THE *-MARKOV EQUATION FOR LAURENT POLYNOMIALS

GIORDANO COTTI AND ALEXANDER VARCHENKO

On the Occasion of the 70th Birthday of Sabir Gusein-Zade

Abstract. We consider the *-Markov equation for the symmetric Laurent polynomials in three variables with integer coefficients, which appears as an equivariant analog of the classical Markov equation for integers. We study how the properties of the Markov equation and its solutions are reflected in the properties of the *-Markov equation and its solutions.

2020 Math. Subj. Class. 11D25, 14F08, 34M40.

Key words and phrases. Markov equation, symmetric Laurent polynomial, trees, Poisson structure.

Contents 2 1. Introduction 2. *-Markov Equation 10 3. **Groups of Symmetries** 11 **Markov Trees** 4. 16 5. **Distinguished Representatives** 19 6. Reduced Polynomials Solutions and *-Markov Polynomials 20 7. **Decorated Planar Binary Trees** 24 8. Odd *-Fibonacci Polynomials 34 9. Odd *-Pell Polynomials 41 10. *-Markov Group Actions 11. Poisson Structures on C⁶ and C⁵ 48 12. *-Analog of Horowitz Theorem 53

Horowitz Type Theorems

Appendix A.

61

References 66

The first named author was supported by MPIM in Bonn, Germany, the EPSRC Research Grant EP/P021913/2, and by the FCT Project PTDC/MAT-PUR/ 30234/2017 "Irregular connections on algebraic curves and Quantum Field Theory". The second named author was supported in part by NSF grants DMS-1665239, DMS-1954266.

DOI:10.17323/1609-4514-2022-22-1-1-68

©2022 Independent University of Moscow

1

1. Introduction

1.1. Markov equation

1.1.1. The *Markov equation* is the Diophantine equation

$$a^2 + b^2 + c^2 - abc = 0$$
 $a, b, c \in Z$, (1.1)

with initial solution (3, 3, 3). If a triple (a, b, c) is a solution, then a permutation of the triple is a solution. One may also change the sign of two of the three coordinates of a solution. The braid group B_3 acts on the set of solutions,

$$\tau_1: (a, b, c) 7 \to (-a, c, b - ac),$$

$$\tau_2: (a, b, c) \to 7 \quad (b, a - bc, -c).$$
(1.2)

The classical Markov theorem says that all nonzero solutions of the Markov equation can be obtained from the initial solution (3, 3, 3) by these operations, see [31], [30]. This group of symmetries of the equation is called the Markov group. A solution with positive coordinates is called a Markov triple, the positive coordinates are called the Markov numbers.

The Markov equation is traditionally studied in the form

$$a^2 + b^2 + c^2 - 3abc = 0$$
, $a, b, c \in Z$. (1.3)

Equations (1.1) and (1.3) are equivalent. A triple $(a, b, c) \in Z^3$ is a solution of (1.3) if and only if (3a, 3b, 3c) is a solution of (1.1).

The equation was introduced by A.A.Markov in [31], [30] in the analysis of minimal values of indefinite binary quadratic forms and was studied in hundreds of papers, see for example the book [1] and references therein.

1.2. Motivation from exceptional collections and Stokes matrices

1.2.1. Our motivation came from the works by A.Rudakov [39] on full exceptional collections in derived categories and by B.Dubrovin [20], [21], [22] on Frobenius manifolds and isomonodromic deformations.

In 1989 A.Rudakov studied the full exceptional collections in the derived category $D^b(P^2)$ of the projective plane P^2 . These are triples (E_1, E_2, E_3) of objects in $D^b(P^2)$ generating $D^b(P^2)$ and such that the matrix of Euler characteristics

a solution of the Markov equation. The braid group B_3 naturally acts on the set of full exceptional collections and the induced action on the set of matrices of Euler characteristics coincides with the action of the braid group on the set of solutions of the Markov equation.

In the 90's Dubrovin considered the isomonodromic deformations of the quantum differential equation of the projective plane P^2 , see [22]. This is a system of three first order linear ordinary differential equations with two singular points: one regular point at the origin and one irregular at the infinity. Dubrovin observed that the Stokes matrix $S = \begin{pmatrix} 1 & a & b & S \text{ of a Stokes basis of the space of solutions at the infinity is of } \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ the form, where (a, b, c) is a solution of the Markov equation. The

braid group B_3 naturally acts on the set of Stokes bases, and the induced action on the set of Stokes matrices coincides with the action of the braid group on the set of solutions of the Markov equation.

These two observations allowed to Dubrovin to conclude that the Stokes bases of the isomonodromic deformations of the quantum differential equation of P^2 correspond to the full exceptional collections in the derived category $D^b(P^2)$ and more generally to conjecture that the derived category of an algebraic variety is responsible for the monodromy data of its quantum differential equation, see [21], [16].

1.2.2. Recently in [45] V.Tarasov and the second author considered the equivariant quantum differential equation for P^2 with respect to the torus $T = (C^*)^3$ action on P^2 . That equivariant quantum differential equation is a system of three first order linear ordinary differential equations depending on three equivariant parameters $z = (z_1, z_2, z_3)$. The system has two singular points: one regular point at the origin and one irregular at the infinity. It turns out that the Stokes matrix S of a

$$S(\boldsymbol{z}) = \begin{pmatrix} 1 & & \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

$$a = b^{1}$$

Stokes basis of the space of solutions at the infinity is of the form,

where a, b, c are symmetric Laurent polynomials in the equivariant parameters z with integer coefficients. In [17] we observed that the Stokes bases correspond to T-full exceptional collections in the equivariant derived category $\mathcal{D}_T^b(\mathbb{P}^2)$. If (E_1, E_2, E_3) is a T-full exceptional collection, then the equivariant Euler characteristic $\chi_T(E_i^* \otimes E_j)$ is

an element of the representation ring of the torus, that is, a Laurent polynomial in the equivariant parameters with integer coefficients. It turns out that if a T-full exceptional collection (E_1 , E_2 , E_3) corresponds to a Stokes basis, then the corresponding Stokes matrix equals the matrix ($\chi_T(E_i^* \otimes E_j)$) of equivariant Euler characteristics. Moreover the three symmetric Laurent polynomials (a, b, c), appearing in this construction, satisfy the equation

$$aa^* + bb^* + cc^* - ab^*c = 3 - \frac{z_1^3 + z_2^3 + z_3^3}{z_1 z_2 z_3}$$
, (1.4)

where $f^*(z_1, z_2, z_3) := f(1/z_1, 1/z_2, 1/z_3)$ for any Laurent polynomial, see [17, Formula (3.20)]. If $z_1 = z_2 = z_3 = 1$, then the right-hand side of (1.4) equals zero, the equivariant Euler characteristics $\chi_T(E_{i^*} \otimes E_{j})$ become the non-equivariant Euler characteristics $\chi(E_{i^*} \otimes E_{j})$, and the triple of symmetric Laurent polynomials (a, b, c) evaluated at $z_1 = z_2 = z_3 = 1$ becomes a solution of the Markov equation (1.1).

We call equation (1.4) for symmetric Laurent polynomials with integer coefficients the *-Markov equation.

The transition from the Markov equation to the *-Markov equation provides us with a deformation of the Markov numbers by replacing Markov numbers with symmetric Laurent polynomials, which recover the numbers after the evaluation at $z_1 = z_2 = z_3 = 1$.

The goal of this paper is to observe how the properties of the Markov equation and its solutions are reflected in the properties of the *-Markov equation and its solutions.

1.2.3. There are interesting instances of the transition from the Diophantine Markov equation (1.1) to an equation of the form

$$a(t)^2 + b(t)^2 + c(t)^2 - a(t)b(t)c(t) = R(t)$$

where a(t), b(t), c(t) are unknown functions in some variables t and R(t) is a given function. Such deformations among other subjects are related to hyperbolic geometry and cluster algebras, see the fundamental papers [15], [25].

The difference between deformations of this type and the *-Markov equation is that equation (1.4) includes the *-operation dictated by the equivariant K-theoretic setting. It is an interesting problem to find relations of the *-Markov equation to hyperbolic geometry and cluster algebras.

1.3. *-Markov equation and *-Markov group

1.3.1. It is convenient to use the elementary symmetric functions (s_1 , s_2 , s_3),

$$S1 = Z1 + Z2 + Z3$$
, $S2 = Z1Z2 + Z1Z3 + Z2Z3$, $S3 = Z1Z2Z3$,

change variables (a, b, c) to (a, b^*, c) , and reformulate equation (1.4) in a more symmetric form

$$aa^* + bb^* + cc^* - abc = \frac{3s_1s_2 - s_1^3}{s_3}.$$
 (1.5)

 $aa^*+bb^*+cc^*-abc=\frac{3s_1s_2-s_1^3}{s_3} \tag{1.5}$ The problem is to find Laurent polynomials $a,\,b,\,c\in\mathbb{Z}[s_1,\,s_2,\,s_3^{\pm 1}]$ satisfying equation (1.5). The equation has the initial solution

$$I = \left(z_1 + z_2 + z_3, \frac{z_1 + z_2 + z_3}{z_1 z_2 z_3}, z_1 + z_2 + z_3\right) = \left(s_1, \frac{s_1}{s_3}, s_1\right), \tag{1.6}$$

whose evaluation at $s_1 = s_2 = 3$, $s_3 = 1$ is the initial solution (3,3,3) of the Markov equation.

From now on we call equation (1.5) the *-Markov equation.

1.3.2. The group Γ_M of symmetries of the *-Markov equation is called the *-Markov group. It consists of permutations of variables, changes of sign of two of the three variables, the braid group B₃ transformations

$$\tau_1: (a, b, c) \ 7 \rightarrow (-a^*, c^*, b^* - ac),$$

$$* *-bc, -c^*), (1.7) \ \tau_2: (a, b, c) \ 7 \rightarrow (b, a)$$

and the new transformations

$$\mu_{i,j} : (a, b, c) \mapsto (s_3^i a, s_3^{-i-j} b, s_3^j c), \quad i, j \in \mathbb{Z}$$

We have an obvious epimorphism of the *-Markov group onto the Markov group. This fact and the Markov theorem imply that for any Markov triple of numbers there exists a triple of Laurent polynomials, solving the *-Markov equation, obtained from the initial solution I by transformations of the *-Markov group, whose evaluation at s_1 = $s_2 = 3$, $s_3 = 1$ gives the Markov triple.

It is an open question if any solution of the *-Markov equation can be obtained from the initial solution *I* by a transformation of the *-Markov group. In analogy with the Markov equation we may expect that all solutions lie in $\Gamma_M I$.

1.4. Solutions in the orbit of the initial solution

1.4.1. As the first topic of this paper we study $\Gamma_M I$, the set of solutions of the *-Markov equation obtained from the initial solution I by transformations of the *-Markov group.

In the interpretation of solutions of the *-Markov equation as matrices of equivariant Euler characteristics $(\chi_T(E_i^* \otimes E_i))$ for T-full exceptional collections, the set $\Gamma_M I$ corresponds to the set of matrices $(\chi_T(E_i^* \otimes E_j))$ for the *T*-full exceptional collections in $D_{T^b}(P^2)$ lying in the braid group orbit of the so-called Beilinson *T*-full exceptional collection, see [17], [5].

Several first elements of $\Gamma_M I$ different from I are

$$(s^*1, s^21 - s_2, s^*1),$$
 (1.8)

$$(s*2, s21s2 - s1s3 - s22, (s21 - s2)*),$$
 (1.9)

$$(s*1, s31s2 - 2s21s3 - s1s22 + s2s3, (s12s2 - s1s3 - s22)*),$$
 (1.10)

$$((s_{21}s_{2} - s_{1}s_{3} - s_{22})_{*}, s_{12}s_{32} - s_{31}s_{2}s_{3} - s_{2}s_{23} + s_{21}s_{23} - s_{42}, (s_{22} - s_{1}s_{3})_{*}).$$
 (1.11)

Evaluated at $s_1 = s_2 = 3$, $s_3 = 1$ they represent the Markov triples (3, 6, 3), (3, 15, 6), (3, 39, 15), (15, 87, 6), respectively.

