 2018. 7

R. W. F. Lai, C. Egger, D. Schroder, and S. S. M. Chow. Phoenix: Rebirth of a cryptographic
password-hardening service. In E. Kirda and T. Ristenpart, editors, USENIX Security 2017,
pages 899-916. USENIX Association, Aug. 2017. 7

J. Len, P. Grubbs, and T. Ristenpart. Partitioning oracle attacks. In M. Bailey and R. Green-
stadt, editors, 30th USENIX Security Symposium. USENIX Association, 2021. 2, 4, 6, 7, 8§,
13, 47

J. Len, P. Grubbs, and T. Ristenpart. Authenticated encryption with key identification. In
S. Agrawal and D. Lin, editors, ASTACRYPT 2022. LNCS, Springer, December 2022. 8

U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In M. Naor, editor, TCC 2004,
volume 2951 of LNCS, pages 21-39. Springer, Heidelberg, Feb. 2004. 20

MEGA. Security and why it matters. https://mega.io/security, visited on October 17, 2022.
3

MEGAprivacy. Eight years of mega — tweet. https://twitter.com/MEGAprivacy/status/
1352564229044277248, visited on October 17, 2022. 3

M. Naor and O. Reingold. Synthesizers and their application to the parallel construction of
pseudo-random functions. Journal of Computer and System Sciences, 58(2):336-375, 1999. 19

26

[35]

[36]

[38]

[39]

[40]

A

C. Percival. Stronger key derivation via sequential memory-hard functions. In BSDCan, 2009.
4,7, 16

K. Pietrzak and J. Sjodin. Weak pseudorandom functions in minicrypt. In L. Aceto,
I. Damgard, L. A. Goldberg, M. M. Halldérsson, A. Ingélfsdottir, and I. Walukiewicz, edi-
tors, ICALP 2008, Part 1I, volume 5126 of LNCS, pages 423-436. Springer, Heidelberg, July
2008. 19

J. Pijnenburg and B. Poettering. Encrypt-to-self: Securely outsourcing storage. In L. Chen,
N. Li, K. Liang, and S. A. Schneider, editors, ESORICS 2020, Part I, volume 12308 of LNCS,
pages 635-654. Springer, Heidelberg, Sept. 2020. 8

N. Provos and D. Mazieres. A future-adaptable password scheme. In USENIX Annual Technical
Conference, FREENIX Track, volume 1999, pages 81-91, 1999. 4, 7, 16

P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS
2002, pages 98-107. ACM Press, Nov. 2002. 2, 3, 4, 7, 10

P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In
S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373-390. Springer,
Heidelberg, May / June 2006. 7

Shadowsocks. https://github.com/shadowsocks, visited on October 18, 2022. 8

J. Woodage, R. Chatterjee, Y. Dodis, A. Juels, and T. Ristenpart. A new distribution-sensitive
secure sketch and popularity-proportional hashing. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 682—-710. Springer, Heidelberg, Aug.
2017. 4, 9

Proofs of authenticity lemmas

Proof of Lemma 4.1: We design adversary A,utn as follows. It chooses a random user index J
between 1 and u; the index J will refer to the one user in A,.n’s own game. It chooses each of
K; <5 {0,1}5EK for 1 <i < w, i # J. It then runs Auyg-c, responding to ENc(i, N, M, A) queries
by doing:

If i = J then C « GEE1.ENC(1, N, M, A) else C « SE.Enc(K;, N, M, A)
MTJi,SE.NNI(N), C, A] <~ M ; Return C

When A,utn-c makes a VERIFY (i, I, C, A) query, it responds by doing:

If (MTJi,I,C, A] # 1) then return L
If : = J then return G%‘E%‘.\/ERIFY(L I,C A)
Else M < SE.Dec(K;,I,C,A) ; return (M # 1)

When A,uth-c makes an EXPOSE(7) query, it does:

If i = J then return L else return K;

27

Game G

INIT:
1 Fori=1,...,udo
2 K;++s{0,1}%X

VERIFY (i, I, C, A):

3 If win then return L

4 If (4 € EU) then return L

5 b+ (SE.Dec(K;,I,C,A) # 1)
6 If b then win < true

7 Return b

EXPOSE(7):

8 If win then return L
9 EU+ EUU {3}

10 Return K;

Fin:

11 Return win

Games , G1

INTT:
12 Fori=1,...,udo
13 K@o, Ki,l <3 {07 1}SE‘kI

VERIFY (i, I,C, A):

14 If win then return L

15 If (i € EU) then return L

16 bo + (SE.Dec(K;,0,1,C, A) # 1)

17 by < (SE.Dec(K;,1,1,C, A) # 1)

18 If by then bad < true ;
19 If by then win + true

20 Return bg

EXPOSE(7):

21 If win then return L
22 EU «+ EUU {:¢}

23 Return K;

FIN:

24 Return win

Figure 13: Games for the proof of Lemma 4.2, where Gq includes the boxed code and G does not.

Note that if Aauen-c makes ge, ¢, queries per user (in particular for user J) then A,u, makes ge, ¢y
total queries. Moreover, Aaun inherits the order of queries and the uniqueness of nonces from
Aauth-c, meaning that it preserves the adversary class and sequential status.

What is required for A,utn to win in its one-user game? Auyin-c must win during a VERIFY(J, -, -, -)
query, which necessarily reqiuires that EXPOSE(J) was never queried prior. Since J is chosen
uniformly at random (independent of the execution of A,yuth-c) this means

1 -
Advgg}ll(Aauth> > a . Advglét,g C(Aauth—c) .

This is the desired bound in Lemma 4.1. |

Proof of Lemma 4.2: We can assume the adversary in the y = b case never sets un to false
in game Gg‘éfg'c, and thus drop writing un variables of that game. Having done this, game G of
Figure 13 further silences the VERIFY, EXPOSE oracles (meaning, has them return L) if win is set.

Games G%EEB'C, G are thus the same until win is set, but FIN returns win, so we have
AdV%EEB_C(Aauth-C) = Pr[GgEEE_C(Aauth-C)] = Pr[G(Aauth-c)] -

Now consider games Gg, G1 in Figure 13, where the former includes the boxed code and the latter
does not. At line 13, two keys, K, K; 1, are chosen per user 4, with the oracle VERIFY generating
results under both (lines 16,17). The setting of win, and what VERIFY returns, is done as per
Ko, but EXPOSE(i) returns Kj, the intent being that EXPOSE is now easily simulated by an
authenticity adversary. Line 18 sets bad if decryption under K;; was successful, the boxed code

28

reverting K; 1 to K;o in this case. We claim that
Pr[G(Aauth-c)] = Pr[Go(Aauth-c)] - (15)

Let us explain Eq. (15). The silencing ensures the games are the same after win is set, so assume
it is not yet set. Consider the first time bad is set. We have b; = true and two cases for by: (1)
bp = true, or (2) by = false. If (2) then the boxed code ensures consistency of the exposed key with
the VERIFY response. If (1) then win is set, so the silencing ensures consistency.

Games G, G; are identical-until-bad, so by the Fundamental Lemma of Game Playing [14],
Pr[Go(Aauth-c)] = Pr[G1(Aauth-c)] + Pr[Go(Aautn-c)] — Pr[G1(Aauth-c)]
< Pr[Gi(Aauth-c)] + Pr[G1(Aauth-c) sets bad] .
We now observe that
Pr[G1(Aauth-c) sets bad] = Pr[G1(Aauth-c)] -

This is by symmetry. We can think of the roles of K;o and K;; as being swapped. Putting the
above together we now have

Advgléfg_c(Aauth—c) <2. Pr[Gl(Aauth—c)] .
To conclude, we build A, so that
Pr[Gi(Aauth-c)] < Adv%EfE(Aauth) . (16)

Adversary Auun picks K11, .., Ky 1 +5{0,1}°E and initializes win, EU to false, (), respectively. It
then runs Aauin-c, replying to its oracle queries as follows. On query VERIFY (i, I, C, A), it responds
via:

If win then return L
If (i € EU) then return L
by + Gg‘éfg.VERIFY(i, I,C,A) ; Return by

It responds to an EXPOSE(i) query as per lines 21-23 of Gi. As long as Aauth-c makes a winning
VERIFY query so will A,u¢n, proving Eq. (16) and completing the proof of Lemma 4.2. 1

B Proof of Theorem 5.1

Proof of Theorem 5.1: For this proof we refer to the games in Figure 14. We assume that
adversaries meet required conditions and omit writing those checks.

