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Abstract. In the previous paper by Tarasov and Varchenko the equivariant quantum 

differential equation (qDE) for a projective space was considered and a compatible system 

of difference qKZ equations was introduced; the space of solutions to the joint system of 

the qDE and qKZ equations was identified with the space of the equivariant K-theory 

algebra of the projective space; Stokes bases in the space of solutions were identified with 

exceptional bases in the equivariant K-theory algebra. This paper is a continuation of the 

paper by Tarasov and Varchenko. 
We describe the relation between solutions to the joint system of the qDE and qKZ 

equations and the topological-enumerative solution to the qDE only, definitionned as a 

generating function of equivariant descendant GromovWitten invariants. The relation is in 

terms of the equivariant graded Chern character on the equivariant K-theory algebra, the 

equivariant Gamma class of the projective space, and the equivariant first Chern class of 

the tangent bundle of the projective space. 
We consider a Stokes basis, the associated exceptional basis in the equivariant K-

theory algebra, and the associated Stokes matrix. We show that the Stokes matrix equals 

the Gram matrix of the equivariant GrothendieckEuler-Poincaré pairing wrt to the basis, 

which is the left dual to the associated exceptional basis. 
We identify the Stokes bases in the space of solutions with explicit full exceptional 

collections in the equivariant derived category of coherent sheaves on the projective space, 

where the elements of those exceptional collections are just line bundles on the projective 

space and exterior powers of the tangent bundle of the projective space. 
These statements are equivariant analogs of results of G.Cotti, B.Dubrovin, D.Guzzetti, 

and S.Galkin, V.Golyshev, H.Iritani. 
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1. Introduction 

1.1. We consider the equivariant quantum differential equation (qDE) of a complex 

projective space Pn−1 with the diagonal action of the torus T = (C∗)n. This equation is the 

ordinary differential equation 

(1.1) , 

where the unknown function I(q,z) takes values in the equivariant cohomology algebra

 , and   is the operator of quantum 

multiplication by the equivariant first Chern class of the tautological line bundle on Pn−1. 

The qDE depends on the equivariant parameters z = (z1,...,zn) corresponding to the factors 

of the torus T. The qDE has two singularities: a regular singularity at q = 0 and an irregular 

singularity at q = ∞. 

In [TV19a] a compatible system of difference equations, called the qKZ equations, was 

introduced, 
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(1.2) I(q,z1,...,zi − 1,...,zn) = Ki(q,z)I(q,z), i = 

1,...,n, 

where Ki’s are suitable linear operators. In [TV19b] solutions to the joint system of the qDE 

and qKZ equations were constructed in the form of q-hypergeometric integrals. In [TV19a] 

the space of solutions was identified with the space of the equivariant K-theory algebra

. The Stokes bases of the qDE at its irregular singular point were described in 

terms of the exceptional bases of the equivariant K-theory and a suitable braid group action 

on the set of exceptional bases. In this paper we continue this study. 

1.2. We establish relations between the monodromy data of the joint system of the qDE 

and qKZ equations for Pn−1 and characteristic classes of objects of the derived category

 of equivariant coherent sheaves on Pn−1. 

Our first result is on the relation between solutions to the joint system of the qDE and 

qKZ equations and the topological-enumerative morphism. 

The topological-enumerative morphism is the map So, which assigns a solution of the 

qDE (only) to every element of  and whose expansion at q = 0 is the generating 

function for the equivariant descendant Gromov-Witten invariants of Pn−1. 

For  be the solution to the joint system of the qDE and qKZ 

equations, assigned to E in [TV19a]. Our B-Theorem 8.2 says that 

, 

where c1(Pn−1) is the equivariant first Chern class of the tangent bundle of Pn−1,  is 
the equivariant Gamma-class of Pn−1, ChT(E) is the equivariant graded Chern character of 
E. In other words, we have the following commutative diagram: 

B 

K-Theory  Equiv. Cohomology 

 θ  So 

Solutions of qDE 

where B . 

Notice that the B-Theorem is an equivariant analog of results of [GGI16, Section 5] 

and [CDG18, Section 6] for projective spaces. Moreover it is a refinement of the Gamma 

Theorem in [TV19a,TV19b]. 

Our second result is the identification of the Stokes bases in the space of solutions to 

the joint system of the qDE and qKZ equations with explicit T-full exceptional collections 

in the derived category -equivariant coherent sheaves on Pn−1. We show that 

the elements of these T-full exceptional collections are just line bundles O(i) on Pn−1 and 

exterior powers  of the tangent bundle T of Pn−1 multiplied by line bundles, see 

Theorem 7.26, Corollary 7.27, Corollary 7.28 and Theorem 10.15. This result is an 

equivariant version of [CDG18, Corollary 6.11]. 

Our third result is on the relation between the Stokes matrices and Gram matrices of 

the Grothendieck-Euler-Poincaré pairing on . 
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Consider a Stokes sector V and the complementary Stokes sector . Consider 

the two exceptional bases in  assigned V and in [TV19a]. 

The matrix expressing the second exceptional basis in terms of the first exceptional basis 

is called the Stokes matrix associated with the Stokes sector V. We show that the second 

exceptional basis is left dual to the first exceptional basis wrt the Grothendieck-Euler-

Poincaré pairing. This fact implies that the Stokes matrix equals the Gram matrix of the 

Grothendieck-Euler-Poincaré pairing wrt the second exceptional basis, see Theorem 11.7. 

This is an equivariant analog of [Guz99] (see also [CDG18, Section 6] for some 

refinements of results in [Guz99]). 

1.3. This paper is related to the general theory of D.Maulik and A.Okounkov in 

[MO19] connecting quantum groups and equivariant quantum cohomology of Nakajima 

quiver varieties. In that context, it was realized that the qDEs of Nakajima quiver varieties 

admit some compatible difference equations, called the qKZ equations. 

A special case of Nakajima varieties, namely, the case of the cotangent bundles T∗Fλ 

of partial flag varieties Fλ was considered in [GRTV13] and [RTV15] 1. In those papers the 

qDEs and qKZ equations for cotangent bundles were identified with the dynamical 

differential equations and qKZ difference equations, associated in representation theory 

with the evaluation module CN(z1)⊗···⊗CN(zn) of the Yangian Y (glN). This identification 

leads to two constructions of solutions to the joint system of the qDE and qKZ equations 

for the cotangent bundles. One construction in [TV14] gave solutions in the form of 

multidimensional hypergeometric integrals and another construction in [TV19b] gave 

solutions in the form of multidimensional q-hypergeometric integrals. 

Also in [TV19b] a suitable limit of the qDEs for cotangent bundles of partial flag 

varieties was considered. In that limit the qDEs for cotangent bundles turn into the qDEs 

for the partial flag varieties themselves. Moreover, in that limit the qKZ equations for 

cotangent bundles survive and turn into new systems of difference equations compatible 

with the qDEs for partial flag varieties. These new systems of difference equations were 

also called the qKZ equations. Furthermore, it was shown in [TV19b] that the q-

hypergeometric solutions to the joint systems of the qDEs and qKZ equations for cotangent 

bundles have a limit when the qDEs and qKZ equations turn into the qDEs and qKZ 

equations for partial flag varieties. 

The special case of that limit was considered in [TV19a] for the partial flag variety 

Pn−1. In [TV19a] the q-hypergeometric solutions to the joint system of the qDE and qKZ 

equations for Pn−1 were applied to study the monodromy properties of the qDE for Pn−1. 

1.4. The paper is organized as follows. The basic notions of the derived category of 

equivariant coherent sheaves and equivariant Helix theory are collected in Section 2. In 

Section 3 we describe the equivariant derived category and K-theory of Pn−1. In Section 4 

we introduce the equivariant cohomology of Pn−1. In Section 5 we discuss the equivariant 

Gromov-Witten theory of Pn−1. We introduce the qDE and qKZ difference equations, and 

the topological-enumerative morphism So. In Section 6 we introduce two fundamental 

systems of solutions of the qDE (only): the Levelt solution and the topological-enumerative 

solution. We study how they are related, and we describe their monodromy. 

 
1 Note that the partial flag varieties themselves are not Nakajima varieties 
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In Section 7 we study solutions to the joint system of the qDE and qKZ equations, their 

integral representations, their asymptotics. We describe the corresponding objects and 

exceptional collections in the derived category. In Section 8 we prove our B-Theorem. 

In Section 9 we describe the structure of formal solutions to the joint system of the 

qDE and qKZ difference equations, see Theorem 9.2. 

In Section 10 we study the Stokes bases of the space of solutions, their normalizations. 

We show that the Stokes bases correspond to T-full exceptional collections in . 

In Section 11 we prove that the Stokes matrices coincide with the 

Gram matrices of the equivariant Grothendieck-Euler-Poincaré pairing. 

In Section 12 we study the specialization of the qDE at points z such that 

, ...,  are roots of unity. We show that the monodromy group of the qDE 

is Zn only for this specialization of the equivariant parameters z. 

In Appendix A we prove Theorem A.1 on the formal normal form for a compatible 

system of a differential equation and a system of difference equations. 

In Appendix B we discuss the relation between the equivariant qDE and the 

isomonodromic system of differential equations attached to the quantum cohomology of 

Pn−1. Such a system plays a central role in Dubrovin’s theory of Frobenius manifolds 

[Dub96,Dub99,Dub98,CDG18]. 

1.5. The authors thank A.Givental, R.Rimányi, M.Smirnov, and V.Tarasov for useful 

discussions, and also the referee for suggestions improving the exposition of the paper. The 

authors are grateful to the Max-Planck-Institut für Mathematik in Bonn, where this project 

was developed, for support and excellent working conditions. The first author is thankful 

to his teacher, Boris Dubrovin, for his interest in this project. He will remember with 

admiration and gratitude his encouraging guidance. 

2. Equivariant exceptional collections and bases 

General references for this Section are [GM03,CG10,GK04]. 

2.1. Basic notions. Let G be a linear algebraic reductive group over C. We denote by 

• Rep(G) the category of finite dimensional complex representations of G, 

• R(G) := K0(Rep(G)) (resp. R(G)C := R(G) ⊗Z C) the ring of finite dimensional complex 

representations of G with integer (resp. complex) coefficients. 

In particular, for a complex torus T := (C∗)n we have . For short, 

we set Z := (Z1,...,Zn) and . 

Let X be a smooth complex projective variety equipped with the action of G. 

We denote by 

(1) Db(X) its derived category of coherent sheaves,   its 

derived category of G-equivariant coherent sheaves, 

(3) K0(X) (resp. K0(X)C) its Grothendieck group (resp. complexified), 
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  (resp.  ) its G-equivariant Grothendieck group (resp. 
complexified). 

Any complex of G-equivariant quasi-coherent complexes admit flat and injective 

resolutions. From this one can deduce that on DGb (X) all standard derived functors are well 

defined. In particular, we have a well defined left derived tensor product ⊗: DGb (X)×DGb 

(X) → DGb (X), and any f : X → Y , morphism of smooth projective 

G-varieties, induces left and right derived functors Lf∗ : DGb (Y ) → DGb (X) and 

. It is possible to show that all the standard properties of 

the derived tensor product, the derived pull-back and push-forward functors are valid in 

the equivariant setting. Moreover, all these equivariant derived functors are compatible 

with their non-equivariant versions via the forgetful functor 2. 

The structural morphism π: X → Spec(C) endows K0(X) and  with a C-algebra 

and an R(G)-algebra structures, respectively. In addition, it induces serveral push-forward 

morphisms 

π∗: K0(X) → K0(Spec . 

and functors 

, 

which fit into the diagram 

 

FXFpt 

 

 Db(X)  Db(C) 

where FX,Fpt denote the forgetful functors. If V ∈ Ob(Db(X)) we call a Gequivariant 

structure on V any object  such that F . 

2.2. Equivariant Grothendieck-Euler-Poincaré characteristic. The push-forward 

morphisms 

π∗: K0(X) → K0(Spec , 

are respectively given by 

, 

where [Hi(X,V )] denotes the R(G)-class of the cohomology space Hi(X,V ) seen as a 

representation of G. These morpshims define the Grothendieck-Euler-Poincaré 

 
2 For the translation of the theory of derived functors from the non-equivariant setting to the equivariant 

one, the reader may consult [CG10, Chapter 5], [BL94] for the topological setting, [VV10, Section 1.5], and also 

[LH09]. 

Rπ ∗ 
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characteristic of (the isomorphism class of) an object V , and its equivariant version 

respectively. They will be denoted by χ,χG: 

. 

In both cases, using the duality involutions 

(2.1)  

(2.2) , 

we can define a non-symmetric paring, called the Grothendieck-Euler-Poincaré pairing (or 

also the Mukai pairing): 

(2.3) χ(E,F) := χ(E∗ ⊗ F), χG(E,F) := χG(E∗ ⊗ F). 

These pairings naturally extend to the complexified algebras . 

In the non-equivariant case, the pairing χ is C-bilinear, whereas in the equivariant case the 

pairing χG is R(G)C-sesquilinear wrt the duality involution naturally defined on R(G)C: 

(2.4) 

That 

is,. 

We consider the involutive operation on n × n-matrices 

(−)∗: Mn(R(G)C) → Mn(R(G)C), 

which consists in applying (2.4) at each entry. For A ∈ Mn(R(G)C) we define the matrix A† 

∈ Mn(R(G)C) as follows: 

(2.5)  

If G = T, then the duality involution acts on RG(T)C =∼ C[Z±1] by the formula: 

(2.6) f(Z)∗ = f(Z−1), 

where f(Z) = f(Z1,...,Zn) ∈ C[Z±1] and f(Z−1) := f(Z1−1,...,Zn−1). 

2.3. Exceptional collections in DGb (X) and their mutations. Given two objects

, we define 

Hom , 

where E∗ := RHom(E,OX) is the ordinary dual sheaf of E. 

Definition 2.1. An object E ∈ Ob(DGb (X)) is called an exceptional object if and only 

if 

Hom , 

where CG denotes the object of Db(Rep(G)) given by the trivial complex one dimensional 

representation of G, concentrated in degree zero. 
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An ordered collection (E1,...,En) is said to be an exceptional collection if and only if 

• all objects Ei’s are exceptional objects, 

• and Hom•G(Ej,Ei) = 0 for j > i. 

The definitions above are the natural equivariant versions of the standard notions of 

exceptional objects and collections in Db(X). The following result, due to A. Elagin, gives 

an insight on the relationships between ordinary exceptional collections in Db(X) and 

equivariant exceptional collections in . Before stating Elagin’s result, let us recall 

that there is a naturally defined operation of tensor product between objects of  and 

and V • ∈ Ob(Db(Rep(G))), the tensor product E ⊗ V 

• is defined as the object of  given by 

(2.7) . 