Random application of generators of the *-Markov group to the initial solution I will produce the Laurent polynomial solutions of the *-Markov equation, but they will not be polynomial. We make them close to being polynomial as follows.

We look for solutions of the *-Markov equation in the form (f_1^*, f_2, f_3^*) . We say that a solution (f_1^*, f_2, f_3^*) is a reduced polynomial solution if each of f_1 , f_2 , f_3 is a nonconstant polynomial in s_1 , s_2 , s_3 not divisible by s_3 .

For example, all triples in (1.8)–(1.11) are reduced polynomial solutions.

Theorem 1.1. Let (a, b, c) be a Markov triple, 0 < a < b, 0 < c < b, 6 6 b. Then there exists a unique reduced polynomial solution $(f_1^*, f_2, f_3^*) \in \Gamma_M I$ representing (a, b, c).

See Theorem 6.4.

Remark 1.2. Consider the three versions of the *-Markov equation,

$$aa^* + bb^* + cc^* - ab^*c = \frac{3s_1s_2 - s_1^3}{s_3},$$

$$aa^* + bb^* + cc^* - abc = \frac{3s_1s_2 - s_1^3}{s_3},$$
(1.12)

$$aa^* + bb^* + cc^* - abc = \frac{3s_1s_2 - s_1^3}{s_3},$$
 (1.13)

$$aa^* + bb^* + cc^* - a^*bc^* = \frac{3s_1s_2 - s_1^3}{s_3}.$$
 (1.14)

These equations are equivalent: the second equation is obtained from the first by the change $(a, b, c) \rightarrow (a, b^*, c)$ and the third is obtained from the second by the change (a, b, c) $b, c) \rightarrow (a^*, b, c^*)$. The first of the equations is equation (1.4) coming from the equivariant derived category D_T^b (P²), see [17]. The second equation was obtained from the first equation to make the *-Markov equation more symmetric, see (1.5). This second equation is studied in this paper. The third of these equations also has advantages.

Namely, the initial solution I^0 for equation (1.14) is the triple of Laurent polynomials $(\frac{s_2}{s_3}, \frac{s_1}{s_3}, \frac{s_2}{s_3})$. The *-Markov group Γ_M acts on solutions of equation (1.14) since equations (1.13) and (1.14) are equivalent. Theorem 1.1 can be reformulated as follows.

Theorem 1.3. Let (a, b, c) be a Markov triple, 0 < a < b, 0 < c < b, 6 6 b. Then there exists a unique triple of polynomials (f_1, f_2, f_3) solving equation (1.14) and such that (f_1, f_2, f_3) $\in \Gamma_M I^0$, each of f_1 , f_2 , f_3 is nonconstant and not divisible by s_3 , and the triple (f_1, f_2, f_3) represents (a, b, c).

1.4.2. Let $f(s_1, s_2, s_3)$ be a polynomial. We consider two degrees of f: the homogeneous degree d := degf with respect to weights (1, 1, 1) and the quasihomogeneous degree q := Degf with respect to weights (1, 2, 3). For example, $\deg(s_1^{a_1}s_2^{a_2}s_3^{a_3}) = a_1 + a_2 + a_3$, $\deg(s_1^{a_1}s_2^{a_2}s_3^{a_3}) = a_1 + 2a_2 + 3a_3$.

Let $f(s_1, s_2, s_3)$ be a polynomial of homogeneous degree d not divisible by s_3 , then

$$g(s_1, s_2, s_3) := s_3^d f\left(\frac{s_2}{s_3}, \frac{s_1}{s_3}, \frac{1}{s_3}\right)$$
 (1.15)

is a polynomial of homogeneous degree d not divisible by s_3 . If additionally $f(s_1, s_2, s_3)$ is a quasi-homogeneous polynomial of quasi-homogeneous degree q, then $g(s_1, s_2, s_3)$ is a quasi-homogeneous polynomial of quasi-homogeneous degree 3d - q.

The polynomial g is denoted by $\mu(f)$.

1.4.3. Let $f(s_1, s_2, s_3)$ be a quasi-homogeneous polynomial with respect to weights (1, 2, 3). The assignment to f its bi-degree vector (d, q) could be seen as a "dequatization" in the following sense. Let

$$S1 = C1e\alpha + \beta$$
, $S2 = C2e\alpha + 2\beta$, $S3 = C3e\alpha + 3\beta$,

where α , β are real parameters which tend to $+\infty$ and c_1 , c_2 , c_3 are fixed generic real numbers. Then

$$\ln f(c_1e_{\alpha+\beta}, c_2e_{\alpha+2\beta}, c_3e_{\alpha+3\beta})$$

has *leading term* $d\alpha + q\beta$ independent of the choice of c_1 , c_2 , c_3 . The leading term may be considered as a vector (d, q).

1.4.4. We say that a polynomial $P(s_1, s_2, s_3)$ is a *-Markov polynomial if there exists a Markov triple (a, b, c), 0 < a < b, 0 < c < b, 6 6 b, with reduced polynomial presentation $(f_1^*, f_2, f_3^*) \in \Gamma_M I$ such that $P = f_2$. The polynomial s_2 will also be called a *-Markov polynomial.

We say that a polynomial $Q(s_1, s_2, s_3)$ is a *dual* *-*Markov polynomial* if Q is not divisible by s_3 and $\mu(Q)$ is a *-Markov polynomial.

For example, $s_1^2 - s_2$, $s_2(s_1^2 - s_2) - s_3 s_1$ are *-Markov polynomials, since they appear as the middle terms in the reduced polynomial presentations in (1.8) and

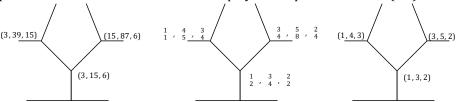


Figure 1.

(1.9) and $s_2^2-s_1s_3,\ s_1(s_2^2-s_1s_3)-s_3s_2$ are the corresponding dual *-Markov polynomials.

Theorem 1.4. Let $f(s_1, s_2, s_3)$ be a *-Markov polynomial or a dual *-Markov polynomial of bi-degree (d, q). Then $f(s_1, s_2, s_3)$ is a quasi-homogeneous polynomial with respect to weights (1, 2, 3). Moreover, |2q - 3d| = 1 if d is odd and |2q - 3d| = 2 if d is even.

Theorem 1.5. Let $(f_1^*, f_2, f_3^*) \in \Gamma_M I$ be the reduced polynomial presentation of a Markov triple (a, b, c), 0 < a < b, 0 < c < b, $6 \ b$. Then each of f_1 , f_3 is either a *-Markov polynomial or a dual *-Markov polynomial. If f_1 , f_2 , f_3 have bi-degree vectors (d_1, q_1) , (d_2, q_2) , (d_3, q_3) , then

$$(d_2, q_2) = (d_1, q_1) + (d_3, q_3).$$

See Theorems 6.4, 7.2, and examples (1.8)-(1.11).

1.4.5. It is convenient to put Markov triples at the vertices of the infinite binary planar tree as in Figure 1 and obtain what is called the Markov tree. Similarly, we may put at the vertices the triples of polynomials (f_1, f_2, f_3) such that the triples

 (f_1^*, f_2, f_3^*) are the reduced polynomial presentations of the corresponding Markov triples. In that way we would put in Figure 1 the triple (f_1, f_2, f_3) shown in (1.9) instead of (3, 15, 6), the triple (f_1, f_2, f_3) shown in (1.10) instead of (3, 39, 15), the triple (f_1, f_2, f_3) shown in (1.11) instead of (15, 87, 6). Or we may put at the vertices the triples (d_1, q_1) , (d_2, q_2) , (d_3, q_3) of bi-degree vectors of the triples (f_1, f_2, f_3) , or the triples (d_1, d_2, d_3) of degrees, see Figure 1, or we may even put at the vertices the triples of Newton polytopes of the polynomials (f_1, f_2, f_3) , see Sections 7.7 and 7.8.

These decorated trees have interesting interrelations consisting of "quatizations" and "de-quantizations", see short discussion in Section 7.5.

A compelling problem is to study asymptotics of these decorations along the infinite paths going from the root of the tree to infinity, see remarks in Sections 7.8 and 7.9.

1.4.6. It is well known that the Markov triples of the left branch of the Markov tree are composed of the odd Fibonacci numbers, multiplied by 3. These triples have the form (3, $3\phi_{2n+1}$, $3\phi_{2n-1}$), where ϕ_{2n+1} , ϕ_{2n-1} are odd Fibonacci numbers. We describe the reduced polynomial presentations (g_{n-1}^* , F_{2n+1}^* , F_{2n-1}^*) of these

Markov triples, where $g_{n-1} = s_2$ if n is even, $g_{n-1} = s_1$ if n is odd, and F_{2n+1} , F_{2n-1} are polynomial in s_1 , s_2 , s_3 , called the odd *-Fibonacci polynomials.

The first of them are

$$F_3(s) = s^2 - s_2,$$

$$F_5(s) = s_2 - s_1 - s_2,$$

$$F_7(s) = s_3 - s_2 - s_1 - s_2 - s_2 - s_2 - s_3 - s_1 - s_2 - s_2 - s_3 - s_1 - s_2 - s_3 - s_3 - s_1 - s_2 - s_3 -$$

We describe the recurrence relations for the odd *-Fibonacci polynomials, explicit formulas for them, their Newton polytopes, the Binet formula, the Cassini identity, describe the continued fractions for F_{2n+3}/F_{2n+1} and the limit of this ratio as $n \to \infty$.

1.4.7. It is well known that the Markov triples of the right branch of the Markov tree are composed of the odd Pell numbers, multiplied by 3. We describe the reduced polynomial presentations of these Markov triples in terms of the polynomials, which we call the odd *-Pell polynomials. We develop the properties of the odd *-Pell polynomials, which are analogous to properties of odd Pell numbers and to properties of the odd *-Fibonacci polynomials.

1.4.8. The q-deformations of Fibonacci and Pell numbers is an active subject related to several branches of combinatorics and number theory, see for example [8], [3], [38], [33] and references therein. It would be interesting to determine if these numerous q-deformations of Fibonacci and Pell numbers could be obtained by specifications of our *-deformation depending on the three parameters s_1 , s_2 , s_3 .

1.5. *-Analogs of the Dubrovin Poisson structure. In [20] Dubrovin considered C^3 with coordinates (a, b, c), the braid group B_3 action (1.2), and introduced a Poisson structure on C^3 ,

$$\{a, b\}_H = 2c - ab,$$
 $\{b, c\}_H = 2a - bc,$ $\{c, a\}_H = 2b - ac,$

which is braid group invariant and has the polynomial $a^2+b^2+c^2-abc$ as a Casimir element¹.

The second topic of this paper is a construction of a *-analog of the Dubrovin Poisson structure. Our Poisson structure is defined on C^6 , is anti-invariant with respect to the braid group B_3 action (1.7), is invariant with respect to the involution

$$(a, a^*, b, b^*, c, c^*)$$
 $7 \rightarrow (a^*, a, b^*, b, c^*, c),$

has the polynomials $aa^* + bb^* + cc^* - abc$, $aa^* + bb^* + cc^* - a^*b^*c^*$,

as Casimir elements, and is log-canonical, see Section 11. Here the word antiinvariant means that the Poisson structure is multiplied by -1 under the action of generators of the braid group. Recall also that a Poisson structure on a space with coordinates x_1 , ..., x_n is log-canonical if $\{x_i, x_j\} = a_{ij}x_ix_j$ for all i, j, where $a_{i,j}$ are constants. Our log-canonical Poisson structure has $a_{i,j} = \pm 1$, 0.