We first claim that Pr[GEgeBE,PD,u(A)] = Pr[Go(A)]. This follows simply by observing that Gg
consists of all the same steps as GE;GBE’PDM, with the omission of conditions we have assumed to be
met. The games of Figure 14 have also added a procedure H for the random oracle. Note that H
is accessible to the FPBE scheme, and all adversaries in the statement of Theorem 5.1 have query
access to the same RO H. It will suffice for adversaries to forward queries to H rather than to
implement its functionality.

Games Go, G; are identical-until-bad so the Fundamental Lemma of Game Playing [14] implies that
Pr[Go(A)] — Pr[G1(A)] < Pr[G1(A) sets bad] .

29

Games , Gy

INIT:
1 d<+s{0,1} ; P«+sPD

ENcC(i, N, M, A):
2 Cy « FPBE.Enc(P[i], Si, N, M, A) ; Co +s {0, 1}FPBEC(IM]
3 MT[i, S;, FPBE.NI(N), Cy, A] < M ; Return Cy

DEec(3, S, I,C, A):

4 If (MT[s, S, I,C, A] # L) then return MTJ[¢, S, I, C, A]
5 If (d = 0) then return L

6 M« 1 ; M« FPBE.Dec(Pli],S,1,C, A)

7 If (M’ # 1) then bad « true ; | M + M’

8 Return M

SALT(4):
9 s(i) « s(i) +1; S; <s FPBE.SS ; Return S;

H(X):

10 Return H(X)
FIN(d'):

11 Return (d' = d)

Figure 14: Games for the proof of Theorem 5.1.

We next design Apindg, Apauth such that
ind$
Pr[G1(A)] < Pr[Gepge pp .y (Apinds)] (17)

Pr[Gy(A) sets bad] < Pr[GPRSE pp ., (Apautn)] - (18)

Adversary Apingg operates as follows. It runs A and responds to ENC and SALT queries by for-
warding them to its own oracles, and returning the responses to A. It also forwards H queries. On
a DEC query, Apinqg simply returns L to A. When A guesses a bit d’, Apqg guesses that same
challenge bit. This is precisely the setting of G1(A), and the challenge bits are consistent, justifying
Eq. (17).

Next we turn to Apauth- It chooses a bit d then runs A. In either case, it responds to H queries by
forwarding them to H itself. If d = 1, it responds to ENC queries by forwarding them to its own
oracle, then returning the response to A. If d = 0, encryption responses are a random ciphertext (of
the appropriate length). Salt queries are all forwarded to its own oracle, with the response forwarded
to A. When A makes a query DEC(7,S,1,C, A), Apauth makes a query VERIFY(4,5,1,C,A) and
regardless of the response, returns L to A. Recall that in the SAUTH game, Apauen wins if it
makes a verification query VERIFY(i, S, I,C, A) such that FPBE.Dec(P[i], S,I,C, A) # L. This is
precisely the bad condition on lines 6,7. Because Ap,un wins as long as this condition is reached,
Eq. (18) holds.

Since Apauth only forwards queries of A, it preserves the adversary class (basic or advanced) of A, as
does Apingg- Even if A is not sequential, Apauen can be made sequential by making all of its VERIFY
queries at the end. Because all of the DEC responses given to A are L, it makes no difference if

30

Apauth Waits until the end to make its VERIFY queries. This justifies the claim that Apauen is always
sequential, which we use to motivate various simplifying assumptions about sequential adversaries
(throughout other proofs in this paper).

Combining the above results and advantage definitions, we have
Advipge pp,(4) = 2Pr[Gpge ppu (4)] — 1
< 2Pr[Go(4)] -1
< 2 (Pr[G1(A)] + Pr[G1(A) sets bad]) — 1

ind$ h
<2 (Pr[GEIF?BE,PD,u(Apin%)] + PT[GE?SE,PD,u(Apauth)]) -1

pind$ pauth
< Advipge pp o (Apinas) + 2 - AdvEpge pp , (Apauth)

This completes the proof of Eq. (3). 1

C Proof of Theorem 6.3

The proof of Theorem 6.3 involves technical challenges. As discussed in Section 1, it is not obvious
why key-robustness of SE helps to improve the bound. The proof makes a connection to AUTH-C
and exploits our Lemma 4.2.

Proof of Theorem 6.3: Recall that in the ROM, game GETJSE pD . adds a procedure H for the
random oracle. Below we will often, without explicit mention, e;(pfoit the assumption, from the
definition of a password distribution, that P[1],...,PJu] are distinct. Similarly, we will exploit
the assumption that A is sequential, meaning it makes all its ENC, SALT queries before any of its
VERIFY queries. The algorithms Findl, Find2, used in some games and constructed adversaries,
were defined in Section 3.

Consider the games of Figure 15, where G includes the boxed code and Gy does not. We have let
s, be the number of SALT(7) queries, so that ¢s = gs1 + -+ + ¢su. Let S;j denote the salt that
SALT(i) would pick the j-th time it is called. The games start by picking these values up front in
INIT, together with keys K ; that ENC would use. However, while Gq picks the S; ; at random, Gy
ensures that they are distinct. Down the line, this will allow password-guessing adversary A,g to
use the input to uniquely identify the user in an ENC query and thereby minimize the number of

. pauth
TEST queries it makes. For now, we just note that game Gg is equivalent to game GFPBEPD’U, SO

AdVEREE pp.u(A) = PrGERSE pp , (A)] = Pr[Go(4)] .
Trivially we have
Pr[Go(A)] = Pr[G1(A)] + (Pr[Go(A)] — Pr[G1(A4)]) . (19)

We bound the terms above in turn, starting with the second. Games Gg, G are identical-until-bad,
so by the Fundamental Lemma of Game Playing [14] we have

Pr[Go(A)] — Pr[Gi(A)] < Pr[Go(A) sets bad] .
Flag bad is set when two of the ¢, salts collide, so

QS(QS - 1)

Pr[Go(A) sets bad] < OES

31

Game Gg /

INIT:
1 P<+sPD

2 Fori=1,...,uand j=1,...,¢s; do

3 S +s{0,1}"; K, ; < H(P[i], S ;)

4 If (Si; € OS) then bad « true ; |S;,; +{0,1}*\ OS]
5 0SS+ 0OSuU{S;,}

Enc(i, N, M, A):
6 C « SE.Enc(K; s(;), N, M, A) ; MT[i, S; s¢:y, SENNI(N), C, A] <~ M ; Return C

VERIFY (3,5, I,C, A):

7 If (MTs,S,1,C, A] # 1) then return L

8 If (KT[i,S] = L) then KT[s, S] + H(P[i], S)
o M + SE.Dec(KT[i, S], I,C, A)

10 If (M # 1) then win « true

11 Return (M # 1)

SALT(%):
12 5(i) <= s(i) + 1 ; Return S; ;)

H(P,S):
13 If (HT[P, S] # L) then return HT[P, S]
14 HT[P, S] +5{0,1}* ; Return HT[P, S|

FIN:
15 Return win

Figure 15: Games Gg, G1 for the proof of Theorem 6.3, where G; includes the boxed code and Gg
does not.

IniT: / Games Go, Gz, Gy

1 P<+sPD

2 Fori=1,...,uand j=1,...,¢s; do

3 SZ‘,]' 8 {0, 1}51 \ 0S ; Kl',j 8 {0, 1}k| 3 OS «+— OSu {Siyj} ; FT[i, Si,j] < Kl',j
Enc(i, N, M, A): J Games Go, Gz, Gy

4 C < SE.Enc(K; s(s), N, M, A) ; MT[i, S; ¢y, SENNI(N), C, A] <~ M ; Return C

Sarr(i): J/ Games Go, Gs, Gy
5 s(i) < s(i) + 1 ; Return S; ;)

Fin: / Games Ga, G3

6 Return win

Figure 16: Some oracles for subsequent games in the proof of Theorem 6.3.