This extends the obvious operation of tensor product between objects of CohG(X) and 

Rep(G). 

If A1,...,An are subcategories of DGb (X), we denote by  the smallest full 

triangulated subcategory of
 containing 

A1
,...,An. 

Definition 2.2. Let E := (E1,...,En) be an exceptional collection in . We say that 

E is G-full if 

(2.8) 
. 

Remark 2.3. Thus the exceptional collection (E1,...,En) is G-full if and only if the 

collection  realizes a so-called 

semiorthogonal decomposition of , see e.g. [Huy06, Chapter 1]. 

Remark 2.4. Our definition of G-fullness is different from the definition of fullness of 

exceptional collections in triangulated categories. In the paper [BO18], L.Borisov and 

D.Orlov studied bounded derived category of T-equivariant coherent sheaves on smooth 

toric varieties and Deligne-Mumford stacks. In particular, they described and explicitly 

constructed full exceptional collections in these categories. Notice that their exceptional 

collections consist of infinite sets of objects, while we collect an infinite set of objects in 

one symbol Ei ⊗ Db(Rep(G)). 

Theorem 2.5 ([Ela09, Theorem 2.6]). Assume that (E1,...,En) is a full exceptional 

collection of Db(X), and each object Ei admits a G-equivariant structure Ei. Then, (E1,...,En) 

is a G-full exceptional collection in DGb (X). 

Being thus important to know under which conditions an exceptional object of Db(X) 

admits a G-equivariant structure, we recall the following result of A. Polishchuk. 

Theorem 2.6 ([Pol11, Lemma 2.2]). Let X be a smooth projective complex variety 

equipped with the action of a linear algebraic connected reductive group G with π1(G) 

torsion free. If E ∈ Db(X) is an exceptional object, then E admits a G-equivariant structure, 

which is unique up to tensoring by a character of G. 
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In the present paper we focus on the case G = T, and the assumption of Theorem 2.6 

applies. 

Definition 2.7 (Mutations of objects). Let E ∈ Ob(DGb (X)) be an exceptional object. 

For any F ∈ Ob(DGb (X)) we define two new objects 

LEF, REF, 

called the left and right mutations of F with respect to E. These two objects are defined 

through the distinguished triangles 
∗ 

(2.9) LEF[−1]  Hom    

(2.10)   Hom   , 

where j∗,j∗ denote the natural evaluation and coevaluation morphisms. 

Remark 2.8. As in the non-equivariant case, it can be shown that the objects LEF,REF 

are uniquely defined (up to unique isomorphism) by the distinguished triangles above. The 

key property is the exceptionality of E. We leave the details to the reader, see [CDG18, 

Section 3.3]. 

Lemma 2.9. Let E ∈ Ob(DGb (X)) be an exceptional object. We have 

Hom•G(E,LEF) = 0, Hom•G(REF,E) = 0, for all 

objects . 

Proof. Apply the functor Hom•G(E,−) (resp. Hom•G(−,E)) to the distinguished triangle 

(2.9) (resp. (2.10)), and use the exceptionality of E.  

Definition 2.10. Let E   be an exceptional collection in  . For any 

integer i, with 0 < i < n, we define two new collections 

Li(E) : = (E1,...,LEiEi+1,Ei,...,En), 

Ri(E) : = (E1,...,Ei+1,REi+1Ei,...,En). 

Proposition 2.11. For any i, with 0 < i < n, the collections Li(E),Ri(E) are exceptional. 

Moreover, the mutation operators Li,Ri satisfy the following identities: 

(2.11) LiRi = RiLi = Id, 

(2.12) RiRj = RjRi, if |i − j| > 1, Ri+1RiRi+1 = RiRi+1Ri. 

Proof. The same as in the non-equivariant case, see [GK04], [CDG18, Section 3.3].

  

Denote by τ1,...,τn−1 the generators of the braid group Bn, satisfying the relations 

 τiτi+1τi = τi+1τiτi+1, τiτj = τjτi, if |i − j| > 1. 
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We define the left action of Bn on the set of exceptional collections of length n by 

identifying the action of τi with Ri, see identities (2.11)-(2.12). For our purposes, we 

modify this action, by setting 

(2.13) τi(E) := Rn−i(E), i = 1,...,n − 1, for any exceptional collection 

E = (E1,...,En). 

Remark 2.12. Formula (2.13) is in agreement with the notations of [TV19a], see 

Remark 3.3. 

2.4. Dual exceptional collections and helices. 

Definition 2.13 (Dual exceptional collections). Let E = (E1,...,En) be an exceptional 

collection. Define the left and right dual exceptional collections ∨E and E∨ as the collections 

(2.14) ∨E := β(E), β := τ1(τ2τ1)...(τn−2 ...τ1)(τn−1τn−2 ...τ1), 

(2.15) E∨ := β−1(E). 

Proposition 2.14. Let E = (E1,...,En) be an exceptional collection, ∨E = (∨E1,...∨ En) and 

E   its left and right dual exceptional collections, respectively. The 

following orthogonality relations hold true: 

 ⎧CG, h = n k + 1, 

Hom ⎪⎩⎧⎪ 0, otherwise, 

 CG, h = n k + 1, 

Hom 

 ⎪⎩ 0, otherwise. 

Moreover, for any   we have the functorial isomorphism (2.16) 

Hom•G(∨Ek,F) =∼ Hom•G(F,Ek∨)∗. 

Proof. The argument is the same as in the non-equivariant case, see [CDG18, 

Section 3.6].  

Given an exceptional collection E, we introduce the infinite family of exceptional 

objects called the helix generated by E. 

Definition 2.15 (Helix). Let E = (E1,...,En) be an exceptional collection. Define the helix 

generated by E to be the infinite family of objects (Ei)i∈Z defined by the iterated mutations 

 Ei+n := REi+n−1 ...REi+1Ei, Ei−n := LEi−n+1 ...LEi−1Ei, i ∈ Z. 
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Such a helix is said to be of period n. Any family of n consecutive objects (Ei,...,Ei+n) is 

called a foundation of the helix. 

2.5. Exceptional bases in equivariant K-theory. In this Section we focus on the K-

theoretical counterpart of the notion of exceptional collections introduced in Definition 2.1 

and of the action of the braid group on them. 

Definition 2.16. An element  is exceptional if 

χG(e,e) = CG. 

A basis   as an R(G)-module, is exceptional if (2.17)

 χG(ei,ei) = CG, χG(ej,ei) = 0, for j > i. 

The following result is a K-theoretical analogue of Theorem 2.5. 

Theorem 2.17 ([Pol11, Lemma 2.1]). Let (E1,...,En) be a full exceptional collection in 

Db(X). If each object Ei admits a G-equivariant structure, then the classes  form 

an exceptional basis of  as an R(G)-module. 

Proposition 2.18. Let   be an exceptional object. For any 

 we have 

(2.18) [LEF] = [F] − χG(E,F) · [E], [REF] = [F] − χG(F,E)∗ · [E]. 

Proof. From the distinguished triangle (2.9), and equation (2.7), we deduce 

 

. 

Analogously, from the distinguished triangle (2.10), we deduce 

 

. 

This completes the proof.  

 Definition 2.19. Let  be an exceptional element. Given f ∈ 

, we define its left and right mutations wrt e as the elements 

(2.19) Lef := f − χG(e,f) · e, Ref := f − χG(f,e)∗ · e. 

Lemma 2.20. Let  be an exceptional element. We have 

 χG(e,Lef) = 0, χG(Ref,e) = 0, 

for any f ∈ K0G(X).  

Definition 2.21. Let  be a free R(G)-module of finite rank and ε :=  an 

exceptional basis of . For any 0 < i < n define the two new 

exceptional bases 
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(2.20) Liε := (e1,...,ei−1,Leiei+1,ei,ei+2,...,en), 

(2.21) Riε := (e1,...,ei−1,ei+1,Rei+1ei,ei+2,...,en). 

This construction defines the action of the braid group Bn on the set of exceptional 

bases of , in which the action of a generator τi, i = 1,...,n − 1, is identified with the 

action of the mutation Rn−i. 

2.6. Dual exceptional bases. Let  be an exceptional basis of 

. Define the left and right dual exceptional bases, ∨ε and ε∨, through the mutations 

(2.22) ∨ε := β(ε), β := τ1(τ2τ1)...(τn−2 ...τ1)(τn−1τn−2 ...τ1), 

(2.23) ε∨ := β−1ε. 

Proposition 2.22. Let  be an exceptional basis of  
and  its left and right dual exceptional basis, respectively. The 

following orthogonality relations hold true 

(2.24) , 

for k = 1,...,n. In particular, for any  we have 

(2.25) . 

Proof. We prove the first identity in (2.24), the proof of the second is analogous. We 

have 

 , for h = 1,...,n − k, 

by Lemma 2.20. 

If  is exceptional and χG(f,e) = 0, then χG(f,v) = χG(f,Lev) for any

. By iteration of this identity, we deduce 

 χG(eh
,e∨k) = 0, for h = n − k + 2,...,n, 

and 

χG(en−k+1,e∨k) = χG(en−k+1,en−k+1) = 1. 

 

Identities (2.25) follow from the sesquilinearity of χG.  

Corollary 2.23. Let   be an exceptional basis of  , and G the Gram 

matrix of χG wrt ε. Then the Gram matrix of χG wrt ∨ε equals the Gram matrix of χG wrt ε∨ 

and equals 

 J · (G†)−1 · J, where Jα,β = δα+β,n+1. 

Proof. Let X = (Xkj)nj,k=1 be the matrix defined by . Then 

X satisfies the equation GX = J by formula (2.24). Hence the Gram matrix of χG wrt ε∨ equals 

X† · G · X = J · (G†)−1 · J. 
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The case of ∨ε is analogous.  

2.7. Serre functor and canonical operator. A Serre functor K: Db(X) → Db(X) is a functor 

defined (uniquely up to canonical isomorphism) by the condition (2.26) Hom•(E,F)∗ =∼ 

Hom•(F,K(E)), E,F ∈ Ob(Db(X)). 

We can take 

(2.27) K = (ωX ⊗ −)[dimC X]: Db(X) → Db(X), 

where ωX denotes the canonical sheaf of X. Analogously, in the equivariant case a 

Serre functor  is defined by the condition 

(2.28) Hom  Hom . 

We can take 

(2.29) K = (ωXG ⊗ −)[dimC X]: DGb (X) → DGb (X), 

where  is the G-equivariant canonical sheaf of X. By abuse of language, we will call 

(2.27) (and its equivariant version (2.29)) the Serre functor in Db(X) (and  , 

respectively). 

The Serre duality (2.28) implies the Serre periodicity, 

(2.30) Hom  Hom . 

Proposition 2.24. Let E  be an exceptional collection of length n of 

 Gb (X). The following operations are equivalent, i.e. produce the same exceptional 
collection when applied to E: 

(1) to act on E with the braid (τ1 ...τn−1)−n, 

(2) to take the double right-dual exceptional collection (E∨)∨, 

(3) to apply the Serre functor to each object of E. 

Proof. The equivalence of points (1) and (2) follows from the well-known identity of 

braids in Bn 

(2.31) (τ1 ...τn−1)n = β2, 

where β := τ1(τ2τ1)...(τn−2 ...τ1)(τn−1τn−2 ...τ1) is the braid that appears in (2.14) and (2.22), 

see [KT08, Theorem 1.24]. The equivalence of (2) and (3) follows from the functorial 

isomorphism (2.16).  

Remark 2.25. Note that the element (2.31) of Bn is the generator of its center Z(Bn), 

see [KT08, Theorem 1.24]. 

The K-theoretical version of the Serre functor is the so-called canonical operator 

, defined through the identity 

(2.32) . 

D 
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The K-theoretical analog of (2.30), i.e. 

(2.33)  , shows that the 

canonical operator k is a χG-isometry. 

Proposition 2.26. Let  be a basis of , and G the Gram 

matrix of χG wrt ε. Then the matrix of the canonical operator wrt 

the basis ε is equal to 

(2.34) G−1G†. 

 Proof. It follows from identity (2.32), written in matrix notation.  

3. Equivariant derived category, exceptional collections and K-theory of Pn−1 

3.1. Symmetric functions. Consider the algebra 

 of Laurent polynomials in n indeterminates. The 

elementary and complete symmetric functions are defined as the elements 

(3.1)  

3.2. . 

Put s0 = 1, m0 = 1. We have 

3.3. . 

3.2. Torus action. Let n ≥ 2. Consider the diagonal action of T = (C∗)n on the space Cn. 

Such an action induces an action of T on Pn−1, the projective space parametrizing the one 

dimensional subspaces F ⊂ Cn. If (u1,...,un) denote the standard basis of Cn, denote by ptI ∈ 

Pn−1, with I = 1,...,n, the point corresponding to the coordinate line spanned by uI. The points 

ptI, I = 1,...,n are the fixed points of the T-action. 

3.3. Derived category. The action of T on Cn induces naturally a T-structure on the 

structural sheaf OPn−1 and the tautological line bundle O(−1) on Pn−1. Any vector bundle 

obtained from OPn−1 and O(−1) through tensorial operations inherits a “natural” T-structure. 

The derived category Db(Pn−1) admits a well-known full exceptional collection, the 

Beilinson exceptional collection 
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B := (O,O(1),...,O(n − 1)). 

Such an exceptional collection, with its natural T-structure, is an exceptional collection in 

DTb(Pn−1). Its K-theoretical counterpart   defines an exceptional basis of 

 (in accordance with Theorem 2.5, Theorem 2.6 and Theorem 2.17). 
3.4. Equivariant K-theory. The equivariant K-theory algebra 

admits the following presentation 

(3.4) , 

where the variable X corresponds to the tautological line bundle O(−1) over Pn−1, and the 

variables Z1,...,Zn are the equivariant parameters corresponding to the factors of the torus T 

= (C∗)n. 

Under the presentation (3.4), the duality involution (2.2) is given by 

. 

The equivariant Grothendieck-Euler-Poincaré pairing  is given by 
the formula 

, 

by the Atiyah-Bott equivariant localization theorem [AB84]. 

Remark 3.1. By putting Zi = 1, for i = 1,...,n, in (3.4) and (3.5), we obtain the 

presentation of the non-equivariant K-theory of Pn−1 and its non-equivariant Grothendieck-

Euler-Poincaré pairing. 

The class of the T-equivariant canonical sheaf  is obtained by twisting the class 

Xn = [O(−n)] with a character of  : 

(3.6) . 

