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Abstract. In the previous paper by Tarasov and Varchenko the equivariant quantum
differential equation (gDE) for a projective space was considered and a compatible system
of difference qKZ equations was introduced; the space of solutions to the joint system of
the gDE and qKZ equations was identified with the space of the equivariant K-theory
algebra of the projective space; Stokes bases in the space of solutions were identified with
exceptional bases in the equivariant K-theory algebra. This paper is a continuation of the
paper by Tarasov and Varchenko.

We describe the relation between solutions to the joint system of the gDE and qKZ
equations and the topological-enumerative solution to the gDE only, definitionned as a
generating function of equivariant descendant GromovWitten invariants. The relation is in
terms of the equivariant graded Chern character on the equivariant K-theory algebra, the
equivariant Gamma class of the projective space, and the equivariant first Chern class of
the tangent bundle of the projective space.

We consider a Stokes basis, the associated exceptional basis in the equivariant K-
theory algebra, and the associated Stokes matrix. We show that the Stokes matrix equals
the Gram matrix of the equivariant GrothendieckEuler-Poincaré pairing wrt to the basis,
which is the left dual to the associated exceptional basis.

We identify the Stokes bases in the space of solutions with explicit full exceptional
collections in the equivariant derived category of coherent sheaves on the projective space,
where the elements of those exceptional collections are just line bundles on the projective
space and exterior powers of the tangent bundle of the projective space.

These statements are equivariant analogs of results of G.Cotti, B.Dubrovin, D.Guzzetti,
and S.Galkin, V.Golyshev, H.Iritani.
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1. Introduction

1.1. We consider the equivariant quantum differential equation (gDE) of a complex
projective space P"-1with the diagonal action of the torus T = (C*)". This equation is the
ordinary differential equation

d )
g— —a%, 2 | [(q,2) =0
(1.1) ( dg "

where the unknown function I(q,z) takes values in the equivariant cohomology algebra
Hy (P, C), and T*q.z" Hy(P"=1,C) — H2(P" ', C) s the operator of quantum
multiplication by the equivariant first Chern class of the tautological line bundle on P"-1.
The gDE depends on the equivariant parameters z = (z1,...,.Zn) corresponding to the factors

of the torus T. The qDE has two singularities: a regular singularity at ¢ = 0 and an irregular
singularity at g = co.

In [TV19a] a compatible system of difference equations, called the gKZ equations, was
introduced,
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104 GIORDANO COTTI AND ALEXANDER VARCHENKO

(1.2) 1(q,z1,-..,zi = 1,...,z0) = Ki(q,2)1(q,2), i=
1,..,n,

where Ki’s are suitable linear operators. In [TV 19b] solutions to the joint system of the gDE
and gKZ equations were constructed in the form of g-hypergeometric integrals. In [TV19a]
the space of solutions was identified with the space of the equivariant K-theory algebra
K§(P"") The Stokes bases of the qDE at its irregular singular point were described in
terms of the exceptional bases of the equivariant K-theory and a suitable braid group action
on the set of exceptional bases. In this paper we continue this study.

1.2. We establish relations between the monodromy data of the joint system of the gDE
and gKZ equations for P"-1and characteristic classes of objects of the derived category

b (pr—1 .
Dy (P4 of equivariant coherent sheaves on P71,
Our first result is on the relation between solutions to the joint system of the gDE and

qKZ equations and the topological-enumerative morphism.
The topological-enumerative morphism is the map S°, which assigns a solution of the

qDE (only) to every element of H2(P" 1, C) and whose expansion at g = 0 is the generating
function for the equivariant descendant Gromov-Witten invariants of Pn-1.

Fork € K§(P"1) let 6(E) be the solution to the joint system of the qDE and qKZ
equations, assigned to E in [TV19a]. Our B-Theorem 8.2 says that

(){E) — So ((37\/7_1(‘1 (P 1 )F]]Jgn—l Ch,H,(E‘))’
T+
where c1(P"1) is the equivariant first Chern class of the tangent bundle of Pr-1, Pparis

the equivariant Gamma-class of Pr-1, Chr(E) is the equivariant graded Chern character of
E. In other words, we have the following commutative diagram:

B
K-Theory Equiv. Cohomology
0 5
Solutions of gDE
where B(E) :==€" —Tea (B )lh‘ut»_l Chr(E)

Notice that the B-Theorem is an equivariant analog of results of [GGI16, Section 5]
and [CDG18, Section 6] for projective spaces. Moreover it is a refinement of the Gamma
Theorem in [TV19a,TV19b].

Our second result is the identification of the Stokes bases in the space of solutions to
the joint system of the gDE and qKZ equations with explicit T-full exceptional collections
in the derived categoryD%(]Pnfl) of T-equivariant coherent sheaves on P*-1, We show that
the elements of these T-full exceptional collections are just line bundles O(i) on P*-1and
exterior powers/'\j T @ O(i) of the tangent bundle T of Pr~1multiplied by line bundles, see
Theorem 7.26, Corollary 7.27, Corollary 7.28 and Theorem 10.15. This result is an
equivariant version of [CDG18, Corollary 6.11].

Our third result is on the relation betwech the Stlokes matrices and Gram matrices of
the Grothendieck-Euler-Poincaré pairing onfSo (F"77),
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Consider a Stokes sector V and the complementary Stokes sectore™ TV, Consider
the two exceptional bases inKo (P"1) assigned V ande™ vV=1Vin [TV19a].

The matrix expressing the second exceptional basis in terms of the first exceptional basis
is called the Stokes matrix associated with the Stokes sector V. We show that the second
exceptional basis is left dual to the first exceptional basis wrt the Grothendieck-Euler-
Poincaré pairing. This fact implies that the Stokes matrix equals the Gram matrix of the
Grothendieck-Euler-Poincaré pairing wrt the second exceptional basis, see Theorem 11.7.
This is an equivariant analog of [Guz99] (see also [CDGI18, Section 6] for some
refinements of results in [Guz99]).

1.3. This paper is related to the general theory of D.Maulik and A.Okounkov in
[MO19] connecting quantum groups and equivariant quantum cohomology of Nakajima
quiver varieties. In that context, it was realized that the gDEs of Nakajima quiver varieties
admit some compatible difference equations, called the gKZ equations.

A special case of Nakajima varieties, namely, the case of the cotangent bundles T*Fa
of partial flag varieties Fawas considered in [GRTV13] and [RTV15] !. In those papers the
qDEs and gKZ equations for cotangent bundles were identified with the dynamical
differential equations and gKZ difference equations, associated in representation theory
with the evaluation module CN(z1) ®---QCN(z,) of the Yangian Y (gln). This identification
leads to two constructions of solutions to the joint system of the gDE and qKZ equations
for the cotangent bundles. One construction in [TV14] gave solutions in the form of
multidimensional hypergeometric integrals and another construction in [TV19b] gave
solutions in the form of multidimensional g-hypergeometric integrals.

Also in [TV19b] a suitable limit of the gDEs for cotangent bundles of partial flag
varieties was considered. In that limit the gDESs for cotangent bundles turn into the gDEs
for the partial flag varieties themselves. Moreover, in that limit the gKZ equations for
cotangent bundles survive and turn into new systems of difference equations compatible
with the qDEs for partial flag varieties. These new systems of difference equations were
also called the qKZ equations. Furthermore, it was shown in [TV19b] that the g-
hypergeometric solutions to the joint systems of the gDEs and gKZ equations for cotangent
bundles have a limit when the qDEs and qKZ equations turn into the gDEs and qKZ
equations for partial flag varieties.

The special case of that limit was considered in [TV19a] for the partial flag variety
Pr-1, In [TV19a] the g-hypergeometric solutions to the joint system of the gDE and qKZ
equations for P"-1were applied to study the monodromy properties of the qDE for Pr-1,

1.4. The paper is organized as follows. The basic notions of the derived category of
equivariant coherent sheaves and equivariant Helix theory are collected in Section 2. In
Section 3 we describe the equivariant derived category and K-theory of P"-1. In Section 4
we introduce the equivariant cohomology of P*-1. In Section 5 we discuss the equivariant
Gromov-Witten theory of P*-1. We introduce the gDE and gKZ difference equations, and
the topological-enumerative morphism S°. In Section 6 we introduce two fundamental
systems of solutions of the gDE (only): the Levelt solution and the topological-enumerative
solution. We study how they are related, and we describe their monodromy.

! Note that the partial flag varieties themselves are not Nakajima varieties
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106 GIORDANO COTTI AND ALEXANDER VARCHENKO

In Section 7 we study solutions to the joint system of the gDE and gKZ equations, their
integral representations, their asymptotics. We describe the corresponding objects and
exceptional collections in the derived category. In Section 8 we prove our B-Theorem.

In Section 9 we describe the structure of formal solutions to the joint system of the
qDE and gKZ difference equations, see Theorem 9.2.

In Section 10 we study the Stokes bases of the space of solutions, their normalizations.

. . . b (pn—1
We show that the Stokes bases correspond to T-full exceptional collections inDr(P" ),
In Section 11 we prove that the Stokes matrices coincide with the
Gram matrices of the equivariant Grothendieck-Euler-Poincaré pairing.

In Section 12 we study the specialization of the gDE at points z such that

(€2W\/__Z", ...f'M ‘/__1) are roots of unity. We show that the monodromy group of the gDE

is Znonly for this specialization of the equivariant parameters z.

In Appendix A we prove Theorem A.1 on the formal normal form for a compatible
system of a differential equation and a system of difference equations.

In Appendix B we discuss the relation between the equivariant gDE and the
isomonodromic system of differential equations attached to the quantum cohomology of
Pm-1. Such a system plays a central role in Dubrovin’s theory of Frobenius manifolds
[Dub96,Dub99,Dub98,CDG18].

1.5. The authors thank A.Givental, R.Rimanyi, M.Smirnov, and V.Tarasov for useful
discussions, and also the referee for suggestions improving the exposition of the paper. The
authors are grateful to the Max-Planck-Institut fiir Mathematik in Bonn, where this project
was developed, for support and excellent working conditions. The first author is thankful
to his teacher, Boris Dubrovin, for his interest in this project. He will remember with
admiration and gratitude his encouraging guidance.

2. Equivariant exceptional collections and bases

General references for this Section are [GM03,CG10,GK04].

2.1. Basic notions. Let G be a linear algebraic reductive group over C. We denote by

e Rep(G) the category of finite dimensional complex representations of G,

¢ R(G) :=Ko(Rep(G)) (resp. R(G)c:= R(G) ®zC) the ring of finite dimensional complex
representations of G with integer (resp. complex) coefficients.

In particular, for a complex torus T := (C*)i”lwe have F(T)c = Clzi, ..., Zx", For short,
we set Z := (Z1,...,.Zn) andqzi]] =C[Z,.... 2],

Let X be a smooth complex projective variety equipped with the action of G.
We denote by

(1) D(X) its derived category of coherent sheaves, (2) D&(X) its

derived category of G-equivariant coherent sheaves,
(3) Ko(X) (resp. Ko(X)c) its Grothendieck group (resp. complexified),
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(4) K§(X) (resp. K§(X)e ) its G-equivariant Grothendieck group (resp.
complexified).
Any complex of G-equivariant quasi-coherent complexes admit flat and injective
resolutions. From this one can deduce that on D¢? (X) all standard derived functors are well
defined. In particular, we have a well defined left derived tensor product &: Da? (X)xDg?
(X) = D6? (X), and any f: X — Y, morphism of smooth projective

G-varieties, induces left and right derived functors Lfs : D¢? (Y ) = D¢? (X) and
Rf.: DG(X) = DE(Y) 1tis possible to show that all the standard properties of

the derived tensor product, the derived pull-back and push-forward functors are valid in
the equivariant setting. Moreover, all these equivariant derived functors are compatible
with their non-equivariant versions via the forgetful functor 2.

The structural morphism 7: X = Spec(C) endows Ko(X) and K§ (X) with a C-algebra
and an R(G)-algebra structures, respectively. In addition, it induces serveral push-forward
morphisms

1t Ko(X) = Ko(SpecC) = Z, (6 (X) = R(G)

and functors
Rr,: D"(X) = D"(C), Rrl:Dg(X)— D'(Rep(G))
which fit into the diagram
Rn’f:
D (X) —— D'(Rep(())

FxFpt ‘ ‘
Db(X)  DP(Q)

where FxFpt denote the forgetful functors. If V € Ob(D2(X)) we call a Gequivariant

structure on Vany object”” € Ob(DE(X)) such that Fx (V') =V,

2.2. Equivariant Grothendieck-Euler-Poincaré characteristic. The push-forward
morphisms

mx: Ko(X) — Ko(SpecC) ~Z7, w7 K§(X) = R(G)

’

are respectively given by
(V) = Z(—l)'irk HY(X,V) e Z,

(V)= (-1)'[H'(X,V)] € R(G)

where [H/(X,V )] denotes the R(G)-class of the cohomology space Hi(X,V ) seen as a
representation of G. These morpshims define the Grothendieck-Euler-Poincaré

2 For the translation of the theory of derived functors from the non-equivariant setting to the equivariant
one, the reader may consult [CG10, Chapter 5], [BL94] for the topological setting, [VV10, Section 1.5], and also
[LHO09].
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108 GIORDANO COTTI AND ALEXANDER VARCHENKO

characteristic of (the isomorphism class of) an object V , and its equivariant version
respectively. They will be denoted by y,x¢:

X(V) i=mV), xO(V) =al(V),

In both cases, using the duality involutions

(2.1) (=) Ko(X) = Ko(X), Ew— E"

(2.2) ()" K§(X) = K§'(X), Ew E*

we can define a non-symmetric paring, called the Grothendieck-Euler-Poincaré pairing (or
also the Mukai pairing):

2.3) XEF) = x(E'® F), XO(EF) := Y5(E* ® F).
These pairings naturally extend to the complexified algebras-KO (X)c and K§(X )c,
In the non-equivariant case, the pairing y is C-bilinear, whereas in the equivariant case the

pairing x¢is R(G)c-sesquilinear wrt the duality involution naturally defined on R(G)c:
(2.4) (=) R(G)c = R(G)e, [V]—[V7].

That  XC(P1Er paEa) = pipa XO By, Ba) for By, By € K§(X) and py. p € R(C)

is,.
We consider the involutive operation on n x n-matrices

(=)*: Mn(R(G)c) = Mn(R(G)c),
which consists in applying (2.4) at each entry. For A € Mn(R(G)c) we define the matrix At
€ Mn(R(G)c) as follows:
(2.5) (ANap =A%, afB=1...n
If G =T, then the duality involution acts on R¢(T)c =~ C[Z*1] by the formula:

(2.6) A2y =Az"),
where f(Z) = f(Z1,...,Zn) € C[Z*'] and f{Z71) := f{Z17,...,.Zn7Y).

2.3. Exceptional collections in Dg? (X) and their mutations. Given two objects
E, Fe ()1’(D?;(X)), we define

Hom®s (B, F) = Rx€ (E* & F) € Ob(D*(Rep(C}))),

where E*:= RHOII(E,Ox) is the ordinary dual sheaf of E.

Definition 2.1. An object E € Ob(D¢? (X)) is called an exceptional object if and only
if

Homa (£, 1) = CG,

where Cgdenotes the object of Db(Rep(G)) given by the trivial complex one dimensional

representation of G, concentrated in degree zero.
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An ordered collection (Ey,...,En) is said to be an exceptional collection if and only if

« all objects E;’s are exceptional objects,
e and Hom*¢(E;Ei) = 0 for j > i.

The definitions above are the natural equivariant versions of the standard notions of
exceptional objects and collections in D2(X). The following result, due to A. Elagin, gives
an insight on the relationships between ordinary exceptional collections in D?(X) and
equivariant exceptional collections in De:(X), Before stating Elagin’s result, let us recall
that there is a naturally defined operation of tensor product between objects ofng (X) and
DV (Rep(@)): if I € O]’(D}(J:(X))and V * € Ob(D?(Rep(())), the tensor product E Q V
*is defined as the object of Dg,(X) given by

PE-ileV’
2.7) i .

This extends the obvious operation of tensor product between objects of Cohs(X) and
Rep(G).

If Ai,...,An are subcategories of Dg? (X), we denote by(-Al.-- -+ An)the smallest full
triangulated subcategory of D&:(X) containing ArAn.

Definition 2.2. Let E := (E3,..,En) be an exceptional collection inD&:(X), we say that
E is G-full if
(2.8) DL(X) = <E1 ® D"(Rep(G)), ..., E, ® 'D%Rep((i))}

Remark 2.3. Thus the exceptional collection (E4,.,En) is G-full if and only if the
collection  (E1 @ D (Rep(G)),... . En @ D'(Rep(G)))  realizes  a  so-called
semiorthogonal decomposition ofDE):(X), see e.g. [Huy06, Chapter 1].

Remark 2.4. Our definition of G-fullness is different from the definition of fullness of
exceptional collections in triangulated categories. In the paper [BO18], L.Borisov and
D.Orlov studied bounded derived category of T-equivariant coherent sheaves on smooth
toric varieties and Deligne-Mumford stacks. In particular, they described and explicitly
constructed full exceptional collections in these categories. Notice that their exceptional

collections consist of infinite sets of objects, while we collect an infinite set of objects in
one symbol Ei ® DP(Rep(G)).

Theorem 2.5 ([Ela09, Theorem 2.6]). Assume that (E1,...,En) is a full exceptional

collection of D2(X), and each object E;admits a G-equivariant structure Ei. Then, (E1,...,En)

is a G-full exceptional collection in D¢? (X).

Being thus important to know under which conditions an exceptional object of D?(X)
admits a G-equivariant structure, we recall the following result of A. Polishchuk.

Theorem 2.6 ([Polll, Lemma 2.2]). Let X be a smooth projective complex variety
equipped with the action of a linear algebraic connected reductive group G with m1(G)

torsion free. If E € D2(X) is an exceptional object, then E admits a G-equivariant structure,
which is unique up to tensoring by a character of G.
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In the present paper we focus on the case G = T, and the assumption of Theorem 2.6
applies.

Definition 2.7 (Mutations of objects). Let E € Ob(Dg? (X)) be an exceptional object.