Returning to Eq. (19), we now bound the first term. Towards this, Figures 16 and 17 together
define games Gg, G3, where the former includes the boxed code and the latter does not. We claim
that Go is equivalent to G1, meaning

Pr[Gy(4)] = Pr[Ga(A)] - (20)

32

Games , Gs

VERIFY (3, 5,1,C, A):
1 If (MT[i, S,I,C, A] # L) then return L

2 If (FT[i, S] # L) then

3 M + SE.Dec(FT[:,S],I,C, A)

4 If (M # 1) then bad <« true ; ’win < true ; Return true‘
5 Return false
6
7
8
9

R « { P € HPg : SE.Dec(HTI[P, S],1,C, A) # L }
If (1 <|R| <) then
If (P[i] € R) then bad « true ; ‘win + true ; Return true‘

If (|R| >) then
10 bad < true; ‘If (P[i] € R) then win < true ; Return true‘
11 If (KT[i, S] = L) then KT[i, S] +s {0,1}"
12 M < SE.Dec(KT[i, S],I,C, A) ; b+ false
13 If (P[i] € HPs and M # 1) then bad < true ; ‘Win < true ; b < true
14 BT[i,S,1,C, Al +b; CCs <~ CCs U{(¢,I,C, A)}
15 Return b

H(P,S):

16 If (HT[P,S] # L) then return HT[P, S]

17 HPs + HPs U {P} ; HT[P, S] -5 {0,1}* ; i + Find1(P, P)

18 TIf (i # 0) then j < Find1(S, (Si,1,...,Siq,.,:))

19 If (i # 0 and j # 0) then bad « true ; [HT[P, S] < K, ; Return HT[P, S]]
20 For all (¢,1,C, A) € CCg do

21 b+ (SE.Dec(HT[P, S],I,C, A) # 1)

20 If (b# BTJ[i, S, I,C, A]) then

23 If (P = P[i]) then bad < true ; [HT[P, §] « KT[i,]|

24 Return HT[P, S]

Figure 17: VERIFY and H oracles for games Go, Ga for the proof of Theorem 6.3, where G includes
the boxed code and Gs does not. The other oracles are in Figure 16.

We now explain Gg to justify Eq. (20). As in Gy, oracle INIT picks distinct salts S; ;, but optimisti-
cally picks the Kj;; to be random. In Gj it stays that way. However, Go, via the inclusion of the
boxed code at line 19 of Figure 17, ensures that K; ; = H(P[i], S; ;). So responses to ENC queries
in Go adhere to those in G;. We now turn to arguing that the same is true for VERIFY queries.

Lines 2-5 handle the case that the S in the query is one of the S; j, so now suppose not. Set HPg
(defined through line 17) holds all candidate passwords P for which H(P, S) has been queried and
HT[P, 5] is thus defined. In a VERIFY(i, S, I,C, A) query, if P[i] € HPg, then the key HT[P][i], S]
for the base scheme SE is known to A, and we cannot exploit the authenticity of SE under this
key. An obvious step is to now set bad and bound the probability of this via the advantage of
a password-guessing adversary Ap, which, via its oracle, tests all P € HPg for user i. However,
|HPg| could be as large as g, leading to g, oracle queries for each VERIFY query, for a total of
qrnqv, which would bring us back to the result of Theorem 6.2. The intent of the present result is
exactly to reduce this number of test queries by exploiting key-robustness. Towards this, say that
P € HPg is a likely suspect if SE.Dec(HT[P, S],I,C,A) # L. (Recall i,S,1,C, A is the query to

33

VERIFY.) At line 6, we have let R C HPg be the set of all likely suspects. We then consider the
following cases.

The first case (lines 7,8) is that 1 < |R| < . We set bad if P[i] equals one of the likely suspects, the
boxed code ensuring the right actions and response. To bound the probability that bad is set here,
the password-guessing adversary will need at most v — 1 queries per VERIFY query, as opposed to
|HP g|-many.

The second case (lines 9,10) is that |R| > 7. Testing P[i] € R would now need more than the v —1
password-guessing queries than we want to expend. However, we expect this case to not happen
due to the key-robustness of SE. (This is where we will use this assumption.) Accordingly, we set
bad if it happens, the boxed code again ensuring correctness.

If lines 8,10 fail to return true it must be that P[i] ¢ R, and we reach line 11. There are two possibili-
ties: either (1) P[i] € HPg\ R, meaning HT[P[i], S] is defined but SE.Dec(HT[P]:], S],I,C, A) = L,
or (2) P[i] € HPg. The difficulty is that we have no way to efficiently — meaning, without having
our password-guessing adversary make more queries than we want — tell which of the two cases
holds. Our strategy is to consider M < SE.Dec(KTJi, S],I,C, A) (line 12), where key KTz, 5],
unless it is already defined, is freshly chosen at line 11. If (1) happens, line 15 will correctly return
false. If (2) happens then HT[P[i], S] is undefined and the intent is that it takes value KTJi, S|, the
setting of win and what is returned done accordingly. Expending password guesses for line 13 will
be avoided by bounding, via the authenticity of SE, the probability that M # 1.

Now we turn to H(P,S) queries. Lines 18,19 handle the case that S is one of the S; ;. We note
that the distinctness of the latter salts, imposed by INIT in Figure 16, ensures that the choice
of j is unique and thus line 18 is unambiguous. Now if P = PJ[i] and KT[i, S] # L, we would
like to set HT[P, S] to KTJ[i, S]. But testing the condition to do this again would cost too many
password-guessing queries. Instead, lines 20-23 check whether the default value of HT[P, S| chosen
at line 17 is consistent, with regard to VERIFY replies, with KT[i, S]. If NO, bad is set, and HT[P, S]
is set to KT[i, S]. If YES then HT[P, S] is left unchanged. This allows us to avoid a number of
password-guessing queries proportional to ¢5. The subtle thing is that at this point, HT[P[i], S]
and KT[i, S] would both be defined and likely different, so that we have two keys contending for
the role of the base key corresponding to S, P[i]. However, game Gy ensures that this creates no
discrepancy in the adversary’s view. (Replies to VERIFY queries stay consistent with HT[P[é], S]
if the latter is defined, and otherwise with KT[i, S].) This completes our explanation of Eq. (20)
and we now need to bound Pr[Ga(A)].

Games Gg, G3 are identical-until-bad, so by the Fundamental Lemma of Game Playing [14] we have
Pr[G2(A)] = Pr[Gs(A)] + Pr[Ga(A)] — Pr[Gs(A)]
< Pr[Gs(A)] + Pr[Gs(A) sets bad] .

We now bound the two terms above. The flag win that Gs returns is only set in boxed code, which
is excluded in Ggs, so Pr[Gs(A)] = 0.

