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Abstract

The critical zone (CZ)—from treetops to groundwater—is an increasingly studied part of the earth system,
where scientists study interactions between water, air, rock, soil, and life. Groundwater is both a boundary and
an essential store in this integrated system, but is often not well considered in part because of the difficulty in
accessing it and its slow movement relative to other parts of the system. Here, we describe some fundamental
areas where groundwater hydrology is of fundamental importance to CZ science, including sustaining streamflow
and vegetation, reacting with minerals to produce dissolved solutes and regolith, and influencing energy fluxes
across the land-atmosphere interface. As the timing and type of precipitation change with climate, groundwater
may play an even more important role in CZ processes as a sustainable water source for plants and streamflow.
Many open questions also exist about the role of CZ processes on groundwater. Many data streams are needed
and important to quantifying the integrated response of the CZ to groundwater and vice versa, but long-term
data records are often incomplete or discontinued due to limited funding. We argue that the long timescales of
processes that involve groundwater necessitate data collection efforts beyond typical federal funding timespans.
Sustaining monitoring networks and developing new ones aimed at testing hypotheses related to slow-moving,
groundwater-controlled CZ processes should be a scientific priority, and here we outline some open questions that
we hope will motivate groundwater scientists to get involved in CZ science.

time, many researchers have defined themselves as CZ
scientists and defined questions beyond the disciplinarity
of traditional earth or environmental science fields (e.g.,
Sullivan et al. 2017). Some of the earliest definitions of
the CZ describe it as the piece of the earth from the top
of vegetation to the “base of active groundwater” (Ander-
son et al. 2008), opening the question: what is “active”
groundwater, how does it affect CZ systems, and what
are roles for groundwater scientists in CZ science? While
the term “groundwater” is sometimes confusingly used
within the hydrology community, we here use the term to

Introduction

Critical zone (CZ) science is an interdisciplinary
field of research—including geology, hydrology, ecol-
ogy, atmospheric science, and landscape evolution, among
others— that is becoming an increasingly popular way
of thinking about the shallow earth system (e.g., Wal-
dron 2020). The first CZ Observatories were funded more
than 15 years ago (Anderson et al. 2008), and since that
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mean saturated systems, as opposed to the vadose zone
(e.g., Woessner and Poeter 2020). Here, we argue that
groundwater is an integral part of the hydrogeochemi-
cal system in Earth’s CZs: it sustains streamflow during
periods of low precipitation, is accessible by deep vege-
tation, reacts with minerals to produce dissolved solutes
and regolith, and can influence energy fluxes across the
land-atmosphere interface (Figure 1). Many data streams,
from stream gages to vegetation maps, provide important

Vol. 60, No. 1-Groundwater-January-February 2022 (pages 27-34) 27


https://orcid.org/0000-0002-0605-3774
https://orcid.org/0000-0002-0851-0094
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgwat.13143&domain=pdf&date_stamp=2021-11-16

Figure 1. Groundwater is a fundamental, slow-moving part of the critical zone (CZ) that affects and is affected by
comparatively short-timescale CZ systems such as streamflow, vegetation, and energy fluxes across the land-atmosphere
interface, as well as longer-term processes like weathering. Data streams from multiple sensing platforms, from eddy flux
towers, stream gages, and wellbores, provide important clues to the role of groundwater in CZ processes.