For any F € Ob(Dc? (X)) we define two new objects

LeE ReE,

called the left and right mutations of F with respect to E. These two objects are defined
through the distinguished triangles

*(E,F)o B —F LyF,

(2.9) LeF[-1] Hom

(2.10) RpF —— F —"— Hom&(F, B)* @ E Rp 1]

where j*,j+ denote the natural evaluation and coevaluation morphisms.

Remark 2.8. As in the non-equivariant case, it can be shown that the objects LeEReF
are uniquely defined (up to unique isomorphism) by the distinguished triangles above. The
key property is the exceptionality of E. We leave the details to the reader, see [CDGL1S,
Section 3.3].

Lemma 2.9. Let E € Ob(D¢? (X)) be an exceptional object. We have
Hom*¢(E,LeF) = 0, Hom*c(ReEE) = 0, for all
objects I € Oh(Dg (X)),
Proof. Apply the functor Hom*s(E,-) (resp. Hom*s(—,E)) to the distinguished triangle

(2.9) (resp. (2.10)), and use the exceptionality of E.

Definition 2.10. Let E = (£i)i~1 be an exceptional collection inP&(X), For any
integer i, with 0 < i < n, we define two new collections

L(E) : = (Ey-.., LeiEis1, Eiy..., En),
Ri(E) : = (E1,..., Eiv1,RE Ei... En).

Proposition 2.11. For any i, with 0 < i < n, the collections Li(E),Ri(E) are exceptional.
Moreover, the mutation operators L;R;satisfy the following identities:

(2.11) LRi=RiLi=Id,
(2.12) RiRj = RiR;, if |i = j| > 1, Ri+1RiRi+1 = RiRi+1R:.

Proof. The same as in the non-equivariant case, see [GK04], [CDG18, Section 3.3].

Denote by t1,...,Tn-1 the generators of the braid group Bn, satisfying the relations

TiTi+1Ti = Ti+1TiTi*1, TiTj = TjTi, if Ji-j|>1
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We define the left action of Bnon the set of exceptional collections of length n by
identifying the action of Tiwith R, see identities (2.11)-(2.12). For our purposes, we

modify this action, by setting

(2.13) ©i(E) := Rn-i(E), i = 1,..,n — 1, for any exceptional collection
E = (El,...,En).

Remark 2.12. Formula (2.13) is in agreement with the notations of [TV19a], see
Remark 3.3.

2.4. Dual exceptional collections and helices.

Definition 2.13 (Dual exceptional collections). Let E = (Ey,..,En) be an exceptional
collection. Define the left and right dual exceptional collections VE and EV as the collections

(2.14) VE := B(E), B := t1(t211)... (Tn-2...T1) (Tn-1Tn-2....T1),

(2.15) EV:= -1(E).

Proposition 2.14. Let E = (E4,..,En) be an exceptional collection, VE = (VEy,... En) and

Vo Vv RAVAT . . . .
E’ =LY, .., EY) its left and right dual exceptional collections, respectively. The
following orthogonality relations hold true:

. (e h=n k+1,
G(EH:E}Y):{

Hom | k” 0, otherwise,

a(VEr, Ey) = {

Hom

| kO, otherwise.

' b
Moreover, for anyﬁ € Ob (DG(X)) we have the functorial isomorphism (2.16)
Hom*(VEF) =~ Hom*c(EEx")*.

Proof. The argument is the same as in the non-equivariant case, see [CDG18,
Section 3.6].

Given an exceptional collection E, we introduce the infinite family of exceptional
objects called the helix generated by E.

Definition 2.15 (Helix). Let E = (E3,..., En) be an exceptional collection. Define the helix
generated by E to be the infinite family of objects (Ei)iez defined by the iterated mutations

Eisn:= REwn1..REnE, Ei-n:= LEn..LEEj, ez
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Such a helix is said to be of period n. Any family of n consecutive objects (Ei...,Ei+n) is
called a foundation of the helix.

2.5. Exceptional bases in equivariant K-theory. In this Section we focus on the K-
theoretical counterpart of the notion of exceptional collections introduced in Definition 2.1
and of the action of the braid group on them.

Definition 2.16. An element® € K6 (X) is exceptional if
x¢(ee) = Ca
A basis€ = (€))7 of K§(X) as an R(G)-module, is exceptional if (2.17)
Xé(eie)=Cs  xO(ese) =0, forj>1i.
The following result is a K-theoretical analogue of Theorem 2.5.

Theorem 2.17 ([Poll1l, Lemma 2.1]). Let (E4,..,En) be a full exceptional collection in
D5(X). If each object Eiadmits a G-equivariant structure, then the classes ([Ei])i=1 form
an exceptional basis of K§'(X) as an R(G)-module.

Proposmon 2.18. Let IV € Ob(Dg (X)) be an exceptional object. For any
€ Ob(Dg;(X)) we have

(2.18) [LeF] = [F] = X“(E.F) - [E], [ReF] = [F] - x“(EE)* - [E].

Proof. From the distinguished triangle (2.9), and equation (2.7), we deduce

[LpF] = [F] — [Homg(E, F) & E] = [F] — | E[-i] @ H'(X,E* ® F)

= [F] - (Z(1)*H?’(X, E*® F)) (K]

i

Analogously, from the distinguished triangle (2.10), we deduce

[RpF) = [F] — [Hom%(F. E)* ® [EBE i|® H(X,F* ® E)*

= [F] - (Z(—])’H’(X, F* ®E)) E]

This completes the proof.

Definition 2.19. Let ¢ € K6 (X) be an exceptional element. Given f€

-G . . .
K (X), we define its left and right mutations wrt e as the elements

(2.19) Lef:=f—x%(ef) - e Ref:=f- xC(fe)* - e

Lemma 2.20. Let¢ € K¢ (X) be an exceptional element. We have
xi(elef) =0, X°(Refie) =0,
for any f€ Ko%(X).
Definition 2.21. Let50' (X) be a free R(G)-module of finite rank and € := (€:)i=1 an

exceptional basis of K§ (X)), For any 0 <i < n define the two new
exceptional bases
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(2.20) Lie := (e1,...,€i-1,Lei€i+1,€;,€i+2,...,€n),

(2.21) Ri€ := (e1,...,€i-1,€i+1,Rein1€5,€i+2,...,€n).

This construction defines the action of the braid group Bnon the set of exceptional

-G . . . , .. . .
bases of 56 (X ), in which the action of a generator i, i = 1,..,n — 1, is identified with the

action of the mutation Rn-i.

2.6. Dual exceptional bases. Let & = (€i)i“1be an exceptional basis of
K§(X ). Define the left and right dual exceptional bases, Ve and €V, through the mutations

(2.22) Ve := B(e), B := t1(t211)...(Tn-2...T1) (Tn-1Tn-2...T1),

(2.23) &v:=fle

Proposition 2.22. Let® = (¢i)i“1 be an exceptional basis of K§(X), Ve =(Vei)iy

and” = (€)1 its left and right dual exceptional basis, respectively. The
following orthogonality relations hold true
(224) ,)(G(chs G].\{) - §I|.+k.'n+l: Xc(vck'u Ch) - 6h+k.‘n+l’
ge
for k= 1,..,n. In particular, for any? € K§(X) we have

T T
v=> X)) ension, v=3 x(Venv) ention
(2.25) h=1 h=1 .

Proof. We prove the first identity in (2.24), the proof of the second is analogous. We

have

X“(en,ef) =0 forh=1,.,n-k,

by Lemma 2.20.
ire. [ € K§ (X)), ej exceptional and x%(fe) = 0, then x4(fv) = x¢(fLev) for any
ve K§(X) By iteration of this identity, we deduce
)(G(eh’evk) =0, forh=n-k+2,..,n,
and

XG(en-k+1,evk) = x6(en-k+1,en-k+1) = 1.
Identities (2.25) follow from the sesquilinearity of x¢.

Corollary 2.23. Let® = (¢i)i_1 be an exceptional basis ofK[?(X), and G the Gram
matrix of yéwrt €. Then the Gram matrix of y&wrt Ve equals the Gram matrix of y¢ wrt ¥

and equals
J-(Gt)-1+], where Ja8= da+pn+1.

Vo n ..
Proof. Let X = (Xi/)"-1 be the matrix defined by“* “— Zj=1 X k€. Then
X satisfies the equation GX = J by formula (2.24). Hence the Gram matrix of y¢wrt €Y equals

Xt-G-X=J-(GH)1-].
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The case of Ve is analogous.

2.7. Serre functor and canonical operator. A Serre functor K: D?(X) — D?(X) is a functor
defined (uniquely up to canonical isomorphism) by the condition (2.26) HOM-(E F)+ =~

Hom*(EK(E)), E,F € Ob(D?(X)).
We can take

2.27) K = (wx® -)[dimc X]: Db(X) - Db(X),

where wxdenotes the canonical sheaf of X. Analogously, in the equivariant case a
Serre functorK: D&(X) = D&(X) is defined by the condition

(2.28) Home: (B, F)* = gome:(F,K(E)), E,F € Ob(Dg(X)),
We can take
(2.29) K = (wx¢ ® -)[dimc X]: De? (X) - Det (X),

where¥ is the G-equivariant canonical sheaf of X. By abuse of language, we will call
(2.27) (and its equivariant version (2.29)) the Serre functor in D?(X) (and De(X ),

respectively).
The Serre duality (2.28) implies the Serre periodicity,
(2.30) Home:(F, ') = Home (K(E), K(F)),  E, F € Ob(Dg (X)),

Proposition 2.24. LetE = (Ei)i~ 1 be an exceptional collection of length n of

6" (X). The following operations are equivalent, i.e. produce the same exceptional
collection when applied to E:

(1) toacton E with the braid (t1...Tn-1)",

(2) to take the double right-dual exceptional collection (EV)Y,
(3) toapply the Serre functor to each object of E.

Proof. The equivalence of points (1) and (2) follows from the well-known identity of
braids in Bn

(2.31) (t1..T-1)= 52,

where B := t1(t271)...(Tn-2...T1) (Tn-1Tn-2...7T1) is the braid that appears in (2.14) and (2.22),
see [KTO8, Theorem 1.24]. The equivalence of (2) and (3) follows from the functorial
isomorphism (2.16).
Remark 2.25. Note that the element (2.31) of Bnis the generator of its center Z(Bn),
see [KTOS8, Theorem 1.24].
The K-theoretical version of the Serre functor is the so-called canonical operator

ke K§(X) — K§(X ), defined through the identity
(2.32) X(e, f)* =xE(f,k(e), e feKy(X)
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The K-theoretical analog of (2.30), i.e.
233) x“(e.f) = xC(k(e).k(f), e f€KF(X), shows that the

canonical operator k is a y¢-isometry.
Proposition 2.26. Let & = (€:)i-1 be a basis ofK(?(X), and G the Gram

el -G
matrix of yéwrt . Then the matrix of the canonical operator k: K5 (X) = K& (X)wrt
the basis ¢ is equal to

(2.34) G-1Gt.

Proof. It follows from identity (2.32), written in matrix notation.

3. Equivariant derived category, exceptional collections and K-theory of Pn-1

3.1. Symmetric functions. Consider the algebra

+17 +1 +1 S . .
ClZ='] =ClZ{" ... Z7 |of Laurent polynomials in n indeterminates. The
elementary and complete symmetric functions are defined as the elements

k
sp(Z) = Z H Zi;, k=1,...,n,

3.1) 1<iy < <ip<n j=1
my(Z) = E Z{l ...Z;;"-: ke Z-g
i120,...i, >0
3.2. i1 tin=k

Put so=1, mo=1. We have

k

S (—1)'mi(Z)sk-i(Z) =0, k€L
3.3. i=0 .

3.2. Torus action. Let n = 2. Consider the diagonal action of T = (C*)" on the space C".
Such an action induces an action of T on P"-1, the projective space parametrizing the one
dimensional subspaces F < Cn. If (us,...,un) denote the standard basis of C", denote by pt; €
Pr-1 with I = 1,..,n, the point corresponding to the coordinate line spanned by ur. The points

pti, I = 1,..,n are the fixed points of the T-action.

3.3. Derived category. The action of T on C"induces naturally a T-structure on the

structural sheaf Op..1and the tautological line bundle O(-1) on P-1. Any vector bundle

obtained from Op.-1and O(—l) through tensorial operations inherits a “natural” T-structure.

The derived category D?(P-1) admits a well-known full exceptional collection, the

Beilinson exceptional collection
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B := (0,0(1),.,0(n - 1)).

Such an exceptional collection, with its natural T-structure, is an exceptional collection in
Drb(Pn- 1) Its K-theoretical counterpart ([OG = 1])iZ1 defines an exceptional basis of

Kq(P=t) (in accordance with Theorem 2.5, Theorem 2.6 and Theorem 2.17).
3.4. Equivariant K-theory. The equivariant K-theory algebra

K§ (P"~")cadmits the following presentation
Ky(P" e =ClxH, Zil]/(H(X — %))
3.4 j=1 ,
where the variable X corresponds to the tautological line bundle O(-1) over P-1, and the
variables Z1,..,Zn are the equivariant parameters corresponding to the factors of the torus T
= (C)n.
Under the presentation (3.4), the duality involution (2.2) is given by
[(X.Z2) =f(X"1Z7"), feKjP" )

The equivariant Grothendieck-Euler-Poincaré pairingXT on K (P"Veis given by
the formula

(3. 0)

f(Z; 1 Z 9(Z,, Z) -
Z:1 J%a Za/Z _ZREbX Aa

by the Atiyah-Bott equivariant localization theorem [AB84].

fX~1Z7Ng(X, Z)
XTI, (1= X/Z;)

a=1

Remark 3.1. By putting Z; = 1, for i = 1,..,n, in (3.4) and (3.5), we obtain the
presentation of the non-equivariant K-theory of P*-1and its non-equivariant Grothendieck-
Euler-Poincaré pairing.

. . . wr . . ..
The class of the T-equivariant canonical sheaf [wpa-1]is obtained by twisting the class

Xn=[0(-n)] with a character ofn

[whna] =

- in K3 (P"=1)
(3.6) [Ij=1 % .

Lemma 3.2. For ,j € Z we have

m;_i(Z7), i<j,

0, j<i<j+n,
X"([0@), [0()]) =
(—1)”_1??14—}—!!(Z)HZJ' i>j+n.

i=1

Remark 3.3. In [TV19a], instead of the pairingXFrr on K (P! )C, it is studied
another non-symmetric pairing A defined by the formula

Xn
A(f,g) = (f g ()T )
(3.7) )

where/:9 € Ky (P"~")c and m: P! —Spec(C). In [TV19a, Section 6], a notion of

exceptional bases ofhu (") ewrt the pairing A4, analogous to Definition 2.16, is given.
From (2.29), (2.32) and (3.6) we deduce the following relationships between A and x¢:
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(3-8) A(fg) =x"(9.N)"
This implies, in particular, that A-exceptional bases of K5 (P*Ye are exactly
x"exceptional bases, although ordered in the opposite order. Moreover, if we denote by

LT T
LA, IRﬁl(resp.ﬂf)‘/ : R’ the morphisms of left/right mutations wrt A (resp. x"), then
(3.9) LA =R, RA=L1X"

3.5. Diophantine constraints on Gra_n'l[F ma_trilces. In this section, we show that the Gram
matrices of y" wrt exceptional bases of Ko (P"7) satisfy certain Diophantine constraints.

Given G € GL(n,Z[z+1]), denote

(3.10) pg(A) :==det (A- 1 -G 'G") € Z[Z*', )|
Lemma 3.4. We have

G.1D pe1(A) = pa(A)”,

where for any f(ZA) € Z[Z*1,A] we define HZ. N =f (Zilf )‘).

~—1 = A . — -1 1' 1’ — *
Proof. Notice thatpé’_ (A) = det ((A -9 g)) pg()\).

Theorem 3.5- Let € := (€:)i1 be a basis ofK(T(P”_] ), and let G be the Gram matrix

of yTwrt €. The following identity holds true:

n o 70 g
pg(N) =D (=1 X" s ((—1)”’—1,...,(—1)”]' )
(3.12) por ! sn(Z) : .

Proof. From presentation (3.4) and equation (3.6), it is readily seen that the

eigenvalues of the canonical operator k are
net_21 n1_Zn
T
sn(Z) sn(Z),

Then, identity (3.12) follows from Proposition 2.26.

If we expand (3.10) in powers of A, i.e.

pg(N) = (=1)A"p;(G)
(3.13) =0

’

for suitable polynomial functions p;(G) of the entries of G and Gt, from the identity (3.12)

we deduce the validity of n constraints:

Z’.” ) Zn.
(G)=s; [ (=) —— .., —)rtt =) =1, :
my PO=s (0T ) e

If G is a Gram matrix of ', then detG = 1, and we have

1 (—1)" .
; il A
(3.15) b (/\) AT pg()

’

so that

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



118 GIORDANO COTTI AND ALEXANDER VARCHENKO

(3.16) pn-i(G) = pi(G)*, j=0,.,n

Thus, we are left with [%] constraints for the entries of G. Let us write the constraints for n
=2,3,4.

Proposition 3.6. Let € := (e1,e2) be an exceptional basis ofK(T(]Pﬂ ), and let

1
G= (0 f) . g EZZF, 77

be the Gram matrix of " wrt £. Then, the Laurent polynomial g is a solution of the equation
o 2+ Z)

99 =

(3.17) AV
All the solutions of (3.17) are of the form

(3.18) g(Z1,22) = Z1%Z:P(Z1 + Z2) € Z[Z1*,Z2*1], where a3 € Z.

Proof. We have pc(A) = A2+ (gg* - 2)A + 1, and the only non-trivial con-
straint (3.14) is
79 72
gg* —2 = M
(3.19) Z1Zy

which coincides with (3.17). Notice that g is a solution of (3.17) if and only if y :=

a 78 .
g-s1(Z1,Z2)711s a solution of yy* = 1, whose solutions areV(Z1, Z2) = Z1 7, , with a,f € Z.