1.5.1. The space C^3 considered by Dubrovin is actually identified with the group U_3 of unipotent upper triangular matrices (the Stokes matrices of three dimensional Frobenius manifolds). Standing on such an identification, M.Ugaglia generalized the construction of Dubrovin's Poisson structure to all groups U_n , see [46] for the explicit equations. Remarkably enough, the same braid invariant Poisson structure on U_n was found independently also in [6], [7] from two completely different perspectives. Let B_{\pm} be the groups of upper and lower triangular $n \times n$ matrices. In [6], P.Boalch proved that U_n is the stable locus of a Poisson involution of the Poisson– Lie group $B_{\pm} * B_{-}$, and that the standard Poisson structure of $B_{\pm} * B_{-}$ induces the braid invariant Poisson structure on U_n . The construction in [7], is based on the identification of the group U_n with the space of Gram matrices ($\chi(E_i, E_j)$)_{i,j} for exceptional collections (E_1 , ..., E_n) in triangulated categories². A.Bondal discovered a symplectic groupoid whose space of objects is U_n : the existence of a braid invariant Poisson structure on U_n is then deduced

¹ Recall that a function f is a Casimir element for a Poisson structure $\{,\}$ if $\{f,g\}=0$ for any g.

² Notice that the two identifications of U_n as Stokes matrices or Gram matrices of the χ -pairing should coincide, at least for quantum cohomologies, according to a conjecture of Dubrovin, see [21], [16].

from the general theory of symplectic groupoids. The quantization of the Poisson structure on U_n is also known as Nelson–Regge algebra in 2+1 quantum gravity [35], [36], and as Fock–Rosly bracket in Chern–Simons theory [26]. Furthermore, L.Chekhov and M.Mazzocco generalized the construction of the Dubrovin Poisson structures to the space of bilinear forms with block-upper-triangular Gram matrix, they also extensively studied the related Poisson algebras, their quantization and affinization, see [11], [13]. See very interesting short paper [12] by L.O.Chekhov and V.V.Fock.

It would be interesting to see the *-analogs of these considerations.

1.6. *-Analogs of the Horowitz theorem. In [29], R.D.Horowitz proved the following result, characterizing the Markov group as a subgroup of the group of ring automorphisms of Z[a, b, c].

Theorem 1.6 [29, Theorem 2]. *The group of ring automorphisms of* Z[a, b, c] *which preserve the polynomial*

$$H = a^2 + b^2 + c^2 - abc$$

is isomorphic to the Markov group.

As the third topic of this paper we develop *-analogs of the Horowitz theorem, see Section 12 and Appendix A.

1.7. Exposition of material. In Section 2 we introduce the *-Markov equation and evaluation morphism. The *-Markov group and its subgroups, in particular, the important *-Vi'ete subgroup, are defined in Section 3. The Markov and extended Markov trees are introduced in Section 4. In Section 5 we introduce the notion of a distinguished representative of a Markov triple and show that the *-Vi'ete group acts freely and transitively on the set of distinguished representatives.

In Section 6 we introduce the notion of an admissible triple of Laurent polynomials and the notion of a reduced polynomial presentation of a Markov triple. One of the main theorems of the paper, Theorem 6.4 says that a Markov triple has a unique reduced polynomial presentation. We also introduce the notion of a *-Markov polynomial.

In Section 7 six decorated infinite planar binary trees are defined. They are the *-Markov polynomial tree, 2-vector tree, matrix tree, deviation tree, Markov tree, Euclid tree. We discuss the interrelations between the trees. An interesting problem is to study the asymptotics of the decorations along the infinite paths from the root of the tree to infinity.

In Sections 8 and 9 we introduce the odd *-Fibonacci and odd *-Pell polynomials and discuss their properties.

In Section 10 we construct actions of the *-Markov group on the spaces C^6 and C^5 and a map $F: C^6 \to C^5$ commuting with the actions. Using these objects we construct equivariant Poisson structures on C^6 and C^5 in Section 11.

In Section 12 we establish *-analogs of the Horowitz theorem on C⁶ and C⁵. In Appendix A we discuss more analogs of the Horowitz theorem.

In Appendix B we discuss briefly the *-equations for P^3 and associated Poisson structures on C^{12} .

The authors thank P.Etingof, M.Mazzocco, V.Ovsienko, V.Rubtsov, V.Schechtman, M.Shapiro, L.Takhtajan, A.Veselov, A.Zorich for useful discussions. The authors thank HIM and MPI in Bonn, Germany for hospitality in 2019. The authors are grateful to the referee for helpful remarks improving the exposition.

2. *-Markov Equation

2.1. *-Involution. Denote $z=(z_1, z_2, z_3)$, $s=(s_1, s_2, s_3)$. Let $\mathbb{Z}[z^{\pm 1}]^{S_3}$ be the ring of symmetric Laurent polynomials in z with integer coefficients. We define an isomorphism $\mathbb{Z}[z^{\pm 1}]^{\mathfrak{S}_3} \cong \mathbb{Z}[s_1, s_2, s_3^{\pm 1}]$ by sending

$$(z_1 + z_2 + z_3, z_1z_2 + z_1z_3 + z_2z_3, z_1z_2z_3) \rightarrow (s_1, s_2, s_3).$$

Define the involution

$$(-)_*: Z[z\pm 1]_{S3} \rightarrow Z[z\pm 1]_{S3}, \qquad f7 \rightarrow f_*,$$

where

$$f^*(\mathbf{z}) := f\Big(\frac{1}{z_1}, \frac{1}{z_2}, \frac{1}{z_3}\Big), \quad f \in \mathbb{Z}[\mathbf{z}^{\pm 1}]^{\mathfrak{S}_3}.$$

This induces a *-involution on $\mathbb{Z}[s_1, s_2, s_3^{\pm 1}]$.

$$f^*(s_1, s_2, s_3) = f\left(\frac{s_2}{s_3}, \frac{s_1}{s_3}, \frac{1}{s_3}\right)$$

Denote $s_0 := (3, 3, 1)$. Define the evaluation morphisms

$$\begin{array}{ll} _{\mathbf{e}_{\mathbf{V}_{so}}} \colon \mathbb{Z}[s_{1},\,s_{2},\,s_{3}^{\pm 1}] \to \mathbb{Z}, & f(s) \mapsto f(s_{o}), \\ \mathbf{E}_{\mathbf{V}^{\mathbf{S}_{o}}} \colon (\mathbb{Z}[s_{1},\,s_{2},\,s_{3}^{\pm 1}])^{3} \to \mathbb{Z}^{3}, & (a,\,b,\,c) \mapsto (a(s_{o}),\,b(s_{o}),\,c(s_{o})). \end{array}$$

The evaluation morphism corresponds to the evaluation of a Laurent polynomial $f(z_1, z_2, z_3)$ at $z_1 = z_2 = z_3 = 1$.

2.2. Evaluation morphism. The *-Markov equation is the equation

$$aa^* + bb^* + cc^* - abc = \frac{3s_1s_2 - s_1^3}{s_3},$$
(2.1)

where $a, b, c \in \mathbb{Z}[s_1, s_2, s_3^{\pm 1}]$. The solution

$$I = \left(s_1, \frac{s_1}{s_3}, s_1\right) \tag{2.2}$$

is call the initial solution.

We have

$$\operatorname{evs}^{\circ}\left(\frac{3s_{1}s_{2}-s_{1}^{3}}{s_{3}}\right)=0.$$

Proposition 2.1. If $f = (f_1, f_2, f_3)$ is a solution of the *-Markov equation (2.1), then $\text{Ev}_{so}(f)$ is a solution of the Markov equation (1.1).

For example, the evaluation of the initial solution *I* gives the triple (3,3,3).

Remark 2.2. The *-Markov equation (2.1) can be studied by looking for solutions (*a*, *b*, *c*) in A³, where A is a ring more general than $\mathbb{Z}[z^{\pm 1}]^{\mathfrak{S}_3} \cong \mathbb{Z}[s_1, s_2, s_3^{\pm 1}]$.

For instance, if we look for solutions of the form ($^{\alpha s_1,\ \beta \frac{s_1}{s_3},\ \gamma s_1}$), where $\alpha,\beta,\gamma\in C$, then

$$\alpha^2 + \beta^2 + \gamma^2 = 3$$
, $\alpha\beta\gamma = 1$.

This curve has infinitely many algebraic points, for example

$$\alpha = \sqrt{-1}, \quad \beta = \sqrt{2 + \sqrt{5}}, \quad \gamma = \frac{1}{\sqrt{-2 - \sqrt{5}}}$$

3. Groups of Symmetries

3.1. Symmetries of Markov equation. Consider the following three groups of transformations of Z^3 :

Type I. The group G_1^c generated by transformations

$$\lambda_{i,i}^c: (a,b,c) \mapsto ((-1)^i a, (-1)^{i+j} b, (-1)^j c), \quad i,j \in \mathbb{Z}_2$$

Type II. The group G_2^c generated by transformations

$$\sigma_1^c: (a, b, c) \mapsto (b, a, c), \quad \sigma_2^c: (a, b, c) \mapsto (a, c, b)$$

Type III. The group G_3^c generated by transformations

$$\tau_1^c: (a, b, c) \ 7 \to (-a, c, b - ac),$$

$$\tau_2^c: (a, b, c) \to 7 \qquad (b, a - bc, -c).$$

We have $\tau_1^c \tau_2^c \tau_1^c = \tau_2^c \tau_1^c \tau_2^c$.

In these notations the superscript *c* stays for the word classical.

Remark 3.1. Let B₃ be the braid group with three strands, and β_1 , β_2 its standard generators (elementary braids) with $\beta_1\beta_2\beta_1 = \beta_2\beta_1\beta_2$. There is a group epimorphism $\phi: \mathcal{B}_3 \to G_3^c$, $\beta_i \mapsto \tau_i^c$, i = 1, 2.

The center $Z(B_3) = h(\beta_1\beta_2)^{3i}$ is contained in ker φ . Thus, the group

$$\mathcal{B}_3/\mathcal{Z}(\mathcal{B}_3) \cong_{PSL(2,7)}$$

acts on the set of solutions of (1.1).

Proposition 3.2. The set of nonzero Markov triples is invariant under the action of each of the groups G_1^c , G_2^c , G_3^c .

3.2. Markov and Vi`ete groups. Define the *Markov group* Γ_{M^c} as the group of transformations of Z^3 generated by G_1^c , G_2^c , G_3^c ,

$$\Gamma_M^c := \langle G_1^c, G_2^c, G_3^c \rangle \tag{3.1}$$

Define the Vi`ete involutions $v_1^c, v_2^c, v_3^c \in \Gamma_M^c$ by the formulas

$$v_1^c: (a, b, c) 7 \rightarrow (bc - a, b, c), v_2^c$$

:
$$(a, b, c)$$
 7 \rightarrow $(a, ac - b, c), v_3^c$:

$$(a, b, c) 7 \rightarrow (a, b, ab - c).$$

Define the Vi`ete group Γ_V^c as the group generated by the Vi`ete involutions $v_1^c, v_2^c, v_3^c, V_3^c$ (3.2)

We have

$$v_1^c = \lambda_{1,1}^c \, \sigma_1^c \, \tau_2^c, \quad v_2^c = \lambda_{1,0}^c \, \sigma_2^c \, \tau_1^c, \quad v_3^c = \lambda_{1,1}^c \, \tau_1^c \, \sigma_2^c, \tag{3.3}$$

indeed, for example, $\lambda_{1,1}^c \ \sigma_1^c \ au_2^c$ sends

$$(a, b, c) \xrightarrow{\tau_2^c} (b, a - bc, -c) \xrightarrow{\sigma_1^c} (a - bc, b, -c) \xrightarrow{\lambda_{1,1}^c} (bc - a, b, c)$$

as stated.

Theorem 3.3 [23, Theorem 1]. The group Γ_{V^c} is freely generated by v_1^c , v_2^c , v_3^c , that is, $\Gamma_{V^c} \sim = \mathsf{Z}_2 * \mathsf{Z}_2 * \mathsf{Z}_2$.