Lemma 3.2. For i,j ∈ Z we have 

   

Remark 3.3. In [TV19a], instead of the pairing , it is studied 

another non-symmetric pairing A defined by the formula 

(3.7)  , 

where  Spec(C). In [TV19a, Section 6], a notion of 

exceptional bases of wrt the pairing A, analogous to Definition 2.16, is given. 
From (2.29), (2.32) and (3.6) we deduce the following relationships between A and χG: 
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(3.8) A(f,g) = χT(g,f)∗. 

This implies, in particular, that A-exceptional bases of   are exactly 

χTexceptional bases, although ordered in the opposite order. Moreover, if we denote by

(resp. ) the morphisms of left/right mutations wrt A (resp. χT), then 

(3.9) . 

3.5. Diophantine constraints on Gram matrices. In this section, we show that the Gram 

matrices of χT wrt exceptional bases of  satisfy certain Diophantine constraints. 

Given G ∈ GL(n,Z[Z±1]), denote 

(3.10) . 

Lemma 3.4. We have 

(3.11) pG−1(λ) = pG(λ)∗, 

where for any f(Z,λ) ∈ Z[Z±1,λ] we define . 

 Proof. Notice that .  

Theorem 3.5  be a basis of , and let G be the Gram matrix 

of χT wrt ε. The following identity holds true: 

(3.12) . 

Proof. From presentation (3.4) and equation (3.6), it is readily seen that the 

eigenvalues of the canonical operator k are 

. 

Then, identity (3.12) follows from Proposition 2.26.  

If we expand (3.10) in powers of λ, i.e. 

(3.13) , 

for suitable polynomial functions pj(G) of the entries of G and G†, from the identity (3.12) 

we deduce the validity of n constraints: 

(3.14)  

If G is a Gram matrix of χT, then detG = 1, and we have 

(3.15) , 

so that 
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(3.16) pn−j(G) = pj(G)∗, j = 0,...,n. 

Thus, we are left with  constraints for the entries of G. Let us write the constraints for n 

= 2,3,4. 

Proposition 3.6. Let ε := (e1,e2) be an exceptional basis of , and let 

, 

be the Gram matrix of χT wrt ε. Then, the Laurent polynomial g is a solution of the equation 

(3.17) . 

All the solutions of (3.17) are of the form 

(3.18) g(Z1,Z2) = Z1αZ2β(Z1 + Z2) ∈ Z[Z1±1,Z2±1], where α,β ∈ Z. 

Proof. We have pG(λ) = λ2 + (gg∗ − 2)λ + 1, and the only non-trivial con- 

straint (3.14) is 

(3.19) , 

which coincides with (3.17). Notice that g is a solution of (3.17) if and only if γ := 

g·s1(Z1,Z2)−1 is a solution of γγ∗ = 1, whose solutions are  , with α,β ∈ Z. 

Remark 3.7. By Lemma 3.2, the matrix G corresponding to the solution (3.18) coincide 

with the Gram matrix wrt the exceptional basis ([p ⊗ O], [q ⊗ O(1)]), where

 are characters of T such that . 

Proposition 3.8. Let ε = (e1,e2,e3) be an exceptional basis of , and 

let 

, 

be the Gram matrix of χT wrt ε. Then, the triple (a,b,c) is a solution of the Markov-type 

equations 

(3.20)  

(3.21) . 

Notice that the triple (a,b,c) = (s1(Z),s2(Z),s1(Z)) gives a solutions of (3.20) and (3.21). 

The properties of the Markov-type equations (3.20)-(3.21) and its solutions are 

discussed in [CV20]. 

Remark 3.9. In the non-equivariant case, the Gram matrices wrt exceptional bases are 

upper triangular matrices with ones on the diagonal and integer entries (a,b,c) satisfying 

the equation 
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(3.22) a2 + b2 + c2 − abc = 0, 

see [GK04,Bon04]. This Diophantine equation is equivalent to the famous Markov 

equation, 

(3.23) a2 + b2 + c2 − 3abc = 0, 

see [Aig13]. A triple of integers (a,b,c) is a solution of (3.23) if and only if the triple of 

integers (3a,3b,3c) is a solution of (3.22). 

If  is a solution of equations (3.20) and (3.21), then putting 

Z1 = Z2 = Z3 = 1 in the Laurent polynomials a,b,c we obtain a triple of integers satisfying the 

Markov equation (3.23). For example, the solution 

(s1(Z),s2(Z),s1(Z)) 

gives the minimal Markov triple (3,3,3). Thus equations (3.20) and (3.21) may be 

considered as a Laurent polynomial deformation of the classical Markov equation. 

Proposition 3.10. Let ε = (e1,e2,e3,e3) be an exceptional basis of , and let 

, 

be the Gram matrix of χT wrt ε. Then, (a,b,c,d,e,f) is a solution of the equations 

(3.24) 

, 

(3.25)  

(3.26) 

. 

Remark 3.11. In the corresponding non-equivariant case, these Diophantine 

constraints on the Gram matrices wrt exceptional collection reduce to the equations 

(3.27) a2 + b2 + c2 + d2 + e2 + f2 − abd − ace − bcf − def + acdf = 8, 
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(3.28) (af − be + cd)2 = 16, 

on the integers (a,b,c,d,e,f), see e.g. [Bon04]. These constraints may be reobtained by 

putting Z1 = Z2 = Z3 = Z4 = 1 in equations (3.24)-(3.26). 

4. Equivariant cohomology of Pn−1 

4.1. Equivariant cohomology. Consider the T-equivariant cohomology al- 

gebra . Denote 

• by x the first equivariant Chern class of the tautological line bundle O(−1) on 

Pn−1 with its standard T-structure, 

ythe equivariant Chern roots of the quotient bundle Q • by 

(if ⊂ is the line represented by p ∈ Pn−1, then the fiber Qp is the quotient Cn/F), 

• by z = (z1,...,zn) the equivariant parameters corresponding to the factors of the 

torus T, 

• by Ω the complement in Cn to the union of the hyperplanes 

. 

It is well known that 

, 

where C[x,y,z]Sn−1 is the algebra of polynomials in x,y,z symmetric in the variables y1,...,yn−1. 

The equivariant cohomology  is a module over the ring . By 

setting all the equivariant parameter zi’s to zero in (4.1), we obtain the presentation of the 

classical cohomology algebra 

. 

4.2. Extension of scalars. Denote by OΩ the ring of holomorphic functions on the 

domain Ω. This ring is a module over the ring HT•(pt,C) =∼ C[z]. Set (4.3) HTΩ(Pn−1) := 

HT•(Pn−1,C) ⊗HT•(pt,C) OΩ. 

A class α ∈ HTΩ(Pn−1) is uniquely determined by the restrictions α|ptI ∈ OΩ at fixed points. 

Following the notations of [TV19a], we will use three different bases of HTΩ(Pn−1): 

(1) the standard basis (1,x,...,xn−1), where xα := xα; 

(2) the basis (g1,...,gn) defined by 
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(4.4) , and gn := 1; 

(3) the idempotent basis (Δ1,...,Δn) defined by the Lagrange inteprolating polynomials 

(4.5)  

We have 

(4.6) Δi · Δj = δijΔi. 

4.3. Poincaré pairing and D-matrix. Denote by 

(4.7)  the 

equivariant Poincaré metric given by equivariant integration 

. 

The equivariant cohomology HT•(Pn−1,C) with the equivariant Poincaré metric η is a 

Frobenius algebra over the ring HT•(pt,C) =∼ C[z]: 

(4.9) . 

By bilinearity, we extend the Poincaré pairing to HTΩ(Pn−1). The idempotent vectors 

are pairwise orthogonal: 

. 

Define the matrix D = (Djα) as the matrix of the base change 

. 

Lemma 4.1. We have 

 Djα = zjα, α = 0,...,n − 1, j = 1,...,n. 

Thus D is the Vandermonde matrix 

 . 

Its inverse D−1 is 
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, 

where 

Proof. The identity x = z1Δ1 +···+znΔn implies the identity 

...znαΔn. 

Lemma 4.2. Let η = (ηαβ)α,β, with 

ηαβ := η(xα,xβ), 

be the Gram matrix of the equivariant Poincaré metric. We have 

, 

Proof. It readily follows from the identity DT · diag(χ1,...,χn) · D = η.  

4.4. Equivariant characteristic classes. Consider a T-equivariant vector bundle V of 

rank r on Pn−1, with equivariant Chern roots ξ1,...,ξr. 

Definition 4.3. Define the graded equivariant Chern character of V as the 

characteristic class 
r 

Ch. 
=1 

Example 4.4. For V = O(k), k ∈ Z, the graded Chern character ChT(V ) is the class 

Ch . 

This is the element of HTΩ(Pn−1) whose restriction at the fixed point ptI is 

√ kz I . 

Lemma 4.5. Let  and Q(Z) ∈ C[Z±1]. We have 

ChT(Q(Z)V ) = Q(Z´)ChT(V ), Z´ . 

Proof. By additivity it is sufficient to prove the lemma for a monomial Q(Z) = 

 are the equivariant Chern roots of V , then  

are the equivariant Chern roots of Q(Z)V .  

Definition 4.6. Given any meromorphic function F on C, holomorphic at 0, with Taylor 

expansion of the form 
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, 

we define the F-class of V as the characteristic class 

. 

Remark 4.7. We consider only the vector bundles V and functions F(t) such that  
are elements of HTΩ(Pn−1). 

Definition 4.8 (Gamma classes). The -classes of V are defined as the characteristic 

classes of V obtained from the Taylor expansions 

 . 

Definitions 4.3, 4.6, 4.8 naturally extend to objects of the equivariant derived category

. 

We will denote it by FPn−1. Since the Chern roots of TPn−1 are  , such Remark 

4.9. If V = TPn−1, the F-class of V is called the F-class of Pn−1. a class is given by  

. 

This is the class whose restriction at the fixed point  . It is an 
element of HTΩ(Pn−1) if F(t) has poles only at points of Z. This is the case for 

. 

5. Equivariant quantum cohomology of Pn−1 

5.1. Equivariant Gromov-Witten invariants. For a given d ∈ H2(Pn−1,Z) and given 

integers g,m ≥ 0, denote by  the moduli stack of genus g stable maps to 

Pn−1 with degree d and m marked points. We assume that either d > 0 or 2g + m > 2 so that

 is non-empty. The 

 

T-action on Pn−1 induces a T-action on Mg,m(Pn−1,d). Given m cohomological classes 

γ1,...,γm ∈ HT•(Pn,C), 

scendant Gromov-Witten invariantsand integers d1,...,dn ∈ 
Z

≥0, we define theof Pn−1 to be 

the polynomialsgenus g, degree d, T-equivariant de- 
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, 

where 

, with Dvir := nd+(n−4)(1− 

g) + m, is the equivariant virtual fundamental class3, 

• the map ev  is the evaluation at the j-th marked point, 

which is T-equivariant, 

• the classes  denote any equivariant lift of the first 

Chern classes of the universal cotangent line bundles Lj on Mg,m(Pn−1,d). 

We refer the interested reader to the expository article [LS17], and references therein, for 

details. If all di’s are zero, then the polynomials above are called primary equivariant 

Gromov-Witten invariants. 

5.2. Equivariant Gromov-Witten potential. Consider the standard basis 

, seen as a -module. Denote by t := (t0,...,tn−1) 

the corresponding dual coordinates on , so that the generic element of 

 is 

. 

 

Consider the generating function  , called 
equivariant Gromov-Witten potential of Pn−1, defined by 

 m=0 d=0 m times$% 

(5.2) . 

Theorem 5.1 ([Giv96, Theorem 3.1]). The function  satisfies the WDV V -

equations 

. 

5.3. Equivariant quantum cohomology. The big equivariant quantum product ∗ 

defined by 

 
3  Its existence is ensured by the properness of Mg,m(Pn−1,d). From this property, it also follows that 

equivariant Gromov-Witten invariants are polynomials in z, see [LS17, Section 3] and references therein. 
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(5.3) , 

defines on   a Frobenius algebra structure, namely a commutative, 

associative algebra with unit (the element 1) whose product is compatible with the 

equivariant Poincaré metric (4.8), that is 

(5.4) . 

This algebra structure on   is called the big equivariant quantum 

cohomology of Pn−1. It gives an example of a formal Frobenius manifold [Man99, Chapter 

III]. The quantum product (5.3) is a deformation of the product in classical cohomology. 

It is customary to denote the big quantum product also by ∗t to emphasize its dependence 

on parameters ti’s. 

5.4. Quantum connection. The quantum connection of the equivariant quantum 

cohomology of Pn−1 is defined by the formula 

(5. 5), 

(5.6) 

where κ ∈ C∗ is the spectral parameter. The associativity of the quantum multiplication ∗t, 

i.e. Theorem 5.1, is equivalent to the flatness condition of the quantum connection ∇quantα,κ 

, for all κ ∈ C∗: 

(5.7) '∇quantα,κ ,∇quantβ,κ ( = 0, α,β = 0,...,n − 1, κ ∈ C∗. 

The system of equations for flat sections of the quantum connection is called the system 

of equivariant quantum differential equations. 

Definition 5.2. The T-equivariant topological-enumerative morphism is the element 

S(t,κ) ∈ End(  

defined by the formula 

, 

where   and the term   has to be expanded in 

power series . 

Definition 5.3. The (big) T-equivariant J-function of Pn−1 is the cohomologyvalued 

function defined by the identity 

(5.8) . 
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Theorem 5.4 ([Giv96,Giv98]). For any κ ∈ C∗, and any  , the 

cohomology class 

S(t,κ)α 

is a flat section of the quantum connection ∇quantα,κ , namely it satisfies the following 

system of differential equations 

(5.9) . 

Proof. The validity of equations (5.9) is equivalent to the topological recursion 

relations in genus 0 for Gromov-Witten invariants with descendants [Wit90]. For the proof 

in the non-equivariant case, see [Dub92], [Dub96, Lecture 6], [Dub99, Lecture 2], [CK99, 

Chapter 10], [CDG20, Section 7]. For the adaptation to the equivariant case see [Giv96, 

Section 6] and [Giv98, Sections 1 and 

2].  

5.5. Small equivariant quantum product for Pn−1. 

Definition 5.5. The small quantum product of Pn−1 is obtained by specializing the 

parameters ti’s of the big quantum product (5.3) as follows: ti = 0 for 

. 

It is customary to put q := exp(t1) and to denote by ∗q the small quantum product. 

Following the notations of [TV19a], we denote by ∗q,z the small quantum product, 

underlining its dependence on the equivariant parameters z. 