It remains to bound Pr[Gs(A) sets bad]. This task is simplified via game G4 of Figure 18. We
claim that

Pr[Gs(A) sets bad] < Pr[G4(A) sets bad] . (21)

Let us explain Eq. (21). Game Gy starts from Gs, making simplifications due to the boxed code
being absent in Gz. The “If” at line 11 of G4 drops the “P[i] ¢ HPg” condition of line 13 (Figure 17)
of Gg, which can only increase the probability of setting bad, consistent with Eq. (21). In Ggs, table

34

Game Gy

VERIFY (3, S,1,C, A):
If (MT[i, S,I,C, A] # L) then return L
If (FT[i, S] # L) then
M + SE.Dec(FT[i, S],I,C, A) ; If (M # L) then bad « true
Return false
R « { P € HPg : SE.Dec(HT[P, S],I,C, A) # L}
If (1 <|R| <) then
If (P[] € R) then bad « true
If (|R| > «) then bad <« true
If (KT[i,S] = L) then KT[i, S] s {0, 1}"
10 M < SE.Dec(KT[i, S],I,C, A)
11 If (M # L) then bad < true
12 CCg + CCsU{(4,I,C, A)} ; Return false

© 00 N O O b W N e

H(P, S):

13 If (HT[P, S] # L) then return HT[P, S]

14 HPg <+ HPs U {P} ; HT[P, S] s {0,1}* ; i < Find1(P,P)
15 If (i #0) then j « Find1(S, (Si1,.. -, Slng7))

16 If (i # 0 and j # 0) then bad « true

17 For all (i,I,C,A) € CCgs do

18 If (SE.Dec(HTI[P,S],I,C, A) # L) then bad « true

19 Return HT[P, S]

FInN:
20 Return false

Figure 18: VERIFY, H and FIN oracles for game G4 for the proof of Theorem 6.3. The other oracles
are in Figure 16.

entry BT[i, S, I, C, A] would always be false. Game G4 thus does not define it, and simplifies lines
20-23 to lines 17,18, including dropping the line 23 “P = P[i|” test, which can again only increase
the probability of setting bad. VERIFY always returns false, as per Gs. We are concerned only
with G3’s setting of bad, not with what the game returns, so we have FIN always return false. This
completes our explanation of Eq. (21).

It remains to bound Pr{G4(A) sets bad]. For this, we design adversaries Apg, Akropg, Aauth and
A, uth-c such that:

Pr[G4(A) sets bad at lines 7 or 16] < Advpp ,(Apg) (22)
< GPpp(zt(gs) - gn + (v=1) - q0) (23)

Pr[G4(A) sets bad at line 8] < Advlgfz‘),gfﬁ(Akrow) (24)
Pr[G4(A) sets bad at lines 3 or 11] < Adv%‘éfg(Aauth) (25)
Pr[G4(A) sets bad at line 18] < Adv%‘éfg'c(Aauth_C) . (26)

Putting all the above together yields Eq. (6). We proceed to the adversary constructions.

Adversary Apg is playing game GEgDm (Figure 3). It runs A, responding to its oracle queries as

35

Adversary Apg

INIT:
1 Fort=1,...,uand j=1,...,¢s; do
2 Si,j 8 {0, 1}31 \ oS ; K j +s {0, 1}k| ; OS + OSU {Si,j} H FT[Z',SZ‘,]'] — K

VERIFY (3, 5,1,C, A):

3 If (MTJ¢,S,1,C, A] # 1) then return L

If (FT[i, S] # L) then return false

5 R+ {P¢cHPs:SEDec(HT[P,S],I,C, A) # L}
6 If (1 <|R| <) then

7 Forall P € R do Ggf . TEST(7, P)

8 Return false

"

H(P,S):

9 If (HT[P, S] # L) then return HT[P, S]

10 HPg < HPg U {P} ; HT[P, S] s {0, 1} ; j + Find1(S, (Si,1,.- -, Siq,.))
11 If (j # 0) then Gg§ . TEST(j, P)

12 Return HT[P, 5]

Figure 19: How adversary Apg, for the proof of Theorem 6.3, simulates A’s oracles. ENC, SALT
responses are as in Figure 16.

shown in Figure 19. The role of the P chosen in G4.INIT (line 1 of Figure 16) is played by the
one chosen at line 1 of GPj . At lines 7,11 of Figure 19, Ap, calls the TEST oracle provided by
the Gpj , game it is playing, and this query is successful (sets win in Ggp) whenever G4(A) sets
bad at lines 7,16 of Figure 18, justifying Eq. (22). The number of TEST queries from line 7 is at
most (7 — 1) - g,. This is the crucial improvement, showing how defining the set R, and expending
password-guessing queries only when it has size less than «, pays off in reducing the number of
TEST queries of Ap,. The number of TEST queries from line 11 is 0 if ¢, = 0 and is otherwise at
most g, which, put succinctly, is at most zt(gs) - g,. This justifies Eq. (23).

Adversary Ay,opg is playing game GIS‘E’ZE - (Figure 6). It runs A, responding to the latter’s oracle

queries as shown in Figure 20. At line 1, Ay,,g calls its own INIT oracle to get random keys
Ki,...,Kg,. At line 10, it responds to H queries using its target keys Ki,..., Ky, , so that these

keys play the role of the HT[P, S| values. At line 7, it calls the FIN oracle of its Gls‘fs;’fﬁ game. It
wins whenever G4(A) sets bad at line 8 of Figure 18, justifying Eq. (24).

Adversary A,un is playing game G%‘éfgs e (Figure 4). It runs A, responding to oracle queries as

shown in Figure 21. Counter c¢ represents a user index. Table entry UT([:, S, ;] is the index of a
user in game Gg‘é‘f;‘s g whose key will play the role of K; ;. Line 4 is a call to A,un’s own ENC
oracle for user UT[i, S; 4;)]. Lines 7,10 are calls to Aaym’s own VERIFY oracle, for users UT[i, 5]
and VTIi, S| (respectively), and they succeed if bad is set at lines 3 or 10 (respectively) of Gu
(Figure 18), justifying Eq. (25). Now, as per the theorem statement, for y € {b,a}, we need to
check that if A € Ay then A,un € Ay. The case y = a is clear, but the case y = b uses the fact
that the salts S; ; are all distinct; otherwise, A repeating a nonce across two such salts (allowed)
would make A,y¢n repeat a nonce for i (not allowed). Finally, A was assumed sequential, and Aayen

makes its ENC, VERIFY queries in the same order as A, and hence is also sequential.

36

Adversary Ay obs

INTT!

krob$.
1 (K1, Kqy,) <8 Ggpogy L INIT 5 e 4= 0
2 Fori=1,...,uand j=1,...,¢s; do

3 Si,j 3 {0, 1}51 \ oS ; K j s {O, 1}k| ; OS + OS U {Si,j} ; FT[’L',SZ"J'] — K

VERIFY (4,5, I,C, A):

4 If (MTs,S,1,C, A] # L) then return L

5 If (FT[i, S] # L) then return false

6 R+« {P € HPg:SEDec(HT[P,S],I,C,A) # L}
7 If (|R| > v) then G&°r° | FIN(I, C, A)

8 Return false

H(P, S):

9 If (HT[P, S] # L) then return HT[P, S]

10 HPg <~ HPsU{P};c+c+1; HT[P,S] + K.
11 Return HT[P, 5]

Figure 20: How adversary Aj,opg, for the proof of Theorem 6.3, simulates A’s oracles. ENC, SALT
responses are as in Figure 16.

Adversary Aauth

INIT:

1 ¢4+0

2 Fori=1,...,uand j=1,...,¢s: do

3 S +s{0,1}"\0S; 08+ 0SU{S;;};c«c+1;UT[S,] ¢

ENc(i, N, M, A):
4 C <+ G&% ENc(UT[i, Si 5], N, M, A)
5 MTJi, S; 50y, SENNI(N),C, A] <~ M ; Return C

VERIFY (3, S, I,C, A):

6 If (MT[i,S,I,C, A] # L) then return L

7 If (UT[i, 8] # L) then V « G&' |, .VERIFY(UT[:, S], I, C, A)
8 Else

9 If(VT[:,S]=1) thenc<c+1; VT[i,S] + ¢
10 b+ G ., VERIFY(VT[, S|, I,C, A)

11 Return false

Figure 21: How adversary Aautn, for the proof of Theorem 6.3, simulates A’s oracles. SALT, H
responses are as in Figure 15.