Proposition 3.4. *We have the following identities:*

$$\begin{split} &\sigma_{1c}\lambda_{ck,l}\sigma_{1c} = \lambda_{ck+l,l}, & \sigma_{2c}\lambda_{ck,l}\sigma_{2c} = \lambda_{cl,k+l}, \\ &\sigma_{1c}v_{1c}\sigma_{1c} = v_{2c}, & \sigma_{2c}v_{1c}\sigma_{2c} = v_{1c}, \\ &\sigma_{1c}v_{2c}\sigma_{1c} = v_{1c}, & \sigma_{2c}v_{2c}\sigma_{2c} = v_{3c}, \\ &\sigma_{1c}v_{3c}\sigma_{1c} = v_{3c}, & \sigma_{2c}v_{3c}\sigma_{2c} = v_{2c}, \\ &\lambda_{k,l}^{c}v_{i}^{c}\lambda_{k,l}^{c} = v_{i}^{c}, & i = 1, 2, 3. \end{split}$$

Corollary 3.5. We have $\Gamma^c_M=\langle \Gamma^c_V,\,G^c_1,\,G^c_2 \rangle$. Moreover, Γ^c_V is a normal subgroup of Γ^{MC}

Proof. The inclusion $\Gamma_M^c \supseteq \langle \Gamma_V^c, G_1^c, G_2^c \rangle$ is clear. We have $G_3^c \subseteq \langle \Gamma_V^c, G_1^c, G_2^c \rangle$, by equations (3.3). Hence $\Gamma_M^c = \langle \Gamma_V^c, G_1^c, G_2^c \rangle$. We have $gv_i^cg^{-1} \in \Gamma_{V^c}$ for any $g \in G_1^c$, G_2^c by Proposition 3.4.

Proposition 3.6. We have $\Gamma_V^c \cap \langle G_1^c, G_2^c \rangle = \{ id \}$.

Proof. Any element of Γ_{V^c} fixes the triple (2, 2, 2). The only elements of $\langle G_1^c, G_2^c \rangle$ which fix (2, 2, 2) are the elements of G_2^c

Extend the action of both Γ_{V^c} and G_2^c to the space C³. The point (0, 0, 0) is a fixed point for both actions. The Jacobian matrices at (0, 0, 0) of the Vi`ete transformations v_1^c , v_2^c , v_3^c are

2
-1 0 0 2 21 0 02 21 0 0 2
2 0 1 02, 20 -1 02, 20 1 0 2, 0 0 1 0 0 -1

.

respectively. Hence, any element of Γ_V has diagonal Jacobian matrix at (0, 0, 0). The only transformation of G_2^c which can be represented by a diagonal matrix is the identity.

Corollary 3.7. For any element $g \in \Gamma_{M^c}$, there exist unique $v \in \Gamma_{V^c}$ and $h \in \langle G_1^c, G_2^c \rangle$ such that g = vh. This implies that $\Gamma_M^c = \Gamma_V^c \rtimes \langle G_1^c, G_2^c \rangle$.

Proof. Since $\Gamma_M^c = \langle \Gamma_V^c, G_1^c, G_2^c \rangle$, any g can be expressed as a product $g = v_{i_1} a_{i_1} v_{i_2} a_{i_2} \dots v_{i_k} a_{i_k}, \quad a_{i_i} \in \langle G_1^c, G_2^c \rangle$

We can factor g as

$$g = v_{i_1} v_{i_2} \dots v_{i_k} a'_{i_1} a'_{i_2} \dots a'_{i_k}, \quad a'_{i_j} \in \langle G_1^c, G_2^c \rangle,$$
(3.4)

by using the commutation rules described in Proposition 3.4. The decomposition in (3.4) is unique, by Proposition 3.6.

3.3. Symmetries of *-Markov equation. Consider the following four groups of transformations of the space $(\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3$.

Type I. The group G_1 generated by transformations

$$\lambda_{i,j} : (a, b, c) \mapsto ((-1)^i a, (-1)^{i+j} b, (-1)^j c), \quad i, j \in \mathbb{Z}_2$$

Type II. The group G_2 generated by transformations σ_1 : (a, b, c) 7 \rightarrow

$$(b, a, c), \sigma_2: (a, b, c) 7 \rightarrow (a, c, b).$$

Type III. The group G_3 generated by transformations

$$\tau_1: (a, b, c) 7 \to (-a^*, c^*, b^* - ac),$$

$$* *-bc, -c^*). (3.5) \tau_2: (a, b, c) 7 \to (b, a)$$

We have $\tau_1\tau_2\tau_1 = \tau_2\tau_1\tau_2$.

Type IV. The group G_4 generated by transformations

$$\mu_{i,j} : (a, b, c) \mapsto (s_3^i a, s_3^{-i-j} b, s_3^j c), \quad i, j \in \mathbb{Z}$$

Proposition 3.8. The set of all solutions of the *-Markov equation (2.1) is invariant under the action of each of the groups G_1 , G_2 , G_3 , G_4 .

As in the case of the Markov equation (1.1), we have the action of $\mathcal{B}_3/\mathcal{Z}(\mathcal{B}_3)\cong PSL(2,Z)$ on the set of all solutions of the *-Markov equation (2.1). See Remark

3.4. *-Markov and *-Vi`ete groups. Define the *-Markov group Γ_M as the group of transformations of $(\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3$ generated by G_1 , G_2 , G_3 , G_4 ,

$$\Gamma_M := hG_1, G_2, G_3, G_4i.$$
 (3.6)

Define the *-Vi`ete involutions v_1 , v_2 , $v_3 \in \Gamma_M$ by the formulas

$$v_1: (a, b, c) \ 7 \rightarrow (bc - a^*, b^*, c^*), v_2:$$

$$(a, b, c) \ 7 \rightarrow (a^*, ac - b^*, c^*), v_3: (a, b, c) \ 7 \rightarrow (a^*, b^*, ab - c^*).$$

Define the *-Vi'ete group Γ_V as the group generated by Vi'ete involutions v_1 , v_2 , v_3 ,

$$\Gamma_V := h v_1, v_2, v_3 i$$
. We

have

$$v_1 = \lambda_{1,1}\sigma_1\tau_2, \quad v_2 = \lambda_{1,0}\sigma_2\tau_1, \quad v_3 = \lambda_{1,1}\tau_1\sigma_2.$$
 (3.7)

Proposition 3.9. We have the following identities,

$$\sigma_1 \lambda_{k,l} \sigma_1 = \lambda_{k+l,l}, \qquad \sigma_2 \lambda_{k,l} \sigma_2 = \lambda_{k,k+l},$$

$$\sigma_1 v_1 \sigma_1 = v_2, \qquad \sigma_2 v_1 \sigma_2 = v_1,$$

$$\sigma_1 v_2 \sigma_1 = v_1, \qquad \sigma_2 v_2 \sigma_2 = v_3,$$

$$\sigma_1 v_3 \sigma_1 = v_3, \qquad \sigma_2 v_3 \sigma_2 = v_2,$$

$$\lambda_{k,l} v_i \lambda_{k,l} = v_i, \qquad i = 1, 2, 3,$$

$$\lambda_{k,l} \mu_{i,j} \lambda_{k,l} = \mu_{i,j}, k, l \in Z_2, i, j \in Z, \sigma_1 \mu_{i,j} \sigma_1 = \mu_{-i-j,j},$$

$$\sigma_2 \mu_{i,j} \sigma_2 = \mu_{i,-i-j}, v_k \mu_{i,j} v_k = \mu_{-i-j}, k = 1, 2, 3.$$

Proof. These identities are proved by straightforward computations.

Remark 3.10. We can take $\{\lambda_{1,0}, \lambda_{0,1}, \sigma_1, \sigma_2, \tau_1, \mu_{0,1}, \mu_{1,0}\}$ as "minimal set" of generators of the *-Markov group, with commutation relations given by Proposition 3.9. This "minimal set" generates Γ_M since v_2 , v_3 can be obtained by formulas (3.7), then $v_1 = \sigma_1 v_2 \sigma_1$ and τ_2 can be recovered by the first of formulas (3.7).

Corollary 3.11. For any element $g \in hG_1$, G_2 , G_4 i, there exist unique $g_1 \in G_1$, $g_2 \in G_2$, $g_4 \in G_4$ such that

$$g = g_4 g_1 g_2. (3.8)$$

Proof. Any $g \in hG_1$, G_2 , G_4 i can be put in the form (3.8) by Proposition 3.9. The uniqueness follows from the identities

$$G_4 \cap hG_1$$
, $G_2i = \{id\}$, $G_1 \cap G_2 = \{id\}$.

Corollary 3.12. We have $\Gamma_M = h\Gamma_V$, G_1 , G_2 , G_4 i. Moreover Γ_V is a normal subgroup of Γ_M .

Proof. The inclusion $\Gamma_M \supseteq hG_1$, G_2 , G_4 , Γ_V i is clear. We have $G_3 \subseteq hG_1$, G_2 , G_4 , Γ_V i, by equations (3.7). Hence $\Gamma_M = hG_1$, G_2 , G_4 , Γ_V i. It follows that $gv_ig^{-1} \in \Gamma_V$ for any $g \in G_1$, G_2 , G_4 , by Proposition 3.9. **Proposition 3.13.** We have $\Gamma_V \cap hG_1$, G_2 , G_4 i = {id}.

Proof. Let $g \in \Gamma_V \cap hG_1$, G_2 , G_4 i. We have $g \in \ker \phi_M$ by Proposition 3.6. The only elements of the form (3.8) which are in $\ker \phi_M$ are the elements of G_4 . Any element of Γ_V fixes the triple of constant polynomials (2, 2, 2). The only element of G_4 which fixes (2, 2, 2) is the identity.

Corollary 3.14. For any element $g \in \Gamma_M$, there exist unique $v \in \Gamma_V$ and $h \in hG_1$, G_2 , G_4 i such that g = vh. This implies that $\Gamma_M = \Gamma_V \circ hG_1$, G_2 , G_4 i.

Proof. Since $\Gamma_M = h\Gamma_V$, G_1 , G_2 , G_4 i, any g can be expressed as a product

$$g = v_{i1}a_{i1}v_{i2}a_{i2}...v_{ik}a_{ik}$$
, $a_{ij} \in hG_1$, G_2 , G_4i .

We can factor g as

$$g = v_{i_1} v_{i_2} \dots v_{i_k} a'_{i_1} a'_{i_2} \dots a'_{i_k}, \quad a'_{i_j} \in \langle G_1, G_2, G_4 \rangle$$
(3.9)

by using the commutation rules described in Proposition 3.9. The decomposition in (3.9) is unique, by Proposition 3.13.

Let $g \in \Gamma_M$. Consider its restriction $g|_{Z^3}$ to the subset $\mathbb{Z}^3 \subseteq (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3$. Define the transformation $\phi_M(g): Z^3 \to Z^3$ as the composition $\text{Ev}_{S^0} \circ g|_{Z^3}$, i.e.,

$$\mathbb{Z}^3 \xrightarrow{g|_{\mathbb{Z}^3}} (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3 \xrightarrow{\mathrm{Ev}_{s_o}} \mathbb{Z}^3$$

Proposition 3.15. We have a group epimorphism

$$\varphi_M \colon \Gamma_M \twoheadrightarrow \Gamma_M^c$$

which acts on the generators as

$$\lambda_{\alpha,\beta} \mapsto \lambda_{\alpha,\beta}^c, \quad \sigma_i \mapsto \sigma_i^c, \quad \tau_i \mapsto \tau_i^c, \quad \mu_{\alpha,\beta} \mapsto \mathrm{id}.$$
 (3.10)

Proof. Identities (3.10) are easily checked. Let $g, h \in \Gamma_M$. From the commutative diagram

it readily follows that $\phi_M(hg) = \phi_M(h)\phi_M(g)$.

Proposition 3.16. We have $\ker \phi_M = G_4$, so that $\Gamma_M{}^c = \Gamma_M/G_4$.