A detailed study of the equivariant Gromov-Witten invariants of Pn−1 (and more 

general flag varieties) and its small quantum cohomology can be found for example in 

[GK95, Kim96, Mih06]. For a fixed q ∈ C∗, the small quantum product operator 

(5.10) , 

is the C[z]-linear morphism defined by the identities 

(5.11) 

(5. 12), 

where si(z) are the elementary symmetric polynomials in z. 

Remark 5.6
. 
In the basis (g1,...,gn), the operator x∗q,z is given by 

(5.13) x ∗q,z gi = zigi + gi−1, i = 2,...,n, (5.14) x ∗q,z g1 = z1g1 + 

qgn. 

5.6. R-matrices and qKZ operators. For a,b ∈ {1,...,n}, with , we define a family 

of C[z]-linear operators, called the R-matrices, 
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, 

depending on a parameter u ∈ C, and defined by the formulae 

. 

The R-matrices satisfy the Yang-Baxter equation 

Rab(u − v)Rac(u)Rbc(v) = Rbc(v)Rac(u)Rab(u − v), 

for a,b,c all distinct, and the inversion relation 

Rab(u)Rba(−u) = 1. 

Define the operators E1,...,En such that 

Eigj := δijgj. 

Define the qKZ operators K1,...,Kn by the formula 

(5.15) , 

(5.16) 

Ki := Ri,i−1(zi −zi−1 −1)...Ri,1(zi −z1 −1)q−EiRi,n(zi −zn)...Ri,i+1(zi −zi+1). 

5.7. Equivariant qDE and qKZ difference equations. Consider the vector bundle H over 

the base space Cn, with fiber over z0 given by the equivariant cohomology algebra (4.1) 

specialized at z = z0, i.e. 

(5.17) × → ) . 

Denote by pr: C∗ Cn Cn the natural projection. Consider the pull-back vector bundle pr∗H. 

The quantum connection described in Section 5.4 defines a differential operator 

(5.18) 
, 

acting on sections I(q,z) of the vector bundle pr∗H. Following [TV19a], we fix κ = 1. 

The (small) equivariant quantum differential equation (qDE for short) of Pn−1 is the 

differential equation 

(5.19) 
, 

where I is a section of the vector bundle pr∗H. The qDE is thus the equation for flat sections 

of pr∗H. 

Definition 5.7. Fix . Define the isomoprhism of vector spaces 
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(5.20) , 

for 

Definition 5.8. Fix  . For i = 1,...,n, define the isomorphisms of 

vector spaces 

(5.21)  
, 

for j = 1,...,n, where gj’s are the elements of bases (4.4). 

For z ∈ Cn, i = 1,...,n, we use the following notations: 

(5.22) zi± : = (z1,...,zi ± 

1,...,zn) ∈ Cn, 

(5.23) Θ±z,i : = Θz,zi± : pr∗Hq,z 

→ pr∗Hq,zi±, (5.24)

 ±Θz,i : = Θzi±,z : 

pr∗Hq,zi± → pr∗Hq,z. 

For every fiber pr∗Hq,z we have the qKZ-operators K1,...,Kn defined by equation (5.16). 

Definition 5.9. Fix q ∈ C∗, z ∈ Cn. The qKZ-discrete connection on the bundle H is 

given by the datum of the isomorphisms of vector spaces 

(5.25) Θ−z,i ◦ Ki(q,z): pr∗Hq,z → pr∗Hq,zi−. 

The system of difference equations 

(5.26) I(q,z1,...,zi − 1,...,zn) = *Θ−z,i ◦ Ki(q,z)+I(q,z), i = 

1,...,n, 

is called the system of the qKZ difference equations. These are equations for flat sections 

for the qKZ discrete connection. 

Theorem 5.10 ([TV19a, Theorem 3.1]). The joint system of equation (5.19) and (5.26) 

is compatible. 

Remark 5.11. The qKZ difference equations (5.26), can be written in the equivalent 

form 

 

where the operators 

(5.28)  
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act on the fiber pr∗Hq,z. In terms of the R-matrices we have 

Ki(q,zi+)−1 =Ri+1,i(zi+1 − zi − 1)...Rn,i(zn − zi − 1)qEi· 

(5.29) · R1,i(z1 − zi)...Ri−1,i(zi−1 − zi). 

Remark 5.12. The qKZ operators are defined in the g-basis (4.4). That basis is the limit 

of the stable envelope basis of the equivariant cohomology of the cotangent bundle T∗Pn−1, 

in the limit, in which the equivariant cohomology of the cotangent bundle T∗Pn−1 turns into 

the equivariant cohomology of the base space Pn−1. See [RTV15] on the stable envelopes 

for the cotangent bundle T∗Pn−1, see [GRTV13, Section 7] and [TV19b, Section 11.4] on 

that limit. 

6. Equivariant qDE of Pn−1 and its topological-enumerative solution 

6.1. Equivariant quantum differential equation. We consider the 
equivariant quantum differential equation (5.19) written wrt the standard basis 

, namely, 

. 

We have 

6.2. , 

where 

 . 

The eigenvalues of the matrix A1(z) are exactly z1,...,zn, as it easily follows from Viète 

formulae. Notice that A1(z) denotes the matrix of equivariant multipilcation 

 
whereas A0 represents the quantum correction terms of the product. Moreover, we have 

6.3. D · A1(z) · D−1 = Z := diag(z1,...,zn), 

since the classes Δi’s are the idempotents of the equivariant cohomology algebra. 

The differential system (6.1) has a regular singularity at q = 0 and an irregular 

singularity (of Poincaré rank 1) at q = ∞. 

6.2. Levelt Solution. 

Theorem 6.1. There exist unique n × n-matrix valued functions  , 

meromorphic on Cn and regular on Ω, such that the gauge transformation 
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, 

transforms the differential system (6.1) into the differential equation 

(6.5)  

Moreover, the formal power series G(q,z) converges to a meromorphic function on C × Cn, 

regular on C × Ω. 

Proof. Let us look for a formal gauge transformation 

, 

which puts the system (6.1) into the simplest normal form 

 

This requirement implies the following equation for G: 

, 

which reduces to the following recurrence equations for the coefficients Gk’s: 

(6.6) ZG0 = G0Z, 

(6.7) DA0D−1Gk + [Z,Gk+1]−(k + 1)Gk+1 = 0. 

Equation (6.6) is satisfied if and only if G0 is diagonal. So we may choose G0 to be 

. 

For k ≥ 1 equation (6.7) uniquely determines Gk+1 in terms of Gk. Indeed, the linear 

operator 

 

has eigenvalues zi − zj − (k + 1), i,j = 1,...,n, which are nonzero, since z ∈ Ω. Hence, ϕk 

is invertible, and we deduce 

Gk+1 = ϕ−k 1(−DA0D−1Gk). 

The power series G(q,z) is convergent. This follows from the regularity of the singularity 

q = 0 of (6.1). The proof is standard, e.g. see [Was65,Sib90,MS16]. 

 

Corollary 6.2. For  as in Theorem 6.1, the matrix valued function 

(6.8) , 

is a solution of system (6.1). For each fixed z ∈ Ω, the function Yo is a fundamental system 

of solutions. 
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We call the fundamental solution Yo the Levelt fundamental solution, following the 

terminology of [AB94, Chapter 2]. 

Fix (q,z) and increase the argument of q by 2π. The analytic continuation of the 

solutions of (6.1) along this curve produces the monodromy operator M0(z) on the space 

of solutions. 

Corollary 6.3. The Levelt fundamental solution Yo(q,z) is an eigenbasis for the the 

monodromy operator M0(z). The matrix of the monodromy operator M0(z) wrt the 

solution Yo(q,z) is 

(6.9)  . 

Proof. We have 

. 

 

6.3. Topological-enumerative solution. Recall the topological-enumerative morphism 

S(t,κ) of Section 5.4, where t = (t0,t1,...,tn−1). Denote 

(6.10) So(q) := S(0,logq,0,...,0,1), 

where the last argument is κ = 1. We call So(q) the restriction of S(t,κ) to the small 

equivariant quantum locus. 

Define the equivariant cohomology valued functions Ψtop,1(q,z),...,Ψtop,n(q,z) by the 

formula: 

(6.11) Ψtop,m(q,z) := So(q)xm−1, m = 1,...,n. 

By Theorem 5.4, these functions are solutions of the equivariant quantum differential 

equation (5.19). Let Ytop(q,z) be the matrix of the operator So(q) wrt the basis  : 

(6.12)  

The matrix Ytop(q,z) is a solution of the matrix differential system (6.1). We call it the 

topological-enumerative solution of (6.1). 

Theorem 6.4. The topological-enumerative solution is the unique solution of (6.1) of 

the form 

(6.13) 

where 

Ytop(q,z) = Φ(q,z)qA1(z), 

∞ 

. 
=1 

The coefficients Φj are holomorphic on Ω, they are related to descendant Gromov- 

Witten invariants through the equation 
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(6.14) . 

Here ψ is the first Chern class of the universal cotangent line bundle L2 on the 

 

moduli space M0,2(Pn−1,j) at the second marking. Furthermore, we have 

Ytop(q,z) = Yo(q,z) · D, 

where Yo is the Levelt fundamental solution of (6.1) described in Corollary 6.2 and D is 

(6.3). In particular, for each fixed z ∈ Ω, the matrix Ytop(q,z) is a fundamental system of 

solutions of (6.1). 

Proof. For a ∈ HT•(Pn−1,C) let So(q)a be the corresponding solution of the qDE. We 

obtain 

. 

by using the divisor axiom for descendant Gromov-Witten invariants, see [CK99, Chapter 

10]. Notice that 

 

thus follows from the uniqueness of the solution Yo in Corollary 6.2.  

6.4. Scalar equivariant quantum differential equation. Let Y be a fundamental solution 

of the differential system (6.1). Then, the matrix Yˆ := η·Y ·η−1 is a solution of the 

differential system 

(6.15)  

This follows from the Frobenius algebra property (5.4). 

Equation (6.15) can be reduced to the scalar differential equation 

Y top ( q,  )= 

⎛ 

⎝ 
 

+ 

∞  

j =1 
Φ j (  ) q 

j 

⎞ 

⎠ q 
A 1 (  ) 

= 

⎛ 

⎝ 
 

+ 

∞  

j =1 
Φ j (  ) q 

j 

⎞ 

⎠ ·D 
− 1 ·D· q 

A 1 (  ) ·D 
− 1 ·D 

= 

⎛ 

⎝ D 
− 1 + 

∞  

j =1 
Φ j (  ) D 

− 1 q 
j 

⎞ 

⎠ q 
D·A 1 (  ) ·D − 1 

# $

% 

& 
Y o ( q,  ) 

·D , 
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, 

that will be called the scalar equivariant quantum differential equation of Pn−1. 

Given n linearly independent solutions (φ1,...,φn) of (6.16) one can reconstruct a 

fundamental matrix solution Yˆ of system (6.15) by setting 

 

Remark 6.5. In the non-equivariant limit z1 = ··· = zn = 0, equation (6.16) reduces to 

the equation ϑnq φ = qφ, 

which coincides with the scalar quantum differential equation of Pn−1, 

, 

under the change of variables q = sn. The monodromy of this equation has been studied in 

[Guz99,CDG18]. 

Theorem 6.6. The matrix 

(6.17) , 

where 

 

is a fundamental matrix solution of the differential system (6.15). The corresponding 

solution η−1 ·Yˆ ·η of the equivariant differential system (6.1) is the 

topologicalenumerative solution, 

Ytop(q,z) = η−1 · Yˆ · η. 

Proof. Equation (5.8) implies that the components, wrt to the standard basis 

, of the J-function, restricted to the small equivariant quantum locus, are solutions 

of the scalar equivariant quantum differential equation (6.16). The small equivariant J-

function of Pn−1, computed by A.Givental [Giv96], B.J.Lian, K.Liu, 

S.-T.Yau [LLY97] is given by the formula 

 . 

We have 

, 

for any αi ∈ C∗. We deduce 
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. 

If we define 

 
then the matrix 

 
is a solution of the differential system (6.15), and the corresponding solution 

η−1 · Yˆ · η 

is the topological solution of system (6.1).  

7. Solutions of the equivariant qDE and qKZ difference equations 

7.1. q-Hypergeometric Solutions. In this section we define a fundamental system of 

solutions of the joint system of equations (5.19) and (5.26) described in [TV19a]. 

Definition 7.1 (Master and Weight function). Define the master function Φ and the 

-valued weight function W by the formulae 

. 

Recall that y1,...,yn−1 denote the equivariant Chern roots of the natural quotient bundle Q on 

Pn−1. 

Remark 7.2. Notice the difference in the definition (7.1) of the master function Φ with 

respect to [TV19b] and [TV19a]. In [TV19a, Section 4.1] the master function is defined as 
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, 

i.e. differing from (7.1) by the extra factor . In [TV19b] the 
general case of partial flag varieties is considered. The master function in [TV19b, Section 
11.4] (see formula (11.16)), specialized to the case of projective spaces, is 

. 

Thus it differs from the function Φ in (7.1) by the factor . 

Definition 7.3 (Jackson Integrals). Define the Jackson integrals ΨJ, J = 1,...,n, to be the

-valued functions defined on C/∗ ×Ω by the formula 

7.2. . 

Here C/∗ is the universal cover of. C∗. 

 Theorem 7.4 ([TV19b]) The functions ΨJ(q,y,z) with J = 1,...,n are 

differential equation/ (5.19) and of the qKZ difference equations (5.26). These 

funcholomorphic on C∗ × Ω. Each of them is a solution of the equivariant quantum tions 

form a basis of solutions of this joint system of equations. 

We will call the solutions ΨJ the q-hypergeometric solutions. 

Remark 7.5. Notice that in [TV19a] the system of qKZ equations differs from the one 

considered in [TV19b] and in this article by a sign in the rhs of (5.26), due to the different 

normalization of the master function Φ. 

Corollary 7.6 ([TV19b, Formula (11.19)]). The q-hypergeometric solutions 

ΨJ admit the following expansion 

, 

where the classes ΨJ,k(z) are rational functions in (z1,...,zn), regular on Ω. 

Define the matrix Yq-hyp = ([Yq-hyp]αJ)α,J by the formula 

 

then Yq-hyp is a fundamental matrix solution of the differential system (6.1). 

Theorem 7.7. The connection matrix C relating the topological-enumerative solution 

with the q-hypergeometric solution, 

Yq-hyp(q,z) = Ytop(q,z) · C, 
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is given by the formula 

(7.3) C = D−1 · diag  . 

This matric C is the matrix attached to the morphism 

(7.4)  

where we fix 

• the basis  in the domain of ρ, 

• the basis  in the target space of ρ. 