clues to the role of groundwater in CZ processes and help
us to understand the integrated response of the CZ to
climate change. While many of the examples here focus
on temperate to humid areas, we note that there is a role
for groundwater in arid CZ systems as well, for instance,
as a stable water source for plants in riparian corridors
or perched groundwater systems (e.g., Yin et al. 2015).
Groundwater fluxes in arid regions are also thought to
be less affected by climate change than humid systems
(Cuthbert et al. 2019), which may mean CZ systems are
more stable in drier regions under a changing climate.
One might wonder if groundwater is too deep to affect
or be affected by many CZ systems, and what “deep”
means is open to interpretation, depending on processes
of interest (Condon et al., 2020b). Numerical models have
been used to define the “depth of active flow” in the CZ,
where water is actively moving. In some systems, this
depth may be quite shallow (Reed et al. 2007; Amvrosiadi
et al. 2017). Of course, accessing the subsurface beyond
the top meter or two in the field is often difficult (e.g.,
Parsekian et al. 2015), which makes it difficult to measure
groundwater broadly over the landscape, and may lead
some to neglect its role in CZ processes or to have
the data to integrate into models around its importance.
Some work, however, has outlined the importance of
shallow groundwater in the CZ from the hillslope to
global scales (e.g., Shi et al. 2013; Fan 2015). The global-
scale depth-to-groundwater observations compiled by Fan
et al. (2013) show that as much as a third of the global
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land area is underlain by shallow groundwater, and that
it is common worldwide for the depth of groundwater
to be <5 m below land surface—which is shallow
enough to be within reach of some plants’ roots (e.g.,
Canadell et al. 1996) and to contribute to land-energy
fluxes (e.g., Maxwell and Condon 2016). Weathering in
shallow groundwater is also an important contributor of
solutes in systems where a portion of stream water is
derived from groundwater and opens pore space for water
infiltration into the groundwater system. We argue that
groundwater is consequently important to both short- and
long-time scale CZ processes and look to outline some
of these systems where groundwater plays a key role,
with the hope of motivating other groundwater scientists
to work in CZ science. Below, we briefly outline the role
of groundwater in wetland systems, sustaining streamflow,
ecosystems, land surface fluxes, and weathering, and note
where groundwater hydrologists could contribute to open
questions in CZ science.

A Driver of Wetlands

Groundwater connections to many wetlands have
been long recognized (Winter and Rosenberry 1995;
Van der Kamp and Hayashi 1998). Miguez-Macho and
Fan (2012) highlight how wetlands are driven not
only by precipitation but the presence of groundwa-
ter broadly. Wetlands also impact groundwater; vegeta-
tion and microtopography in wetlands drive interactions
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between surface- and groundwater, and can create biogeo-
chemical hotspots just like in river systems due to gradi-
ents in organic matter and dissolved oxygen. If a wetland
interacts with regional groundwater, there may be other
electron acceptors such as nitrate or sulfate that facilitate
oxidation of organic carbon (e.g., Alewell et al. 2008).
Consequently, predicting wetland dynamics is key to pre-
dicting carbon cycling (e.g., Trettin and Jurgensen 2003)
and consequently climate (e.g., Erwin 2009). Wetlands
have high evapotranspiration (ET) rates, which thus affect
surface water and energy balances. From a CZ perspec-
tive, some open questions around how the mixing of long
residence-time groundwater and the shorter-term surface
water affect wetland chemistry, including prediction of
algal blooms (Brookfield et al. 2021) as well as the role
of wetlands in buffering sea level rise and storm surges
(Liu et al. 2021).

Surface Water-Groundwater Interaction

Like with wetlands, it has long been recognized
that many streams are sustained by groundwater (e.g.,
Winter et al. 1998), and that there is a two-way
communication between groundwater and surface water.
Fan et al. (2013)’s depth-to-water table map demonstrates
that groundwater is shallow in topographic lows under all
climate types, which suggests that groundwater may be
a source of water in topographic depressions regardless
of precipitation. In some systems, groundwater emanating
from springs has a profound impact on surface-water
chemistry and flows (e.g., Crossey et al. 2006).