Proof. Let $g \in \ker \phi_M$. By Corollaries 3.14 and 3.11, there exist unique elements $v \in \Gamma_V$, $g_1 \in G_1, g_2 \in G_2, g_4 \in G_4$ such that

$$g = vg_4g_1g_2.$$

We have

$$\phi_M(g) = \phi_M(v)\phi_M(g_1)\phi_M(g_2) = id.$$

By Corollary 3.7, together with $G_1^c \cap G_2^c = \{id\}$, we have

$$\phi_M(v) = id$$
, $\phi_M(g_1) = id$, $\phi_M(g_2) = id$.

This clearly implies that g_1 = id and g_2 = id. The element v is of the form $v = \prod_{j=1}^n v_{i_j}$ with $i_j \in \{1, 2, 3\}$, so that

$$\varphi_M(v) = \prod_{j=1}^n \varphi_M(v_{i_j}) = \prod_{j=1}^n v_{i_j}^c$$
 id =

Since v_i^c freely generate Γ_{V^c} (by Theorem 3.3), we necessarily have n = 0, and $v = \mathrm{id}$. This shows that $\ker \phi_M \subseteq G_4$. The opposite inclusion is obvious.

Lemma 3.17. The morphism ϕ_M defines isomorphisms between the group G_i and G_i^c for i = 1, 2, 3, and between the group Γ_V and Γ_V^c .

Lemma 3.18. The evaluation morphism Ev_{50} is ϕ_M -equivariant, i.e.,

$$\operatorname{Ev}_{so}(g \cdot a) = \phi_M(g) \cdot \operatorname{Ev}_{so}(a), \qquad g \in \Gamma_M, \qquad a \in (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3.$$

4. Markov Trees

4.1. Decomposition of M^c . The set M^c of all nonzero solutions of the Markov equation (1.1) admits a partition in four subsets,

$$\mathcal{M}^{c} = \mathcal{M}_{+}^{c} \cup \mathcal{M}_{12}^{c} \cup \mathcal{M}_{13}^{c} \cup \mathcal{M}_{23}^{c}, \tag{4.1}$$

where \mathcal{M}^c_+ consists of all positive triples and \mathcal{M}^c_{ij} consists of all triples with negative entries in the *i*-th and *j*-th position.

We have a projection $\pi: \mathcal{M}^c \to \mathcal{M}^c_+$, forgetting the minuses.

Lemma 4.1. The action of the Vi`ete group Γ_V^c on \mathcal{M}^c preserves each of \mathcal{M}^c_+ , \mathcal{M}^c_{12} , \mathcal{M}^c_{13} , \mathcal{M}^c_{23} . The action of the group $\langle G_2^c, \Gamma_V^c \rangle$ on \mathcal{M}^c preserves the sets \mathcal{M}^c_+ and $\mathcal{M}^c_{12} \cup \mathcal{M}^c_{13} \cup \mathcal{M}^c_{23}$ and commutes with the projection $\pi \colon \mathcal{M}^c \to \mathcal{M}^c_+$.

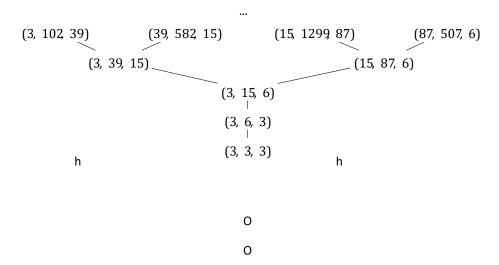
4.2. Markov tree. Solutions of the Markov equation (1.1) can be arranged in a graph, called the *Markov tree*.

$$\mathsf{Define} L := \sigma_2^c v_3^c, \ \ R := \sigma_1^c v_1^c \in \Gamma_{\!M.}^c \ \mathsf{Given} \ (x, \ y, \ z) \in \mathcal{M}_+^c \text{, we have}$$

$$(x, xy - z, y) \qquad y,yz - x,z$$

$$(4.2) \qquad R \qquad g$$

The Markov tree T is the infinite graph obtained by iterating the operations (4.2) starting from the initial solution (3, 3, 3).



Theorem 4.2 [31], [30], [1, Theorem 3.3]. Up to permutations in G_2^c all the elements of \mathcal{M}_+^c appear exactly once in the Markov tree T .

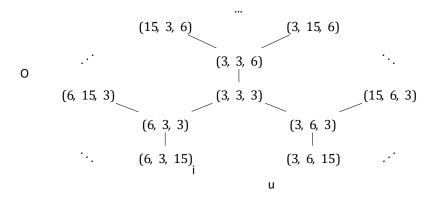
Corollary 4.3. The group Γ_{M^c} acts transitively on the set M^c .

Proof. Let $x, y \in M^c$. There exist $\gamma_1, \gamma_2 \in \langle G_1^c, G_2^c \rangle$ such that $\gamma_1 x, \gamma_2 y$ are vertices of T , by Theorem 4.2. So, there exist $\delta_1, \delta_2 \in \Gamma_M^c$ such that $\delta_1(3,3,3) = \gamma_1 x$ and $\delta_2(3,3,3) = \gamma_2 y$. We have

$$\gamma_2^{-1}\delta_2\delta_1^{-1}\gamma_1 \boldsymbol{x} = \boldsymbol{y}$$

Theorem 4.4 [1, Lemma 3.1]. *The triples* (3, 3, 3) *and* (3, 6, 3) *are the only vertices of* T *with repeated numbers.*

4.3. Extended Markov tree. Define the *extended Markov graph* as the infinite graph T^{ext} , with vertex set \mathcal{M}_+^c . We connect two vertices (a, b, c), (a^0, b^0, c^0) of T^{ext} by an edge if $(a, b, c) = v_i^c(a^0, b^0, c^0)$ for some $i \in \{1, 2, 3\}$, where v_i^c are Vi`ete involutions.



...

Theorem 4.5. The Vi`ete group acts freely on the vertex set \mathcal{M}^c_+ of the extended Markov graph with one orbit, $\mathcal{M}^c_+ = \Gamma^c_V(3, 3, 3)$. Moreover T^{ext} is a tree.

The graph T ext is called the extended Markov tree.

The proof of Theorem 4.5 requires the following lemma. Define the function $m\colon \mathcal{M}^c_+ \to \mathbb{N}$ which assigns to a triple (x,y,z) its maximal entry. It is known that

$$\min m(\mathcal{M}_+^c) = 3$$

and that such a minimum is achieved at (3, 3, 3).

Lemma 4.6. For any $(x,y,z) \in \mathcal{M}^c_+ \setminus \{(3,3,3)\}$ there exists a unique Vi'ete transformation v^c_i , with $i \in \{1,2,3\}$, such that $m(v^c_i(x,y,z)) < m(x,y,z)$.

Proof. We have $v_1^c(x, y, z) = (yz - x, y, z), v_2^c(x, y, z) = (x, xz)$

$$-y,z),\,v_{3}{}^{c}(x,y,z)=(x,y,xy\,-\,$$

z).

We claim that if m(x,y,z) = x, then the transformation is v_1^c ; if m(x,y,z) = y, then the transformation is v_2^c ; if m(x,y,z) = z, then the transformation is v_3^c .

To prove the first case we need to show that yz - x + 6x, xz - y > x, xy - z > x. We may assume that z + 6y < x. Consider the function ϕ : $R \to R$ defined by

$$\phi(t) := t^2 + v^2 + z^2 - tvz.$$

We have $\phi(x) = \phi(yz - x) = 0$, so that

$$\phi(t) = (t - x)(t - (yz - x)).$$

If yz - x > x, so that $\phi(t) > 0$ for all t < x. Then on the one hand we have y < x, but on the other hand we have $z^2 \in y^2 \Rightarrow 2y^2 + z^2 \in 3y^2 \in zy^2 \Rightarrow \phi(y) = 2y^2 + z^2 - y^2z \in 0$.

This shows that the assumption yz - x > x is contradictory. We also have

$$xz - y > 3x - y > 2x > x, xy - z$$

> $3x - z > 2x > x$.

This completes the proof in the first case. The other two cases are proved similarly.

Corollary 4.7. Any $(x, y, z) \in \mathcal{M}^c_+$ can be transformed to (3, 3, 3) by an element of the Vi`ete group Γ^c_V . Consequently, $\mathcal{M}^c_+ = \Gamma^c_V(3, 3, 3)$.

Proof of Theorem **4.5**. It is sufficient to prove that if v(3, 3, 3) = (3, 3, 3) for some $v \in \Gamma^{c_V}$, then v = id. Any element $v \in \Gamma^{c_V}$ is of the form

$$v = Y v_i^{c_k}$$
 $i_k = 1, 2, 3.$ (4.3)

Define

$$m_j := m \left[\left(\prod_{k=1}^j v_{i_k}^c \right) (3, 3, 3) \right], \quad j = 1, \dots, n.$$

Define

$$M := \max_{j=1,...,n} m_j, \quad J := \min\{j \colon m_j = M\}.$$

We claim that $v_{i_{J+1}}^c = v_{i_J}^c$. Indeed, the assumption $v_{i_{J+1}} = v_{i_J}$ would imply that $m_{J+1} > m_J = M$, which is impossible. Hence, we can decrease the number of factors in (4.3) by two. By repeating the argument, we prove that all the factors in (4.3) cancel.

The same argument shows that the graph T ext has no loops.

Corollary 4.8. For any i, j the Vi'ete group Γ^{c_V} acts freely on the set $M^{c_{ij}}$ with one orbit.

5. Distinguished Representatives

5.1. *-Markov group orbit of initial solution. Let $\Gamma_M I$ be the orbit of the initial solution I of the *-Markov equation (2.1) under the action of the *-Markov group Γ_M . Any element of $\Gamma_M I$ is a solution of the *-Markov equation (2.1), see Proposition 3.8.

Proposition 5.1. The evaluation morphism Ev_{So} maps the set $\Gamma_M I$ onto the set M^c of all nonzero solutions of the Markov equation (1.1).

Proof. If $a \in \Gamma_M I$, then $\operatorname{Ev}_{so}(a) \in \operatorname{M}^c$, by Proposition 2.1. We check surjectivity. Let $x \in \operatorname{M}^c$. There exists $\gamma \in \Gamma_M{}^c$ such that $x = \gamma \cdot (3, 3, 3)$, by Corollary 4.3. There exists $\tilde{\gamma} \in \Gamma_M$ such that $\phi_M(\tilde{\gamma}) = \gamma$, by Proposition 3.15. We have that $\operatorname{Ev}_{so}(\tilde{\gamma} \cdot (s_1, s_2^*, s_1)) = x$, by Lemma 3.18.

5.2. Initial solution and *-Vi`ete group. Let $p=(a,\,b,\,c)\in\mathcal{M}^c_+$. Let $v^p\in\Gamma^c_V$ be the unique element of the Vi`ete group such that $v^p(3,\,3,\,3)=(a,\,b,\,c)$. Define the distinguished element $f^p\in\Gamma_M I$ by the formula

$$f^p = v^p I$$
,

where v^p is considered as an element of the *-Vi`ete group Γ_V . Notice that $\operatorname{ev}_{50}(f^p) = (a, b, c)$.

Lemma 5.2. For p', $p \in \mathcal{M}^c_+$, let $v^{p',p} \in \Gamma^c_V$ be the unique element such that $v^{p_0,p}p = p^0$. Then $v^{p_0,p}f^p = f^{p_0}$, where $v^{p_0,p}$ is considered as an element of Γ_V .

Proof. We have $v_{p0,p}f_p = v_{p0,p}v_pI = v_{p0}I$.

Theorem 5.3. Let p = (a, b, c), $p' = (a', b', c') \in \mathcal{M}^c_+$ be such that the triple p^0 is a permutation of the triple p. Then f^{p_0} is obtained from f^p by the same permutation of coordinates of f^p composed with a transformation from the group G_4 .

Proof. Let $f^p = (f_1^p, f_2^p, f_3^p)$ and $f^{p'} = (f_1^{p'}, f_2^{p'}, f_3^{p'})$. Let ω be the permutation such that the evaluation of ωf^{p_0} is (a, b, c), the same as the evaluation of f^p .