Proof. The proof follows from Theorem 6.4 and Corollary 7.6. Notice that 

  . 

Each term of the entries of the diagonal matrix in (7.3) can be indentified with the 

multiplication by these classes wrt the basis (Δi)i.  

Remark 7.8. The functions Ψtop,m(q,z) defined in (6.11) are not solutions of the qKZ 

difference equations (5.26), since the matrix C given by (7.3) is not 1-periodic in the 

equivariant parameters z1,...,zn. 

7.2. Identification of solutions with K-theoretical classes. Following 

[TV19a], we introduce the symbols 

(7.5)  

Definition 7.9. Let Q(X,Z) ∈ C[X±1,Z±1] be a Laurent polynomial. Define 

. 

The function ΨQ is a solution of the joint system of equations (5.19) and (5.26). If Q(X,Z) 

= Xm, we denote the corresponding solution ΨQ by Ψm, i.e. 

. 

Remark 7.10. Notice that Ψm in [TV19a] equals of 

this paper. This is due to the difference of normalizations of the master function, see 

Remark 7.2. 

Theorem 7.11 ([TV19a]). There is a well-defined morphism from to the 

space of solutions of the joint system of equations (5.19) and (5.26), defined by the 

association 

, 

under the isomorphism (3.4). 
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Corollary 7.12 ([TV19a, Corollary 4.4]). For any k ∈ Z, we have 

(7.6) , 

where si(Z´) are the elementary symmetric polynomials in Z´. 

Theorem 7.13 ([TV19b, Theorem 11.3]). For any  is a basis of 

the space of solutions of the joint system (5.19) and (5.26). 

Remark 7.14. The idea that space of solutions of the qDE and qKZ equations is 

naturally identified with the space of the K-algebra can be observed in [TV97a, TV97b] 

and was implicitly discussed there. 

7.3. Module Sn of solutions. 

Definition 7.15. Define the space Sn of solutions to the joint system (5.19) and (5.26) 

of the form 

(7.7) . 

The space Sn admits a structure of a C[Z±1]-module, the multiplication by Q(Z) being defines 

as the multiplication by Q(Z´). 

By Corollary 7.12, the module Sn contains all the solutions Ψm(q,y,z), m ∈ Z. 

Corollary 7.16 ([TV19a, Corollary 4.6]). The module Sn contains a basis of solutions 

of the joint system of equations (5.19), (5.26). Moreover, the map  

defined by the formula 

(7.8) θ(Xm) := Ψm(q,y,z), m ∈ Z, defines an isomorphism of C[Z±1]-

modules. 

Using the isomorphismT θ we define a sesquilinear form on the module Sn as the image 

of the χ -form on . The notions of exceptional bases and the action of the braid 

group on them can be lifted to Sn. 

7.4. Integral representations for solutions. For p ∈ C, let us denote by C(p) the parabola 

in C defined by the equation 

. 

Given a point z ∈ Ω, take p such that all the points z1,...,zn line inside C(p). The value of the 

integral (7.9) below does not depend on a particular choice of p, so we will simply denote 

C(p) by C(z). 

Lemma 7.17 ([TV19b, Lemma 11.5]). For any Laurent polynomial Q(X,Z) we have 
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(7.9)  

where the integral converges for any . In particular, we have 

Remark 7.18. These formulae differ from the corresponding ones in [TV19a]. See also 

Remarks 7.2 and 7.10. 

7.5. Coxeter element, and elements γn,δn,odd,δn,even ∈ Bn. The Coxeter element of Bn is 

the braid 

(7.11) C := τ1τ2 ...τn−1 ∈ Bn. 

For any n ≥ 3, let 

 , for n odd, 

 ⎪⎩n − 2, for n even. 

Set γ2 := 1, and for n ≥ 3, 

. 

Define also 

δn,odd = τ1τ3 ...τn−2, δn,even = τ2τ4 ...τn−1, for n odd, 

δn,odd = τ1τ3 ...τn−1, δn,even = τ2τ4 ...τn−2, for n even. 

The elements C, γn, δn,odd, δn,even satisfy the following relation. 

Lemma 7.19 ([TV19a, Lemma 6.3]). We have the following identity in Bn: 

(7.12) δn,even δn,odd γn = γn C. 

7.6. Exceptional bases . For any k ∈ Z, we define the basis Qk 

of solutions of the joint system (5.19), (5.26) to be the basis 

(7.13) Qk := (Ψk+n−1,...,Ψk+1,Ψk). 

Lemma 7.20. The basis Qk is an exceptional basis of Sn. Via the isomorphism 

, it is identified with the exceptional basis 

 ([O( k n + 

1)],...,[O( k  1)],[O( k)]), 
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of K0
T(Pn−1)Cby twisting it with 

⊗[O(−k − n + 1)]. 

 Proof. It follows from Corollary 7.16.  

For any k ∈ Z, we define the exceptional bases  through the mutations 

(7.14) . 

Proposition 7.21 ([TV19a, Lemma 6.6, Corollary 7.2]). The basis Qk and 

Qobtained fromk−1 are related by the so-calledCQby multiplying its last element bymodified 

Coxeter map(−:1)this means thatn+1sn(Z−1). Moreover,Qk−1 is 

k 

the basis  is obtained from the basis  by multiplying its last vector by 
(−1) +1sn(Z−1). 

Remark 7.22. Our bases   have the same elements as the bases 

 of [TV19a], but ordered in the opposite way, see Remark 3.3. 

Introduce three more families of exceptional bases of Sn, denoted by . For 

k ∈ Z define 

(7.15) . 

We have by formula (7.12). The 

diagram 

C 

 Remark 7.23 Notice that the pre-image of a basis Qk via the isomorphism 

.is a foundationO − OEk−of the helix generated by the BeilinsonO 2 

exceptional collection ( ( n+1),..., ( 1), ). In particular, En is the adjacent foundation to the 

left of E0: by Proposition 2.24, the objects of En are obtained by applying the Serre functor 

to objects of E0. 

For any such that , denote 

 Q  k 
δ n, odd 2 Q  k 

δ n, even 2 Q  k − 1 

2 Q k 

 

γ n 

2 Q k − 1 

 

γ n 

 

2 
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(7.17) − ··· −

 . 

The explicit formulae for TV19a, Section 6.3], Remarks 

7.10 and 7.22. If n = 2h + 1, 

we have 

• the basis  is the basis in which the solutions Ψk,...,Ψk+h stay at the positions 

2h+1,2h−1,...,1, and the solutions Ψk+2h(k+1),Ψk+2h−1(k+ 2),..., Ψk+h+1(k + h) stay 

at the positions 2h,2h − 2,...,6,4,2, respectively; 

• the basis is the basis in which the solutions Ψk,...,Ψk+h stay at the positions 

2h,2h−2,...,6,4,2,1, and the solutions Ψk+2h(k),Ψk+2h−1(k+ 1),..., Ψk+h+1(k + h − 1) 

stay at the positions 2h + 1,...,5,3. 

If n = 2h, we have 

• the basis  is the basis in which the solutions Ψk,...,Ψk+h stay at the positions 

2h,2h−2,...,4,2,1, and the solutions Ψk+2h−1(k+1),Ψk+2h−2 

(k + 2),..., Ψk+h+1(k + h − 1) stay at the positions 2h − 1,...,7,5,3; 

• the basis is the basis in which the solutions Ψk,...,Ψk+h−1 stay at the positions 2h 

− 1,...,5,3,1, and the solutions Ψk+2h−1(k),Ψk+2h−2(k + 1),..., Ψk+h(k + h − 1) stay at 

the positions 2h,...,6,4,2. 

The bases   can be obtained from the bases  by application of the 

following rule. 

) is obtained from the basis   Rule 7.24 The basis

(resp.,  

by substituting any solution. 2 Ψ ( ) with2 

, 

where a ∈ Z is such that 

0 ≤ m + an ≤ n − 1. 

Example 7.25. Let n = 5 and k = −1. We have 
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. 

 Theorem 7.26 , the solution  

corresponds to the K-class of the exceptional object 

, 

placed in degree. Here T denotes the tangent sheaf of Pn−1 with its natural 

T-equivariant structure. 

Proof. Let V = Cn be the diagonal representation on T described in Section 

3.2. Consider the Euler exact sequence, together with its exterior powers 

(7.18) 0  O V ⊗ O(1)  T  0, 

  
   , 

  
   , 

  
   . 

Each morphism in (7.18) is T-equivariant. In equivariant K-theory we have 

43h T 5 = 43h V ⊗ O(h)5 − 43h−1 T 5 = sh(Z)[O(h)] − 43h−1 T 5, 

for h = 1,...,n. By induction, we obtain 

, 

where the sign is + for even h, and − for odd h. The result follows from identity 
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(7.17). 

 

the basesCorollary  7.27correspond to the. For any k ∈ ZK, via the isomorphism-

classes of the following T-full exceptional, collections: 

(1) If n is odd, the basis  corresponds to 

 

and the basis  corresponds to 

 

(2) If n is even, the basis  corresponds to 

, 

and the basis  corresponds to 

. 

In these exceptional collections, each of the objects O(m) sits in degree 0 and each of the 

objects  sits in degree −h. 

Proof. It follows from Theorem 7.26 and the description of the bases given 

above. 

Corollary 7.28. The objects corresponding to the elements of the bases are 
obtained from the objects corresponding to the elements of the bases twisting 
their T-equivariant structures. 

More precisely, for a ∈ Z define the T-characters 

(7.19) , if a ≥ 0, 

(7.20) , if a < 0, 

where V =∼ Cn is the diagonal representation of T. Given m ∈ Z define a ∈ Z from 

(7.21) 0 ≤ m + an ≤ n − 1. 

Then the T-equivariant structure of any object  
corresponding to bases  must be tensored with the corresponding character 
defined above. 

 Proof. It follows from Corollary 7.27 and Rule 7.24.  
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 7.7. Asymptotic expansion of bases in sectors  and  . 

Following [TV19a], introduce the coordinates (r,φ) on the universal cover C∗ of the 

punctured s-plane C∗: 

(7.22) . 

Lemma 7.29 ([TV19a, Lemma 5.1]). For m ∈ Z and φ ∈ R such that 

(7.23) , 

we have the asymptotic expansion as s → ∞ 

, 

, 

where arg , so that ) . 

Consider the sectors 

(7.25) 

(7.26), 

for k ∈ Z. 

Let us recall the main result of [TV19a] concerning the asymptotic expansion of the 

bases . 

Theorem 7.30 ([TV19a, Theorem 7.1]). The elements of the basis of solutions  

(resp. ) can be reordered to a basis  with asymptotic expansion 

 , 

for ). Here, for defining , 

the following choice of the branch of  is done: for every m the 

argument of  is chosen so that  when φ tends 

 inside , for the case of , 

 inside , for the case of . 

In both cases, the argument of  is continuous for φ in the intervals above. 

 In terms of the bases 2 2 we can recast this result as follows. 
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Corollary 7.31. The elements of the basis of solutions  (resp. ) can be reordered 

to a basis  with asymptotic expansion 

, 

for s → ∞ and ). Here for defining , the principal 

determination of the argument of (ζnms) is chosen, i.e. arg( 2πφ. 

Proof. From Lemma 7.29 and Theorem 7.30, we have that, for any m ∈ Z, the element 

 admits the following expansion on : 

 

where a ∈ Z is such that 

0 ≤ m + an ≤ n 

Thus, we have the following asymptotic expansion 

for : 

. 

Notice that  

is the element of  obtained the element   by applying the Rule 7.24. This 

proves the statement for . The same argument applies for .  

8. B-classes and B-Theorem 

In this Section we prove the B-Theorem, one of the main results of this paper. 

8.1. Morphism B. 

Definition 8.1. Define the morphism of complex vector spaces B:

 

by 

(8.1) B . 

See Section 4.4 for the definition of the characteristic classes in the r.h.s. of (8.1). 

8.2. B-Theorem. Consider the space S n of solutions I(q,z) of the equivariant 

quantum differential equation (5.19) that are holomorphic wrt z in Ω. The space S n is a 
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module over OΩ. Since elements of Sn can be seen as element of S n, the isomorphism

 of Corollary 7.16 induces a map 

. 

The restriction So of the topological-enumerative morphism, defined in (6.10), allows us to 

associate an element of S n to any element of . By extension of scalars, there 

is an induced morphism 

 

Theorem 8.2 (B-Theorem). The following diagram is commutative: 

 

  So θ 

S n 

In other words, if  and θ(F) ∈ Sn is the corresponding solution to the 

joint system of equations (5.19) and (5.26), then the meromorphic functions hX,j(z), with 

j = 1,...,n, defined by the identity 

(8.2) , 

are the components of the equivariant cohomology class B(F) wrt the basis , i.e. 

(8.3) B . 

Remark 8.3. The relation between θ(F) and the equivariant-topological solution is the 

equivariant version of part 3.b of [CDG18, Conjecture 5.2] for Pn−1, see also 

[Dub98,KKP08,GGI16]. Notice that this is also a refinement of Gamma Theorem of 

[TV19b]. 

Proof. We prove the statement of the theorem for a basis in . Then the 

result for an arbitrary element  follows by linearity and Lemma 4.5. 

For k ∈ Z consider the basis ([O(−k − n + 1)],...,[O(−k − 1)],[O(−k)]) 

 . Its θ-image in Sn is the basis  k+n 1 m n . Let YTV,k = 

be the matrix defined by 

. 

For z ∈ Ω, the matrix YTV,k is a fundamental system of solutions of system (6.1). The matrix 

CTV,k connecting the basis YTV,k with the topological-enumerative solution Ytop, 

YTV,k = Ytop · CTV,k, 

equals 
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CTV,k = C · diag  , where C is given 

by (7.3). This shows that CTV,k is the matrix of the morphism 

B with respect the bases ([O(−k −n+1)],...,[O(−k −1)],[O(−k)]) and . 

This concludes the proof.  

9. Formal solutions of the system of qDE and qKZ equations 

9.1. Matrix form of qDE and qKZ difference equations. The sections 

, 

of the bundle pr∗H, introduced in Section 5.7, define a trivialization of pr∗H. This 

trivialization, allows us write the joint system of the qDE and qKZ difference equations 

(5.19), (5.26) in matrix form. 

For a basis I1(q,z),...,In(q,z) of solutions to the joint system (5.19), (5.26), introduce a 

matrix Y (q,z) = (Ymα(q,z))α,m, with α = 0,...,n − 1, m = 1,...,n, by the formula: 

(9.1)  

Then Y (q,z) is a fundamental system of solutions of the joint system of equations 

(9.2) , 

(9.3) Y (q,z1,...,zi − 1,...,zn) = K i(q,z)Y (q,z), 

where A(q,z) is the matrix (6.1) attached to the operator x∗q,z wrt the basis (xα)α, and the 

matrix K i(q,z) is the matrix attached to the isomorphism (5.25) wrt the basis (xα)α. 