Adversary A,uth-c is playing game Gg‘éf?;c (Figure 5). It runs A, responding to oracle queries as

shown in Figure 22. To each pair (P, S) where S is not one of the S; ;, table VT associates a user
index VT[P, S] € [1..qn] (line 8 of Figure 22). At line 9, Aauin-c calls the VERIFY oracle provided
by the Gg‘éfg;c game it is playing. The delicate issue is that Auuth-c now needs to return HT[P, S|
to A in response to the H query, but this is a challenge key, not available to the adversary in the
usual authenticity game. This is where exposures enter. At line 10, Aauth-c €xposes the key of

37

Adversary Aauth-c

INIT:

1 ¢+0

2 Fori=1,...,uand j=1,...,¢s; do

3 S5 «s{0,1}"\0S; K;; +s{0,1}¥; 08 < OSU{S,;}; FT[4,5: ;] + Ki;

VERIFY (3,5, 1,C, A):

4 If (MTs,S,1,C, A] # 1) then return L

5 If (FT[i, S] # L) then return false

6 CCg <+ CCsU{(3,1,C, A)} ; Return false

H(P,S):

7 If (HT[P,S] # L) then return HT[P, S]

8 cc+1; VTP S+ c

9 For all (i,1,C, A) € CCs do b+ G&'»°.VERIFY(VT[P, S],1,C, A)
10 HT[P, S] + G&'¢ ExposE(c) ; Return HT[P, 5]

Figure 22: How adversary Aauth-c, for the proof of Theorem 6.3, simulates A’s oracles. ENC, SALT
responses are as in Figure 16.

the appropriate user and returns it to A as the oracle response. But the VERIFY queries at line 9

precede the EXPOSE query at line 10, so Aauth-c sets win in Gg‘éfg;c whenever G4(A) sets bad at
auth-c

line 18. This justifies Eq. (26). Note that A,ush-c makes no queries to its GSE,qh .ENC oracle; replies
to A’s ENC queries are computed under the keys K; ; that A,uin-c picked at line 3. This justifies
Eq. (26), the final step in proving Eq. (6). I

D Proof of Theorem 7.1

Proof of Theorem 7.1: Figure 23 simultaneously specifies games Gg, G1, Ga; a line annotated
with a game name (eg. lines 2,3) is included only in the indicated game. We assume A respects
requirements, allowing us to omit writing required conditions. In the case y = b we assume un is
never set to false and accordingly drop it and associated variables. Game GE?SEPD’U is extended
to the ROM by addition of a procedure H that implements a random oracle with range R as per
the theorem statement.

We recall that by definition, the advantage Advggﬁg pp.y(A) may be written, equivalently, as

2Pr[GE}§§EPD’u(A)] — 1, or as Pr[Ggi:nf$(A)] — Pr[Gsi:ng$(A)], where the notation Gg:gﬁ denotes
the PIND$ game (with parameters FPBE, PD, u) when operating with challenge bit d’. We refer to
the latter advantage definition for this proof.

We first claim that Gq is equivalent to Ggi:nf $, and that Gg is equivalent to Ggi:ng 5. Game G1

returns a real ciphertext in line 2 and computes keys appropriately using the PBKDF in line 6,
as expected for the PIND$ game with challenge bit 1. Game G returns a random ciphertext in
line 3, as expected when the challenge bit is 0, and has no need to keep track of symmetric keys.
Applying the definition of advantage,

AQVEESE o ,(4) = Pr{Ga(A)] - Pr[Go(A)] .

38

Games Gg, G1, Go

INIT:
1 P<«sPD

ENc(i, N, M, A):

2 C <+ SE.Enc(K; s(;y, N, M, A) J Games Gy, G
3 C<s{0,1}PEEAIMD /' Game Gy

4 Return C'

SALT(4):

5 s(i) < s(i) + 1

6 Si,s(i) <3 FPBE.SS ; Ki,s(z‘) — F[H](P[Z’],Si_ys(i)) // Game G1
7 S;.s(iy < FPBE.SS ; K; iy <5 {0,1}°5 / Game Go

8 S;s() ¢ FPBE.SS J/ Game Gy

9 Return S; 4;

H(X):
10 If HT[X] = L then HT[X] «s R
11 Return HT[X]

FIN(d'):
12 Return (d' = 1)

Figure 23: Games for proof of Theorem 7.1.

We can trivially extend this expression to
AdVEREE pp o (4) = (PrG1(A)] — Pr(Ga(A)]) + (PrlGa(A)] — Pr(Go(4)]) -
We will design adversaries Af, Asg such that
Pr(G1(4)] — Pr[Ga(A)] < Advithp , (4F) (27)
Pr[Ga(A)] — PriGo(4)] < AdvEE]y (Ase) - (28)

We first describe adversary Ag. Recall that in the kd game, described in Figure 10, the RIO oracle
responses are applications of F with challenge bit 1, or are random with challenge bit 0. Af can
thus run A, responding to oracle queries as specified in either G; or Go. Concretely, key and salt
selection is implemented by doing (S;, K; 4(;)) <= RIO(i). When RIO returns the result of applying
F, this is exactly line 6. If RIO returns random keys, this is line 7. Af responds to A’s encryption
queries using the appropriate key in line 2. When A guesses a bit d’ and terminates, A outputs d’
as well.

As we did above with PIND$ advantage, we can write the kd advantage of Af as Pr[Gkd, (Ag)] —
Pr[GEiO(AF)], where the game parameters remain F, PD, u. Since Ag outputs the same d’ as A, we
have Pr[Gkd, (Ag)] = Pr[G1(4)] and Pr[GX,(Ag)] = Pr[Ga(A)], which in combination with the
definition of kd advantage, justifies Eq. (27).

Next we turn to describing adversary Asg. Asg initializes a user counter v < 0, then runs A. When
A makes a SALT(7) query, Asg responds by doing:

(i) <= s(i) +1;v v+ 1; 8 «sFPBESS ; k; o5y + v

39

Return S; / Response returned to A
When A makes an ENC(i, N, M, A) query, Asg responds by doing:

C + Gis,ngi-ENC(ki,s(i)a N,M,A) / Call own ENC oracle for user k; 4
Return C' // Response returned to A

When A guesses a bit d’ and ends execution, Asg guesses that same bit. We claim that Agg satisfies

Eq. (28). The ¢s parameter in the Advisngi (Asg) term is explained as follows: a user in the Gisnéi

. . ind
game corresponds to a new, uniformly random key whenever a SALT query occurs in the GEEIBSPDM

game. Thus the number of keys in the Gisnéijs game is the number of SALT queries, ¢s. To explain
the rest, the oracle responses returned by Asg conform to the game Go when Agg’s challenge bit
is 1, and Asg correctly guesses 1 whenever A does. The oracle responses conform to game Gg
(random ciphertexts) when Asg’s challenge bit is 0, and again Asg guesses the same bit as A. Thus
Pr[G%(Agg)] = Pr[Ga(A)] and Pr[Gijfg(ASE)] = Pr[Go(A)], where the IND$ game parameters
are SE, ¢s. The definition of IND$ advantage directly implies Eq. (28).

The theorem statement immediately follows from Eqgs. (27), (28). We have
AQVEREE pp.,(4) = (PrG1(A)] — Pr[G2(A)]) + (Pr[Ga(A)] — Pr(Go(A)))

< Advibp , (AF) + AdvES (Ase) .

We additionally remark that Agg preserves the adversary class of A, meaning that for y € {b,a},
A € Ay implies that Asg € Ay. Recall that the user indices used by A and Asg differ as follows: for
a user ¢ for which A makes queries of the form ENc(i, N, M, A), Asg may make queries to multiple
SE users, corresponding to the FPBE resalts for user i. Asg forwards the same nonce and other
inputs, meaning that Asg only repeats a nonce for a particular user if A does so for a particular
user and salt. This proves the full statement of Theorem 7.1. |

E Proof of Theorem 7.2

Proof of Theorem 7.2: Game GIF’EFL,uBtE D 15 extended to the ROM by addition of a procedure H
that implements a random oracle with réngla R as per the theorem statement. With this as starting
point, we refer to games Gg, G; in Figure 24. A line annotated with a game name (eg. lines 5,6)
is included only in the indicated game. The notation F[H] at lines 5,11 indicates that F may be a
ROM PBKDF, calling H as an oracle. We are assuming A is sequential, so all its ENC and SALT
queries are made before any of its VERIFY queries. We assume A respects requirements, allowing
us to drop writing required conditions. In the case y = b we assume un is never set to false and
accordingly drop it and associated variables.