The triple ωf^{p_0} lies in the orbit $\Gamma_M I$. So

$$\omega f^{p_0} = vg_4g_1g_2I = vg_4g_2I = vg_4^2I, \tag{5.1}$$

where $v \in \Gamma_V$, $g_j \in G_j$, $g_4 \in G_4$. Here we may conclude that $g_1 = 1$, since (a, b, c) are positive. We may also conclude that $g_4g_2I = g_4I$ for some $g_4 \in G_4$ since any permutation of coordinates of the initial solution $(s_1, s_1/s_3, s_1)$ can be performed by a transformation from G_4 . On the other hand, we also have

$$f^p = vI, (5.2)$$

where v in (5.2) is the same as in (5.1). We also know that $v\tilde{g}_4=g_4'v$, for some $g_4'\in G_4$, by Proposition 3.9. Hence $\omega f^{p'}=v\tilde{g}_4I=g_4'vI=g_4'f^p$. This proves the theorem.

Theorem 5.4. Let $p = (a, b, c) \in \mathcal{M}^c_+$. Let $p^0 = (a^0, b^0, c^0) \in M^c$ be such that (a^0, b^0, c^0) is obtained from (a, b, c) by a permutation and possibly also by change of sign of two coordinates. Let $f^0 \in \Gamma_M I$ be an element, whose evaluation is p^0 . Then f^0 is obtained from f^0 by an element of hG_1 , G_2 , G_4 i.

Proof. We have $f^0 = gvI$, where $g \in hG_1$, G_2 , G_4 i and $v \in \Gamma_V$. The evaluation of vI has to be a permutation of (a, b, c),

$$\text{Ev}_{so}(vI) = \sigma(a, b, c), \qquad \sigma \in G_2.$$

Hence $vI = f_{\sigma(a,b,c)}$. By Theorem 5.3, $f_{\sigma(a,b,c)} = \mu \sigma f_{(a,b,c)}$, $\mu \in G_4$. Hence $f^0 = gvI = g\mu \sigma f^{(a,b,c)}$, which proves the theorem.

6. Reduced Polynomials Solutions and *-Markov Polynomials

Any solution of the *-Markov equation (2.1) can be written as (f_1^*, f_2, f_3^*) , where f_1, f_2, f_3 are Laurent polynomials. For any $m_1, m_3 \in Z$, the triple

$$((s_3^{m_1}f_1)^*, s_3^{m_1+m_3}f_2, (s_3^{m_3}f_3)^*)$$

is also a solution. Given a solution (f_1^*, f_2, f_3^*) there exist unique $m_1, m_3 \in Z$ such that $s_3^{m_1}f_1, s_3^{m_3}f_3$ are polynomials and each of $s_3^{m_1}f_1, s_3^{m_3}f_3$ is not divisible by s_3 .

A solution (f_1^*, f_2, f_3^*) of (2.1) is called a *reduced polynomial solution* if each of f_1 , f_2 , f_3 is a nonconstant polynomial in s_1 , s_2 , s_3 not divisible by s_3 . In this case we say that (f_1^*, f_2, f_3^*) is a *reduced polynomial presentation of the Markov triple* $(a, b, c) := \text{Ev}_{so}(f_1^*, f_2, f_3^*)$.

For example,

$$(s_1^*, s_1^2 - s_2, s_1^*), \quad (s_2^*, s_2(s_1^2 - s_2) - s_3 s_1, (s_1^2 - s_2)^*)$$
 (6.1)

are reduced polynomial presentations of the Markov triples (3, 6, 3) and (3, 15, 6).

In this section we prove that any Markov triple (a, b, c), 0 < a < b, 0 < c < b, 6 6 b has a unique reduced polynomial presentation $(f_1^*, f_2, f_3^*) \in \Gamma_M I$, see Theorem 6.4.

6.1. Degrees of a polynomial. Let $f(s_1, s_2, s_3)$ be a polynomial. We consider two degrees of f: the *homogeneous degree* d := deg f with respect to weights (1, 1, 1) and the *quasi-homogeneous degree* q := Deg f with respect to weights (1, 2, 3).

Lemma 6.1. Let $f(s_1, s_2, s_3)$ be a polynomial of homogeneous degree d not divisible by s_3 , then

$$g(s_1, s_2, s_3) := s_3^d f\left(\frac{s_2}{s_3}, \frac{s_1}{s_3}, \frac{1}{s_3}\right)$$
 (6.2)

is a polynomial of homogeneous degree d not divisible by s_3 . If additionally the polynomial $f(s_1, s_2, s_3)$ is quasi-homogeneous of quasi-homogeneous degree q, then $g(s_1, s_2, s_3)$ is a quasi-homogeneous polynomial of quasi-homogeneous degree 3d-q.

Proof. If $s_2^{a_1} s_2^{a_2} s_3^{a_3}$ is a monomial entering the polynomial f with a nonzero coefficient, then $s_2^{a_1} s_1^{a_2} s_3^{d-(a_1+a_2+a_3)}$ is a monomial entering g with a nonzero coefficient. Hence g is a polynomial.

The homogeneous degree of $s_2^{a_1}s_1^{a_2}s_3^{d-(a_1+a_2+a_3)}$ equals $d-a_3$. Hence deg 6 d. Since f is not divisible by s_3 , there is a monomial $s_1^{a_1}s_2^{a_2}$ entering f. Hence the monomial $s_2^{a_1}s_1^{a_2}s_3^{d-(a_1+a_2)}$ enters g and has homogeneous degree d. Hence deg g=d. Since deg f=d, there is a monomial $s_1^{a_1}s_2^{a_2}s_3^{a_3}$ entering f such that $a_1+a_2+a_3=d$. Then the monomial $s_2^{a_1}s_1^{a_2}s_3^{d-(a_1+a_2+a_3)}=s_2^{a_1}s_1^{a_2}$ enters g and hence g is not divisible by s_3 .

If additionally all monomials $s_1^{a_1} s_2^{a_2} s_3^{a_3}$ of f have the property $a_1 + 2a_2 + 3a_3 = q$, then the corresponding monomials $s_2^{a_1} s_3^{a_2} s_3^{d-(a_1+a_2+a_3)}$ of g have the property $2a_1 + a_2 + 3(d - (a_1 + a_2 + a_3)) = 3d - q$.

The polynomial g will be denoted by $\mu(f)$. Clearly

$$ev_{so}(f) = ev_{so}(g), \qquad \mu^2(f) = f.$$
 (6.3)

The polynomials f, g are called dual. The bi-degree vectors of dual polynomials are

$$(d, q), (d, 3d - q).$$
 (6.4)

The linear transformation

$$Z^2 \rightarrow Z^2$$
, $(d, q) 7 \rightarrow (d, 3d - q)$,

is an involution with invariant vector (2, 3) and anti-invariant vector (0, 1). It is convenient to assign to the polynomial f the 2×2 degree matrix

$$M_f = \begin{pmatrix} d & d \\ q & 3d - q \end{pmatrix}, \tag{6.5}$$

whose columns are the bi-degrees of f and $\mu(f)$. Then

$$M_{\mu(f)} = \begin{pmatrix} d & d \\ 3d - q & q \end{pmatrix} = \begin{pmatrix} d & d \\ q & 3d - q \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = M_f P, \tag{6.6}$$

where *P* is the permutation matrix.

- **6.2. Transformations of triples of polynomials.** Suppose that $f = (f_1, f_2, f_3)$ is a triple of polynomials f_1, f_2, f_3 in s_1, s_2, s_3 such that
 - (1) each f_i is not divisible by s_3 ,
 - (2) each f_j is a quasi-homogeneous polynomial with respect to weights (1,2,3),

(3) denote by
$$(d_i, q_j)$$
 the bi-degree vector of f_i , then

$$(d_1, q_1) + (d_3, q_3) = (d_2, q_2).$$
 (6.7)

Such a triple (f_1, f_2, f_3) is called an *admissible* triple. Equation

(6.7) is equivalent to the equation

$$Mf_1 + Mf_3 = Mf_2$$

Define new triples

$$Lf = (\mu(f_1), \, \mu(f_1)f_2 - s_3^{d_1}f_3, \, f_2). \tag{6.8}$$

$$Rf = (f_2, f_2\mu(f_3) - s_3^{d_3}f_1, \mu(f_3))$$
(6.9)

The transformation f op Lf is called the *left* transformation of an admissible triple f, because of the new first and second terms of Lf are on the left from the surviving term f_2 . Similarly the transformation f op Rf is called the *right* transformation, because of the new second and third terms of Rf are on the right from the surviving term f_2 .

Theorem 6.2. Let $f = (f_1, f_2, f_3)$ be an admissible triple of polynomials with bi-degree vectors $((d_1, q_1), (d_2, q_2), (d_3, q_3))$. Then the triples Lf and Rf are admissible. The bi-degree vectors of Lf are

$$((d_1, 3d_1 - q_1), (d_1 + d_2, 3d_1 - q_1 + q_2), (d_2, q_2))$$
 (6.10)

and the bi-degree vectors of Rf are

$$((d_2, q_2), (d_2 + d_3, q_2 + 3d_3 - q_3), (d_3, 3d_3 - q_3)).$$
 (6.11)

Proof. Clearly the polynomials $\mu(f_1)f_2-s_3^{d_1}f_3$, $f_2\mu(f_3)-s_3^{d_3}f_1$ are nonconstant and are not divisible by s_3 . The homogeneous degrees of Lf are (d_1,d_1+d_2,d_2) . This follows from Lemma 6.1 and admissibility of the triple f. For the quasihomogeneous degrees we have

$$Deg(\mu(f_1)f_2) = 3d_1 - q_1 + q_2 = 3d_1 + q_3 = Deg(s_3^{d_1}f_2),$$

by Lemma 6.1. Hence $\mu(f_1)f_2 - s_3^{d_1}f_3$ is a quasi-homogeneous polynomial of quasihomogeneous degree $3d_1 - q_1 + q_2$. The quasi-homogeneous degree of $\mu(f_1)$ is $3d_1 - q_1$. This proves the statement for Lf. The argument for Rf is similar.

Corollary 6.3. Let $f = (f_1, f_2, f_3)$ be an admissible triple of polynomials with degree matrices (M_1, M_2, M_3) . Then the degree matrices of Lf and Rf are

$$(M_1P, M_1P + M_2, M_2), (M_2, M_2 + M_3P, M_3P), (6.12)$$
 where P is the

permutation matrix.

6.3. Reduced polynomial solutions

Theorem 6.4. (i) Let (a, b, c) be a Markov triple, 0 < a < b, 0 < c < b, 6 6 b. Then there exists a unique reduced polynomial solution $(f_1^*, f_2, f_3^*) \in \Gamma_M I$, such that $\operatorname{Ev}_{s_o}(f_1^*, f_2, f_3^*) = (a, b, c)$. Moreover, for that reduced polynomial solution (f_1^*, f_2, f_3^*) the triple $f = (f_1, f_2, f_3)$ is admissible.

 (f_1^*, f_2, f_3^*) the triple $f = (f_1, f_2, f_3)$ is admissible. (ii) Let (f_1^*, f_2, f_3^*) be the reduced polynomial presentation of a Markov triple (a, b, c) with 0 < a < b, 0 < c < b, 6 6 b. Denote $f = (f_1, f_2, f_3)$. Let $Lf = (f_1, f_2, f_3)$ is admissible.

 $(\mu(f_1), \mu(f_1)f_2 - s_3^{d_1}f_3, f_2)$ and $Rf = (f_2, f_2\mu(f_3) - s_3^{d_3}f_1, \mu(f_3))$ be the left and right transformations of f. Then

$$(\mu(f_1)^*, \ \mu(f_1)f_2 - s_3^{d_1}f_3, \ f_2^*)$$
 (6.13)

is the reduced polynomial presentation of the Markov triple (a, ab - c, b) and

$$(f_2^*, f_2\mu(f_3) - s_3^{d_3}f_1, \mu(f_3)^*)$$
 (6.14)

is the reduced polynomial presentation of the Markov triple (b, bc - a, c).