Remark 9.1. The sections 

 
define another trivialization of pr∗H. In this trivialization, the qKZ difference equations are 

(9.4)  

where  are the matrices of qKZ-operators (5.16) wrt the basis (gj)j and the matrix Y 
(q,z) is defined by 

Notice the difference between (9.3) and (9.4).

 

In Section 6 we studied equation (9.2) only. Now we will study the joint system of 

equations (9.2) and (9.3). As a result of this Section and Section 10 we will deduce the 

following theorem. (For its precise statement see in Theorem 9.6 and Corollary 10.14.) 

Theorem 9.2. Consider the joint system (9.2), (9.3) of the qDE and qKZ equations for 

Pn−1. This system is equivalent at q = ∞, up to change of variable q = sn, to the system 
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(9.5) 

(9.6) where 

 

The theorem says that after a formal transformation, the system of qDE and qKZ 

equations becomes a system with constant coefficients and separated variables. 

Moreover, the system splits into the direct sum of systems of rank one. 

System (9.5), (9.6) admits the basis of solutions 

 

All solutions of system (9.5), (9.6) are linear combinations of these basis solutions with 

coefficients 1-periodic in z1,...,zn. 

The formal transformation which realizes the reduction to system (9.5), (9.6), will be 

described in the following subsections. 

9.2. Shearing transformation. The singularity at q = ∞ of the differential system (6.1) 

is irregular of Poincaré rank 1. It is known [Was65,BJL79a,MS16, LR16] that (6.1) 

admits a formal solution of the form 

(9.7) , 

where 

• ν ∈ N is the degree of ramification of the singularity, 

• Φ is an n × n matrix-valued formal power series in  of the form 

, 

• Λ is an n × n-matrix depending only on z (the exponent of formal monodromy), 

• P = diag(p1,...,pn) where each  is a polynomial in qν1 of the form 

. 

To find the formal solution Yform, we perform the gauge transformation of (6.1) defined by 

(9.8) , 

called the shearing transformation, see [Was65, Section 19]. The function T satis- 

fies the differential equation 2 
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(9.9) . 

Explicitly, the entries of Ash are given by 

, 

for α,β = 1,...,n. With the change of variable q = sn, the function T(s,z) := is a 

solution of the equation 

. 

Lemma 9.3. We have the following expansion for the coefficient B(s,z): 

(9.11) where 

(9.12) 

(9.13), 

 0 0

 0 

0 0 0 

 j⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜ ... ... j+1... j ⎠⎟⎟⎟⎟⎟⎟⎟⎞⎟⎟⎟ 

(9.14) B (z) := 00 00 (−1) 0ns (z) , j = 2,...,n. 

 ... ... ... 

 0 0 0 

 

By the shearing transformation (9.8) and the change of variable q = sn, we have 

reduced the equivariant quantum differential equation of Pn−1 to the equation 

⎛ 

⎜ 
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(9.15)  

Equation (9.15) has an irregular singularity at s = ∞ of Poincaré rank 1. The essential 

difference between differential systems (6.1) and (9.15): the matrix B(s,z) has the leading 

term B0 with distinct eigenvalues 

(9.16)  while the 

matrix A(q,z) has the nilpotent leading term A0(z). 

9.3. The E-matrix. Let (e1,...,en) be the standard basis of Cn. Let4 ηcl be the bilinear form 

on Cn with matrix 

(9.17) (ηcl)αβ = δn+1,α+β wrt the standard basis. 

For fixed z ∈ Cn, consider the C-linear endomorphisms B0,B1(z) ∈ End(Cn) 

(9. 13)defined, in the standard basis, by the matrices. Introduce the matrix E ∈ GL(n,C),

 B0 and B1(z) of equations (9.12), 

(9.18)  with 

inverse 

(9.19)  

Lemma 9.4. Define the basis (f1,...,fn) of Cn by 

 

then 

(1) The basis (f1,...,fn) is orthonormal wrt the bilinear form ηcl. 

(2) The basis (f1,...,fnn) is an eigenbasis of the operator B0. 

(3) For any fixed z ∈ C , 

 
Proof. The statements are equivalent to the identities 

(9.21) (E−1)T ηcl E−1 = , 

 
4 Here the subscript “cl” stands for classical. The matrix ηcl, indeed, appears in the study of the quantum 

cohomology of Pn as the classical Poincaré metric. See Remark 9.5. 
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(9.22) E B0 E−1 = diag(u1,...,un), 

(9.23) 
, 

where Bod is an off-diagonal matrix, i.e. (Bod)ii = 0. A straightforward computation shows 

the validity of these identities.  

Remark 9.5. The matrices B0, ηcl and E appear in the study of the quantum cohomology 

of Pn−1 seen as a Frobenius manifold, see Appendix B for details. 

9.4. Formal reduction of the system of qDE and qKZ equations. 

Theorem 9.6. There exists a unique n × n-matrix G(s,z), of the form 

(9.24) G(s,z) = H(sn)E−1F(s,z)sΛ(z), 

with 

(9.25) H(sn) = diag(1,s−1,...,s−(n−1)), 

(9.26)  
polynomials, 

(9.27)  such that the 

transformation 

(9.27)  

transforms the joint system (9.2), (9.3) of qDE and qKZ equations to the system 

(9.28) = diag(nζn0,...,nζnn−1), 

(9.29) Z(s,z1,...,zj − 1,...,zn) = Kj(z)Z(s,z), j = 1,...,n, 

where the matrices Kj(z) are diagonal and polynomial in z. 

Proof. The theorem follows from Theorem A.1 of Appendix A, after shearing 

transformation (9.8) and change of variables q = sn. Notice that Assumption (1)(4) of 

Theorem A.1 are satisfied: see Lemma 9.3, Lemma 9.4, the expression of qKZ-operators 

Ki’s in the g-bases (5.16) and Remark 9.1. in the proof of Theorem A.1 and the fact that2 

The functions Fk are polynomial in z: this follows from the procedure described 

• the matrices B0(z),...,Bn(z) are polynomial in z, • the 

matrices U and E do not depend on z. 
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The matrices K j’s and Kj’s are related by the identity 

(9.30) 

Kj(z) := sF(s,z1,...,zj − 1,...,zn)−1EH(sn)−1K j(sn,z)H(sn)E−1F(s,z), for j = 1,...,n. This implies 

that the matrices Kj(z) are polynomial in z.  Corollary 9.7. The following identity holds true 

(9. 31), 

for 

any 

Proof. Since the series F(s,z) has the form (9.25), from (9.30) we deduce that 

 

Hence, 

. 

 

9.5. Formal solutions of the system of qDE and qKZ equations at q = ∞. Consider the 

system 

(9.32)  

(9.33) Z(s,z1,...,zj − 1,...,zn) = Kj(z)Z(s,z), j = 1,...,n, in Theorem 9.6. 

Lemma 9.8. Let C(z) be a meromorphic n × n-matrix-valued function on Cn, regular 

on Ω and with non-vanishing determinant. The following conditions are equivalent: 

(1) The matrix C(z) is a fundamental system of solutions of equation (9.33) 

only, over the ring of 1-periodic functions in z; 

(2) The matrix Z(s,z) := exp(sU)C(z) is a fundamental system of solutions 
of the joint system of equations (9.32), (9.33), over the ring of 1-periodic functions in 
z. 

Proof. We have 

(9.34) [Kj(z),exp(sU)] = 0, since both exp(sU) and Kj(z) are diagonal. 

(1) imples (2): Let v(s,z) be a column vector satisfying both (9.32) and 

(9.33). Then there exists a unique column vector c1(z) such that v(s,z) = exp(sU)c1(z), 

since the columns of exp(sU) give a C-basis of solutions of (9.32). The vector c1(z) is a 

solution of (9.33) by (9.34). Hence c1(z) = C(z)c2(z) for a unique column vector c2(z), 

which is 1-periodic with respect ot z1,...,zn. This shows that exp(sU)C(z) is a system of 

fundamental solutions. 
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(2) implies (1): Equation (9.34) easily implies that C(z) is a solution of the 

equation (9.33) only, and moreover C(z) is a fundamental solution.  

Theorem 9.9. Let C(z) be an n × n-diagonal-matrix-valued function, meromorphic on 

Cn, regular on Ω and with non-vanishing entries on Ω. The following conditions are 

equivalent: 

(1) The matrix C(z) is a fundamental system of solutions of the difference equations 

(9.33), over the ring of 1-periodic functions in z; 

(2) There exist meromorphic n×n-matrix valued functions  regular on Ω, 

such that the matrix 

(9.35) Yform(sn,z) = H(sn)E−1F(s,z)sΛ(z)eUs, 

(9.36) , 

is a formal solution of the joint system of the qDE and qKZ equations for Pn−1, 

(9.37)  

(9.38) 
. 

Moreover, if such a formal solution exists, then it is unique. 

Proof. We have 

(9.39) [sΛ(z)eUs,C(z)] = 0, 

since both sΛ(z)eUs and C(z) are diagonal. Let 

(9.40)  

be as in Theorem 9.6. 

(1) implies (2): By Lemma 9.8, the matrix Z(s,z) := exp(sU)C(z) is a solution 

of the joint system (9.32), (9.33). By Theorem 9.6, the matrix 

(9.41) , 

is a formal solution of the joint system (9.37), (9.38). By (9.39),  can 

be re-written in the form (9.35), with Fk(z) := Fk(z)C(z) for k N∗. 

(2) implies (1): By (9.39), we have 2 ∈ 

(9.42) Yform(sn,z) = G2(s,z)eUsC(z), 
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(9.43) 
2 . 

(9.37) into (9.32). Hence, it automatically transforms the joint system2 (9.37), 
(9.38) Thus, the gauge transformation Y (sn,z) = G(s,z)Z(s,z) transforms the qDE 

into (9.32), (9.33), see the proof of Theorem A.1. 

The function Z(s,z) := exp(sU)C(z) is a solution of the joint system (9.32), (9.33). By 

Lemma 9.8, one concludes. 

The uniqueness of the formal solution follows from Theorem 9.6: we have 

G2(s,z) = G(s,z).  Example 9.10. Let us consider the case of P1. The original system of 

qDE and qKZ equations is the following 

, 

Through a formal gauge transformation Y (s2,z) = G(s,z)Z(s,z), the system above can be 

reduced to the system 

, 

The formal gauge G(s,z) is given by 

, 

where 

H(s2) = diag , 

and the coefficients can be computed recursively as in the proof of Theorem A.1. Here we 

give just the first coefficient F1: 

 , 

where 

. 

Notice that Corollary 9.7 allow us to compute directly the coefficients K1,K2: 

 , 
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 . 

By Corollary 9.7, we obtain that 

. 

Notice, in particular, that both K1 and K2 are equal constant matrices: in Corollary 

10.14 we will prove that this is the general property valid for all projective spaces Pn−1. 

10. Stokes bases of the system of qDE and qKZ equations 

10.1. Stokes rays, Stokes sectors. The solution  described in 

Theorem 9.9 is formal: the series F(s,z) is typically divergent. Nevertheless,  

contains information about genuine solutions of the differential system (6.1). The formal 

solution prescribes indeed the asymptotics of genuine fundamental solutions of (6.1). 

As in Section 7.7, we use the coordinates (r,φ) for the universal cover C∗ of 

the punctured s-plane C∗, see equation (7.22). / 

Definition 10.1 We call a Stokes ray any ray in the universal cover C∗ of the 

s-plane, defined by the equation. / 

(10.1) . 

We will denote the ray in (10.1) by Rk. 

The meaning of Stokes rays is explained by the following lemma. 

Lemma 10.2. A number φ ∈ R is of the form φ = 

k/2n for some k ∈ Z, if and only if there are integers 

m1,m2 such that Re( m2 (mod n). 

Definition 10.3 We call Stokes sector any open sector in C∗ which contains 

exactly n consecutive Stokes rays. Rk,...,Rk+n for some k ∈ Z. / 

 C∗ δ, i.e. of the  Lemma

form 

(10.2) / , a ∈ R, 

is a Stokes sector for δ > 0 sufficiently small. 
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The following theorem follows from the general theory of differential equations. 

Theorem 10.5 ([Was65,BJL79b,Fed87,Sib90,FIKN06]). Let V ⊆ C/∗ be a 

Stokes sector, and let Yform(sn,z) denote the unique solution described in Theorem 9.9. 

There exists a unique fundamental solution Y (sn,z) of the differential system (6.1) 

satisfying the asymptotic condition 

(10.3) , 

uniformly on compact subsets of Ω. The asymptotic expansion (10.3) can actually be 

extended to a sector wider than V, up to the nearest Stokes rays. 

Remark 10.6. In the notations of Theorem 9.9, the precise meaning of the asymptotic 

relation (10.3) is the following: 

then 

. 
z 

 

Here V denotes any unbounded closed sector of C/∗ with vertex at 0, and F0(z) = C(z). Here, 

for defining sΛ(z), the principal branch of logs is chosen. 

Lemma 10.7. The sectors , defined by (7.25)-(7.26), are maximal Stokes sectors 
wrt to the inclusion, i.e. 

(1) they are Stokes sectors, 

(2) any Stokes sector V is contained in one (and only one) . 

 

10.2. Stokes bases and Stokes matrices. Consider a basis of solutions 

of the joint system (5.19) and (5.26), and denote by  the corresponding matrix-
valued function defined by 

(10.4)  

The function Y (sn,z) is a fundamental system of solution of the joint system (9.2) and (9.3). 

Denote by Yform(sn,z) the unique formal solution associated to a diagonal matrix C(z) 

described in Theorem 9.9. 
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Definition 10.8. We say that a basis  of solutions of the joint system 

(5.19) and (5.26) is a Stokes basis with normalization C(z) on a sector V if it can be 

reordered in such a way that the corresponding matrix-valued solution Y (sn,z) satisfies the 

asymptotic expansion 

(10.5) , 

uniformly on compact subsets of Ω. The matrix Y (sn,z) is called5 the Stokes fundamental 

solution with normalization C(z) on V of the joint system (9.2) and 

(9.3). 

Remark 10.9. By Theorem 10.5, if V is a Stokes sector, and C(z) is a fixed 

normalization, two Stokes bases on V differ only for the order of their objects. Thus, by 

abuse of language, we will refer to the Sn-orbit of Stokes bases on V as the Stokes basis on 

V. Furthermore, if , resp.) then the Stokes basis on V is actually the Stokes 

basis on , resp.), by Theorem 10.5. 