We claim that G is equivalent to GE%?I?,PD,W meaning that

auth auth
AdVI;PBtE,PD,u(A) = Pr[GII;PBtE,PD,u(A)] = Pr[Go(4)] .
Indeed Go maintains that K; 4;) = F[H](P[i], S;) = KT[i, S;] and is using the right keys at all times.

Game G switches the keys for the base scheme SE to random (lines 6,12). A subtle point is what
happens if a salt S; happens to equal a prior one for user i. Then K; 4;) is nonetheless fresh, but
KTJi, S;] at line 13 in G; can get redefined to a new value. (The latter does not happen in Gy,

40

Games Gg, Gy

INIT:
1 P<«sPD

ENc(i, N, M, A):
2 C«+ SE.Enc(KLS(i), N,]\47 A)
3 MTI[:, S;, SE.NI(N), C, A] + M ; Return C

VERIFY (3, S, I,C, A):

If (MT[:, S,I,C, A] # 1) then return L

If (KT[i,S] = 1) then KT[i, S] + F[H](P[i],S) J Game Gg
If (KT[i,S] = L) then KTJ[i, S] s {0,1}°8 / Game G
M + SE.Dec(KT[i, 8], I, C, A)

If (M # 1) then win < true

Return (M # 1)

© 00 N O O

SALT(4):

10 s(i) = s() +1

11 Sy (i) 3 FPBESS 5 Ki y;) < FIH|(P[i], S; o)) / Game Gy
12 Sy <8 FPBESS 5 K sy 45 {0,114/ Game G,

13 KT[i, S s(1)] + K s(i) ; Return S; o

H(X):
14 I HT[X] = L then HT[X] +sR
15 Return HT[X]

FIn:
16 Return win

Figure 24: Games for proof of Theorem 7.2.

where KTi, S;], once defined, won’t change, because F is deterministic.) However, KT[-,] is only
used in VERIFY, and since the adversary is sequential, responses will only reflect the latest KT, -]
values and stay consistent with those. In particular, salt collisions create no “bad” event in the
current context; instead this is covered through the definition of kd-security of F (salt collisions are
allowed in RIO in Figure 10) and a salt-collision term shows up in Theorem 7.3.

Proceeding, we trivially have
Pr[Go(A)] = Pr[G1(A)] + Pr{Go(A)] — Pr(Gi(4)] .
We will design adversaries Ar, Asg so that
Pr{Go(4)] — Pr[G1(4)] < Advibp ,(Af) (29)
Pr[G1(A)] < AdvEE? |, (Ase) . (30)
Adversary Ap runs A. When A makes a SALT(i) query, Af responds as in game Gy except that
line 12 is replaced with (.S; s(;), K; s(s)) < RIO(i), meaning the salt and key are obtained from Ag’s
RIO oracle rather than being chosen directly. Now ENC queries can be answered as shown in Gj.

For VERIFY queries, line 6 is replaced with KT[i, S] «+— CIO(3,S), and H queries are answered via
Ag’s own H oracle. (Game Gl,éfipDvu here is in the ROM, providing oracle H because F uses it.)

41

When A terminates, Ar returns 1 if win = true and 0 otherwise. If d denotes the challenge bit in
game GléfipDvu then

Pr[GIE?PD,u(AF) d
Pr[GEbp , (AF) |d = 0] = Pr[Cy(A)] .

I
—_
I
HJ
=
®!
=
=

Subtracting yields Eq. (29).

Next we describe adversary Asg. Asg initializes a counter v <— 0, representing a user index. It now
runs A. When A makes a SALT(7) query, it does the following:

s(i) < s(i) +1;v 4 v+1;S; <sFPBE.SS
ki,s(i) +— v ; kT, Si,s(i)] < v /| Set these to user indices, not keys
Return S; / Response returned to A

When A makes an ENC(i, N, M, A) query, Asg does the following:

C «+ G%EEES+qU.ENC(ki7S(i), N,M,A) / Call own ENC oracle for user k; 4

MTTJi, S;, SE.NI(N), C, A] <~ M ; Return C' // Response returned to A
When A makes a VERIFY(4, S, I,C, A) query, Asg does the following:

If (MT[:,S,1,C, A] # 1) then return L

If (kT[¢,S] = L) then v v+ 1; kT[i,S] + v

e+ G%Efgerqv.VERIFY(kT[i, S|, 1,C,A) J Call own VERIFY oracle for kT[i, 5]
Return e / Response returned to A

When A makes a H(X) query, Asg does the following:

If HT[X] = L then HT[X] < s R
Return HT[X] / Response returned to A

Note that game Gg‘éfgs +q, i DOt in the ROM and provides no H oracle; adversary Asg is simply
simulating it for A on its own. If the execution of A with G; sets win, then win will also be set in
the execution of Agg with Gg‘éf;ls +qv» Which justifies Eq. (30). The count of gs + g, for the number
of users for SE arises as an upper bound for the counter v.

We also need to check that if A € Ay, (a nonce is not repeated for a given user and salt instance)
then Asg € Ay, (a nonce is not repeated for a given user). This is true because we have taken care
that every pair (i,s(i)) corresponds to a different user for Agg. (This is true even if there are salt

collisions.) Asg is sequential because it makes all ENC, VERIFY queries in the same order as A. |

F Proof of Theorem 7.3

Proof of Theorem 7.3: In the ROM, game GI,E?PD’U adds a procedure H for the random oracle.
Below we will often, without explicit mention, exploit the assumption, from the definition of a
password distribution, that P[1],...,P[u] are distinct. Similarly, we will exploit throughout the

42

Game G /

INTT:

1 d<+s{0,1} ; P«+sPD

2 Fori=1,...,uand j=1,...,¢r; do

3 Si,; <5 {0, 1}51

4 If (d =1) then K; ; + H(P[i], S; ;) else K; j <s {0, 1}"
If (S;,; € OS) then bad « true ;[Si; «s {0,1}\ 0S|
6 0S+ OSU{Si,}; FT[, S] « Ki;

(o]

RIO(4):
7 s(1) « s(i) + 1 ; Return (S; s(i), K s¢))

CI10(3, S):
g If (FT[¢, S] # L) then return FT[i, S]
9 K1 + H(P[i],S) ; Ko +s{0,1}* ; FT[4,S] + K4 ; Return Ky

H(P, S):
10 If (HT[P, S] # L) then return HT[P, S]
11 HT[P, S] +-s{0,1}* ; Return HT[P, S|

Fin(d'):
12 Return (d' = d)

Figure 25: Games Gg, G1 for proof of Theorem 7.3, where G1 includes the boxed code and Gy does
not.

assumption that Afg is sequential, meaning it makes all its ¢, RIO queries before any of its CIO
queries. The algorithms Findl, Find2, used in some games and the constructed adversary below,
were defined in Section 3.

Consider the games of Figure 25, where G; includes the boxed code and Gy does not. We have
let ¢r; be the number of RIO(i) queries, so that ¢, = ¢,1 + -+ + ¢ru. Let S;; denote the input
that RIO(7) would pick the j-th time it is called. The games start by picking these values up front
in INIT, together with values K;; that RIO would return as function outputs. However, while
Go picks the §;; at random, G; ensures that they are distinct. Down the line, this will allow
password-guessing adversary Ap, to use the input to uniquely identify the user in an RIO query
and thereby minimize the number of TEST queries it makes. For now, we just note that game Gg
is equivalent to game Gllé(,iPD,uv SO

AdvEpp . (AF) = 2Pr[GEbp , (AF)] — 1 = 2Pr[Go(AF)] - 1.
Trivially we have
2Pr[Go(Ar)] — 1 =2Pr[G1(Ap)] — 1 4 2(Pr[Go(AF)] — Pr[G1(AF)]) . (31)
Games Go, G are identical-until-bad, so by the Fundamental Lemma of Game Playing [14] we have
Pr[Go(Af)] — Pr[G1(Afr)] < Pr[Go(Af) sets bad] .
Flag bad is set when two of the ¢, inputs collide, so

QT(QT - 1)

Pr[Go(AF) sets bad] < sl F1

43

Game / Gs

INIT:

1 P<«sPD

2 Fori=1,...,uand j=1,...,¢r; do

3 S ;+s{0,1}*\ 0OS ; K;; s {0, 1}"
4 0OS « 0OSuU {Si,j}) FT[i, Si,j] — Ki,j

RIO(%):

5 s(i) <= s(i) + 1 ; Return (S, s(s), Ki s(3))

CIO(4, S):

6 If (FT[i,S] # L) then return FT[i, S]

7 K +s{0,1}

& If (HT[P[i], S] # L) then bad « true ; |[K + HT[P[i], 5|
9 FT[i,S] + K ; KT[3,S] + K ; Return K

H(P,S):

10 If (HT[P, S] # L) then return HT[P, S]

11 HT[P, S] <5 {0,1} ; i - Find1(P, P)

12 If (4 # 0) then j < Find1(S, (Si,1,.- ., Siq.;))

13 If (i # 0 and j # 0) then bad < true ;

14 1f (i # 0 and KT[i, §] # L) then bad < true ; [HT[P, S] + KT[i,]|
15 Return HT[P, S]

FiN(d'):
16 Return (d' = 1)

Figure 26: Games Gg, G3 for proof of Theorem 7.3, where Go includes the boxed code and G3 does
not.

Returning to Eq. (31), we now want to bound the advantage of Ar in Gi, namely the quantity
2PI‘[G1(A|:)] —1= PI‘[GI(AF) | d= 1] - (1 — PI‘[Gl(AF> ’d = O]) 5

where d is the challenge bit from line 1 of Figure 25. Towards this, games Ga, G3 in Figure 26 have
been designed so that they are identical-until-bad and also

PI‘[Gl(AF) | d= 1] = PI‘[GQ(AF)] (32)

1 —Pr[Gi(4F)|d=0] = Pr[G3(4F)] . (33)

We now justify the two equations above. Unlike in Gy, oracle INIT in Gg, G3 picks no challenge bit
d, and, correspondingly, FIN(d') is changed to return true iff & = 1. As in Gy, oracle INIT continues
to pick distinct inputs S; ;, but always optimistically picks the K;; to be random. In Gz it stays
that way, as per the d = 0 case of Gy. As per the d = 1 case of Gy, however, Gs, via the inclusion
of the boxed code at line 13, ensures that K;; = H(P[i],.S; ;). This shows that responses to RIO

queries adhere to Egs. (32) and (33). The boxed code at lines 8 and 14, included in G but not Gs,
ensures the same for CIO queries.

Games Gg, G3 are identical-until-bad, so by the Fundamental Lemma of Game Playing [14] we have

Pr[Ga(Af)] — Pr[Gs(Af)] < Pr[Gs(Af) sets bad] .

44

Game Gy

INIT:

1 P+sPD

2 Fori=1,...,uand j=1,...,¢r; do

3 8 +s{0,1}*\ OS ; K, ; s {0, 1}"
4 OS «+ OSU{S;i;}; FT[i, Si,;] + K

RIO(:):
5 (1) < s(i) + 1 ; Return (S; s(i), K s0))

CIO(s, S):

6 If (FT[¢,S] # L) then return FT[i, S]

7 CS <+ CSU{S}; CUs « CUs U {3}

8 K +s{0,1}; FT[i,S] + K ; Return K

H(P,S):

9 If (HT[P,S] # L) then return HT[P, S|
10 HS + HSU{S} ; HPs « HPs U {P}
11 HT[P, S] <5 {0,1} ; Return HT[P, S]

Fin(d'):

12 For all S € HS and P € HPs do

15 4 Find2(S, (S11,- -5 81001)s- s (Surts - -5 Susgna)
14 If (¢ # 0 and P = PJ[i]) then bad « true

15 For all S € CSNHS and i € CUs do

16 If (P[i] € HPs) then bad < true

17 Return bad

Figure 27: Game G4 for proof of Theorem 7.3.

Now we turn to bounding Pr[Gs(Af) sets bad]. We claim that
Pr[Gs(Af) sets bad] < Pr[G4(Af)], (34)

where game Gy is in Figure 27. Since the setting of bad in G does not affect what oracles return,
G4 moves the setting of bad to FIN. Through line 7, the set CS holds all inputs S that were queried
to CIO, and for each such S, set CUg holds all users for which ¢,5 was queried to CIO. Sets
HS, HSg are analogously defined through line 10. These are used to set bad in FIN. Game Gy sets
bad at line 14 (respectively 16) whenever Gs would have set it at line 13 (respectively 8 or 14),
justifying Eq. (34). The distinctness of the S; ; inputs is important here to ensure that ¢ at line 13
is unique.

Next we design Apg so that
Pr{Ca(4r)] < AdVES ,(Ape) - (35)

Adversary Apg begins by executing lines 2-4 of G4 in Figure 27. (It skips line 1. The role of P
will be played by the one chosen in its game GE%,U.) It then runs Ag, simulating its RIO, CIO, H
oracles as shown in game G4. When Af terminates (with an output d’ that Apg ignores), Ay, does
the following:

1. For all S € HS and P € HPg do

45

2. 14 Find2(S, (5171, c 7Sl,qr,1)7 ey (Su71, ey qunu))
3. If (i # 0) then TEST(7, P)

4. Forall S € CSNHS and ¢ € CUg do

5. For all P € HPg do TEsT(¢, P)

If G4 sets bad then some TEST query of Apg will set win in game GE%,U, justifying Eq. (35).
Putting things together, we have

) QT(q'I’ - 1)

AdvEsp ,(AF) = 2Pr[Go(Af)] — 1 < 2Pr[Gy(Af)] — 1 +2 e,

qr (QT - 1)
9sl

To obtain Eq. (11), we show that Ape’s series of TEST queries is bounded by the parameters

(¢, gp, qu) defined in the theorem statement, so that Advlﬁ‘}PD,u(AF) < GPpp(q, gp, Gw). We begin

by considering ¢, the total number of unique TEST queries.

< Advpp ,(Apg) +

In the above code, the total number of TEST queries emanating from line 3 is at most gqy. The
number from line 5 is

> > MHPs|= > [CUs| [HPg]|. (36)
SeCSNHS ieCUg SeCSNHS

We can bound this in two ways. First, |[CUg| < u so the sum is at most u - Y gcpg |HPg| = ugp,.
Second, [HPg| < gy so the sum is at most g - > gccs |[CUs| = gnge. Thus the number of TEST
queries arising from line 5 is min(q., u) - g5. Additionally there are g5, TEST queries if ¢, > 0, and
none if ¢, = 0. So overall, Ap, makes at most ¢ = zt(q,) - g5, + min(ge,w) - g, TEST queries, as
claimed. Now, the number of distinct passwords guessed among the TEST queries (the ¢, guessing
probability parameter) is at most g;. And the number of distinct users included among the TEST
queries (the ¢, parameter) is at most min(g, + ¢, u).

We note that the reason CIO queries are more expensive in terms of TEST queries is that Aps
does not have a way to know for which user to test a particular P, forcing it to try all the ones
in CUg. We avoided this for RIO queries by making the .S; ; inputs distinct, so that the input
would uniquely identify the user. This is how we have made RIO queries cheaper in terms of TEST
queries. 1

G Proofs of attack propositions

Proof of Proposition 8.1: Adversary A queries S; < SALT(i) for ¢ = 1,...,u. Then it picks a
nonce N, an ¢-bit message M and associated data A. It lets C; «+ Enc(i, N,M,A) fori=1,...,u.
It then runs A,s. When the latter makes query TEST(7, P), it does the following:

K + H(P,S;); C + SE.Enc(K,N, M, A)
If (C = C;) then FIN(1)

If the execution of Ay, terminates without the “If” above ever returning true, then A ends with
FIN(0). If Ay, makes g, TEST queries then A makes ¢, H queries and u SALT, ENC queries, as
specified in Proposition 8.1.