Proof. First we prove the existence. The proof is by induction on the distance in the Markov tree from (a, b, c) to (3, 3, 3).

Let us find the reduced polynomial presentations in $\Gamma_M I$ for the Markov triples (3, 6, 3), (3, 15, 6). We transform the initial solution as follows,

$$I = (S_1, S_{*2}, S_1) \rightarrow 7$$
 $(S_{*1}, S_{21} - S_2, S_{1*}) = (S_2/S_3, S_{21} - S_2, S_{*1})$

$$7 \rightarrow (s_2, s_{21} - s_2, (s_{3S1})_*) \rightarrow 7 (s_{2}, s_2(s_{21} - s_2) - s_{3S1}, (s_{21} - s_2)_*).$$

The triples

$$(s_1^*, s_1^2 - s_2, s_1^*), \quad (s_2^*, s_2(s_1^2 - s_2) - s_3 s_1, (s_1^2 - s_2)^*)$$
 (6.15)

are desired reduced polynomial presentations of (3, 6, 3) and (3, 15, 6). For example, the polynomials s_2 , $s_2(s_1^2-s_2)-s_3s_1$, $s_1^2-s_2$ are quasi-homogeneous of quasi-homogeneous degrees (2, 4, 2) with 2 + 2 = 4 as predicted and of homogeneous degrees (1, 3, 2) with 1+2 = 3. These three polynomials form an admissible triple.

Now assume that a Markov triple (a, b, c), 0 < a < b, 0 < c < b, 6 6 b, has a reduced polynomial presentation (f_1^*, f_2, f_3^*) , where (f_1, f_2, f_3) is an admissible triple. Then

$$(f_{1*},f_{2},f_{3*})=(\mu(f_{1})/s_{d31},f_{2},f_{3*}) \ 7 \rightarrow (\mu(f_{1}),f_{2},(s_{d31}f_{3})_{*})$$

$$7 \rightarrow (\mu(f_1)^*, \mu(f_1)f_2 - s^d_{31}f_3, f_{2^*})$$
 (6.16)

and

$$(f_{1*}, f_{2}, f_{3*}) = (f_{1*}, f_{2}, \mu(f_{3})/sd_{33}) \ 7 \rightarrow ((sd_{3}f_{1})*, f_{2}, \mu(f_{3}))$$

$$7 \rightarrow (f_{2}^{*}, \mu(f_{3})f_{2} - s^{d_{3}^{3}}f_{1}, \mu(f_{3})^{*})$$
 (6.17)

are transformations by elements of $\Gamma_{\rm M}$. The triple ($\mu(f_1)^*$, $\mu(f_1)f_2-s_3^{d_1}f_3$, f_2^*) presents the Markov triple (a, ab–c, b), and the triple (f_2^* , $\mu(f_3)f_2-s_3^{d_3}f_1$, $\mu(f_3)^*$) presents the Markov triple (b, bc–a, c). These two triples satisfy the requirements of part (ii) of the theorem.

Let us prove the uniqueness. Let (f_1^*, f_2, f_3^*) and (h_1^*, h_2, h_3^*) be two reduced polynomial presentations of a Markov triple (a, b, c) with 0 < a < b, 0 < c < b, $6 \in b$. By Theorem 5.4 (h_1^*, h_2, h_3^*) is obtained from (f_1^*, f_2, f_3^*) by a transformation of the form $g_2g_1g_4$, where $g_i \in G_i$. It is clear that a transformation g_4 cannot be used because it will destroy the property of $f_1f_2f_3$ to be not divisible by s_3 . We also cannot use g_1 because it will destroy the fact that (f_1^*, f_2, f_3^*) represents a positive triple (a, b, c). If the numbers a, b, c are all distinct, we cannot use g_2 . If (a, b, c) = (3, 6, 3), the presentation $(s_1^*, s_1^2 - s_2, s_1^*)$ is symmetric with respect to the permutation of the first and third coordinates. The theorem is proved.

6.4. *-Markov polynomials. We say that a polynomial $P(s_1, s_2, s_3)$ is a *Markov polynomial if there exists a Markov triple (a, b, c), 0 < a < b, 0 < c < b,

6 6 *b*, with reduced polynomial presentation $(f_1^*, f_2, f_3^*) \in \Gamma_M I$, such that $P = f_2$.

In particular, this means that P is quasi-homogeneous and is not divisible by s_3 . The polynomial s_2 will also be called a *-Markov polynomial.

We say that a polynomial $Q(s_1, s_2, s_3)$ is a *dual* *-*Markov polynomial* if Q is not divisible by s_3 and $\mu(Q)$ is a *-Markov polynomial.

In particular this means that *Q* is quasi-homogeneous.

For example, $s_1^2 - s_2$, $s_2(s_1^2 - s_2) - s_3s_1$ are *-Markov polynomials, since they appear as the middle terms in the reduced polynomial presentations in (6.1) and $s_2^2 - s_1s_3$, $s_1(s_2^2 - s_1s_3) - s_3s_2$ are the corresponding dual *-Markov polynomials.

Corollary 6.5. Let (a, b, c) be a Markov triple with 0 < a < b, 0 < c < b, 6 6 b. Let $(f_1^*, f_2, f_3^*) \in \Gamma_M I$ be the reduced polynomial presentation of (a, b, c). Then each of f_1 , f_3 is either a *-Markov polynomial or a dual *-Markov polynomial. Moreover, if $(g_1, g_2, g_3) \in \Gamma_M I$ is any presentation of (a, b, c), then

$$g_1 = s_3^{k_1} \mu(f_1), \quad g_2 = s_3^{k_2} f_2, \quad g_3 = s_3^{k_3} \mu(f_3),$$
 (6.18)

for some k_1 , k_2 , $k_3 \in Z$, and hence each of g_1 , g_3 is either a *-Markov polynomial or a dual *-Markov polynomial multiplied by a power of s_3 , and g_2 is a *-Markov polynomial multiplied by a power of s_3 .

Proof. The first statement follows from Theorem 6.4 and the second statement follows from Theorem 5.4.

7. Decorated Planar Binary Trees

7.1. Sets with involution and transformations. A set with involution and transformations is a set S with an involution $\tau: S \to S$, $\tau^2 = \mathrm{id}_S$, a subset $T \subset S \times S \times S$ with a marked point $t^0 = (t_1^0, t_2^0, t_3^0) \in T$ and two maps

$$L: T \to T$$
, $(t_1, t_2, t_3) \ 7 \to (\tau(t_1), L_2(t_1, t_2, t_3), t_2)$,

$$R: T \to T, \quad (t_1, t_2, t_3) \to 7 \qquad (t_2, R_2(t_1, t_2, t_3), \tau(t_3)), \tag{7.1}$$

where L_2 , R_2 : $T \rightarrow S$ are some functions.

A morphism ϕ : $(S, T, t^0, \tau, L, R) \rightarrow (S^0, T^0, t^{0_0}, \tau^0, L^0, R^0)$ is a map $S \rightarrow S^0$ which commutes with involutions and induces a map $(T, t^0) \rightarrow (T^0, t^{0_0})$ commuting with transformations. Here are examples.

7.1.1. Let *S* be the set of all polynomials in $Z[s_1, s_2, s_3]$ not divisible by s_3 and $T \subset S^3$ the subset of all admissible triples. Let

$$t^0 = (s_2, s_2(s^2_1 - s_2) - s_3 s_1, s^2_1 - s_2), \tag{7.2}$$

$$\tau: S \to S, \qquad f \to \mu(f),$$
 (7.3)

L:
$$T \to T$$
, $(f_1, f_2, f_3) \mapsto (\mu(f_1), \mu(f_1)f_2 - s_3^{d_1}f_3, f_2)$, (7.4)

$$R: T \to T,$$
 $(f_1, f_2, f_3) \mapsto (f_2, f_2\mu(f_3) - s_3^{d_3}f_1, \mu(f_3)),$ (7.5)

where μ was defined in Section 6.1.

7.1.2. Let $S = C^2$ and $T \subset C^2 \times C^2 \times C^2$ the subset of all triples of vectors w_1 , w_2 , w_3 such that $w_1 + w_3 = w_2$. Let

$$t^0 = ((1, 2), (3, 4), (2, 2)),$$
 (7.6)

$$\tau: C^2 \to C^2, \qquad (d, q) \ 7 \to (d, 3d - q),$$
 (7.7)

L:
$$T \to T$$
, $(w_1, w_2, w_3) \ 7 \to (\tau(w_1), \tau(w_1) + w_2, w_2)$, (7.8)

$$R: T \to T,$$
 $(w_1, w_2, w_3) 7 \to (w_2, w_2 + \tau(w_3), \tau(w_3)).$ (7.9)

7.1.3. Let *S* be the set Mat(2, C) of all 2 × 2-matrices with complex entries and $T \subset \text{Mat}(2, \mathbb{C})^3$ the subset of all triples of matrices M_1 , M_2 , M_3 such that $M_1 + M_3 = M_2$. Let

$$t^{0} = \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 3 \\ 4 & 5 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix} \end{pmatrix}, \tag{7.10}$$

$$\tau: Mat(2, C) \rightarrow Mat(2, C), \qquad M7 \rightarrow MP,$$
 (7.11)

$$L: T \to T,$$
 $(M_1, M_2, M_3) 7 \to (M_1P, M_1P + M_2, M_2),$ (7.12)

$$R: T \to T$$
, $(M_1, M_2, M_3) 7 \to (M_2, M_2 + M_3 P, M_3 P)$. (7.13)

7.1.4. Let S = C and $T \subset C^3$ the subset of all triples (w_1, w_2, w_3) such that $w_1 + w_3 = w_2$. Let

$$t^0 = (1, -1, -2), \tag{7.14}$$

$$\tau: C \to C, \qquad w \ 7 \to -w, \tag{7.15}$$

L:
$$T \to T$$
, $(w_1, w_2, w_3) 7 \to (-w_1, -w_1 + w_2, w_2)$, (7.16)

$$R: T \to T,$$
 $(w_1, w_2, w_3) 7 \to (w_2, w_2 - w_3, -w_3).$ (7.17)

7.1.5. Let S = C and $T = C^3$. Let

$$t^0 = (3, 15, 6), (7.18)$$

$$\tau = \mathrm{id}_{\mathsf{C}} \tag{7.19}$$

L:
$$T \to T$$
, $(a, b, c) 7 \to (a, ab - c, b)$, (7.20)

$$R: T \to T$$
, $(a, b, c) 7 \to (b, bc - a, c)$. (7.21)

7.1.6. Let S = C and $T = C^3$. Let

$$t^0 = (1, 3, 2), (7.22)$$

$$\tau = idc \tag{7.23}$$

L:
$$T \to T$$
, $(a, b, c) \ 7 \to (a, a + b, b)$, (7.24)

$$R: T \to T,$$
 $(a, b, c) 7 \to (b, b + c, c).$ (7.25)

7.1.7. *De-quantization.* Let S be the set with involution and transformations in Example 7.1.1 and S^0 the set with involution and transformations in Example 7.1.2. The map

$$\phi: S \to S^0$$
, $f \to (\deg(f), \deg(f))$,

defines a morphism of the sets with involution and transformations.

We may think of that $\phi: S \to S^0$ is a *de-quantization* of the set S with involution and transformations as explained in Section 1.4.3. Namely, Let $s_1 = c_1 e^{\alpha+\beta}$, $s_2 = c_2 e^{\alpha+2\beta}$, $s_3 = c_3 e^{\alpha+3\beta}$, where α , β are real parameters which tend to $+\infty$ and c_1 , c_2 , c_3 are fixed generic real numbers. If $f(s_1, s_2, s_3)$ is a quasi-homogeneous polynomial of bi-degree (d, q), then $\ln f(c_1 e^{\alpha+\beta}, c_2 e^{\alpha+2\beta}, c_3 e^{\alpha+3\beta})$ has *leading term* $d\alpha+q\beta$ independent of the choice of c_1 , c_2 , c_3 , which may be considered as a vector (d, q).