Notice that if V is a Stokes sector, then also  and  are Stokes sectors. 

Definition 10.10. Let   be the Stokes fundamental solution (with 

normalization C(z)) of system (6.1) on the Stokes sector V. Let , and 

Y2(sn,z), be the Stokes solutions on  and on , respectively. Define the 

Stokes matrices attached to V and C(z) as the matrices S1,S2 (depending on z ∈ Ω) for 

which we have 

. 

10.3. Properties of Stokes matrices and lexicographical order. Let V be a Stokes sector, 

and let  be the Stokes basis of the joint system (5.19) and (9.3) on V with 

normalization C(z). Each element Ii corresponds to one eigenvalue uj = nζnj, j = 0,...,n − 1. 

Any ordering of the eigenvalues uj’s (i.e. any permutation of the diagonal entries of U) 

corresponds to an ordering of the elements Ii’s. Correspondingly, the Stokes matrices S1 

and S2 attached to V transform by conjugation by a permutation matrix. 

Proposition 10.11. Denote by S1,S2 the Stokes matrices computed wrt the Stokes 

sector V. There exists a unique order of the entries of U such that for all z ∈ Ω the matrix 

S1 (resp. S2) is upper triangular (resp. lower triangular) with ones along the diagonal. 

Proof. The reader may consult [Was65,BJL79b,FIKN06,MS16,LR16]. 

See also [CDG19,CDG18].  

 
5 Here we introduce this convenient terminology, though not standard in the literature of ordinary differential 

equations. 
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The order which realizes the upper triangular form of S1 (and consequently the lower 

triangular form of S2) is unique, since  , and it will be called the 

lexicographical order wrt the Stokes sector V. 

Proposition 10.12. In the notations of Definition 10.10, the following iden- 

, 

, 

Here Λ(z) is the exponent of formal monodromy, i.e. 

. 

Proof. For (1), notice that 

 

is a solution of (6.1) with asymptotic expansion Yform(sn,z) on the Stokes sector V. Hence 

it must coincide with Y (sn,z). Point (2) is a direct consequence of the definition of Stokes 

matrices. Point (3) follows from points (1) and (2).  10.4. Stokes 

bases and  

 Proposition 10.13. The basis (resp. ) is a Stokes basis on  (resp. 

) with normalization 

(10.7) diag  . 

 Proof. It follows from Corollary 7.31, and formula (9.19) for E−1.  

Corollary 10.14. The operators Kj(z), with j = 1,...,n are all equal and independent of 

z. Indeed, we have 

Kj = diag  

Proof. It follows from Theorem 9.9 and the explicit computation 

C(z1,...,zj − 1,...,zn)C(z)−1. 

 s ∈ /  ∗   ∈ Ω  

 Y 2 

 

( e 2 π 
√ 

− 1 s ) n ,  

 

= Y ( s n ,  ) · exp 
 

2 π 
√ 

− 1Λ(  ) 
 

 Y 2 ( s n ,  )= Y ( s n ,  ) ·  1  2 

 Y 

 

( e 2 π 
√ 

− 1 s ) n ,  

 

= Y ( s n ,  ) · exp 
 

2 π 
√ 

− 1Λ(  ) 
 

· (  1  2 ) 
− 1 
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10.5. Stokes bases as T-full exceptional collections. 

Theorem 10.15. Via the isomorphism , Stokes bases on Stokes 
sectors of the qDE of Pn−1 correspond to K-classes of T-full exceptional collections in

. 

Proof. Stokes bases correspond to T-full exceptional collections of Corollary 

7.27.  

In particular, the Stokes basis  corresponds (up to shifts) to the excep- 

tional collection 

 

for n even, and 

 

for n odd. All other Stokes bases, and corresponding exceptional collections, are obtained 

by application of a braid of the form 

...δn,oddδn,evenδn,oddδn,even, 

or 

. 

Remark 10.16. Exceptional collections (10.8) and (10.9) are the natural equivariant 

lift in DTb(Pn−1) of the exceptional collections of [CDG18, Corollary 6.11]. Also in this 

non-equivariant case, these collections are identified with Stokes bases of the qDE of Pn−1 

in suitable Stokes sectors, see [CDG18, Section 6] for details. 

Remark 10.17. All the objects on the T-full exceptional collections attached to Stokes 

bases are equipped with their natural T-equivariant structure, restriction of the natural 

GL(n,C)-equivariant structure. Under the presentation (3.4), their K-theoretical classes in

 are symmetric polynomials wrt the equivariant parameters Z. 

11. Stokes matrices as Gram matrices of exceptional collections 

11.1. Musical notation for braids. We introduce a notation for braids 

in Bn. Elements of Bn will be represented as notes on a musical (n−1)-line 

staff. The lines are enumerated from the bottom (1-st line) to the top ((n − 

1)-th line). The generator τi is represented as a hollow oval note head on the 

i-th line. The relations defining the braid group Bn translate into the 

diagrammatic rules described in Figure 11.1. 
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δ n, even δ n, odd δ n, even δ n, odd ... 
# $

% 

& 

σ n, odd := δ n, odd δ n, even δ n, odd δ n, even ... 
# $

% 

& 

 

Figure 11.1. Braid relations in musical notation. 

11.2. An identity in Bn. For n ≥ 2, define the braids 

(11.1) σn,even := , 

n factors 

(11. 2), 

n factors 

where δn,even and δn,odd are defined in Section 7.5. Set σ1,even := 1, σ1,odd = 1. 

Lemma 11.1. For any n ≥ 2, the following identities hold true in Bn: 

(11.3) σn,odd = σn−1,odd(τn−1τn−2 ...τ1), 

(11.4) σn,even = σn−1,even(τn−1τn−2 ...τ1). 

Proof. We prove (11.3) by induction on n. For n = 2, the statement is obvious, being 

 δ2,odd = τ1, δ2,even = 1. 

The musical diagram corresponding to the braid δn,oddδn,evenδn,oddδn,even ... 

is the following, according to the parity of n. 

 

Figure 11.2. Diagrammatic notation for the braid 

δn,oddδn,evenδn,odd ... according to the parity of n. 

We collected with a stem the notes corresponding to a same factor δn,odd (or δn,even). By 

commutativity, the order of the notes in any factor δn,odd (or δn,even) can be modified at will, 

and for this reason we simply collect them with a vertical stem. In the top line we have 

 notes, if n is even, 

 notes, if n is odd. 

We call top factors those factors δn,odd’s (or δn,even’s) which contains the notes on the top 

line. In other words, the top factors are 

τ i τ j τ j τ i 

τ i +1 τ i τ i +1 τ i τ i +1 τ i 

≡ 

≡ 

   

... ... 

   

n  n  
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(1) the factors δn,odd’s for n even, 

(2) the factors δn,even’s for n odd. 

The factorization (11.3) can be reached by filling the empty spaces between two notes 

in the last factor δn,odd (or δn,even), from the bottom to the top line. We perform this in several 

steps: 

(1) Label by A0 the first (from the left) elementary braid on the (n − 1)-th line. By a 

chain of elementary moves, the braid A0 can be moved on the (n − 2)-th line, 

towards the right, and can be collected with the next top factor, as described in 

the following Figure 11.3. 

 ...

 ... 

Figure 11.3 

We call A1 the new note obtained from A0. In this way, this factor is 

“overcharged” of notes (i.e. it contains notes τi and τi+1 for some i), and we have 

an inclination of the stem, the order of the elementary braids being not anymore 

arbitrary. 

(2) By the braid relations, the braid A1 can be moved on the (n − 3)-th line, towards 

the right, and can be collected with the next factor (not a top factor), as described 

in the following picture. 

 A A1 

   

... 

1 

... 

A 2 

   

... 

... 

A 0 

A 1 

   

... 

... 

A 1 



 qDE AND qKZ EQUATIONS FOR A PROJECTIVE SPACE 161 

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 

 ... ... 

Figure 11.4 

We call A2 the new note obtained 

from A1. Also in this case, we have an 

inclination of the stem. 

(3) Starting from Aj on the (n−1−j)-th line, 

iterate the procedure of point (2) in order to 

produce a new braid Aj+1 in the line (n − 2 − j)-th line, by overcharging the next 

factor. 

(4) Stop when the final braid Aj+1 fills the empty space on the 

• 1-st line if n is even, • 2-

nd line if n is odd. 

(5) Iterate points (1),(2),(3),(4) and stop when the final braid Aj+1 fills the first empty 

space from the bottom line to the top. 

By applying the procedure above, the factorization (11.3) is reached. The argument 

for (11.4) is similar.  

Example 11.2. Consider n = 7. The factorization (11.4) is obtained with the moves 

described in Figure 11.5. For simplicity, we remove all the stems of the notes. 

   

... 

... 

A 2 
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Figure 11.5. These are the moves described in the proof of Lemma 11.1 in order 

to obtain the factorization (11.4) for n = 7. 

Corollary 11.3. For n ≥ 2, we have 

(11.5) σn,even = β, σn,odd = β, where β is given by equation (2.22), 

i.e. 

β := τ1(τ2τ1)...(τn−2 ...τ1)(τn−1τn−2 ...τ1). 

 

11.3. Stokes matrices as Gram matrices. 

Lemma 11.4. The following identities among Stokes sectors hold true: 

 , if n ≡ 0 (mod 2), 

, 

 , if n ≡ 0 (mod 2), 

σ 6 , even 
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2 Q  k 

...δ n, odd δ n, even δ n, odd δ n, even δ n, odd 
# $

% 

& 

e π 
√ 

− 1 V  k 

...δ n, even δ n, odd δ n, even δ n, odd δ n, even 
# $

% 

& 

2 Q  k  2 Q  k 

...δ n, even δ n, odd δ n, even δ n, odd 
# $

% 

& 

. 

 Proof. It is readily obtained from the definition of .  

Corollary 11.5. For any k ∈ Z, the Stokes basis on  is obtained by acting (on 

the left) on the Stokes basis with the braid 

(11.6). 

n factors 

For any k ∈ Z, the Stokes basis on is obtained by acting (on the left) on the 

Stokes basiswith the braid 

(11.7). 

n factors 

Proof. It follows from the definition of (see also diagram (7.16)), from Proposition 

10.13 and Lemma 11.4.  

Corollary 11.6. Let V be a Stokes sector of the qDE of Pn−1, and let E be the T-full 

exceptional collection corresponding to the Stokes basis on V. The exceptional collection 

E corresponding to the Stokes sector is a foundation of the helix generated by E. 

More precisely, E is the adjacent foundation on the right of E. The collection E is obtained 

by application of the inverse Serre functor to objects of E: 

, 

where ωP
T

n−1 denotes the T-equivariant canonical sheaf of Pn−1. 

Proof. By Corollary 11.5, E is obtained from E by mutation either with the braid 

(11.9), 

2n factors 

or with the braid 

(11. 10). 

2n factors 

In both cases, by Corollary 11.3, the resulting braid is β2, where 

β := τ1(τ2τ1)...(τn−2 ...τ1)(τn−1τn−2 ...τ1). 

It is well-known that β2 = (τ1 ...τn−1)n (see e.g. Theorem 1.24 of [KT08]). The result follows 

from Proposition 2.24.  

Theorem 11.7. Let S1,S2 the Stokes matrices computed wrt a Stokes sector V in 

lexicographical order. Let ε be the exceptional basis of   associated with the 

Stokes basis on V via the isomorphismT  defined in (7.8), and let G 

be the Gram matrix of χ wrt ε. Let J be the anti-diagonal matrix 

...δ n, odd δ n, even δ n, odd δ n, even 
# $

% 

& 
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δ n, odd δ n, even δ n, odd δ n, even ... 
# $

% 

& 
, 

δ n, even δ n, odd δ n, even δ n, odd ... 
# $

% 

& 

 Jαβ := δα+β,n+1, α,β = 1,...,n. 

(1) The Stokes matrix S1 is equal to the Gram matrix of χT wrt the left dual 

exceptional basis ∨ε, i.e. 

(11.11)  

(2) The matrix JS2J is equal to the Gram matrix of χT wrt the exceptional basis ε, i.e. 

(11.12) S2 = JGJ. 

Proof. By Lemma 10.7, V is contained in one (and only one) . By 

Corollary 11.5, the Stokes basis on   is obtained from the Stokes basis on V by 

applying either the braid 

n factors 

or the braid 

. 

n factors 

Consequently, by Corollary 11.3, the exceptional basis associated to the Stokes basis on
. Both points (1) and (2) then follow from Proposition 2.22, more precisely 

from the second identity (2.25).  

Corollary 11.8. Let S1 and S2 be the Stokes matrices computed wrt a Stokes sector V. 

We have 

(11.13)  . 

 

Remark 11.9. In theory of Frobenius manifolds [Dub96, Dub99, Dub98, CDG20], the 

Stokes matrices of the associated isomonodromic system of differential equations satisfy 

an analogous identity, in which the †-operator is replaced by transposition, see [Dub99, 

Theorem 4.3]. 

Corollary 11.10. Let S1 and S2 be the Stokes matrices computed wrt a Stokes sector V. 

Both S1 and S2 have entries in the ring of symmetric Laurent polynomials with integer 

coefficients, i.e. . 

Proof. By Lemma 3.2, the Gram matrix associated with the Beilinson exceptional 

collection is with integer symmetric Laurent polynomial entries. The braid group action 

preserves this property.  

Corollary 11.11. Let S be a Stokes matrix of the differential system (6.1) computed 

wrt a Stokes sector V. Then 

. 
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Proof. The Corollary immediately follows from Theorem 3.5 and Theorem 11.7. For 

an alternative proof (purely analytical), notice that without loss of generality we can 

assume that S is the matrix S1 computed wrt V. From point (3) of Proposition 10.12, and 

equation (11.13) we deduce that 

, 

where M0(z) is the monodromy operator of differential system (6.1). From Corollary 6.3 

we deduce the constraint 

(11.15) , 

which is easily seen to be equivalent to equation (11.14).  

12. Specialization of the qDE at roots of unity 

12.1. Specialization of equivariant K-theory at roots of unity. Fix the equivariant 

parameters in  by setting 

(12.1)  

Denote by Kζ this specialization of . 

Theorem 12.1 ([Pol11, Theorem 1.1] ). 

(1) The Grothendieck-Euler-Poincaré pairing χT specializes to an Hermitian positive 

definite form χζ on Kζ. 

(2) If E is an exceptional object in Db(Pn−1) equipped with a T-equivariant structure, 

then the class [E] in Kζ has length 1 wrt the Hermitian form χζ. 