From a CZ perspective, baseflow matters for main-
taining healthy riparian vegetation (e.g., Webb and
Leake 2006), which in turn controls stream-channel and
bank stability and sediment transport (e.g., Trimble 2004;
Salant et al. 2008; Estrany et al. 2009; Duvert et al. 2011).
Groundwater is also key to lowering stream temperatures
(e.g., Meisner et al. 1988; Loheide and Gorelick 2006),
which can be important for fish refugia (e.g., Power
et al. 1999). Groundwater contributions to streamflow
may become even more important as climate change
and other perturbations drive changes in near-surface
hydrological processes that lead to increased groundwa-
ter stores, such as decreases in ET driven by widespread
tree death (Bearup et al. 2014). We note that the CZ
response to climate change includes water quality as well
as quantity, and groundwater may provide more con-
sistent water chemistry to streams that is less impacted
by modern anthropogenic activities than surface water;
conversely, surface water carries dissolved oxygen into
groundwater that drives redox reactions and mitigates dis-
solved metal contributions of groundwaters to streams
(e.g., Hoagland et al., 2020). Because of these exchanges,
groundwater-surface water mixing affects both stream
and groundwater quality (e.g., Gburek and Folmar 1999;
Cantafio and Ryan 2014), including metal immobiliza-
tion (e.g., Gandy et al. 2007) and nutrient uptake
(e.g., Boulton et al. 1998). Many open questions about
groundwater-surface water systems remain, including how
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the hyporheic zone controls fate and transport of contam-
inants (e.g., Wallis et al. 2020), how agricultural systems
impact baseflow contributions (e.g., Frisbee et al. 2017)
and how a changing climate may affect water quality
through baseflow contributions and groundwater-surface
water interaction (e.g., Chunn et al. 2019).

Groundwater Effects on Plant Growth
and Survival

Plants are a key component of the CZ system by
driving transpiration, increasing the weathering of rock
to soil, and influencing biogeochemical cycling of carbon
and nutrients. Groundwater is less well coupled to large
fluctuations in precipitation than streams or vadose zone
water, providing a sustained water source for vegetation
even beyond riparian areas (e.g., Dawson and Pate 1996;
Elliott et al. 2006; Jobbdgy et al. 2011; Fan 2015;
McLaughlin et al. 2017; Harmon et al. 2020), allowing
plants to thrive in dry times by buffering against plant
stress (Condon et al. 2020a). Groundwater can not only
provide a water supply during dry times but can also
decrease plant yield during wet conditions by enhancing
oxygen stress (Zipper et al. 2015).

Groundwater also drives the rooting depths of plants
(Lewis and Burgy 1964; Schenk and Jackson 2002),
with root growth following declining water tables (e.g.,
Stromberg et al. 1996; Naumburg et al. 2005). Of course,
trees may affect groundwater quantity and quality, too,
using groundwater supplies that might otherwise available
for other uses, through phytoremediation (Vangronsveld
et al. 2009) and by exuding water and solutes from
their roots that change local chemistry (Williams and
de Vries 2020). Exudates add organic carbon, sugars,
and amino acids, among other substances (Olanrewaju
et al. 2019) and can affect mobilization of materials
adsorbed on soil surfaces, although whether that is a
large enough signal to affect groundwater stores is an
open question. Direct measurements of groundwater-
transpiration fluxes over large regions have been outlined
as important data needed to quantify patterns and dynam-
ics of ecosystems (National Research Council 2012), and
many open questions about ties between groundwater
and plant-water use—including when and where they are
connected—exist.

Land Surface Fluxes

Energy and water balances are important to the CZ
in terms of controlling weather and climate and pre-
dicting weathering and ecosystem productivity. Shallow
groundwater can control energy and water balances by
affecting soil moisture (e.g., Kollet and Maxwell 2008;
Soylu et al. 2011; Miguez-Macho and Fan 2012; Hain
et al. 2015), and can determine the susceptibility of
regions to changes in climate (e.g., Maxwell and Kol-
let 2008). Adding groundwater to land-surface mod-
els improves estimates of precipitation partitioning and
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matching water level and storage observations at multiple
scales (e.g., Niu et al. 2007; Huang et al. 2019). While
it is well recognized that climate will change components
of the water cycle such as recharge (e.g., Konikow 2011;
Cuthbert et al. 2019), the impact of climate change on
groundwater and its effects on land-atmosphere feedbacks
and buffering of the climate system remains an important
area of research (e.g., Wu et al. 2020). These changes
likely determine the thickness of the CZ, which remains a
complex property to estimate; defined in part by vegeta-
tion height and depth to the bottom of groundwater, it is
likely controlled by the humidity index and the effective
energy and mass transfer into the CZ (Xu and Liu 2017).