Remark 3.7. By Lemma 3.2, the matrix G corresponding to the solution (3.18) coincide
with the Gram matrix wrt the exceptional basis ([p & O], [¢ ® O(1)]), where

) ~ +1 741 % . _ ra+l o841
p.q € R(T) 2 Z[ZT", Z5| are characters of T such that? 4 = £} - Zy

Proposition 3.8. Let € = (e1,ez,e3) be an exceptional basis of KPJF(PZ), and

let
1 a b
G=1[(0 1 ¢, abeceZZi' ZF, ZF
001

be the Gram matrix of y" wrt €. Then, the triple (a,b,c) is a solution of the Markov-type
equations
73473473
aa® +bb* +ect —ab*e=3 — %
(3.20) AVAYE
Zs Z-:j Z!j ZS Z‘S Z}J
aa* + bb* + cc* — a*be* =3 — 223 + — 23,,+ 273
(3.21) 212523

Notice that the triple (a,b,c) = (s1(2),52(Z),51(Z)) gives a solutions of (3.20) and (3.21).
The properties of the Markov-type equations (3.20)-(3.21) and its solutions are
discussed in [CV20].

Remark 3.9. In the non-equivariant case, the Gram matrices wrt exceptional bases are
upper triangular matrices with ones on the diagonal and integer entries (a,b,c) satisfying
the equation
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(3.22) az+ b2+ c2-abc=0,

see [GKO04,Bon04]. This Diophantine equation is equivalent to the famous Markov
equation,

(3.23) a%+ b2+ c2-3abc=0,
see [Aigl3]. A triple of integers (a,b,c) is a solution of (3.23) if and only if the triple of
integers (3a,3b,3c) is a solution of (3.22).

+1 7+l ptl

1. b.c € Z[ZT . Zy . Z3 | is a solution of equations (3.20) and (3.21), then putting
Z1=Z2=Z3=1in the Laurent polynomials a,b,c we obtain a triple of integers satisfying the
Markov equation (3.23). For example, the solution

(s1(2),52(2),51(2))

gives the minimal Markov triple (3,3,3). Thus equations (3.20) and (3.21) may be
considered as a Laurent polynomial deformation of the classical Markov equation.

Proposition 3.10. Let € = (e1,e2,e3,e3) be an exceptional basis of Ky (P:j), and let
1 a b ¢

0 1
0 0 1
0 0 0

=N

G = a,bc.dye, f € Z[ZE Z2EF 75 7E

e
f
1

be the Gram matrix of " wrt €. Then, (a,b,c,d ef) is a solution of the equations
aa”™ + bb* + cc® + dd* +ee* + ff*

(3.24) —a*bd* —a*ce® —bef* —d'ef* +a%ed* f*
4y VYAV RAVAV /R AVAVARAVAYA
- Z Z3 Z3 Zi

—2aa™ — 2bb* — 2cc* — 2dd* — 2ee” —2f f*
+ ab*d + a*bd* + ac*e + a*ece* + b ef* + bc* f +de* f + d*ef*
—ab*ef* —a*be* f — be*d*e — b*ede*
+aa” ff* + bb*ee* + ec*dd”
B N W NN
(3.25) 2iZy 7Y 237 ZjZ3 0 7373 2373

aa” +bb* + cc® + dd* + ee” + ff*
—ab*d —ac*e — be* f — de* f + ac*df
VA VA 73 7z}
+ + + +
VAV AV AR AVAY ARV AVAY ARV AVAYA

(3.26)
=1

Remark 3.11. In the corresponding non-equivariant case, these Diophantine
constraints on the Gram matrices wrt exceptional collection reduce to the equations

3.27) a’+ b2+ c2+d*+ e2+ f2— abd - ace - bef - def + acdf = 8,
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(3.28) (af - be + cd)?= 16,

on the integers (a,b,c,def), see e.g. [Bon04]. These constraints may be reobtained by
putting Z1 = Z2 = Z3=Zs= 1 in equations (3.24)-(3.26).
4. Equivariant cohomology of Pr-1

4.1. Equivariant cohomology. Consider the T-equivariant cohomology al-
gebrallT (P"',C). Denote

¢ by x the first equivariant Chern class of the tautological line bundle O(-1) on
Pn-1with its standard T-structure,

e by ? (W1, Un—1) ythe equivariant Chern roots of the quotient bundle Q
(if < is the line represented by p € Pn-1, then the fiber Qpis the quotient C"/F),
¢ by z = (z1,..,zn) the equivariant parameters corresponding to the factors of the

torus T,
¢ by Q the complement in C"to the union of the hyperplanes

z—zj=m, 4,j=1....n, i#j, mek

It is well known that

(4.1)  Hp(P" ' C)=Cla, Z]/<H(J - z,)>
(4.2) = Clz, v, z]e’"—'/ <(u —x) ﬁ(u —yj) — H(fu - z,,)>

a=1
7

where C[x,y,z]5is the algebra of polynomials in x,y,z symmetric in the variables y1,...,yn-1.

The equivariant cohomology HT (P~ '.C) is a module over the ringH7(pt, C) = C[2] gy
setting all the equivariant parameter zi’s to zero in (4.1), we obtain the presentation of the
classical cohomology algebra

H*(P"!,C) = C[z]/{z")
4.2. Extension of scalars. Denote by Oq the ring of holomorphic functions on the
domain Q. This ring is a module over the ring Hr*(pt,C) =~ C[z]. Set (4.3) Hra(Pn-1) :=

Hrt+(Pn-1,C) Q@Hrn(pt0) OQ.

A class % € Hr2(Pr-1) is uniquely determined by the restrictions %|pt;€ Oa at fixed points.

Following the notations of [TV 19a], we will use three different bases of Hra(Pn-1):
(1) the standard basis (1,x,..,xs-1), where Xa:= X%,

(2) the basis (g1,...,gn) defined by
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n

gi = H (x—2,), i=1,...,n—1

4.4) a=i+1 s and gn:=1;
(3) the idempotent basis (As,...,An) defined by the Lagrange inteprolating polynomials
A= H flii’"., i=1,...,n,
(4.5) g T
We have
(4.6) Ai- Aj= 6

4.3. Poincar¢ pairing and D-matrix. Denote by
@7y 0 Hy(P"~',C) x Hy(P"~',C) — Hy(pt, C) = C[z] the

equivariant Poincaré metric given by equivariant integration

eq n 'L'(Zu_, Z)’UJ(Z“: Z) I
(4.8) n(v, w ::f vew = —_————  w,we Hy(P" ", C
( ) pr—1 Z H#u(a’a — 25) il )

a=1
The equivariant cohomology Hr*(P"-1,C) with the equivariant Poincaré metric 7 is a
Frobenius algebra over the ring Hr*(pt,C) =~ C[z]:
(4.9) n(a-b,c)=nla,b-¢), a,b,cec HY(P" 1, C)

By bilinearity, we extend the Poincaré pairing to Hr®(P"-1). The idempotent vectors

are pairwise orthogonal:

1
(4.10) (A, A) =n(A;- A1 =f Aibi; = 0iiXi,  Xii=m ——————
( J ( j»1) - ¥ J l_[j#i(z‘-" — 2_,‘)_

Define the matrix D = (Dja) as the matrix of the base change

n
Ty = ZDf"A}' (8 :U,...,n — 1
j=1

Lemma 4.1. We have

Dja = zj4, a=0,.,n-1, j=1,..,n

Thus D is the Vandermonde matrix

~ 2 Jn—1
1 ~1 Zl 1
%9 ZQ n—1
D=
~ 2 n—1
1 oz, =z, ... =z

Its inverse D-1is
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s (z
(—1)“%()_, 0<a<n-—1
Hm;éj(“j - zm)
(Dil)t'tj -
1
0 oy a=n- 1,
[Lnzi (25 — 2m)

where

si(z) = Z Zrmy e Zma, g

1<my <<y~ <n

M enns Moy — k7] o= 2OA +
Proof. The identity x = z1A1 +++-+zaAn implies the identity o T

i Zn®An.

Lemma 4.2. Let n = (Nap)a,p, With

Napi= U(Xa'xﬂ)'
be the Gram matrix of the equivariant Poincaré metric. We have
0 ifat+pf<n—1

TNap = 1 i,f o+ .‘8 =n — 1:
MatB—n+1 (Z) ’f,f o+ .“3 >n—1.

Proof. It readily follows from the identity DT+ diag(x1,...xs) - D = n.

4.4. Equivariant characteristic classes. Consider a T-equivariant vector bundle V of
rank r on P"-1, with equivariant Chern roots &i,...,&r.

Definition 4.3. Define the graded equivariant Chern character of V as the
characteristic class

Ch. = Zexp(?wﬁéj) € H¥ (P 1)
J

=1
Example 4.4. For V=0(k), k € Z, the graded Chern character Chr(V) is the class
chr(O(k)) = exp(~2my/~Tk)
This is the element of Hr®(P"-1) whose restriction at the fixed point ptris

exp(—2r —1 ), for =1,...,ny kz I

Lemma 4.5. Let” € K¢ (" ")c and Q(2) € C[z¢1]. We have
Chi(Q@)V) = Q(Z )Che(V), 2 = (777171, TV Te)
Proof. By additivity it is sufficient to prove the lemma for a monomial Q(Z) =
2y 2 T (&) are the equivariant Chern roots of V, then (& + ZJ 10452
are the equivariant Chern roots of Q(Z)V .

Definition 4.6. Given any meromorphic function F on C, holomorphic at 0, with Taylor
expansion of the form
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o0
F(t) =1+ Fyt"
k=1 ,

we define the F-class of V as the characteristic class

Fv) =T #)
=1

Remark 4.7. We consider only the vector bundles V and functions F(t) such that#'(V)
are elements of Hr(Pn-1).

Definition 4.8 (Gamma classes). The I'*-classes of V are defined as the characteristic
classes of V obtained from the Taylor expansions

P(1£1) = exp (?}'t + ;(ZFl)RQ&fC)f’“)

, Deﬁlnitions 4.3, 4.6, 4.8 naturally extend to objects of the equivariant derived category
Dy(P"1)

A1
We will denote it by Fr.1. Since the Chern roots of TP1are (Ya — )52 , such Remark

4.9. If V = TP-1, the F-class of Vis called the F-class of P-1, a class is given by

n—1
ﬁp-ﬂ_1 = H F(y, —x)

a=1

This is the class whose restriction at the fixed point? tr is Ha#f Flza — 21 ). It is an
element of Hr*(P"-1) if F(t) has poles only at points of Z. This is the case for

T+
=

5. Equivariant quantum cohomology of Pn-1

5.1. Equivariant Gromov-Witten invariants. For a given d € Hz2(P"1Z) and given

integers g,m = 0, denote by M (P, d) the moduli stack of genus g stable maps to
Pr-1with degree d and m marked points. We assume that either d > 0 or 2g + m > 2 so that

My (PP d) g non-empty. The

T-action on P*-linduces a T-action on Mgm(P"-1,d). Given m cohomological classes

Y1,..,Ym € Hr*(Pn,C),

scendant Gromov-Witten invariantsand integers d4,...,dn € ZzO, we define theof Pn-1to be

the polynomialsgenus g, degree d, T-equivariant de-
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(1)
eq m
PPl T d * .
<T”'L (’h )T *r0 Tdm (f}/”? ))g‘n.‘d = f_ . H Jl."u;'j Pv; (’TI) S HT(pt‘ C)
My (PP ) 575
where

o [Mym(P"~1d)f" € A, (Mg m(P", ), with Dyir:= nd+(n-4)(1-
g) + m, is the equivariant virtual fundamental class?,

. ﬂ (]Pm.—l d) - ]P)n‘—l . . . .

e the map evi g,m ’ is the evaluation at the j-th marked point,
which is T-equivariant,
o the classes?i € AT(Mym (P4, d)) denote any equivariant lift of the first

Chern classes of the universal cotangent line bundles Ljon Mgm(P"-1,d).
We refer the interested reader to the expository article [LS17], and references therein, for

details. If all di’s are zero, then the polynomials above are called primary equivariant
Gromov-Witten invariants.

5.2. Equivariant Gromov-Witten potential. Consider the standard basis
n—1 . ) — .
(Za)a—o of Hy(P" I*C), seen as at1T (Pt C).module. Denote by t:= (£9,...,.t71)

the corresponding dual coordinates onHR (P, C), so that the generic element of
Hy (P4, C) i

n—1

Y= Zt”iu

a=0

P T ~
Consider the generating function £y € Hy(pt,C)[t",...,t"] = Clz] M, called
equivariant Gromov-Witten potential of P»-1, defined by

P"— 1 T ]P,u 1 T
F t} - E 2 :an . (] m,d

m=0 d=0 m t1mes$%
n—1 v v
_ AL o \PULT
TTI’ (l“’l."" :‘1‘(1'm>0.m,d
(52) m=0d=0ay,...a,,=0 ’ s

]P'n.— 1 ,T
Theorem 5.1 ([Giv96, Theorem 3.1]). The function o (t) satisfies the WDV V -
equations
OJF}]P" ! T (}_{F[P“ ! T OJFP" ! T O.jﬂpnil,T
oo oworor — 0vorPoR . DmoPDE.

5.3. Equivariant quantum cohomology. The big equivariant quantum product *
defined by

3 Its existence is ensured by the properness of Mgm(P"-Ld). From this property, it also follows that

equivariant Gromov-Witten invariants are polynomials in z, see [LS17, Section 3] and references therein.
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*r "
To kT = Seoran | Fu
(5.3) Ap ,
defines on Hq;(]P"“*l.C)ﬂt}] a Frobenius algebra structure, namely a commutative,
associative algebra with unit (the element 1) whose product is compatible with the
equivariant Poincaré metric (4.8), that is

(5.4) n(axb,c) =nla,bxc), a,bcec Hp(P" 1 C)

This algebra structure on Hl‘r(lpni1 O] is called the big equivariant quantum
cohomology of P»-1, It gives an example of a formal Frobenius manifold [Man99, Chapter
II1]. The quantum product (5.3) is a deformation of the product in classical cohomology.

It is customary to denote the big quantum product also by *tto emphasize its dependence
on parameters t'’s.

5.4. Quantum connection. The quantum connection of the equivariant quantum
cohomology of Pr-1is defined by the formula

5.5, Vi HP O] - HyPLO)[E], a=0,...,n—1

K

o)
vqmlut e 0
(56) an TR ot

— T *g,
where k € C*is the spectral parameter. The associativity of the quantum multiplication *t,

i.e. Theorem 5.1, is equivalent to the flatness condition of the quantum connection Vauanty

, for all K € C*:

5.7) 'Vquantaic, Vquantgx ( = 0, apf=0,..n-1, K € Cx,

The system of equations for flat sections of the quantum connection is called the system
of equivariant quantum differential equations.

Definition 5.2. The T-equivariant topological-enumerative morphism is the element
S(tx) € End(Hr(P" 1, C)[¢] [+ ']

defined by the formula
NSt k), v) = (. v)
oo 00 n—1 : : Pl T
d=0m=0 ey ,...,00,,, =0 m! A K=

U\m+2.d’

X mn—1 Lo 1 .
where: v € HR(P"™1,C), ¥ := c1(Ln+2) and the term =¥ has to be expanded in

. > pip—i—l
power SCIIGSZJZO L .

Definition 5.3. The (big) T-equivariant J-function of P"-1is the cohomologyvalued
function defined by the identity
5.8) n(J(t. k). a) = (L S(t,K)a), ac H(E",C)
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Theorem 5.4 ([Giv96,Giv98]). For any k € C*, and any® € H’ﬂ.‘(Pﬂ*l:C), the
cohomology class

S(tx)a

is a flat section of the quantum connection Vauanty, , namely it satisfies the following

system of differential equations
a ]
(59) hWS(t K)o =x5% S(t,k)a, B=0,...,n— 1.

Proof. The validity of equations (5.9) is equivalent to the topological recursion
relations in genus 0 for Gromov-Witten invariants with descendants [Wit90]. For the proof
in the non-equivariant case, see [Dub92], [Dub96, Lecture 6], [Dub99, Lecture 2], [CK99,
Chapter 10], [CDG20, Section 7]. For the adaptation to the equivariant case see [Giv96,
Section 6] and [Giv98, Sections 1 and
2].

5.5. Small equivariant quantum product for Pn-1,

Definition 5.5. The small quantum product of P"-1is obtained by specializing the

parameters ti’s of the big quantum product (5.3) as follows: t= 0 for
i#£1

It is customary to put q := exp(t!) and to denote by #*q the small quantum product.
Following the notations of [TV19a], we denote by #q. the small quantum product,

underlining its dependence on the equivariant parameters z.

A detailed study of the equivariant Gromov-Witten invariants of P"-1 (and more
general flag varieties) and its small quantum cohomology can be found for example in

[GK95, Kim96, Mih06]. For a fixed g € C*, the small quantum product operator

(510) Tkg z H% (]P-n,f] ! (C) = Hr]?- (]P)nf 1 , C)’

is the C[z]-linear morphism defined by the identities

(5.11) Tkgz Ty =Tjp1, J=0,...,n—2

(5.12), Tagztna =g+ (1) 7 si(2)an
i=1

where si(z) are the elementary symmetric polynomials in z.

Remark 5.6 In the basis (g1,...gn), the operator x*q,.is given by
(5.13)  Xx*q29i=zigi+ gi-1, i=2,.,n(514) X*q.g1=7191+

qgn.

5.6. R-matrices and gKZ operators. For a,b € {1,..,n}, with® 7 b, we define a family

of C[z]-linear operators, called the R-matrices,
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ar) . o mn—1 e mn—1
Raop(u): HR(P"=,C) — Hp(P ,(C)'

depending on a parameter u € C, and defined by the formulae

Rap(w)gi := gi, 1 # a,b,
erh(”')gb = Ga, Hr,;,(u)g“_ =g+ UGq,

The R-matrices satisfy the Yang-Baxter equation

Rab(u = V)Rac(u)Rvc(v) = Rbc(V)Rac(u) Rap(u — v),

for a,b,c all distinct, and the inversion relation

Rab(u)Rba(—u) =1

Define the operators Ej,..., En such that

Eigj:= bijg;.
Define the gKZ operators Ki,..., Kn by the formula
(5.15) K;: HyP" ', C) — H%(IP’"*I.(C)'
(5.16)

Ki:= Rii-1(zi -zi-1-1)...Ri1(zi —z1 —1)q-ERin(zi —zn)... Rii+1(zi —zi+1).

5.7. Equivariant qDFE and gKZ difference equations. Consider the vector bundle H over
the base space C", with fiber over zo given by the equivariant cohomology algebra (4.1)
specialized at z = zo, i.e.

HyPLo)l
(5.17) x > ).