46

Next we consider the advantage of A. If any of A,.’s TEST(Z, P) queries is correct, meaning that
P[i] = P, then A’s C = C; check will return true. In the d = 1 setting this means that

ind$
Pr[GEpge pp o (4) [d = 1] > Advip , (Apg) - (37)

In the d = 0 setting, the ciphertexts are random (independent of the password guesses). A will
only return FIN(1) if a random ciphertext happens to decrypt to the correct message for at least
one of the ¢, tries. For one try, this probability is ﬂ% Over all tries this means

dn

ind$
Pr(GEpge pp o (4) [d=0] > 1— 9SE.cl(e) -

(38)

Combining Eqgs. (37), (38) gives the advantage for A. We note that A does not misuse nonces and
thus can be considered in the class A, for either of y € {b,a}. I

PARTITIONING-ORACLE ATTACK. Before presenting the proof of Proposition 8.2, which uses the
partitioning-oracle attack, we briefly summarize its context. As introduced in [29], the basic
partitioning-oracle attack targets one specific user. The attack utilizes a function MakeSplittingCT
which does the following: On inputs Ki,..., K, € {0,1}°K for n > 0, MakeSplittingCT returns
(I € SE.NIS,C € {0,1}*, A € SE.AS) such that SE.Dec(K;,I,C,A) # L forall 1 <i < n. Im-
portantly, this violates key-robustness with advantage 1, for an arbitrary number n of symmetric
keys.

The description of partitioning oracles in the following proof differs slightly, though the algo-
rithm remains essentially the same, in order to provide comparison to our theorems. First, it is
multi-user, considering u users rather than one. Second, it considers the more general y-way ro-
bustness. Finally, we aim to break authenticity rather than mount a full password-recovery attack,
as [29] does. Like [29], we focus on a setting with zero ENC queries and access to a VERIFY oracle.
We now proceed to the proof.

Proof of Proposition 8.2: Adversary Ap, begins by running A, to obtain its sequence
(11,91), - -, (iq, gq) of guesses. Since the TEST oracle sends no response, all of Ap,’s queries can
be made and recorded up front. Let ¢ = n(1) + --- 4+ n(u), so that n(i) is the number of TEST
queries to user i € [1..u]. Ap, then re-indexes the guesses so that g;; is the j-th guess to user 4,
where 0 < j < n(i) —1 and 1 <14 < w. It fixes a salt S € FPBE.SS and lets K; ; < H(S, g; ;).
Note that in the proposition statement, we assume that A, makes (q,qp,qw) TEST queries, and
in particular this covers g, distinct password guesses. Thus Ay, need only query H ¢, times, since
the salt remains fixed.

In the proposition statement we assume that robustness is completely violated, meaning that an
adversary Ay,.,pg violates y-way robustness with advantage 1 for arbitrarily large . This is the
assumption in [29], but for now, suppose only that v > 2 and that we are given Ay,ng achieving
some advantage. Let q(i) = [n(i)/v] for 1 <i < wu. Let g, = q(1)+---+¢q(u) and U = {i € [1..u] :
n(i) >~}

Now for each i, Ay, splits the sequence K, ..., K; ;-1 into g(i) sub-sequences, where the first
q(7) — 1 have size v and the last has size at most 7. The robustness adversary is run on each of the

first q(i) — 1 sub-sequences. This is detailed below:
For all i € U do
For{=1,...,q(i) — 1 do
(Ia C, A) — Akr0b$(Ki,’y(571)7 SRR Ki,'yéfl>) VERIFY(L S.1,C, A)

If the ¢(i)-th sub-sequence has size v, the loop continues for one more iteration and A, does:

47

(Iv C, A) <« Akrob$(Ki,'y(q(i)fl)7 R Ki,fyq

(i)—1) ; VERIFY(3,S,I,C, A)

Otherwise, if the ¢(i)-th sub-sequence has size smaller than ~, the difficulty is that the robustness
adversary Ay, pg runs in a setting with v keys. In this case, Ay, chooses remaining keys uniformly
at random, so that the ¢(7)-th subsequence has v keys and the above line can be executed. We
claim that this does not change A,,’s advantage lower bound, and in fact can only increase the
chance that a VERIFY query correctly decrypts. We also note about Ay,.,¢ that the v keys given
as input are always random, as expected in the INIT procedure of the -way robustness game (as
defined in Figure 6), either from being chosen randomly or as the output of the random oracle H.

At this point, A, has made its g5, H queries and ¢, VERIFY queries; the ceiling in ¢(i) = [n(i) /7]
ensures that the number of VERIFY queries accounts for the second case above. We proceed to
explaining Eq. (13). In order for Ay, to make a VERIFY query that sets win to true in its GE?SEPD,U
game, two conditions must hold: first, one of the keys K ; is such that H(P[i], S) = K; ; for user
i; and second, Ay,opg “succeeds” on this particular key. That is, in that iteration, Ay,,,¢ returns

(I,C, A) such that VERIFY(i,5,1,C, A) wins and thus SE.Dec(K; ;,1,C, A) # L.

To express the requirement that both a password guess be correct, and that Ay, ¢ find a robustness-
violating ciphertext for that particular guess, the following is a lower bound, multiplying the re-
quired probabilities:
AQVEREE oo (Apo) > AdVES | (Apg) - [T AdVERSS (Aygops)" (39)
€U
While Eq. (39) is a general statement, it is most useful in the setting of the proposition, when
Ayrong Violates y-way robustness with advantage 1 for arbitrarily large +. In this case, the righthand
robustness advantage product is simply 1, and we achieve Eq. (13). We again note that A, makes
qrn H queries, and because of the robustness assumption, at most one VERIFY query per user. Given
that Ape makes (q,qn, qw) TEST queries, Ap, thus makes min(g,,«) VERIFY queries, proving the
remainder of the proposition statement. We also note that Ay, does not misuse nonces and thus
can be considered in the class A, for either of y € {b,a}. I

H Proof of Proposition 9.1

Proof of Proposition 9.1: Given adversary A, we begin with the construction of Asg. Adversary
Asg runs A to get (P1,S1, N1, A1, My), ..., (Py, Sy, Ny, Ay, M,), then outputs (F(Pp,S1), N1, A,
My),...,(F(Py,Sy), Ny, Ay, M,). If all of A’s outputs encrypt to the same ciphertext, then so will
Asg’s outputs; this follows from the fact that FPBE = DtE[SE, F] derives symmetric keys by doing
exactly F(P,S). However, it is not the case that the distinctness of Pi,..., P, (if £ = 1) or the
distinctness of (P, S1),..., (P, Sy) (if £ = 2) implies the distinctness of F(Py,S1),...,F(Py,Sy).
At this point, we can say that

AdvEE,HBlE{/(A) < Advgratf/ (Asg) + Pr[F(P1,51),...,F(P,,S,) are not distinct] .

Note that the above expression holds for all three cases claimed in the theorem: namely ¢ = 1 to
¢ =1 (trivially), £ =2 to ' =1, and £ =5 to ¢’ = 4.

Next we turn to Ar. Af runs A to get (P1,S1, N1, A1, My),...,(Py, Sy, Ny, Ay, M,). Then Af
scans through the v tuples to find 4, j such that ¢ # j and F(F;, S;) = F(P;,S;). If Af finds such a
pair, it outputs (P, S;), (P}, S;), and otherwise outputs L. Thus Af wins the cr game if and only

48

if A’s outputs are such that F(Py,S1),...,F(Py,Sy) are not distinct. This, along with the above
equation, proves Eq. (14). 1

49

	Introduction
	Flexible PBE
	Motivation and applications
	Security of the DtE scheme
	Extended setting and results

	Related work
	Preliminaries
	The tool: Symmetric encryption
	The goal: Flexible password-based encryption
	Security of the DtE scheme
	Proving DtE security via composition and PBKDFs
	Attacks
	Key-robustness of DtE
	References
	Proofs of authenticity lemmas
	Proof of Theorem 5.1
	Proof of Theorem 6.3
	Proof of Theorem 7.1
	Proof of Theorem 7.2
	Proof of Theorem 7.3
	Proofs of attack propositions
	Proof of Proposition 9.1