Weathering

Weathering is tightly coupled to near-surface pro-
cesses with influences from vegetation, climate, and ero-
sion. As dilute, reactive fluids infiltrate into the subsur-
face and dissolve minerals, solute concentrations increase
and eventually the fluid reaches chemical saturation with
respect to dissolving minerals in the underlying bedrock
and weathering ceases. The zone over which saturation
indices increase from far from saturation with respect to
dissolving minerals (SI < 0) to saturated (SI = 0) is termed
the weathering front. The rate of advance and thickness
of this weathering front in the subsurface is a function
of the rate of water infiltration and the dissolution rate of
minerals (e.g., Lichtner 1988; White et al. 1996), while
the position of the weathering front relative to the water
table is driven by erosion rates and infiltration rates (Lebe-
deva and Brantley 2020). It has largely been assumed that
this weathering front is positioned above the water table
and most rock weathering occurs in the vadose zone (e.g.,
Hilley et al. 2010; Goodfellow et al. 2011). But weath-
ering at the water table (e.g., Wan et al. 2019) and deep
weathering—or weathering below the water table (e.g.,
Ollier 1988)—have long been observed and are important
processes for generating saprolite-hosted aquifers used for
drinking water (e.g., Taylor 2001). The position of weath-
ering fronts relative to the water table changes as the
water table raises and lowers seasonally or in response to
changes in climate, and its position relative to the water
table varies with landscape position within a single water-
shed (Gu et al. 2020). The fraction of weathering derived
solutes attributed to groundwater can therefore change as
the position of the weathering front changes relative to
the water table (e.g., Todd et al. 2012). In some systems,
weathering drives the opening of porosity and disaggrega-
tion of rock leading to nested reaction fronts and driving
deeper infiltration of fluids that ultimately become ground-
water (Brantley et al. 2013). Weathering in karst systems,
in particular, is an important process for creating subsur-
face pathways for groundwater flow (e.g. Kaufmann and
Braun 2000). Weathering is also a product of biology,
including vegetation and microbes; for example, roots
searching for deeper water sources have large feedbacks
to rock weathering (Hasenmueller et al. 2017), and many
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questions remain about the coupling of root systems to
rock weathering.

Weathering also drives the geochemistry of sur-
face water. Groundwater residence times are longer than
shallower flowpaths through the vadose zone. These
longer residence times can allow for more weathering and
generation of solutes, and solute concentrations in streams
are often highest when groundwater dominates stream dis-
charge. For example, in a steep, rapidly eroding, mountain
watershed in Taiwan, deep groundwater contributes 16%
of the total river discharge but 40% of cation-weathering
flux carried by the river (Calmels et al. 2011). In the upper
Colorado River watershed, USA, 89% of dissolved solutes
is attributed to groundwater contributions to the river, with
weathering of sedimentary rocks by groundwater being
an important source of solutes (Rumsey et al. 2017).
The year-round contribution of groundwater to stream-
flow can also be an important, persistent, source of trace
elements produced by chemical weathering (King and
Pett-Ridge 2018). Groundwater geochemistry can, there-
fore, impact water quality and ecosystems downgradient,
all the way to the ocean (Sawyer et al. 2016). Questions
remain about the timescales over which weathering reac-
tions respond to perturbations in the water table driven
by climate or land-use and the role of weathering below
the water table on disaggregating rock and solute gen-
eration. These questions cannot be answered without a
better understanding of the relationship between weather-
ing profiles and water tables and the solute contribution
of groundwater to stream flows under varying conditions.