Denote by pr: C* C" C"the natural projection. Consider the pull-back vector bundle pr*H.

The quantum connection described in Section 5.4 defines a differential operator

d
V, 4 . = Kqg— — T*g
(5.18) Tdq " dq "

s

acting on sections I(q,z) of the vector bundle pr*H. Following [TV19a], we fix x = 1.
The (small) equivariant quantum differential equation (gDE for short) of P»-1is the
differential equation

d
Vot =t 1(a,2) = (qd—q - ir*q\z) |

s

(5.19)
where I is a section of the vector bundle pr*H. The gqDE is thus the equation for flat sections

of prH.
Definition 5.7. Fix ¢ € C*, z,2" € C" Define the isomoprhism of vector spaces
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. K * n -
nz.z’ L pr IIq.z —r pr lr[qr,.’c" T q.z = .’?,a‘q_z, (520) B

a=0,....n—1.
for

Definition 5.8. Fix4 € C*, z,2" € C" For j = 1,..,n, define the isomorphisms of
vector spaces

(5.21) Oz pr'Hyz = prify . gyl

s

for j = 1,..,n, where g;’s are the elements of bases (4.4).
Forz e Cn, i=1,.,n, we use the following notations:

(5.22) zt = (z4..2i %
1,...,Zn) € Cn,

(523) @iz,i: = @z,z::: pl"*Hq,z

— pr+Hgzs, (5.24)

pr«Hgz:— pr«Hg,z.

For every fiber pr*Hg.we have the gKZ-operators Ki,.., Kx defined by equation (5.16).
Definition 5.9. Fix q € C*, z € C". The gKZ-discrete connection on the bundle H is
given by the datum of the isomorphisms of vector spaces

(5.25) 0-zi ° Ki(q,z): pr«Hgz— pr«Hgz:-.
The system of difference equations

(5.26) 1(q,z1,-,2i = 1,...,Z0) =*0O72i ° Ki(q,2)+1(gz), i=
1,..,n,

is called the system of the gKZ difference equations. These are equations for flat sections
for the gKZ discrete connection.

Theorem 5.10 ([TV19a, Theorem 3.1]). The joint system of equation (5.19) and (5.26)
is compatible.

Remark 5.11. The gKZ difference equations (5.26), can be written in the equivalent
form
(5.27) I(qg,21,...,2+1,...,2,) = [0F , 0 K[(q.2)| I(q,2), i=1,..., n,

where the operators
(5.28) Kl(q,z) := tO.,0K,(q, z;*')f1 o @:,
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act on the fiber pr*Hg.. In terms of the R-matrices we have
Ki(q,zi+)-1=Ri+1,i(zi+1 - zi— 1)...Rni(zn - zi— 1)qE~
(5.29) * Ryi(z1 - zi)...Ri-1i(zi-1 - zi).

Remark 5.12. The gKZ operators are defined in the g-basis (4.4). That basis is the limit
of the stable envelope basis of the equivariant cohomology of the cotangent bundle T+P"-1,
in the limit, in which the equivariant cohomology of the cotangent bundle TP~ turns into
the equivariant cohomology of the base space P"-1. See [RTV15] on the stable envelopes
for the cotangent bundle T*P"-1, see [GRTV13, Section 7] and [TV 19b, Section 11.4] on
that limit.

6. Equivariant gDE of P"-1and its topological-enumerative solution

6.1. Equivariant quantum differential equation. We consider the
equivariant quantum differential equation (5.19) written wrt the standard basis

(-’?Ew):i;(y namely,

0 0 g+ (—1)"ts,(2)
v ' 10 0 (=1)"2s,-1(2)
(6.1) (—:A(Q,Z)Y, Alg,z): ==~ |9 1 0 (=1)"3s,_0(z)
dq q :
1 s1(2)
We have
1
Alg,z) = Ao + - A (=
6.2. (0.2) = Ao+ A=)
where
0 0 1 0 0 (=1)""1s,(2)
0 0 0 0 1 0 0 (=1)""2%s,_4(2)
A= |0 0 0 0 A(z):= |0 1 0 (—1)"3s,_2(2)
0 0 1 s1(2)

The eigenvalues of the matrix A1(z) are exactly zi,..,zn, as it easily follows from Viéte

formulae. Notice that A1(z) denotes the matrix of equivariant multipilcation

op(P"1,C) —» H3(P""',C), fera-f,

whereas Ao represents the quantum correction terms of the product. Moreover, we have
6.3. D - A1(z) - D-1=Z:= diag(zy,...,Zn),
since the classes Ai’s are the idempotents of the equivariant cohomology algebra.

The differential system (6.1) has a regular singularity at ¢ = 0 and an irregular
singularity (of Poincaré rank 1) at g = .

6.2. Levelt Solution.
Theorem 6.1. There exist unique n x n-matrix valued functions (Gk(z))l?il,

meromorphic on C*and regular on (Q, such that the gauge transformation
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(64)  Y(q.2)=G(q.2)Y(q.2), Glg,2)=D" (ﬂ + ZGA.(z)q'ﬂ)
k=1 ,

transforms the differential system (6.1) into the differential equation
d
Ay _lgy
(6.5) dq q
Moreover, the formal power series G(q,z) converges to a meromorphic function on C x C,
regular on C x ().

Proof. Let us look for a formal gauge transforrnatlon

Y =D7'GY, G(q.2) Z Gz
k=0 s
which puts the system (6.1) into the simplest normal form

v o1 -
v =-ZY.
dq g
This requirement implies the following equation for G:
dG 1
DAD™ C"— — + [Z,G] =0

’

which reduces to the following recurrence equations for the coefficients Gi’s:

(6.6) ZGo= GoZ,
6.7) DAoD-1Gk + [Z,Gk+1]-(k + 1)Grs1= 0.
Equation (6.6) is satisfied if and only if Gois diagonal. So we may choose Goto be

For k 2 1 equation (6.7) uniquely determines Gk+1in terms of Gk. Indeed, the linear

operator

wp: M, (C) = M,(C), X w—[Z,X]-(k+1)X,
has eigenvalues zi— zj— (k + 1), ij = 1,..,n, which are nonzero, since z € (). Hence, ¢«

is invertible, and we deduce

Gk+1= ¢p-k1(-DAoD-1Gk).

The power series G(g,z) is convergent. This follows from the regularity of the singularity
q =0 of (6.1). The proof is standard, e.g. see [ Was65,Sib90,MS16].

Corollary 6.2. For (Gk(z))f-c:l as in Theorem 6.1, the matrix valued function
o
Y,(q,z) =D7! (Il +> Gk(z)q“') q
k=1 ,

is a solution of system (6.1). For each fixed z € Q, the function Y, is a fundamental system

(6.8)

of solutions.
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We call the fundamental solution Yo the Levelt fundamental solution, following the
terminology of [AB94, Chapter 2].

Fix (g,z) and increase the argument of q by 2m. The analytic continuation of the
solutions of (6.1) along this curve produces the monodromy operator Mo(z) on the space
of solutions.

Corollary 6.3. The Levelt fundamental solution Y,(q,z) is an eigenbasis for the the
monodromy operator Mo(z). The matrix of the monodromy operator Mo(z) wrt the
solution Yo(q,2) is

(6.9) My(z) =exp (2nvV—-1Z)
Proof. We have
Y, (fazwmq?z) =Y,(q,2)My(2z), My(z)=exp (27r\/—1 Z)

6.3. Topological-enumerative solution. Recall the topological-enumerative morphism
S(tx) of Section 5.4, where t = (¢9,¢4,..,t"-1). Denote

(6.10) So(q) := S(0,l0gg,0,...,0,1),

where the last argument is k = 1. We call S°(q) the restriction of S(tk) to the small
equivariant quantum locus.

Define the equivariant cohomology valued functions Wtop1(q,2),..., Propn(g,z) by the
formula:

(6.11) Wiopm(q,2) := S°(q)xm-1, m=1,.,n

By Theorem 5.4, these functions are solutions of the equivariant quantum differential

n—1
equation (5.19). Let Yiop(g,z) be the matrix of the operator S°(q) wrt the basis (Ta)a—o:

n—1

\DLOP-‘!H (q Z) = Z[}/mp(q~ Z)];LR:(V: m=1,... , T
(612) a=0

The matrix Yiop(g,z) is a solution of the matrix differential system (6.1). We call it the
topological-enumerative solution of (6.1).

Theorem 6.4. The topological-enumerative solution is the unique solution of (6.1) of
the form

(6.13) Yiop(q,2) = ©(q,2)qr12),
where

- @(q.2)= 1+ @)’

The coefficients ®;jare holomorphic on (), they are related to descendant Gromov-
Witten invariants through the equation
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prolT
Ly ) .
(I’J(z){);_<"r“—)> nf’\1 JEN>U- CI,)\:O,...,TI—I

(6.14) 02,

Here i is the first Chern class of the universal cotangent line bundle Lz on the

moduli space Mo2(P"-1) at the second marking. Furthermore, we have

Ytop(q,Z) = Yo(q,Z) . D,

where Yo is the Levelt fundamental solution of (6.1) described in Corollary 6.2 and D is
(6.3). In particular, for each fixed z € Q, the matrix Yiwp(g,z) is a fundamental system of

solutions of (6.1).

Proof. For a € Hr*(P"-1,C) let S°(q)a be the corresponding solution of the gDE. We

obtain

pr—1T
oo n—1 -
o T a q.‘.la 1
swo=rrar3d 3 ()
02,4

d=1 A,p=0
by using the divisor axiom for descendant Gromov-Witten invariants, see [CK99, Chapter
10]. Notice that
[ |

Yop(@2)= \ +  &2)d/ ¢
[ \
-\ + CID;(z)qi/ .D " !.D qu(Z) D 'D
[ \
- \p1, q)i(z)D-lqj/ qD-A 1(z)D 1 D,
j=1

# &

$
Yo % z)
where in the last line we used (6.3). The uniqueness of a solution of the form (6.13)
thus follows from the uniqueness of the solution Yo, in Corollary 6.2.

6.4. Scalar equivariant quantum differential equation. Let Y be a fundamental solution
of the differential system (6.1). Then, the matrix Y := n-Y -n~11is a solution of the
differential system

dy -
— = A(g,2)"Y.
(6.15) dq

This follows from the Frobenius algebra property (5.4).
Equation (6.15) can be reduced to the scalar differential equation
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d
d q

n—1
(6.16) Uyo = (g+(=1)" "su(2)) o+ D> (1) suj(2) 0, Dy =g

that will be called the scalar equivariant quantum differential equation of P-1.
Given n linearly independent solutions (¢3,...,.¢on) of (6.16) one can reconstruct a
fundamental matrix solution Y" of system (6.15) by setting
(Y)i' = t?fj"@;‘., h=0,....n=1, k=1,...,n.
Remark 6.5. In the non-equivariant limit z1 = -+ = z, = 0, equation (6.16) reduces to

the equation 973 @ = q¢,
which coincides with the scalar quantum differential equation of P-1,

9 = 5)" b, ds = g—
.-;O (?1‘1) (’) b SdS,

under the change of variables g = s”. The monodromy of this equation has been studied in
[Guz99,CDG18].

Theorem 6.6. The matrix

aq as ap
. ¥,0q Dgae ...  Yya,
— —1\T
Y(g,2z) = : : (D)
9gn—1 n—1_ 9gn—1
(6.17) g~ tar 95 lay ... U a, ’

where

o0
1
(6.18)  a;(q.2) = ¢ (”Zq"’ —— ) o
d=1 H?:l Hrrz:l(;f -z + m)

is a fundamental matrix solution of the differential system (6.15). The corresponding

solution nt Y . of the -equivariant differential system (6.1) is the

topologicalenumerative solution,
Yiop(q,2) ="1-1- V" - .

Proof. Equation (5.8) implies that the components, wrt to the standard basis
(24 )3:1, of the J-function, restricted to the small equivariant quantum locus, are solutions
of the scalar equivariant quantum differential equation (6.16). The small equivariant J-
function of P-1, computed by A.Givental [Giv96], B.J.Lian, K.Liu,

S.-T.Yau [LLY97] is given by the formula

J(q.z) =q¢" (1+qu ! )

d=1 1—1 Hm l{r — 2+ ?Tl)

We have
1 1
r=) zAj, 1=ZA-"" m:ZaAv
i i )

J=1 J=1

for any ai € C*. We deduce
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1
J(q,2) 1+ qu re— )
( o T I X (2 — 2z + M)A
1
1+ qf.’ )
JZ; =1 H H'm 1( — Zi +7FE)A‘.

(1+ZZQ”H,, y A;

d=1 j=1 i=1 L lm=1\% — % +T”')

=q"

g

1
qr 1+ q(i AJ
J ( ; Hﬁ]:l(zj _Z(+m))

=1

1
— 1 d AJ
Z:: ( +;q | 1(~.fzf+"’”))
— 1
= 1+ D_l agj Ty
5 S ( > —z,:+m))( ap

If we define

1
aj(q, z 1+§ qd )., j=1,...,n,
( d=1 171 Hm l( — % +TTL)

then the matrix

a1 a2 e iy
f’(q, 2= 19,1.(1,1 vya2 ... -ﬁq.an (DA)T
ola 9 lay ... 0la,
is a solution of the differential system (6.15), and the corresponding solution
Y p

is the topological solution of system (6.1).

7. Solutions of the equivariant gDE and qKZ difference equations

7.1. g-Hypergeometric Solutions. In this section we define a fundamental system of
solutions of the joint system of equations (5.19) and (5.26) described in [TV19a].

Definition 7.1 (Master and Weight function). Define the master function ® and the
H3 (P, C)yalued weight function W by the formulae
(7.1)
n—1

P(t,q,2): = VT & ( —TV-ln ) HI‘ —t), Wi(t,y) H(y, —t)

a=1

Recall that y3,...,yn-1 denote the equivariant Chern roots of the natural quotient bundle Q on

Pn—l,

Remark 7.2. Notice the difference in the definition (7.1) of the master function ® with
respect to [TV19b] and [TV19a]. In [TV19a, Section 4.1] the master function is defined as

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



qDE AND qKZ EQUATIONS FOR A PROJECTIVE SPACE 135

D(t,q,z) = (6”‘/7_](27”@)1' ﬁ ['(zg — 1)

a=1

i.e. differing from (7.1) by the extra factor exp(my/—1(2t + 3701, %)), 1n [TV19b] the
general case of partial flag varieties is considered. The master function in [TV19b, Section
11.4] (see formula (11.16)), specialized to the case of project%ye spaces, is

n t
'ip(tv q, Z) = 67‘”’\/7_]25:1 Zi (8771- 7]”(]) H r(za - f)

a=1

Thus it differs from the function @ in (7.1) by the factor exp(2mv—=1371 2i),
Definition 7.3 (Jackson Integrals). Define the Jackson integrals W), J = 1,...,n, to be the
Hy(P e C)-valued functions defined on C/«xQ by the formula

Vilqy,z):=— {B.es O(t,q,z)W(t,y)
7.2. e R :

Here C/-is the universal cover of, C*.

Theorem 7.4 ([TV19b]) The functions W)(q,y,z) with J = 1,..,n are
differential equation/ (5.19) and of the gKZ difference equations (5.26). These

funcholomorphic on C« x Q. Each of them is a solution of the equivariant quantum tions
form a basis of solutions of this joint system of equations.

We will call the solutions W;the g-hypergeometric solutions.

Remark 7.5. Notice that in [TV 19a] the system of gKZ equations differs from the one

considered in [TV19b] and in this article by a sign in the rhs of (5.26), due to the different
normalization of the master function ®.

Corollary 7.6 ([TV19b, Formula (11.19)]). The g-hypergeometric solutions
Y;admit the following expansion

. oo
\:[",_,v(q.:i"(j z) = (%W‘/__IZ;":l Zi (e—‘n'\/—_lnq) ! H l’(1+z(,fz";) (AJ + Z ll",r‘;\._(z)q‘l‘)
aF#J k=1

’

where the classes Wjk(z) are rational functions in (z1,...,zn), regular on Q.

Define the matrix Ygnyp = ([Yg-nyp] )y by the formula

n—1
‘l’,f = E [Yq—llypk} Loy J= L...,n,
a=0

then Yg.hyp is @ fundamental matrix solution of the differential system (6.1).

Theorem 7.7. The connection matrix C relating the topological-enumerative solution
with the g-hypergeometric solution,

yq'hyp(qu) = YtOP(qIZ) -G
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is given by the formula

67"\/?1(_"’:34_2:1:1 zi) H ]"(] + 2 — 7})
(7.3) C=D-1-diag a7 =1,

This matric C is the matrix attached to the morphism
(7.4) p: HR(P"~1,C) — HF(P"Y), v VI Ty,
where we fix

Aj)j

¢ the basis ( i=11in the domain of p,

« the basis (7 u)u =0in the target space of p.

Proof. The proof follows from Theorem 6.4 and Corollary 7.6. Notice that

n n—1

e (P = Zz‘,- —nx, T'[JPT,L_I = H M1+y, —x)

i=1 a=1

Each term of the entries of the diagonal matrix in (7.3) can be indentified with the
multiplication by these classes wrt the basis (Aj).

Remark 7.8. The functions Wiopm(g,z) defined in (6.11) are not solutions of the gKZ
difference equations (5.26), since the matrix C given by (7.3) is not 1-periodic in the
equivariant parameters zi,..., Zn.

7.2. Identification of solutions with K-theoretical classes. Following
[TV19a], we introduce the symbols
(7.5) T .= exp(2my/—11), Z,,u =exp(2nyv/—1lzy), J=1,...,n.

Definition 7.9. Let Q(X,Z) € C[X*1,2*1] be a Laurent polynomial. Define

Volg, y,z) ZQZ] (a0,y,z)

The function Wy is a solution of the joint system of equations (5.19) and (5.26). If Q(X,Z)
= Xm, we denote the corresponding solution Woby Wm, i.e.

n
= g VAR'S
J=1 .

Remark 7.10. Notice that ¥ in [TV19a] equals of exp ( W\/_E’ 1= 3) w2
this paper. This is due to the difference of normalizations of the master function, see
Remark 7.2.