(3) If (E1,E2) is an exceptional pair in Db(Pn−1), with both E1 and E2 equipped with a 

T-structure, then the classes [E1],[E2] in Kζ are orthogonal wrt χζ. 

(4) If (E1,...,En) is a full exceptional collection in Db(Pn−1), with each Ei equipped with 

a T-structure, then each unit vector in Kζ is of the form ±ζnk[Ei] for some i and 

some k. 

(5) The action of the braid group on the set of orthonormal exceptional bases of Kζ 

reduces to the action by permutations of basis vectors. 

12.2. Identities for Stirling numbers. The Stirling numbers of the first kind   are 
defined recursively by 

(12.2) , 

for k > 0, with the initial conditions 

(12.3) . 

The Stirling numbers of the second kind are defined recursively by 
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(12.4) , 

for k > 0, with the initial conditions 

(12.5) . 

The Stirling numbers of the first and second kind are related by the identity 

(12.6) . 

Lemma 12.2. Let n ≥ 2 and 1 ≤ k ≤ n. We have 

(12.7) 

(12. 8). 

Proof. It is sufficient to prove the identities 

n 

(12.9) sk(0,1,...,n − 1) =− 5, 

n k 

−n + k − 17 

(12.10) mk(0,...,n 1) =. 

n 1 

They are proved by induction on both equations (12.9) and (12.10) hold true. Recall the 

following recurrence equations: for k ≥ 2 

(12.11) sk(z1,...,zn) = sk(z1,...,zn−1) + znsk−1(z1,...,zn−1) 

(12.12) mk(z1,...,zn) = mk(z1,...,zn−1) + znmk−1(z1,...,zn). 

Now equation (12.9) follows from (12.11) and (12.2), equation (12.10) follows from 

(12.12) and (12.4).  

, then Lemma 

(12.13) 

(12. 14). 

Proof. Identity (12.13) is easily proved by induction 

on n. Identity (12.14) follows from (12.13) and (12.6).  

12.3. Scalar equivariant quantum differential equation at roots of unity. Consider the 

specialization of the equivariant parameters z in HT•(Pn−1,C) defined by the equations 

4 

6 
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(12.15)  

These equations define the locus 

(12.16) 
. 

We have a distinguished point zo ∈ P, 

(12.17) z  . 

Theorem 12.4. At z = zo the scalar equivariant quantum differential equation (6.16) of 

Pn−1 for the function φ(q) reduces to the linear differential equation with constant 

coefficients, 

(12.18) . 

Proof. By the change of variable q = sn, equation (6.16) reduces to 

. 

If z = zo, then the equation reduces to 

(12.20) , 

by identity (12.7). Using identity (12.14), we obtains the equation 

(12.21) . 

 

Equation (12.18) has two natural bases of solutions: 

(1) the basis  , 

(12.22) 1; 

(2) the basis  , 

(12.23) . 

The functions gm(s) are real-valued for s ∈ R and define a partition of the exponential 

function ens, 

(12.24) . 

Lemma 12.5. The cyclic group Z/nZ acts on the space of solutions of equation 

(12.18) via the transformations  . The basis   is 

cyclically permuted by this action, while the basis  is an eigenbasis.  

Introduce the matrices 
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(12.25) 
, 

(12.26) 
. 

Both Yˆf(sn) and Yˆg(sn) are solutions of the differential equation (6.15), specialized at z = 

zo. 

Proposition 12.6. The matrix-valued function η(zo)−1Yˆ
f(sn) is a fundamental system 

of solutions of (6.1) of the form 

(12.27) η(zo)−1Yˆf(sn) = G(s)exp(sU), 

where U = diag(nζn0,...,nζnn−1) and G(s) is a polynomial in s of degree n − 1. 

Hence, η(zo)−1Yˆf(sn) is a Stokes basis of the equivariant qDE (6.1) at z = zo for any Stokes 

sector. In particular, the corresponding formal series F(s,zo) of the form (9.36) is actually 

convergent. 

Proof. The matrix η(zo)−1Yˆ
f(sn)η(zo) is a fundamental system of solutions of (6.1) by 

the discussion in Section 6.4. Hence η(zo)−1Yˆf(sn) also is a fundamental system of 

solutions. The matrix G(s) is given by 

(12.28) 
. 

Thus the series F(s,zo) is given by 

(12.29) F(s,zo) = DqH(sn)−1η(zo)−1L(s)s1−n, 

and is convergent. The normalization of the Stokes basis can be readily computed from 

this formula.  

Proposition 12.7. The matrix-valued function η(zo)−1Yˆ
g(sn) is a fundamental system 

of solutions of (6.1) of the form 

(12.30)  

where the matrix Yo(sn,z) is the Levelt solution defined in Corollary 6.2 and C is a diagonal 

matrix. 

Proof. The proposition follows from Lemma 12.5 and Corollary 6.3. We leave to the 

reader the explicit computation of the matrix C.  

Theorem 12.8. The following conditions are equivalent: 

; 

(2) the formal gauge transformation  of Theorem 9.6 is convergent; 
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(3) the Stokes phenomenon of the differential system (6.1) specialized at z = z is 

trivial, i.e. all the Stokes matrices   for all Stokes sectors are the identity 

matrix; 

(4) the monodromy matrix   of the equivariant quantum differential 
equation (6.1) specialized at z  has order n. 

Proof. We prove that (1) ⇒ (2) ⇒ (4) ⇒ (1). 

Assume z  for some k ∈ Zn. Then, we have to show 

that the series F(s,z) in (9.23) is convergent for z . From the identity (9.30) we deduce 

that 

F(s,z1,...,zj − 1,...,zn) = Wj(s,z)F(s,z)Kj−1, 

where 

Wj(s,z) := sDqH(sn)−1Kj(sn,z)H(sn)Dq−1, j = 1,...,n. Hence, we have 

 , 

and the convergence of  follows from the convergence of F(s,zo). 

If (2) holds then  is a solution of system (6.1) at z , and 
the transformation cyclically permutes the diagonal entries of U. Thus (4) holds 
true. 

If (4) holds true, then from Corollary 6.3 we deduce that  is a n-th root 
of unity, i.e. z . 

 The equivalence of (2) and (3) is obvious.  

Appendix A. Formal reduction of the joint system 

Consider a 

joint system of 

differential 

and difference 

equations 

(A.1) 

(A.2) where A,Pi are meromorphic m × m-matrix valued functions of (s,z) ∈ C × Cn. 

Assume that equations (A.1), (A.2) are compatible, 

 

− , 

for all i,j. Assume that 

(1) the matrices A(s,z),Pi(s,z) have the following convergent power series 

expansions 
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(A.5)  

where the matrices Ak(z),Pk(z) are holomorphic functions of z and ρ > 0; 

(2) the matrix A0(z) is diagonalizable, 

(A.6) D(z) · A0(z) · D(z)−1 = U(z), U(z) := diag(u1(z),...,un(z)), with D(z) a holomorphic 

matrix; 

(3) the matrix U(z) is 1-periodic, 

(A.7) U(z1,...,zi − 1,...,zn) = U(z), i = 1,...,n; 

(4) the eigenvalues ui(z)’s are pairwise distinct for values of z in an open subset W 

⊂ Cn. 

Introduce the diagonal matrix Λ1(z) by the formula 

(A.8) [Λ1(z)]ij := *D(z) · A1(z∈) · D(z)−1+ij δij. ∞ 

Assumptions (1-4) imply that for all z W the point s = is an irregular singularity (of 

Poincaré rank 1) of the differential equation (A.1). 

Theorem A.1. If the joint system of equations (A.1), (A.2) satisfies assumptions (1-

4), then there exists a unique m × m-matrix G(s,z) of the form 

(A.9) G(s,z) = D(z)−1F(s,z)sΛ1(z), where F(s,z) is a formal power 

series 

(A.10) , 

with Fk(z) regular m × m-matrix-valued functions on W, such that the change of variables 

X(s,z) = 

G(s,z)Z(s,z) 

transforms system 

(A.1), (A.2) into the joint system 

(A.11) 

(A.12) where Pi are diagonal matrices. 

Proof. First we prove that there exists a unique formal transformation X(s,z) = 

G(s,z)Z(s,z), which transforms equation (A.1) into equation (A.11). Then we prove that this 

transformation automatically transforms equations (A.2) into equations (A.12) with 

diagonal Pi’s. 

If a transformation X(s,z) = G(s,z)Z(s,z), 
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(A.13) 
, 

transforms equation (A.1) to the equation 

(A.14) , 

then Z(s,z) is a solution of the equation 

. 

Thus, F(s,z) satisfies the equation 

, 

coefficients Fk(z). which gives a system of equations for the 

Denote Aˆj := DAjD−1. The matrixis an off- diagonal matrix. 

The first equation is 

(A.16)  

For , 

(A.17) . 

The second equation is 

(A.18) UF2 + Aˆ2 + Aˆ1F1 = −F1 + F1Λ + F2U. 

We find the diagonal entries of F1(z) from the diagonal part of equations (A.18). We 
compute the off-diagonal entries F2(z)αβ with , by the formula: 

. 

− 

After k steps of this procedure, we will determine all the coefficients F1,...,Fk−1 and all the 

off-diagonal entries of Fk. Then the k + 1st equation 

 

determines uniquely the diagonal entries of Fk and the off-diagonal entries of Fk+1 and we 

may continue this procedure. 

This procedure shows that the desired series F(s,z) does exist and is unique. 

The gauge transformation X(s,z) = G(s,z)Z(s,z) transforms the joint system 

(A. 1), (A.2) into the joint system 

(A.20)  

(A.21) Z(s,z1,...,zi − 1,...,zn) = Pi(s,z)Z(s,z), i = 1,...,n, where we set 
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(A.22) Pi(s,z) := G(s,z1,...,zi − 1,...,zn
)−1Pi(s,z)G(s,z) for i = 1,...,n. We claim 

that the matrices Pi are diagonal and independent of s. The compatibility 

conditions of (A.20) and (A.21) imply that 

(A.23)  

Thus the entries of Pi are of the form 

(A.24) Pi(s,z)αβ = fαβ(z)exp((uα(z) − uβ(z))s), where α,β = 1,...,n, and fαβ(z) 

are functions of z. 

Also we know that all the entries of the right-hand side of (A.22) are formal power 

series of the form 

, 

for suitable functions m(z),an(z). This shows that the operator Pi can be of the form (A.24) 

if and only if 

 

This concludes the proof.  Appendix B. Relation of qDE to Dubrovin’s equation for 

QH•(Pn−1) 

Denote by 

(B.1) , 

the non-equivariant limit morphism6. It maps the C[z]-basis  of HT•(Pn−1,C) to the 

C-basis  . Denote the dual coordinates on H•(Pn−1,C) by the 
notation t := (t0,...,tn−1). Consider the non-equivariant 

limit  of (5.2), 

(B.2) 
. 

It is known that the Gromov-Witten potential   is convergent. The domain of 

convergence M ⊆ H•(Pn−1,C) of the Gromov-Witten potential  carries a Frobenius 

manifold structure [Dub92,Dub96,Dub98,Dub99,Man99,Her02, Sab08]. Tangent spaces7 

TpM are equipped with an associative, commutative algebra structure: the product ∗p: TpM 

× TpM → TpM is compatible with the non-equivariant Poincaré metric ηcl := η|z=0, 

(B.3) ηcl(α ∗p β,γ) = ηcl(α,β ∗p γ), α,β,γ ∈ TpM. 

The metric ηcl is a non-degenerate pseudo-riemannian metric on M, whose LeviCivita 

connection ∇ is flat. Consider the semisimple part Mss of M, namely the subset of points p 
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whose corresponding Frobenius algebra TpM is without nilpotents. Denote by (π1,...,πn) the 

idempotent tangent vectors at p ∈ Mss, and introduce the normalized frame (f1,...,fn) by 

(B.4)  

for arbirary choice of the square roots. Consider the Euler vector field E on M defined by 

(B. 5). 
=0 

Let p ∈ Mss, and denote by U(p) and V (p) the matrices, wrt the frame (f1,...,fn), of the 

morphisms (B.6)  

(B.7) . 

It is easily seen that they satisfy 

(B.8) U(p)T = U(p), V (p)T + V (p) = 0. 

There is a local identification of Mss with the space of parameters of isomonodromic 

deformations of the ordinary differential equation 

(B.9)  

 

n−16×Recall that this morphism is induced in cohomology by the inclusionT ET. See [AB84, Section 2].

 Pn
−

1,C). ι: Pn−1 → Pn
T−1 := 

P 
7Tangent spaces to M are canonically identified with H•( 

for a n × n-matrix valued function Y . Equation (B.9) is central in Dubrovin’s study of 

Frobenius manifolds, see [Dub96, Lecture 3], [Dub99, Lectures 3 and 4], [Dub98]. See 

also [Guz99] and [CDG18, Section 6] for details on the monodromy and Stokes 

phenomenon of (B.9). 

The tangent space T0M =∼ H•(Pn−1,C) can be identified with Cn by fixing the frame 

(1,x,...,xn−1), where x denote the non-equivariant hyperplane class. Under this identification, 

• the Gram matrix of the non-equivariant Poincaré metric coincides with the 

matrix ηcl of equation (9.17); 

• the matrix of the operator U(0): T0M → T0M of multiplication by the Euler vector 

field coincides with the matrix B0 of equation (9.12); 

• the basis (f1,...,fn) of Lemma 9.4 coincides with the orthonormalized idempotent 

frame (B.4) at T0M for suitable choices of the square roots, see [CDG18, Section 

6.1]. 

In the standard notations of Dubrovin’s theory of Frobenius manifolds, the matrix E is 

usually denoted by Ψ. Here we avoid this notation, the symbol Ψ being already used for 

solutions of the joint systems (5.19), (5.26). 
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We close this Appendix by commenting the relation between equation (9.15) and the 

isomonodromic differential equation (B.9). 

Proposition B.1. For z = 0, equation (9.15) is 

(B.10) . 

If T(s) is a solution of (B.10), then 

 

is a solution of the equation (B.9) specialized at p = 0. 

Proof. if z = 0, all the coefficients B2,...,Bn vanish, and the coefficient B1 

takes the form  

(B.11) B1(0) = diag(0,1,2,...,n − 1). 

We have 

 
where μ is the matrix of the grading operator (B.7), written in coordinates wrt the basis 

. As a consequence, the matrix Bod of formula (9.22) in the non-equivariant limit 
is given by 

 

where the matrix V is the antisymmetric matrix V (p) specialized at p = 0. The 

antisymmetry of Bod however is lost for z = 0 .  
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