Conclusions and Recommendations

As we outline here, groundwater is key to a myriad
of CZ processes. That said, the movement of groundwater
is slow compared to surface-water or atmospheric-water
systems. Quantifying changes to the many groundwater-
controlled processes we have highlighted above and
developing the requisite, testable perceptual models
needed to capture our understanding of process across
systems (e.g., Wagener et al. 2021) requires long-term
data records. For example, hydrograph-separation analysis
to determine the fractional groundwater contribution to
streamflow requires multiple years of hydrological and
geochemical data from groundwater and surface waters
(e.g., Bearup et al. 2014). Because of the relative languor
of groundwater and the long-term effects of climate,
groundwater science is one of many environmental
sciences that would benefit from long-term funding for
measurements.

While we both support hypothesis-driven science, the
three-year timescale of many federal grants often does not
allow groundwater to be a major player in the systems
that we measure, or it is assumed static. Of course,
groundwater can be considered as an important part of
the CZ system through numerical modeling, but we are
not going to learn something new about the world system
from models unhindered by data. Field-based hydrologic
research is notably on the decline, at least in catchment
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hydrology (Burt and McDonnell 2015), although one can
imagine that pattern is not different within hydrogeology.
Long-term measurements have historically been provided
to the hydrogeologic community by the USGS; however,
in recent years, cuts to their operating budget and
changes in priority have affected their ability to maintain
many of their groundwater and surface water data
stations (e.g., stream gages as listed at https://water
.usgs.gov/networks/fundingstability/), some of which have
been collecting data for a century. Additionally, the
USGS has seen the closure or refocusing of some
important programs collecting long-term groundwater data
such as the Toxic Substances Hydrology Program, the
National Water-Quality Assessment Program (NAWQA),
and the Water, Energy, and Biogeochemical Budgets
(WEBB) Program. Long-term groundwater data—both
quality or quantity—are invaluable in the identification
of changing water resources with climate change, and
continued collection should be a priority to hydrologic
scientists, especially in sensitive or important water
systems. Collecting groundwater data co-located with
other data, such as stream water quality and quantity,
vegetation index, sap flow measurements, soil moisture,
pore water chemistry, and meteorological observations
among others, provides opportunities to ask and answer
questions related to the role of groundwater in CZ
processes. New mechanisms are needed to promote and
fund long-term data collection with the express goal
of providing the scientific community the observations
needed to ground-truth models and identify temporal
trends. While the National Science Foundation has
provided 5-year, renewable grants to study CZ science to
date, these time scales are still too short to look at climate
records. If the USGS is not able to collect these data, who
can? We do not have an answer, but know we need to look
beyond the walls of academia, with its (generally) short-
term projects, to collect continuous, high-quality data over
decadal scales.

That said, academia has a clear role to play here
as well. We need to motivate the next generation
of scientists to participate in the generation of new
information about the earth system via data collection.
Partnerships within the hydrologic community could
establish regional monitoring networks centered around
systems of importance or potential perturbations, while
also strengthening relationships between institutions; the
previous CZ Observatories, at some level, served in
this role for the broader CZ community. These sorts
of data, if collected near and made accessible to
undergraduate institutions, could also be used to promote
collaborative science between primarily undergraduate
serving institutions and universities that grant research-
based graduate degrees and get the next generation
of hydrogeologists interested in CZ science and data
collection.

There is an important and perhaps underutilized role
for hydrogeologists in CZ science. Many key processes
in the CZ are underpinned by groundwater hydrology,
and we hope that the readership of Groundwater sees this
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paper as a call to join in on research in this area. For
those interested in how to get involved, we bring your
attention to three National Science Foundation-funded
Research Coordination Networks, specifically developed
to enhance inclusion in CZ science: one focused on
early-career researchers (https:/sites.google.com/view/
czrcn; @joinCZscience on Twitter), one on carbonate
CZs (https://carbonatecriticalzone.research.ufl.edu/), and
one on reactive transport modeling (https://www.mines
.edu/reactivetransporthub/), as well as nine newly funded
Critical Zone Collaborative Network Clusters (https://
czo-archive.criticalzone.org/national/news/story/critical-
zone-collaborative-network/; https://www .criticalzone
.org/), many of which are looking for new collaborators
[Correction added after first online publication on
November 20, 2021. https://cznet.clearpeak.net in text
has been changed to https://www.criticalzone.org/].
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