Theorem 7.11 ([TV19a]). There is a well-defined morphism from K'E(Pn_l)cto the
space of solutions of the joint system of equations (5.19) and (5.26), defined by the

association
Q = ‘I’Q

under the isomorphism (3.4).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



qDE AND qKZ EQUATIONS FOR A PROJECTIVE SPACE 137

Corollary 7.12 ([TV19a, Corollary 4.4]). For any k € Z, we have

n

S ()" s (Z) W gy, ) = 0
(7.6) =0 ,

where si(Z") are the elementary symmetric polynomialsin Z”.

Theorem 7.13 ([TV19b, Theorem 11.3]). For any¥: (¥*7(¢,4.2))i55 is a basis of
the space of solutions of the joint system (5.19) and (5.26).

Remark 7.14. The idea that space of solutions of the gDE and gqKZ equations is
naturally identified with the space of the K-algebra can be observed in [TV97a, TV97b]
and was implicitly discussed there.

7.3. Module Sn of solutions.

Definition 7.15. Define the space Sn of solutions to the joint system (5.19) and (5.26)
of the form
> Qv (4. y,2), Qe C[ZT]
(77) m=1 .

The space Snadmits a structure of a C[Z*1]-module, the multiplication by Q(Z) being defines
as the multiplication by Q(Z").

By Corollary 7.12, the module Sn contains all the solutions ¥™(q,y,z), m € Z.
Corollary 7.16 ([TV19a, Corollary 4.6]). The module Sn contains a basis of solutions

of the joint system of equations (5.19), (5.26). Moreover, the map 0: Kg(P* 1) = S,
defined by the formula

(7.8) 6(Xm) := Wm(q,y,z), m € Z, defines an isomorphism of C[Z*1]-
modules.

Using the isomorphism" 8 we define a sesquilinear form on the module Snas the image

of the y -form onfS6 (P~ Y)e, The notions of exceptional bases and the action of the braid
group on them can be lifted to Sn.

7.4. Integral representations for solutions. For p € C, let us denote by C(p) the parabola
in C defined by the equation

Clp):={p+ t2+tv/—1:te R}

Given a point z € (), take p such that all the points z1,..,zx line inside C(p). The value of the
integral (7.9) below does not depend on a particular choice of p, so we will simply denote
C(p) by C(2).

Lemma 7.17 ([TV19b, Lemma 11.5]). For any Laurent polynomial Q(X,Z) we have
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. Vola..2) = 5= [ Q. 2ea Wiy

(7.10) B

W (g,y, %) = % Lo e T 1_11 [(20 — 1) :f_[l(-.u_,» ).
(9,2z) € C* x 0 -

where the integral converges forany ~ mt =" | In particular, we have

Remark 7.18. These formulae differ from the corresponding ones in [TV19a]. See also
Remarks 7.2 and 7.10.

7.5. Coxeter element, and elements yn,0n,0dd, Oneven € Bn. The Coxeter element of Bnis

the braid

(7.11) C:=T11T2..Tn-1 € Bn.

For any n = 3, let

{ n—1
£, =
, for nodd,

| kn -2, forneven

Sety2:=1, and forn =3,

B == ThThg1 - Ta—1,  Vn = Be,Be,—2... 00,
Define also

Onodd = T1T3...Tn-2, Oneven = T2T4...Tn-1, for n odd,
On,o0dd = T1T3...Tn-1, Oneven = T2T4...Tn-2, for n even.

The elements C, ¥n, Onodd, Oneven satisfy the following relation.

Lemma 7.19 ([TV19a, Lemma 6.3]). We have the following identity in Bn:
(7.12) On,even Onodd Yn= yn C.

7.6. Exceptional bases Qr, Q% Q% ék'v @i (njf For any k € Z, we define the basis Q«
of solutions of the joint system (5.19), (5.26) to be the basis
(7.13) Qk:= (Whn-1,., Wkl Wk,

Lemma 7.20. The basis Qkis an exceptional basis of Sn. Via the isomorphism

0: Kg(P"1)e — S, it is identified with the exceptional basis

O(k +
Ol.[0(k - obtained from the Beilinson basis ([O(i)])!=) g[)]l([o( k;])l
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of Ko"(P"1)cby twisting it with
R[O(-k-n+1)].

Proof. It follows from Corollary 7.16.
For any k € Z, we define the exceptional bases@i and Qy through the mutations
(7.14) Q= 1Qr,  Qf = 0n.0aa@}
Proposition 7.21 ([TV19a, Lemma 6.6, Corollary 7.2]). The basis Qxand

Qobtained fromk-1 are related by the so-calledCQby multiplying its last element bymodified

Coxeter map(-:1)this means thatn+1sn(z-1). Moreover,@k-1is

k
’

. Q-1 . -6 Q" o
the basisn is obtained from the basisYn even'<'r by multiplying its last vector by
(-1) +18n(Z-1).

Renrlark 7”22. Our bases @k @} €} have the same elements as the bases
Qr—1, Q1. Qx_1 of [TV19a], but ordered in the opposite way, see Remark 3.3.

Introduce three more families of exceptional bases of Sn, denoted bka: Q- QX For
k € Z define

(715) ka = C_kéﬂ ) Q:. = f}’nék: é:: = 61110(1(1@’;"

We have by formula (7.12). The =, - ~,
Qkfl = I even&i

diagram

6", (o] 67!, even
(7.16) Qv — 8, G- 1
¥Yn Yn

ék @k— 1

is commutative by Lemma 7.19.
c

Remark 7.23 Notice that the pre-image of a basis Qk via the isomorphism

0: K§(P")c — Suis a foundationO - OEx—of the helix generated by the BeilinsonO 2

exceptional collection ( ( n+1),.., (1), ). In particular, Exis the adjacent foundation to the
left of Eo: by Proposition 2.24, the objects of Enare obtained by applying the Serre functor
to objects of Eo.

For any?: M € Zguch that 0 < m — € <n_denote
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(717) P (f) T Sl(z)qjm—l + + ( l)m_fsmfg(Z)lIJf_ . _

The explicit formulae for@) and @ follow from [TV19a, Section 6.3], Remarks
7.10and 7.22. If n=2h + 1,
we have

« the basis @k is the basis in which the solutions Wk ., Wk+h stay at the positions
2h+1,2h-1,..,1, and the solutions Wk+2h(f+1),Wk+2h-1(f+ 2),..., Wkeh+1(k + h) stay
at the positions 2h,2h - 2,..,,6,4,2, respectively;

« the basis @kis the basis in which the solutions Wk ., Wkh stay at the positions
2h,2h-2,..,6,4,2,1, and the solutions Wk+2h(k),Wk+2h-1(k+ 1),..., Pk+h+l(k+ h - 1)

stay at the positions 2h + 1,...,5,3.

If n = 2h, we have
« the basis @k is the basis in which the solutions Wk ..., Wk+h stay at the positions
2h,2h-2,..,4,2,1, and the solutions Wk+2h-1(k+1),Pk+2h-2
(k + 2),..., Pk+h+1(k + h - 1) stay at the positions 2h - 1,...,7,5,3;
o the basisins the basis in which the solutions k..., Wk+h-1stay at the positions 2h
-1,..,5,3,1, and the solutions Wk+2h-1(k),Wk+2h-2(k + 1),..., Pk+h(k + h — 1) stay at
the positions 2h,...,6,4,2.

The bases @i @% can be obtained from the bases Qiﬂ(?ﬁby application of the
following rule.

!

Rule 7.24 The basis o) (resp., Q”) is obtained from the basis@
on

(reSp.,Cl:);c':) m g

by substituting any solution. 2 ¥ () with2

((_1)n+13‘”(z))”‘ 11!'“([{')’
where a € Z is such that
O<m+an<n-1.

Example 7.25. Let n =5 and k = -1. We have

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



qDE AND qKZ EQUATIONS FOR A PROJECTIVE SPACE 141

= (U 00 W2(0),55(2)0 1, W3 (—
. Via the isomorphism 0. K%F(]ID” De = Sn
(2—1 - (q,l}q,?( )'-\DD (0)1 1)
QLl = (([J],\;[JQ(I):\D“ (0)155( ) ])1
Qzl = (lI}lslIJOHIIJQ(U)’LIJ 11‘"1}3{ 1))
Q 1),

Theorem 7.26 , the solution (L)
corresponds to the K-class of the exceptional object

/\,,,,4 T(—m) = (/\”JFT) ® O(—m)

’

placed in 4 _,, degree.HereT denotes the tangent sheaf of P*"1 with its natural

T-equivariant structure.
Proof. Let IV = C"be the diagonal representation on T described in Section
3.2. Consider the Euler exact sequence, together with its exterior powers

(7.18) 0 0V®0(1) T 0,
0 T AN Veo@2) — AN T——0
0o— AT ———N'Veoh) — N'T——0
0— AT —AN"'Veomn-1) — O(n) 0

Each morphism in (7.18) is T-equivariant. In equivariant K-theory we have

43nT5=43nV® 0(h)5 - 43r-1T 5 =sn(Z)[0(h)] —43n-1T5,

for h = 1,..,n. By induction, we obtain

[/\h T] =+ 20(1 )'5;(2)103)]

’

where the sign is + for even h, and - for odd h. The result follows from identity
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(7.17).

0: Ki(P"~Y)e — S,
the basesCorollarnymQﬁ 7.27correspond to the. For any k € ZK, via the isomorphism-

classes of the following T-fyll exceptional, collections:

(1) Ifnisodd, the basis@k corresponds to

e e i e e IRARA S R

. /\7174T(—k_n+2): O(—k—1), /\n 2T(—k—n+l), O(—k),

1"
and the basis@x corresponds to

o(—k—n;l).o(— +1), /\ET(—A:—T‘EI ) o(—gs—”;lwz) .....

n—1

Lok, N T (k—n+2), ok, N T(-k-n+1).
(2) If niseven, the basis Q% corresponds to
n n
0(—1{—5),0( A——+1) A T( - ) 0(—k—§+2).“.,

: /\11—4 T(*k I 2) ‘ O(*k B 1): /\n—2 7—(7}\; —-n+ J.), O(fim)’

and the basis @% corresponds to
n n n
O(-k=2+1), T (-k=2), 0(-k=2+2), AT (-k-3-1),...,
Ok =1, N T (k—n+2), 0=k, N T (—k—n+1)
In these exceptional collections, each of the objects O(m) sits in degree 0 and each of the

h
objects N T(m) sits in degree —h.
Q.

Proof. It follows from Theorem 7.26 and the description of the bases given
above.

D.:

Corollary 7.28. The objects corresponding to the elements of the bases QF fare
obtained from the objects corresponding to the elements of the bases Qi Qy thW|st|ng
their T-equivariant structures.

More precisely, for a € Z define the T-characters

Nve oV

(719) a times , ifaz= 0,
/\HL’*@...@/\HV*
(720) —a times ; ifa< 0,

where V =~ Cnis the diagonal representation of T. Given m € Z define a € Z from

(7.21) O<m+an<n-1.
¥
Then the T-equivari’ant , structure of any object O(=m) or A" T(—m)
corresponding to bases Q5 QY must be tensored with the corresponding character

defined above.

Proof. It follows from Corollary 7.27 and Rule 7.24.
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7.7. Asymptotic expansion of bases@r and Qiin sectors Vi and Vi
Following [TV19a], introduce the coordinates (r,¢p) on the universal cover C* of the
punctured s-plane C*:

(7.22) g=s", s=re ™ >0 ek
Lemma 7.29 ([TV19a, Lemma 5.1]). For m € Zand ¢ € R such that

m . .m
——1<o<—

(7.23) n ' n,
we have the asymptotic expansion as s =
(7.24)

n—1

} 7 n o e Thy sttt
\I’m(sn‘y!z) — %eﬂ\/—l ez (ﬁ Vv 1wg;:ns) 1 p) (:n-an (1 + 19, (l))
S

Jn
2my/—1
Cp = HXP( - )

’

(= TTrgs) =272 — 7 — 21 jarg (7T Gs) | <
where arg " , SO that).

i — k1 .k

Consider o dseC S o Bl the sectors
n 2 2 n
(7.25)
~ 1
Vf—{aefC*: ————— <ob<——%}

(7.26),
for k€ Z.

Let us recall the main result of [TV19a] concerning the asymptotic expansion of the
bases@h: @, ,
Theorem 7.30 ([TV19a, Theorem 7.1]). The elements of the basis of solutions Qs

1
(resp. Qr.) can be reordered to a basis (£m (" Y. 2))71,Zo with asymptotic expansion
(7.27)

n—1 n n—1
s oy izt o T .
Im(s”.y,z) - meﬂ' 11X, = (C_ _1"’(‘::18) 1 2 eﬂbc.. (1 + 0O (l))

’

n oo, gn_l
( —/—= 'JTCIH )Zf:l #13

’

fors = 00 and s € Vy (resp s € VY) Here, for defining
N log; (e ¢rs )

the following choice of the branch of '

\/_Tr(‘m g

n "

is done: for every m the

arg(e=V—Im({mg

)is chosen so that] 5)] < when @ tends

2k—m—1 k
(1) to % inside( S F), for the case of 0,

argument of(

2k—1 2k—n—2 2k—1 1"
(2) to S5 inside ( 2n ' 2n ) for the case of @k
( - = ‘iTCIN )
In both cases, the argument of ~/is continuous for ¢ in the intervals above.

In terms of the bases @ a1d Q)22 we can recast this result as follows.
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Corollary 7.31. The elements of the basis of solutions @ (resp. Qif) can be reordered
n n—1
to a basis (1 (5", 4, 2)) 10 with asymptotic expansion

o) 5 poamd m 1
28) In(s"y,2) = T omnvmTagt (emg st e (14 o (1
(1.28) Tn(s",9,2) = “= eV (G ( +0(5))

fors > ooand s € Vi (resp 5 € Vi) Here for defining
determination of the argument of ({»™s) is chosen, i.e. arg( Cn

(C‘mb)zr—| zi+nT_l

m‘ ) — 2,”.m

, the principal
2mep.

Proof. From Lemma 7.29 and Theorem 7.30, we have that, for any m € Z, the element

o (10(2)
S

i (€) of Q admits the following expansion onVi:

@2n)T T
\Ilm(f)(s"‘,y, Z) = " s1(=) ( ‘iT ~m S)
Vo

(QW) :or 71.q|(z)( —/=1r m+rn|5) z)+”_

o= (o)

0O<m+an<n _1.

(0 I

where a € Z is such that

) / .
Thus, we have the following asymptotic s —ooand s € Vi expansion

for
(Cemy D+ g (0 (57 y, 2) =

n_1
(2"‘1—) : e~ -T2 ( ’1’n+{m )Bl(sz 5 ﬂsC;'_"' (1 +0 (l))
NG s))

((:;:'n.)xl(Z)+"'—;|,l,'rn.(f): (( l)n 1 Sn Z}) ‘-I"“ }
Notice that -

is the element onizobtaiwned the element " (£) of ¢} by applying the Rule 7.24. This

proves the statement for@%. The same argument applies for@.
8. B-classes and B-Theorem

In this Section we prove the B-Theorem, one of the main results of this paper.

8.1. Morphism B.

Definition 8.1. Define the morphism of complex vector spaces B:
KE(B")e - HE (P

by
8.1) B(F) = f,ﬂ,fn,l -exp (mv/=1ey (P* 1)) - Chy(F)

See Section 4.4 for the definition of the characteristic classes in the r.h.s. of (8.1).

8.2. B-Theorem. Consider the space S , of solutions I(g,z) of the equivariant

quantum differential equation (5.19) that are holomorphic wrt z in €. The space S nis a
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module over Oa. Since elements of Sncan be seen as element of S ;, the isomorphism
0: Kg(P") = Suof Corollary 7.16 induces a map
0: Kg(P"~1) — 7,
The restriction S° of the topological-enumerative morphism, defined in (6.10), allows us to

. -1 .
associate an element of S , to any element of H (P4, C), By extension of scalars, there
is an induced morphism
SO HE(P"=Y = 7, aw 8%(q)a.

Theorem 8.2 (B-Theorem). The following diagram is commutative:

K’(’]][‘(IF)'H.—I )\C HTSI‘E (]P)n.—] )

b

So 6

Sn

In other words, if " € K§ (P*)e and O(F) € Snis the corresponding solution to the
joint system of equations (5.19) and (5.26), then the meromorphic functions hx;(z), with
j=1,.,n, defined by the identity

O(F) =3 by (2)Wiop.
(8.2) =1 ,

o L _1 .
are the components of the equivariant cohomology class B(F) wrt the basis (-T*r»);\i:u, i.e.

(F) = hx ()2
(8.3) B =1 .

Remark 8.3. The relation between 8(F) and the equivariant-topological solution is the
equivariant version of part 3.b of [CDGI1S8, Conjecture 5.2] for P"1, see also
[Dub98,KKP08,GGI16]. Notice that this is also a refinement of Gamma Theorem of
[TV19b].

Proof. We prove the statement of the theorem for a basis in K (P""Y)c, Then the
result for an arbitrary element!” € Kq (P" ") follows by linearity and Lemma 4.5.

For k € Z consider the basis ([O(-k - n + 1)],..,[0(-k - 1)],[0(-K)])

s - — - = -1
in Kg(P" e, s 0-image in Sn is the basis (\I; )m=0k+” Lmn  Let Yrvk =
A
([YTV‘I"’]”E)/\-Wbe the matrix defined by
Phtn—l-m _ Z[YTv_k];\,, zy, m=0,..., n—1
A

For z € Q, the matrix Y1vis a fundamental system of solutions of system (6.1). The matrix
Crv,kconnecting the basis Yrvkwith the topological-enumerative solution Yiop,

Ytvk= Yiop: CTvk,

equals
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— n—1
Crvik=C- diag(OXp(zﬂ- —1(k+n-1- 'm')z”wl))m.:n, where C is given

by (7.3). This shows that Crvkis the matrix of the morphism

B with respect the bases ([O(-k -n+1)],..,[0(-k -1)],[0O(-K)]) and (Zc )(r 0.

This concludes the proof.

9. Formal solutions of the system of gDE and qKZ equations

9.1. Matrix form of gDE and gKZ difference equations. The sections
(q,2) = xalg=, a=0,...,n—1
of the bundle pr*H, introduced in Section 5.7, define a trivialization of pr*H. This
trivialization, allows us write the joint system of the qDE and gKZ difference equations
(5.19), (5.26) in matrix form.
For a basis 11(q,z),... 1x(g,z) of solutions to the joint system (5.19), (5.26), introduce a

matrix Y (q,z) = (Ym*(q,2))am, with @ = 0,..,n - 1, m = 1,..,,n, by the formula:
n—1

'm Q’, ZK::Q’ZI(}{‘,Z m:'l....,n.
(91) a=0

Then Y (g,z) is a fundamental system of solutions of the joint system of equations
d
—Y q,z) = A q,z Y q,z

0 1Y (07 =AY 0:2)

9.3) Y (qzynzi- 1,.,20) =K i(q,2)Y (¢,2),

where A(q,z) is the matrix (6.1) attached to the operator x*q. wrt the basis (X«)a, and the

matrix K (q,z) is the matrix attached to the isomorphism (5.25) wrt the basis (X)e.

Remark 9.1. The sections
(Q.‘z)'_)gjlq.27 _]':1_....,”:
define another trivialization of pr*H. In this trivialization, the gKZ difference equations are
9.4) Y(q.21,-... zi—=1,...,2) = Ki(g,2)Y (¢,2), i=1,...,n,

WhereKi (q,’\z) are the matrices of gKZ-operators (5.16) wrt the basis (gj);and the matrix Y
(q,2) is defined by

Notice the difference between 9.3) and 9.4).

qu E mng]jqza m=1,...,n

In Section 6 we studied equation (9.2) only. Now we will study the joint system of
equations (9.2) and (9.3). As a result of this Section and Section 10 we will deduce the
following theorem. (For its precise statement see in Theorem 9.6 and Corollary 10.14.)

Theorem 9.2. Consider the joint system (9.2), (9.3) of the gDE and gKZ equations for

Pr-1, This system is equivalent at g = oo, up to change of variable g = 5", to the system
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(9.5) az _ _uz,
ds

(9.6) where (s, 21,0y 2i— 1o 2n) =K 2(s,2), j=1,....n,
U :=diag(n¢®, ..., n¢" 1),

IC; = diag (C,",C,n_l, cey QH_(”_U) , j=1,...,n,
b (Qﬁ\/—l)
n ’

Cn :

The theorem says that after a formal transformation, the system of gDE and gKZ
equations becomes a system with constant coefficients and separated variables.
Moreover, the system splits into the direct sum of systems of rank one.

System (9.5), (9.6) admits the basis of solutions
0

7 _ i (.' — )/ — " :, .
Zi(s,z) =exp (ng” s+ " Z Za 1.t i=1,....n.

a=1
0

All solutions of system (9.5), (9.6) are linear combinations of these basis solutions with
coefficients 1-periodic in z1,...,Zn.

The formal transformation which realizes the reduction to system (9.5), (9.6), will be
described in the following subsections.

9.2. Shearing transformation. The singularity at g = oo of the differential system (6.1)
is irregular of Poincaré rank 1. It is known [Was65,BJL79a,MS16, LR16] that (6.1)

admits a formal solution of the form

on Y= (s2) e (P(o.2)

where
¢ v € N is the degree of ramification of the singularity,
_1
e @ is an n x n matrix-valued formal power series in¢ * of the form

® (qf,z) =3 ,(z)g7F, detdg(z) #0

=0 ,

¢ Ais an n x n-matrix depending only on z (the exponent of formal monodromy),

1
o P=diag(py,..,pn) where eachPi (¢, 2)isa polynomial in g.1of the form

% s Z p‘]f li s 2 1
To find the formal solution Yform, we perform the gauge transformatlon of (6.1) defined by
©3) Y(g.2) = Ho)- T(a.2). Hla):=ding (La %.....q7"F)
called the shearing transformation, see [Was65, Section 19]. The function T satis-

fies the differential equation 2
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dT ~ dH

— =Aaulq.2)T, Ay = H'VAH-—H'—

9.9) dq dg

Explicitly, the entries of Ashare given by
(.A,,-h);; = q%(saaﬁzl + quﬁln‘ﬁu.ldﬁ.n
i ) s d _1

+ Z(il)AJ+1S.f (z)(sf1+j-7ﬁ-+l§3.nq ' " + 50;‘3. n qil
j=1 ’

~ for a,f = 1,..,n. With the change of variable q = s7, the function T(s,z) :=is a
T(s",2)  solution of the equation

(9.10) %T(s,z) =B(s,2)T(s,2), B(s,z):=ns"""Ax(s", 2)

Lemma 9.3. We have the following expansion for the coefficient B(s,z):

1 T 1
(9.11) where B(s. ) = Bo + JBa(2) + ; = B,(2)

0 ... 0 n
(9.12) n 0 ... 0 0
Byi=|0 n 0 0
n 0
0
(9.13), 1
2
/ 0 Bi(z) == 0 0
n—2

n—1+nsi(z)

j\IIIIIIIII e ,-/IIIIIII\lIII

9.14) B():= 00 00 (-1) ons(z) , j=2,.,n

By the shearing transformation (9.8) and the change of variable q = s”, we have
reduced the equivariant quantum differential equation of P*-1to the equation
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dT
(9.15) Ts = B(s, z)T.

Equation (9.15) has an irregular singularity at s = co of Poincaré rank 1. The essential

difference between differential systems (6.1) and (9.15): the matrix B(s,z) has the leading

term Bo with distinct eigenvalues

ug :=nl G, i=exp (271- 1) , E=1,...n,
(9.16) n while the

matrix A(g,z) has the nilpotent leading term Ao(z).

9.3. The E-matrix. Let (e1,..,en) be the standard basis of C*. Let* na be the bilinear form

on C, with matrix

(9.17)  (na)ap= On+1,a+pwrt the standard basis.
For fixed z € Cn, consider the C-linear endomorphisms Bo,B1(z) € End(Cn)

(9.13)defined, in the standard basis, by the matrices. Introduce the matrix E € GL(n,C),

Boand B1(z) of equations (9.12),

1 (-1 (2a—1)y-1x o
(9.18) (o = ﬁe}‘p( " ) . ai=1,...,n, -
inverse
1y ! (i —1)(1 = 2a)y/~1m e |
(9.19) (€7 )ai = 7 exp< - ) . ai=1,....n.

Lemma 9.4. Define the basis (fi,...,fx) of C"by

fj ::Z(g_‘])”je!'ﬁu j:]-!"'!n)

a=1
then
(1) The basis (f1,....f2) is orthonormal wrt the bilinear form na.
(2) The basis (f1,...fnn) is an eigenbasis of the operator Bo.
(3) Foranyfixedz€eC,
n—1 .
na (Bi(2)fi, fi) = s1(z2) + ——, i=1,...,n.

2
Proof. The statements are equivalent to the identities

9:21) (ED)™naE=,

* Here the subscript “cl” stands for classical. The matrix 7, indeed, appears in the study of the quantum
cohomology of P"as the classical Poincaré metric. See Remark 9.5.
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(9.22) E Bo E-1=diag(us,...,un),

n—1

£Bi(z) £ = (Sl(z) + ) 1+ B*(2)

(9.23)

where Bedis an off-diagonal matrix, i.e. (B°d)ii= 0. A straightforward computation shows
the validity of these identities.
Remark 9.5. The matrices Bo, nc.and E appear in the study of the quantum cohomology

of Pr-1seen as a Frobenius manifold, see Appendix B for details.

9.4. Formal reduction of the system of gDE and qKZ equations.

Theorem 9.6. There exists a unique n x n-matrix G(s,z), of the form

(9.24) G(s,z) = H(sM)E-1F(s,z)sA®,
with
(9.25) H(s") = diag(1,s7%,...,s~(n-1)),
> Fi(z ~
Fam =1+ 22 f
(9.26) k=1
polynomials,
, — 1
Az) = (sl{z)+n ) -1,
9.27) 2 such that the
transformation
(9.27) Y(s", z) = G(s, 2) Z(s, z)
transforms the joint system (9.2), (9.3) of qDE and qKZ equations to the system
A
Y _uz, ,
(9.28) ds = diag(nds’,....n{n"1),
(9.29) Z(s,21,,2j = 1,...,zn) = Kj(2)Z(s,2), j=1,.,n,

where the matrices Kj(z) are diagonal and polynomial in z.

Proof. The theorem follows from Theorem A.l of Appendix A, after shearing
transformation (9.8) and change of variables g = s". Notice that Assumption (1)(4) of
Theorem A.1 are satisfied: see Lemma 9.3, Lemma 9.4, the expression of gKZ-operators
Ki’s in the g-bases (5.16) and Remark 9.1. in the proof of Theorem A.1 and the fact that2

The functions Fkare polynomial in z: this follows from the procedure described

¢ the matrices Bo(z),..,Bn(z) are polynomial in z, e the

matrices U and E do not depend on z.
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The matrices K j’s and K;’s are related by the identity
(9.30)
Ki(2) := SF(5, 2102 1,...,20)EH(s7)-1K j(s"2) H(s")E-1F(s,2), for j = 1,..,,n. This implies

that the matrices Kj(z) are polynomial in z. Corollary 9.7. The following identity holds true

Kj(z) = Res (€ H(s) ™ 75(s" 2)H(s) €7) (g, 3,

any

Proof. Since the series F(s,z) has the form (9.25), from (9.30) we deduce that

K,(z) =s (11 +0 (%)) (€ H(s)~ . 7;(s", 2)H(s) E) (11 +0 (%))
=5 (€ H(s)"".7;(s", 2)H(s) £1) (Jl 10 (1)) .

S

Hence,

£ Hs) L 7 (sm 2H(s) £ = KE) Lo (})

s

9.5. Formal solutions of the system of qDE and gKZ equations at q = co. Consider the
system

2 _uyz,
(9.32) ds

(9.33)  Z(sz1,.,zi— 1,..,zn) = Kj(2)Z(s,2), j = 1,...,n, in Theorem 9.6.

Lemma 9.8. Let C(z) be a meromorphic n x n-matrix-valued function on C, regular
on  and with non-vanishing determinant. The following conditions are equivalent:

e The matrix C(z) is a fundamental system of solutions of equation (9.33)
only, over the ring of 1-periodic functions in z;

2 The matrix Z(s,z) := exp(sU)C(z) is a fundamental system of solutions
of the joint system of equations (9.32), (9.33), over the ring of 1-periodic functions in
z.

Proof. We have
(9.34) [Kij(2),exp(sU)] = 0, since both exp(sU) and Kj(z) are diagonal.

1 imples (2): Let v(s,z) be a column vector satisfying both (9.32) and
(9.33). Then there exists a unique column vector c1(z) such that v(s,z) = exp(sU)ci(z),
since the columns of exp(sU) give a C-basis of solutions of (9.32). The vector c1(z) is a
solution of (9.33) by (9.34). Hence c1(z) = C(z)c2(z) for a unique column vector cz2(z),
which is 1-periodic with respect ot zi,..,za. This shows that exp(sU)C(z) is a system of
fundamental solutions.
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2 implies (1): Equation (9.34) easily implies that C(z) is a solution of the
equation (9.33) only, and moreover C(z) is a fundamental solution.
Theorem 9.9. Let C(z) be an n x n-diagonal-matrix-valued function, meromorphic on
Cn, regular on Q and with non-vanishing entries on (. The following conditions are
equivalent:

(1) The matrix C(z) is a fundamental system of solutions of the difference equations
(9.33), over the ring of 1-periodic functions in z;

(2) There exist meromorphic nxn-matrix valued functions (Fr(2))32 regularon (),

such that the matrix

(9.35)  Yform(sn,z) = H(sn)E-1F(s,2)sA@)eus,

[o2¢] P
F(s,z)=0C(z)+ Z ’S{Jz)
(9.36) j=1 "
is a formal solution of the joint system of the qDE and qKZ equations for Pn-1,
d n n— n ST
(9.37) Y (5" 2) =ns" A", 2)Y (5" 2),

(9.38) Y(s",21,...,2; =1, .., 2,) = F5(s", 2)Y (5", 2)

Moreover, if such a formal solution exists, then it is unique.
Proof. We have

(9.39) [sA®els,C(2)] = 0,

since both sA®eUsand C(z) are diagonal. Let

G(s,2) = 'H(s")fl(ﬂ + 30 D) )u
k=1

(9.40)
be as in Theorem 9.6.
1) implies (2): By Lemma 9.8, the matrix Z(s,z) := exp(sU)C(z) is a solution
of the joint system (9.32), (9.33). By Theorem 9.6, the matrix

©.41) Yior (5™, 2) = G5, 2)Z(s. 2),

is a formal solution of the joint system (9.37), (9.38). By (9.39),Yﬁ.'rm(f"ﬁ ' Z) can
be re-written in the form (9.35), with Fk(z) := Fk(z)C(z) for k N*.

2) implies (1): By (9.39), we have 2 €

(9.42) Yeorm(s",2) = G2(s,2)eVsC(z),
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G(s,z) = 7—{(3"‘)5‘1(11 + i W).‘;A(z)
k=1 '

2 .
(9.37) into (9.32). Hence, it automatically transforms the joint system2 (9.37),
(9.38) Thus, the gauge transformation Y (s7,z) = G(s,2)Z(s,z) transforms the gDE
into (9.32), (9.33), see the proof of Theorem A.1.
The function Z(s,z) := exp(sU)C(z) is a solution of the joint system (9.32), (9.33). By
Lemma 9.8, one concludes.
The uniqueness of the formal solution follows from Theorem 9.6: we have

(9.43)

G2(s,z) = G(s,z). Example 9.10. Let us consider the case of P1. The original system of
qDE and gqKZ equations is the following

d _ L0 g—=22
qu(QVZ) - q (1 21 +ZQ Y((Lz)

V(g2 —1,2) = 1 ( —Zy  q— 22 )Y{q,z)

b2
—_

Through a formal gauge transformation Y (s%z) = G(s,2)Z(s,z), the system above can be
reduced to the system

%Z(s,z) - ((2) “2> Z(s, 2)
Z(s, 21 —1,20) = (g] _01) Z(s. 2),

1 0

Z(s,21,20 — 1) = (U 1) Z(s,z).
The formal gauge G(s,z) is given by
, F e
G(s,z) = H(s*)E! (Jl + A=) + =) +. ) M=)

s 52

where

1 | 1
(13)7 5_1: ( f )1 A(Z): (2 +Zl+32) 1
H(s?) = diag®  ° 2 V2

s

S-S

and the coefficients can be computed recursively as in the proof of Theorem A.1. Here we
give just the first coefficient Fi:

Fl.l Fl.2
Fy = -
! ( Fio —Fis )

iy =s0(z) - 1_1() (2s1(z) +1)%, Fio= 7% (2s1(2) + 1).

Notice that Corollary 9.7 allow us to compute directly the coefficients K1,K2:

where

I B oz 4 1_ z1z V=I1(z1422) \/*_?;'122
£ H(s) " H(s%2) His) €7 = e R T P
B 253 B 252 232 + _213_% s

’
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1 oy 2 -
EH(s) L #5 (s z) His) E71 =
—atza 4 1z V-T(zitze)  V—1z129
— 252 E 252

I 253 253
—1z320 vV —1(z1+22) —z1420 4oz 1
253 252 252 253

5

By Corollary 9.7, we obtain that
1 0
K@) =K = (o )
Notice, in particular, that both K1 and Kz are equal constant matrices: in Corollary

10.14 we will prove that this is the general property valid for all projective spaces Pn-1.

10. Stokes bases of the system of gDE and gKZ equations

10.1. Stokes rays, Stokes sectors. The solution Yiorm (5", Z) described in
Theorem 9.9 is formal: the series F(s,z) is typically divergent. Nevertheless, Yeorm(s", 2)
contains information about genuine solutions of the differential system (6.1). The formal
solution prescribes indeed the asymptotics of genuine fundamental solutions of (6.1).

As in Section 7.7, we use the coordinates (7;¢) for the universal cover C* of

the punctured s-plane C*, see equation (7.22). /

Definition 10.1 We call a Stokes ray any ray in the universal cover C* of the

s-plane, defined by the equation. /

-

=—, keZi
(10.1) ‘ 2n’ € .

We will denote the ray in (10.1) by Re.
The meaning of Stokes rays is explained by the following lemma.

Lemma 10.2. A number ¢ € Ris of theform o= 5) = Re(C™2s) and my #
“ = \bdn el 1

n

k/2n for some k € Z, if and only if there are integers O

mi1,mz such that Re( mz (mod n).

Definition 10.3 We call Stokes sector any open sector in C* which contains

exactly n consecutive Stokes rays. Rk...,Rien for some k € Z. /
Lemma 10.4. Any open sectorV C T of width ™+ c* 5, i.e. of the
1
form V:{SEC*:(L2§<Q<Q}
(10.2) / , aEeR,

is a Stokes sector for § > 0 sufficiently small.
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The following theorem follows from the general theory of differential equations.

Theorem 10.5 ([Was65,BJL79b,Fed87,Sib90,FIKNO06]). Let VE C/*be a

Stokes sector, and let Yform(s%z) denote the unique solution described in Theorem 9.9.
There exists a unique fundamental solution Y (s»z) of the differential system (6.1)
satisfying the asymptotic condition

(10.3) Y(s", z) ~ Yigem(s™,2), s—00, s€ v

uniformly on compact subsets of (). The asymptotic expansion (10.3) can actually be
extended to a sector wider than V, up to the nearest Stokes rays.

Remark 10.6. In the notations of Theorem 9.9, the precise meaning of the asymptotic
relation (10.3) is the following: _
VK eQ, VheN, VYWCV, 3C, , 5 >0: if s € V\ {0}

Il ho1

sup 4 H LK‘hj
E-H(s) -V (s,2) - exp(—sl)s A — 3~ ()
€K m=0 s ‘Slh
then

Here V denotes any unbounded closed sector of C/«with vertex at 0, and Fo(z) = C(z). Here,
for defining sA(, the principal branch of logs is chosen.

Lemma 10.7. The sectors Vi V::-’, defined by (7.25)-(7.26), are maximal Stokes sectors
wrt to the inclusion, i.e.
(1) they are Stokes sectors,

(2) any Stokes sector V is contained in one (and only one)V£: or Vy/,

10.2. Stokes bases and Stokes matrices. Consider a bas1s (£i(s", Y, 2))i~10f solutions

of the joint system (5.19) and (5.26), and denote byY( Z) the corresponding matrix-
valued function defined by

n—1

(5" vy, 2) ZY ‘.§2,, B=1,...,n.
(10.4) a=0

The function Y (s7,z) is a fundamental system of solution of the joint system (9.2) and (9.3).
Denote by Yform(s%z) the unique formal solution associated to a diagonal matrix C(z)
described in Theorem 9.9.
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Definition 10.8. We say that a basis (£i(s",y.2))i_1 of solutions of the joint system
(5.19) and (5.26) is a Stokes basis with normalization C(z) on a sector V if it can be
reordered in such a way that the corresponding matrix-valued solution Y (s7,z) satisfies the
asymptotic expansion

(10.5) Y(s", z) ~ Yiorm (8", 2), §—o00, s€V

’

uniformly on compact subsets of Q. The matrix Y (s7z) is called’ the Stokes fundamental
solution with normalization C(z) on V of the joint system (9.2) and

(9.3).

Remark 10.9. By Theorem 10.5, if V is a Stokes sector, and C(z) is a fixed
normalization, two Stokes bases on V differ only for the order of their objects. Thus, by
abuse of language, we will refer to the Sp-orbit of Stokes bases on V as the Stokes basis on
V. Furthermore, it €V (or VY , resp.) then the Stokes basis on V is actually the Stokes

basis on Vi (or V! , resp.), by Theorem 10.5.

Notice that if V is a Stokes sector, then alsoe™ ~'V ande®™V 1V are Stokes sectors.

Definition 10.10. Let Y (5":2) be the Stokes fundamergltal solution (with
normalization C(z)) of system (6.1) on the Stokes sector V. Let Yi(s". z , and

Y2(smz), be the Stokes solutions one™ "V and onﬁgﬂ‘/__lv, respectively. Define the
Stokes matrices attached to V and C(z) as the matrices S1,S2 (depending on z € Q) for

which we have

(10.6) Yi(s",2)=Y(s",2)S;, Ya(s",z)=Yi(s",2)S2, s€ C*, z¢c Q
10.3. Properties of Stokes matrices and lexicographical order. Let V be a Stokes sector,
and let (£i(s", 4. 2))i_1 be the Stokes basis of the joint system (5.19) and (9.3) on V with
normalization C(z). Each element I corresponds to one eigenvalue uj= ndyw, j = 0,..,n — 1.
Any ordering of the eigenvalues u;’s (i.e. any permutation of the diagonal entries of U)

corresponds to an ordering of the elements /i’s. Correspondingly, the Stokes matrices S1

and Sz attached to V transform by conjugation by a permutation matrix.

Proposition 10.11. Denote by S3,S2 the Stokes matrices computed wrt the Stokes
sector V. There exists a unique order of the entries of U such that for all z € Q the matrix
S1(resp. Sz) is upper triangular (resp. lower triangular) with ones along the diagonal.

Proof. The reader may consult [Was65,BJL79b,FIKN06,MS16,LR16].
See also [CDG19,CDG18].

5 Here we introduce this convenient terminology, though not standard in the literature of ordinary differential
equations.
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The order which realizes the upper triangular form of Si (and consequently the lower
triangular form of Sz) is unique, since %i #uj for i #J  and it will be called the
lexicographical order wrt the Stokes sector V.

tities hold true fo& anys € ¢* and z € Q:
(1) Y2 (¥ “15)",z =Y (s", z) exp 2m —_lA(z)
(2) Y2(s", z)=_ Y(s", z) $1S2 L
B)Y (€ "),z =Y(s",z) exp 2 -1A(z) - (5:152) .

Proposition 10.12. In the notations of Definition 10.10, the following iden-

Here A(z) is the exponent of formal monodromy, i.e.
n—1

Alz) = A(z) = (sl(z) + T) . ﬂ.

Proof. For (1), notice that
Y5 ((egﬁ\ms)”‘, z) - exp (—271'\/ —1A(z})
is a solution of (6.1) with asymptotic expansion Yform(s"z) on the Stokes sector V. Hence

it must coincide with Y (s7z). Point (2) is a direct consequence of the definition of Stokes

matrices.  Point  (3) @i - follows from points (1) and (2). 10.4. Stokes
(»);." '
bases and - Qx
Proposition 10.13. The basis (resp. Qf) is a Stokes basis on Vi (resp.

Vﬂ) with normalization

mwy/—1 n—1 n—1
n_l o —yn—l — mysy(z)+ 25t )
(10.7) C(2) = (2m) T eV T gl ()

m=0,

Proof. It follows from Corollary 7.31, and formula (9.19) for E-1.

Corollary 10.14. The operators Kj(z), with j = 1,..,n are all equal and independent of

z. Indeed, we have
r—m 1 . ;
Kj: diag(g“ )-m:[) ’ J= L. 2 7.
Proof. It follows from Theorem 9.9 and the explicit computation

C(Z12j = 1,y 20) C(D.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



158 GIORDANO COTTI AND ALEXANDER VARCHENKO

10.5. Stokes bases as T-full exceptional collections.

Theorem 10.15. Via the isomorphismgi Ky (P e — Sn, Stokes bases on Stokes

sectors of the gDE of Pn-1 correspond to K-classes of T-full exceptional collections in
'Db (IP”'_] )
T .

Proof. Stokes bases correspond to T-full exceptional collections of Corollary
7.27.

In particular, the Stokes basis@1—n corresponds (up to shifts) to the excep-

tional collection
(10.8)

() AT )06 ) AT 20 A7)

for n even, and
(10.9)

(o("';l) .o(“': )./\ZT("’EB) .o(”'z;g) ./\'IT(“;S) ..... o _1)./\”_'T)

for n odd. All other Stokes bases, and corresponding exceptional collections, are obtained
by application of a braid of the form

...6n,odd6n,even5n,0dd5n,even,
or

B P, SO S A

n.even”n,odd”n,evenn,odd,
Remark 10.16. Exceptional collections (10.8) and (10.9) are the natural equivariant
lift in D2(Pn-1) of the exceptional collections of [CDG18, Corollary 6.11]. Also in this
non-equivariant case, these collections are identified with Stokes bases of the gDE of Pr-1

in suitable Stokes sectors, see [CDG18, Section 6] for details.

Remark 10.17. All the objects on the T-full exceptional collections attached to Stokes
bases are equipped with their natural T-equivariant structure, restriction of the natural
GL(n,C)-equivariant structure. Under the presentation (3.4), their K-theoretical classes in

T (n—1 . . o
Ko (P"™) are symmetric polynomials wrt the equivariant parameters Z.

11. Stokes matrices as Gram matrices of exceptional collections
11.1.  Musical notation for braids. We introduce a notation for braids
in Bn. Elements of Bn will be represented as notes on a musical (n-1)-line
staff. The lines are enumerated from the bottom (1-st line) to the top ((n -
1)-th line). The generator tiis represented as a hollow oval note head on the
i-th line. The relations defining the braid group Bn translate into the

diagrammatic rules described in Figure 11.1.
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) Vi

O _ A
o S
Ti Tj T Ti
Fa N I
~ = oo
Ay Ay Ay
Ti+1 TiTi+1 TiTi+1 Ti

Figure 11.1. Braid relations in musical notation.

11.2.  Anidentity in Ba. For n 2 2, define the braids

11.1 On, =
( ) even @1, even On, odd 3, even On, odd --- o
" n factors b
%
(1 1‘2)’ On, odd = Q(l, odd 6n, even O , odd 6n, even - o
T xR
n factors

0
where Oneven and dnoad are defined in Section 7.5. Set 01,even:= 1, 01,0dd= 1.

Lemma 11.1. For any n = 2, the following identities hold true in Bn:
(11.3) Onodd = On-1,0dd(Tn-1Tn-2...T1),

(1 14) On,even = O'n—l,even(Tn—lTn—Z ...Tl).

Proof. We prove (11.3) by induction on n. For n = 2, the statement is obvious, being
82,0dd = T1, &2,even = 1.

The musical diagram corresponding to the braid &noddSn,evenOn,oddOn,even ...
is the following, according to the parity of n.

n even n odd
_
=
™
=~
~
—
Figure 11.2. Diagrammatic notation for the braid

On,0ddOn,evenOn,odd... according to the parity of n.

We collected with a stem the notes corresponding to a same factor 8n,odd (Or Gneven). By
commutativity, the order of the notes in any factor &n,0dd (or dneven) can be modified at will,

and for this reason we simply collect them with a vertical stem. In the top line we have
T
® 3 notes, if n is even,
n—1

~2 notes, if n is odd.
We call top factors those factors Snodd’s (Or Oneven’s) which contains the notes on the top
line. In other words, the top factors are
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(1) the factors Onodd’s for n even,
(2) the factors Sneven’s for n odd.

The factorization (11.3) can be reached by filling the empty spaces between two notes

in the last factor 8n,0dd (Or Sneven), from the bottom to the top line. We perform this in several
steps:

(1) Label by Aothe first (from the left) elementary braid on the (n - 1)-th line. By a
chain of elementary moves, the braid Ao can be moved on the (n - 2)-th line,

towards the right, and can be collected with the next top factor, as described in
the following Figure 11.3.

N M
/AR
~
I~
Ja) A1 ~ A1
A =
N =
~
I~
%

Figure 11.3

We call A1 the new note obtained from Ao. In this way, this factor is
“overcharged” of notes (i.e. it contains notes t;and ti+1 for some i), and we have

an inclination of the stem, the order of the elementary braids being not anymore
arbitrary.

(2) By the braid relations, the braid A1 can be moved on the (n — 3)-th line, towards

the right, and can be collected with the next factor (not a top factor), as described
in the following picture.

O

4?) D“\\:b

K

[0}

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



qDE AND qKZ EQUATIONS FOR A PROJECTIVE SPACE 161

i
A
\\ 7a)
_ ~ [~
Figure 11.4 Sl
We call A2 the new note ’ obtained
from A1. Also in this case, we have flz an
inclination of the stem. r\/
(3) Starting from Aj on the (n-1-j)-th \@\ line,
iterate the procedure of point (2) in I order to

produce a new braid Aj+11n the line (n — 2 - j)-th line, by overcharging the next
factor.

(4) Stop when the final braid Aj:1 fills the empty space on the
e 1-stlineif nis even, o 2-

nd line if n is odd.

(5) Tterate points (1),(2),(3),(4) and stop when the final braid Aj+1 fills the first empty
space from the bottom line to the top.

By applying the procedure above, the factorization (11.3) is reached. The argument
for (11.4) is similar.

Example 11.2. Consider n = 7. The factorization (11.4) is obtained with the moves
described in Figure 11.5. For simplicity, we remove all the stems of the notes.
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5666 —0-—6-0 —0-0-0
S—6-o- _656-0- _6-0-6
o—60O——06C—6 6—F0C—H6—H o0—690 o
el Al R N e e Nl = il
O—O0-—0-—0 6—6-—6-6 6-6-6-5
oy P sy A g fy o gy B ey N T,
o L Nad Ny Ny Nl L Ly L
e . £ ey oy i . N .
Pl = il 2 il N = Rl = Rl e Rl = N = il = Rl = il =
il e Sl =y T Rl Nl = Nl = Nl il = il = el = e
il Nt = Rl = W o i e bkl = T Rl Rl Rl
Ly L 2 N b Nt L L L L
o6 o6 o—o0

& _CR6- -6 6-0- 6 00
TSt e B PN ey pg M s ey PR g W 5
gy S S N g g S gy SE gy B gn gk S g S e, R
R g g, gl DR ey B gy B g B B ey BF ey B ey B
LT N T S oS NS S S S N A

B

Y,
v,

OOPPx

Figure 11.5. These are the moves described in the proof of Lemma 11.1 in order
to obtain the factorization (11.4) forn=7.
Corollary 11.3. For n = 2, we have
(11.5) oneven = B, onodd = 5, where f is given by equation (2.22),

i.e.

B = t1(t211)...(Tn-2...T1) (Tn-1Tn-2...T1).

11.3. Stokes matrices as Gram matrices.

Lemma 11.4. The following identities among Stokes sectors hold true:

Vi
LIVESR
eV . ifn=0(mod2),
lfo’in__l, ifn=1 (mod 2)
- i
1
Vi
erﬁvg —

) if n =0 (mod 2),
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LV;,_WTT., ifn=1 (mod 2).

Proof. It is readily obtained from the definition ofVi. and V!
Corollary 11.5. For any k € Z, the Stokes basis on‘fw\/f_lvi‘ is obtained by acting (on

the left) on the Stokes basis with the braidé
k

(116) .#5 n, odd (Sn, even Qn, odd 5n, even 5n, oddp
i xR
n factors
v
Forany k € Z, _  the Stokes basis&h ~ ¥ obtained by acting (on the left) on the
"
ol
Stokes basiswith the braid
(11.7).

-#6 n, even 5n, odd o) , even 6n, odd 6n, every,
H &

n factors
0

Proof. It follows from the definition of (see @Ls@mkilaérgm (7.16)), from Proposition
10.13 and Lemma 11.4.

Corollary 11.6. Let V be a Stokes sector of the gDE of P-1, and let E be the T-full
exceptional collection corresponding to the Stokes basis on V. The exceptional collection
E corresponding to the Stokes sectore2™V Vs a foundation of the helix generated by E.
More precisely, Eis the adjacent foundation on the right of E. The collection Eis obtained

by application of the inverse Serre functor to objects of E:
(11.8) (E1,....E,) — (E1 ® (wg.,, )7 =41, E,® (wg,, )7 =n 4+ 1})’

where wp'.-1denotes the T-equivariant canonical sheaf of Pn-1,

Proof. By Corollary 11.5, Eis obtained from E by mutation either with the braid

(1 1 9), #5 n, odd (Sn, EV§H 611, odd 511, ever\kgz
2n factors %
or with the braid
(11.10),
#6 n, even 6n, 0‘£d 6n, even 511, odd&
2n factors

0

In both cases, by Corollary 11.3, the resulting braid is 2, where

B = t1(t211)...(Tn-2...T1) (Tn-1Tn-2...T1).
It is well-known that 52 = (71...Ts-1)" (see e.g. Theorem 1.24 of [KTO08]). The result follows
from Proposition 2.24.

Theorem 11.7. Let S1,S2 the Stokes matrices computed wrt a Stokes sector V in
n—

-T 1
lexicographical order. Let € be the exceptional basis of %0 (P~ e associated with the

Stokes basis on V via the isomorphismT93 Kg(P*Ye — S, defined in (7.8), and let G
be the Gram matrix of y wrt . Let ] be the anti-diagonal matrix
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Jap:= Sa+pn+1, af=1,..n

(1) The Stokes matrix S1 is equal to the Gram matrix of " wrt the left dual
exceptional basis Ve, i.e.

-1
(11.11) Si=J(G") I
(2) The matrix JSz] is equal to the Gram matrix of " wrt the exceptional basis ¢, i.e.
(11.12) S2=JGJ.

Proof. By Lemma 10.7, V is contained in one (and only one) Vi or Vi, By

Corollary 11.5, the Stokes basis oneY 1"V is obtained from the Stokes basis on V by
applying either the braid

é(l, odd Sn, even (Sf, odd 5n, even - o
1 xR
n factors

. %
or the braid

ép, even 6n, odd (Sf' even 6n, odd ... o
i xR
n f?)c ors

Consequently, by Corollary 11.3, the excepﬁonal basis associated to the Stokes basis on
eV=17V is Ve, Both points (1) and (2) then follow from Proposition 2.22, more precisely
from the second identity (2.25).

Corollary 11.8. Let S1and Sz be the Stokes matrices computed wrt a Stokes sector V.
We have

(11.13) Sz = (Si)_l.

Remark 11.9. In theory of Frobenius manifolds [Dub96, Dub99, Dub98, CDG20], the
Stokes matrices of the associated isomonodromic system of differential equations satisfy
an analogous identity, in which the t-operator is replaced by transposition, see [Dub99,
Theorem 4.3].

Corollary 11.10. Let S1and Szbe the Stokes matrices computed wrt a Stokes sector V.

Both S1 and Sz have entries in the ring of symmetric Laurent polynomials with integer

coefficients, i.e.51, 52 € M, (Z[Zz*1]e),

Proof. By Lemma 3.2, the Gram matrix associated with the Beilinson exceptional
collection is with integer symmetric Laurent polynomial entries. The braid group action
preserves this property.

Corollary 11.11. Let S be a Stokes matrix of the differential system (6.1) computed
wrt a Stokes sector V. Then

(11.14)

n ) - VAL
. L sftg—1) _1yizn—i.. _1yn+1 _1\n+1 n
det (A- 1 —S1§71) = Y (—1)IA" s (( R —S”(Z))

F=0
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Proof. The Corollary immediately follows from Theorem 3.5 and Theorem 11.7. For
an alternative proof (purely analytical), notice that without loss of generality we can
assume that S is the matrix S1computed wrt V. From point (3) of Proposition 10.12, and
equation (11.13) we deduce that

exp(2mv/—1A(2))STS™! = M, (=)"

where Mo(z) is the monodromy operator of differential system (6.1). From Corollary 6.3
we deduce the constraint

det (/\ -1 — (71)”‘“5,,(2)81871) = Z(—l)j)\""*"‘sj(Z”‘)
(11.15) =0

’

which is easily seen to be equivalent to equation (11.14).

12. Specialization of the gDE at roots of unity
12.1. Specialization of equivariant K-theory at roots of unity. Fix the equivariant
parameters inf (") by setting
(12.1) Zm=C""1, m=1,...,n.
Denote by Kzthis specialization of Ko (P 1),
Theorem 12.1 ([Poll1, Theorem 1.1]).

(1) The Grothendieck-Euler-Poincaré pairing x" specializes to an Hermitian positive
definite form y;on K.
(2) If Eis an exceptional object in D?(P"-1) equipped with a T-equivariant structure,

then the class [E] in Kzhas length 1 wrt the Hermitian form xz.

(3) If (E1,E2) is an exceptional pair in Db(Pn-1), with both E1and Ez equipped with a
T-structure, then the classes [E1],[E2] in Kzare orthogonal wrt xz.

(4) If (E1,...,En) is a full exceptional collection in D?(P-1), with each Eiequipped with
a T-structure, then each unit vector in Kzis of the form +{,*[Ei] for some i and

some k.

(5) The action of the braid group on the set of orthonormal exceptional bases of K;
reduces to the action by permutations of basis vectors.

12.2. Identities for Stirling numbers. The Stirling numbers of the first kind %] are
defined recursively by

n -+ 1} [n} { n ]
=n +
(12.2) [ k k- lk—1]
for k > 0, with the initial conditions
ol =1 L]0
=1, = | =0, n>0
(12.3) 0 n 0 .

The Stirling numbers of the second kind{:’sf }are defined recursively by
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n-+1 7 n
=k +
(12.4) { k } {k} {kl}

for k > 0, with the initial conditions

0 1 0 _n _0 0
(12.5) {0}_ ' {ﬂ-}_{ﬂ}_ sl

The Stirling numbers of the first and second kind are related by the identity

Z(l)”f{‘n} |:]q:| = 6nk
(12.6) 20 AL .

Lemma 12.2. Letn=2 and 1 < k< n. We have

s (o 1 2 n—1\ 1 n

(12.7) M\ w0 T Tk n—k|’
. 01 2 n—1Y\ 1 n+k—1

(12.8). MR R n Tk on-—1

Proof. It is sufficient to prove the identities
n
6 (12.9) s«(0,1,..,n-1)=-15,
n k —
n. Forn =2
-n+k-17
(12.10) mk(0,..,n 1) =

n 1

They are proved by induction on both equations (12.9) and (12.10) hold true. Recall the
following recurrence equations: for k = 2

(12.11) Sk(21,..,Zn) = Sk(Z1,...,Zn-1) + ZnSk-1(Z1,...,Zn-1)
(12.12) mk(z1,...,2n) = mi(21,...,Zn-1) + ZuMi-1(21,...,Zn).

Now equation (12.9) follows from (12.11) and (12.2), equation (12.10) follows from
(12.12) and (12.4).

12.3. Ifd, := "% then

Lemma _ _
P oY LA
(12.13) s ;{;}5 dsi’
d” - il
P = -1y )
(12.14). dsm ;( ) [j]ﬁ”
Proof. Identity (12.13) is easily proved by induction

on n. Identity (12.14) follows from (12.13) and (12.6).

12.3. Scalar equivariant quantum differential equation at roots of unity. Consider the
specialization of the equivariant parameters z in Hr*(P*-1,C) defined by the equations
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(12.15) exp(2my/—1z,) =" m=1,...,n
These equations define the locus

P = {zeC”‘: z= (kl,kg-o-%,...,kn—0—7}’_1'), keZ‘”}

n

(12.16)

We have a distinguished point z, € P,

( 1 7?,—1)
o= 03_1"-1
(12.17) 2 n n ),

Theorem 12.4. At z = zothe scalar equivariant quantum differential equation (6.16) of
Pn-1 for the function ¢(q) reduces to the linear differential equation with constant

coefficients,
d”

(12.18) dsn

ols) = n"p(s),  o(s) = o(s")

Proof. By the change of variable g = s", equation (6.16) reduces to
n—1

n n 1 n n— / [
(12.19) —19 —}—Z T80 z)r—u” —(s"+ (=1)" su(2)) | ¢(s™) =0

If z = z,, then the equation reduces to

n—1
_,U;H Z n i - . [ j|,d£ —_g" G-)(SH) -0

(12.20) ,
by identity (12.7). Using identity (12.14), we obtains the equation
(SH d .‘;} . n“S”) @{.‘5“) —0
(12.21) ds _
Equation (12.18) has two natural bases of solutions:
(1) the basis (fm ($))zn,
(12.22) fm(s) == exp(ng)'s), m=0,....n—q,
(2) the basis (9m ())m=o ,
gm(s) i ns)m m=20 n—1
m s =U,...,n—
(12.23) — (m+kn) _

The functions gm(s) are real-valued for s € R and define a partition of the exponential

function ens,

n—1
> guls) =™
(1224) m=0 .
Lemma 12.5. The cyclic group Z/nZ acts on the space of solutions of equation
(12.18) via the transformations Ti:swChs, k=1,..., The basis (fm(8))m =0 is

cyclically permuted by this action, while the basis \ (gm(s ))m:n is an eigenbasis.

Introduce the matrices
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* n O nyh ¥ nyh 1 qh
Yf(s ) = (Y}(E ﬁ”)h.rn:ﬂ.,...u—l ’ Y}(Q ):” = nTl?ifm(‘;)

’

N : ~ 1
ny . n\h nyh .__ h "
Y;;(S ) = (Y—U(" )m)h.m:U ..... ne1 ? Y;J('S )m. T n"" 'ﬁxgm (“’)

(12.25)

(12.26)

Both Y'{s") and Y'g(s") are solutions of the differential equation (6.15), specialized at z =

Zo.

Proposition 12.6. The matrix-valued function T’](Zo)_lij(S”) is a fundamental system

of solutions of (6.1) of the form

(12.27) N(z0) 1Y As™) = G(s)exp(sU),

where U = diag(nd{s’,...,n{»""1) and G(s) is a polynomial in s of degree n - 1.

Hence, 1n(z0)1Y A(s") is a Stokes basis of the equivariant qDE (6.1) at z = z, for any Stokes
sector. In particular, the corresponding formal series F(s,z0) of the form (9.36) is actually
convergent.

Proof. The matrix r)(zo)-lYA/(s")n(zo) is a fundamental system of solutions of (6.1) by

the discussion in Section 6.4. Hence 1(z0)1Y/(s") also is a fundamental system of
solutions. The matrix G(s) is given by

. X n—1 \h ch R
G(S) = n(z(i) ! ' L(S)ﬂ L(b) = (L(S)in)h‘mzu H L('S)in, = é:r‘sj

(12.28)
Thus the series F(s,20) is given by
(12.29) F(s,20) = DqH(s")1n(z0) 1L(s)s1 ",

and is convergent. The normalization of the Stokes basis can be readily computed from
this formula.

Proposition 12.7. The matrix-valued function n(zo)‘lYAg(s") is a fundamental system

of solutions of (6.1) of the form

(12.30) 1(20) 7Yy (s") = Yo(s", 2,) - C,

where the matrix Yo(s%z) is the Levelt solution defined in Corollary 6.2 and C'is a diagonal
matrix.

Proof. The proposition follows from Lemma 12.5 and Corollary 6.3. We leave to the
reader the explicit computation of the matrix C.

Theorem 12.8. The following conditions are equivalent:

(1) 2" eP,

(2) the formal gauge transformation G(s.2") of Theorem 9.6 is convergent;
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(3) the Stokes phenomenon of the differential system (6.1) specialized at z = zis
trivial, i.e. all the Stokes matricesS(Z') for all Stokes sectors are the identity
matrix;

(4) the monodromy matrix Mo(2") of the equivariant quantum differential
equation (6.1) specialized at z = z’ € {2 has order n.

Proof. We prove that (1) = (2) = (4) = (1).

1 -1

Assume z, - (klvk? toa s bin + NT) for some k € Z". Then, we have to show
that the series F(s,z) in (9.23) is convergent for z= z’. From the identity (9.30) we deduce
that

F(s,z1,,2j= 1,..,2n) = Wj(s,2)F(s,2) K},

where
Wi(s,z) := sDqH(s")~1K;j(s",z)H(s")Dq7}, j = 1,...,n. Hence, we have

}(‘(S, Zl) - H I’L,;(s Zr))_kj -F(-‘J'f Z()) H ’C;kj
J=1 j=1

and the convergence off (5. 2') follows from the convergence of F(s,2o).

If (2) holds thenY('?”‘ z') = G(s,2")e*" i5 a solution of system (6.1) at z= =/, and
the transformations ++ GnScyclically permutes the diagonal entries of U. Thus (4) holds
true.

If (4) holds true, then from Corollary 6.3 we deduce that exp(?w\/—lz_;) is a n-th root
of unity, i.e. 2’ € P.

The equivalence of (2) and (3) is obvious.

Appendix A. Formal reduction of the joint system

Consider a
joint iX(S! z) = A(s, 2) X (s, 2), system of
ds ) differential
and X(s,21,...,2i— 1. 2,) = Pi(s,2)X(s,2), i=1,...,n, difference
equations
(A.1)

(A.2) where A, Piare meromorphic m x m-matrix valued functions of (s,z) € C x Cn.

Assume that equations (A.1), (A.2) are compatible,

(A.3)
gp,(s,z) =A(s,21,...,2i = 1, ..., 2,)Pi(s,2) — Pi(s, 2)A(s,z), i=1,...,n,
s
(Ad) Pi(s,z1,. . 0Ziyen ey zj—1,....2,)Pj(s,2) =

Pi(s, 21,2 Ly, 2yn s, 2n) Pils, 2)-

for all i,j. Assume that

(1) the matrices A(sz),Pi(s,z) have the following convergent power series
expansions
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As,2) =Y M) Pils.2) =Y P2) s Isl>p,

sh

(A.5)

where the matrices Ax(z),Pk(z) are holomorphic functions of z and p > 0;
(2) the matrix Ao(z) is diagonalizable,

(A.6) D(z) - Ao(z) - D(2)* = U(2), U(2) := diag(u1(z),....un(z)), with D(z) a holomorphic
matrix;

(3) the matrix U(z) is 1-periodic,
(A7) U(zy,...,zi— 1,...,z0) = U(2), i=1,.,n;

(4) the eigenvalues ui(z)’s are pairwise distinct for values of z in an open subset W
ccn

Introduce the diagonal matrix Ai1(z) by the formula

(A.8) [A1(2)]i:=*D(z) - A1(z€) - D(2)"+ij 65 oo

Assumptions (1-4) imply that for all z W the point s = is an irregular singularity (of
Poincaré rank 1) of the differential equation (A.1).

Theorem A.1. If the joint system of equations (A.1), (A.2) satisfies assumptions (1-
4), then there exists a uniqgue m x m-matrix G(s,z) of the form

(A9) G(s,z2) = D(2)-1F(s,z)sM®, where F(s,z) is a formal power

series

F(s,z)=1 +iﬂ:(z)$

(A.10) k=1 )

with Fi(z) regular m x m-matrix-valued functions on W, such that the change of variables
X(s,2) =

G(s2)Z(s2) iZ(é z)=U(z)Z(s, 2),

ds
transforms Z(s,z1,.,zi— 1o 2,)=Pi(2)Z(s,2), i=1,...,n, system

(A.1), (A.2) into the joint system
(A.11)
(A.12) where Piare diagonal matrices.
Proof. First we prove that there exists a unique formal transformation X(s,z) =
G(s,2)Z(s,z), which transforms equation (A.1) into equation (A.11). Then we prove that this

transformation automatically transforms equations (A.2) into equations (A.12) with
diagonal Pi’s.

If a transformation X(s,z) = G(s,2)Z(s,2),
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G(s,z) = D(z) ' F(s, z)sM®), F(s,z)=1+ ZFR(Z)%
(A.13) k=1 5

’

transforms equation (A.1) to the equation

(A.14) %7( z) =U(2)Z(s,2)

then Z(s,z) is a solution of the equation

(A.15) %Z(s,z) = (G(s,z)_lA(s,z)G(s,z) G(s,z)™! d (' s, z)) Z(s, z)

Thus, F(s,z) satisfies the equation

U(2)F(s.2) + (i D(Z)A;.(;)D(z)l) Pl

k=1

- %F(s, 2) + %F(s,z)Al(z) + F(s, 2)U(z)

’

which gives a system of equations for the R coefficients Fk(z).
Denote A”j:= DA;D-1. The matrixis an off- A=A = Ay diagonal matrix.
The first equation is
(A.16) UF, + A = BU.
For® # 3,
1 .
@ Ao = o (9),,

The second equation is

(A.18) UF2+ A% + A F = —F1+ Fid + FoU.

We find the diagonal entries of Fi(z) from the diagonal part of equations (A.18). We
compute the off-diagonal entries F2(z)qpwith® # 5 , by the formula:

(A19) Fi(2)as = ! 5 (Fi() ~ Fu2)A(z) + As(z) + As() Fa(2))

ug(z)  ua(z
After k steps of this procedure, we will determine all the coefficients Fi,..., Fi-1and all the

oft-diagonal entries of Fk. Then the k + 1st equation

—kFy+ [Fys1, Ul = —FA+ A+ > AyF,
heb=k+1
determines uniquely the diagonal entries of Frand the off-diagonal entries of Fk+1and we
may continue this procedure.
This procedure shows that the desired series F(s,z) does exist and is unique.
The gauge transformation X(s,z) = G(s,2)Z(s,z) transforms the joint system

(A.1), (A.2) into the joint system
dZ

(A.20) ds
(A.21) Z(szye,zi— 1,.,zn) = Pi(s,2)Z(s,2), i = 1,...,n, where we set

= U(2)Z,
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(A.22) Pi(sz) := G(sz1,.,2i - 1,...,Zn)‘1Pi(s,z)G(s,z) fori=1,.,n. We claim

that the matrices Piare diagonal and independent of s. The compatibility

conditions of (A.20) and (A.21) imply that

d .
(A.23) —Pi=UPR] i=1...n

Thus the entries of Piare of the form
(A.24) Pi(s,2)ap = fap(z)exp((ua(z) - up(z))s), where a, = 1,...,n, and fap(z)
are functions of z.
Also we know that all the entries of the right-hand side of (A.22) are formal power

series of the form
o n(2)
Jm(z) n
§ Z Sﬂ

n=0

’

for suitable functions m(z),an(z). This shows that the operator Pican be of the form (A.24)

if and only if

fap(z) =0, a#p.
This concludes the proof. Appendix B. Relation of gDE to Dubrovin’s equation for
QH:(P1)

Denote by
(B.1) o H(PML,C) - HY (PN, 0),  f(z,2) f(z,0)

L, oyn—1
the non-equivarialnt limit morphism®. It maps the C[z]-basis (Ta)a=o of Hr(P"-1C) to the
C-basis (" Za)a—o of H*(P",C) Denote the dual coordinates on H*(P™-1,C) by the
notation t := (t9,..,t"~1). Consider the non-equivariant

n—1
imitks € Cltlof (5.2),

n—1
AR A n—1

Pl Sh S : * * P
‘Ffl (t) = Z Z Z T (1‘ Lapysennyt a‘fkrrL>fl,rrz.(i

(BZ) m=0d=0 aq,...c,,, =0

1

. . . P . .
It is known that the Gromov-Witten potentlalf’ o (B)is convergent. The domain of
n—1

. . P . .
convergence M € H*(P"-1,C) of the Gromov-Witten potentlalFo (t) carries a Frobenius
manifold structure [Dub92,Dub96,Dub98,Dub99,Man99,Her02, Sab08]. Tangent spaces’
TpM are equipped with an associative, commutative algebra structure: the product *p: TpM

x TpM — T,M is compatible with the non-equivariant Poincaré metric e := |20,
(B.3) na(a *p By) = na(ap *ry), aBy € ToM.

The metric nd is a non-degenerate pseudo-riemannian metric on M, whose LeviCivita

connection V is flat. Consider the semisimple part Mssof M, namely the subset of points p
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whose corresponding Frobenius algebra TpM is without nilpotents. Denote by (71,...,7n) the

idempotent tangent vectors at p € Mss, and introduce the normalized frame (fi,....fn) by

(B4) fi=nalmm) % m, i=1,...n,
for arbirary choice of the square roots. Consider the Euler vector field E on M defined by
n—1
n— 1 * x 0
(B.5). E:=c (P 1) + Z (] — 5(19{;‘(1, :I',,.)) t 50

=0
Let p € Mss, and denote by U(p) and V (p) the matrices, wrt the frame (f1,....fn), of the
morphisms (B.6) U(P): T,M — T, M, v El, v,

3—n
®.7) plp): T,M - T,M, v v — V,=E|p.
It is easily seen that they satisfy
(B.8) U(p)™= U(p), V(p)"+V(p)=0.

There is a local identification of Msswith the space of parameters of isomonodromic
deformations of the ordinary differential equation

FY0 = (Ve + V) ) YOur) AeC pe,
(B.9)

n-1°xRecall that this morphism is induced in cohomology by the inclusion” ET. See [AB84, Section 2].

pn-1,C). 1 Pr-l— prp-l:=

p
"Tangent spaces to M are canonically identified with Hs(

for a n x n-matrix valued function Y . Equation (B.9) is central in Dubrovin’s study of

Frobenius manifolds, see [Dub96, Lecture 3], [Dub99, Lectures 3 and 4], [Dub98]. See

also [Guz99] and [CDGI18, Section 6] for details on the monodromy and Stokes

phenomenon of (B.9).

The tangent space ToM =~ H*(P"1,C) can be identified with C"by fixing the frame
(1,x..,x"-1), where x denote the non-equivariant hyperplane class. Under this identification,
e the Gram matrix of the non-equivariant Poincaré metric coincides with the
matrix na of equation (9.17);
¢ the matrix of the operator U(0): ToM — ToM of multiplication by the Euler vector
field coincides with the matrix Bo of equation (9.12);

¢ the basis (fi,....fn) of Lemma 9.4 coincides with the orthonormalized idempotent
frame (B.4) at ToM for suitable choices of the square roots, see [CDG18, Section
6.1].
In the standard notations of Dubrovin’s theory of Frobenius manifolds, the matrix E is
usually denoted by W. Here we avoid this notation, the symbol ¥ being already used for
solutions of the joint systems (5.19), (5.26).
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We close this Appendix by commenting the relation between equation (9.15) and the
isomonodromic differential equation (B.9).

Proposition B.1. For z = 0, equation (9.15) is
d

i 1
(B.10) ET(C’) = (30 + ._5'81(0)) T(s)‘
If T(s) is a solution of (B.10), then

is a solution of the equation (B.9) specialized at p = 0.

Proof. if z = 0, all the coefficients Bz,..,Bn vanish, and the coefficient B1
takes the form

(B.11) B1(0) = diag(0,1,2,..,n - 1).

We have
n—1
Bi(0) — 5
where y is the matrix of the grading operator (B.7), written in coordinates wrt the basis

(U"Ta)nZ0. Asa consequence, the matrix Bed of formula (9.22) in the non-equivariant limit
is given by

I =p,

T

B0) =€ (31(0)— ;ln) El=gpet=v,

where the matrix V is the antisymmetric matrix V (p) specialized at p = 0. The
antisymmetry of B°dhowever is lost forz=0.
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