Taking the leading terms of all quasi-homogeneous polynomials in formulas of Example 7.1.1 we obtain the 2-vectors in formulas of Example 7.1.2. For instance,

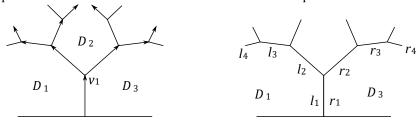


Figure 2.

the triple of leading terms of the triple $(s_2, s_2(s_1^2 - s_2) - s_3s_1, s_1^2 - s_2)$ is the triple $(\alpha + 2\beta, 3\alpha + 4\beta, 2\alpha + 2\beta)$, cf. (7.2) and (7.6).

7.1.8. Let S be the set with involution and transformations in Example 7.1.1 and S^0 the set with involution and transformations in Example 7.1.3. The map

$$\phi: S \to S^0$$
, $f \to M_f$

where M_f see in (6.5), defines a morphism of the sets with involution and transformations.

7.1.9. Let S be the set with involution and transformations in Example 7.1.3 and S^0 the set with involution and transformations in Example 7.1.4. The map

$$\varphi \colon S \to S', \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto a_{21} - a_{22}$$

defines a morphism of the sets with involution and transformations.

7.1.10. Let S be the set with involution and transformations in Example 7.1.1 and S^0 the set with involution and transformations in Example 7.1.5. The map

$$\phi: S \to S_0$$
, $f \to ev_{so}(f)$,

defines a morphism of the sets with involution and transformations.

7.1.11. Let S be the set with involution and transformations in Example 7.1.1 and S^0 the set with involution and transformations in Example 7.1.6. The map

$$\phi: S \to S^0$$
, $f \to \deg(f)$,

defines a morphism of the sets with involution and transformations.

7.2. Planar binary tree. Consider the *oriented binary planar tree*, growing from floor, and the domains of its complement, see Figure 2. The boundary of any domain of the complement has a distinguished vertex with shortest number of steps to the root along the tree.

There are two initial domains, which touch the floor. In Figure 2 they are D_1 and D_3 . The root of the tree is the distinguished vertex of the two initial domains.

The boundary of the left initial domain D_1 consists of the left half-floor and the infinite sequence of edges l_1 , l_2 , ..., see Figure 2. In the notation l_k , the letter l means that the domain D_1 is on the left from the edge, when we move from the

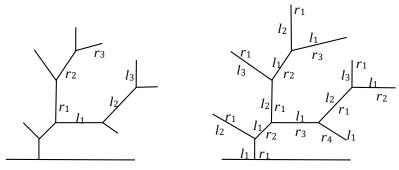


Figure 3.

root to this edge along the tree, and k means that it is the k-th edge counted from the root of the tree.

The boundary of the right initial domain D_3 consists of the right half-floor and the infinite sequence of edges r_1 , r_2 , ..., see Figure 2.

The boundary of any other domain consists of two infinite sequences of edges r_1 , r_2 , ... and l_1 , l_2 , ..., see Figure 3.

Every edge of the tree gets two labels, a label l_a from the left and a label r_b from the right. We denote such an edge with labels by $l_a|r_b$. The first edge of the tree has labels $l_1|r_1$. All other edges of the tree have labels

$$l_1|r_k$$
 or $l_k|r_1$ with $k > 1$,

see Figure 3.

7.3. Decorations. Let (S, T, t^0 , τ , L, R) be a set with involution and transformations. First we assign an element of the set T to every vertex of the planar binary tree different from the root vertex, and then assign an element of the set S to every domain of the complement. Thus the decoration procedure consists of two step.

Denote by v_1 the vertex of the tree surrounded by the domains D_1 , D_2 , D_3 in Figure 2. We assign to the vertex v_1 the marked triple $t^0 = (t_1^0, t_2^0, t_3^0)$.

Let v_2 be any other vertex of the tree different from the root. Let p be the path connecting v_1 and v_2 in the tree. The path is a sequence of turns $p_np_{n-1}...p_2p_1$, where p_j is the turn to the left or right on the way from v_1 to v_2 . We assign to v_2 the element $t \in T$ obtained from t^0 by the application of the sequence of transformations L and R, where we apply L if p_j is the turn to the left and apply R if p_j is the turn to the right. For example, the element LRt^0 is assigned to the vertex v_2 in Figure 4.

This is the end of the first step of the decoration.

At the second step we assign to the initial domains D_1 , D_3 in Figure 2 the elements t_1^0 , t_3^0 , respectively, where t_1^0 , t_3^0 are the first and third coordinates of the initial triple (t_1^0 , t_2^0 , t_3^0).

Figure 4.

Let C be any domain of the complement different from D_1 , D_3 . Let v be the distinguished vertex of the domain C, and $t = (t_1, t_2, t_3)$ the element of T assigned to v. We assign to C the element t_2 .

For example we assign the element t_2^0 to the domain D_2 in Figure 2.

This is the end of the decoration procedure.

The decoration associated with (S, T, t^0 , τ , L, R) is functorial with respect to morphisms of sets with involution and transformations.

Let us describe how to recover the element of *T* assigned to a vertex from the elements of *S* assigned to the domains of the complement.

Theorem 7.1. Let v be a vertex surrounded by domains C_1 , C_2 , C_3 as in Figure 4. Let t_1 , t_2 , t_3 be elements of S assigned to C_1 , C_2 , C_3 , respectively, at the second step of the decoration. Let the edge entering the vertex v has labels $l_a|r_b$. Then the element $(\tau^{a-1}(t_1), t_2, \tau^{b-1}(t_3))$ is an element of the set T, and that element was assigned to v at the first step of the decoration.

Proof. The proof is by induction on the distance from v to the root.

7.4. Examples

7.4.1. Let (S, T, t^0 , τ , L, R) be the set of Example 7.1.1. Then the domains of the complement to the binary tree are labeled by *-Markov polynomials. The resulting decorated tree is called the *-Markov polynomial tree, see Figure 5.

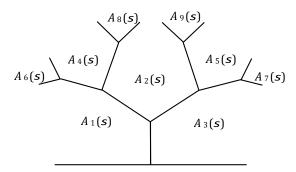


Figure 5.

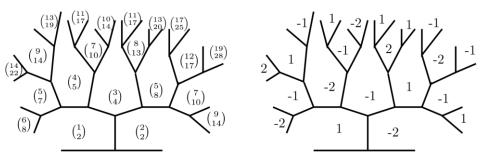


Figure 6.

The polynomials $A_i(s)$ are given by the formulas $A_1(s)$ =

$$A_2(s) = s_2(s^2_1 - s_2) - s_1s_3,$$

$$A_3(s) = s^2_1 - s_2,$$

$$A_4(s) = s_{31}s_2 - s_{12}s_2 - 2s_{21}s_3 + s_{22}s_3,$$

$$A_5(s) = s_{21}s_{32} - s_{42} - s_{31}s_{23} + s_{12}s_{23} - s_{22}s_2,$$

$$A_6(s) = s_{31}s_{22} - s_{1}s_{32} - 3s_{21}s_{2}s_{3} + 2s_{22}s_{3} + s_{1}s_{32},$$

$$A7(s) = s41s32 - 2s21s24 + s52 - s15s2s3 + s13s22s3 + s41s23 - 3s21s2s23 + 2s22s23 + s1s33$$

$$A8(s) = s41s32 - s21s42 - s51s2s3 - 2s13s22s3 + 2s1s23s3 + 2s14s23 + s12s2s23 - s22s23 - s1s33$$

$$A_9(s) = s_{31}s_{52} - s_{1}s_{26} - 2s_{41}s_{32}s_{3} + s_{52}s_{3} + s_{51}s_{22}s_{23} + 2s_{31}s_{22}s_{23} - s_{1}s_{32}s_{23} - s_{41}s_{33} + s_{1}s_{43}.$$

Let v be any vertex. It enters the boundary of three domains, which we denote by C_1 , C_2 , C_3 as in Figure 4. Let f_1 , f_2 , f_3 be the *-Markov polynomials, assigned to the domains C_1 , C_2 , C_3 , respectively at the second step of the decoration. Let the edge entering the vertex v have labels $l_a|r_b$. Then the triple of polynomials $(\tau^{a-1}(f_1), f_2, \tau^{b-1}(f_3))$ is assigned to v at the first step of decoration, and the triple of polynomials

$$((\tau_{a-1}(f_1))_*, f_2, (\tau_{b-1}(f_3))_*)$$

is a reduced polynomial solution of the *-Markov equation (2.1).

- 7.4.2. Let (S, T, t^0 , τ , L, R) be the set of Example 7.1.2. Then the domains of the complement to the binary tree are labeled by 2-vectors with positive integer coordinates. The resulting decorated tree is called the 2-vector tree, see Figure 6.
- 7.4.3. Let (S, T, t^0 , τ , L, R) be the set of Example 7.1.3. Then the domains of the complement to the binary tree are labeled by 2 × 2-matrices with positive integer coordinates. The resulting decorated tree is called the *matrix tree*, see Figure 7.
- 7.4.4. Let (S, T, t^0, τ, L, R) be the set of Example 7.1.4. Then the domains of the complement to the binary tree are labeled by integers. The resulting decorated tree is called the *deviation tree*, see Figure 6.

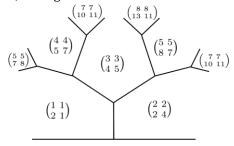


Figure 7.

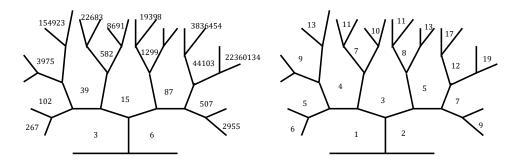


Figure 8.

7.4.5. Let (S, T, t^0 , τ , L, R) be the set of Example 7.1.5. Then the domains of the complement to the binary tree are labeled by Markov numbers. The resulting decorated tree is called the *Markov tree*, see the left picture in Figure 8.

7.4.6. Let (S, T, t^0 , τ , L, R) be the set of Example 7.1.6. Then the domains of the complement to the binary tree are labeled by positive integers. The resulting decorated tree is called the *Euclid tree*, see the right picture in Figure 8.

The decorated trees in Figures 6-8 can be obtained from the *-Markov polynomial tree in Figure 5. Namely the 2-vector tree is obtained by taking the bi-degree vectors of *-Markov polynomials; the matrix tree is obtained by taking the degree matrices of *-Markov polynomials; the deviation tree is obtained by assigning to a *-Markov polynomial with bi-degree (d, q) the number

$$q - (3d - q) = 2q - 3d;$$

the Markov tree is obtained by applying the evaluation map ev₅₀; the Euclid tree is obtained by taking the homogeneous degrees of *-Markov polynomials.

7.5. Do asymptotics exist? Having a decorated tree it would be interesting to study asymptotics of the triples assigned to vertices along the infinite paths in the tree going from root to infinity. In [41], [42], [43] the Markov and Euclid trees were considered. For any such a path the Lyapunov exponent was defined. The Lyapunov function on the space of paths was studied. Relations with hyperbolic dynamics were established.

The interrelations of the triples assigned to vertices of the Markov and Euclid trees were analyzed in [48] to study the growth of Markov numbers ordered in the increasing order. More precisely, if (u, v, w) is a Euclid triple with u+w=v, then the triple

$$a = 2\cosh u, \quad b = 2\cosh v, \quad c = 2\cosh w$$
 (7.26)

is a solution of the modification of the Markov equation

$$a^2 + b^2 + c^2 - abc = 4, (7.27)$$

considered by Mordell [32]. This observation was used in [48] to evaluate asymptotics of Markov numbers in terms of asymptotics of Euclid numbers, see [42].

Combining these remarks we observe a full circle of relations. We started with Markov triples and upgraded them to triples of *-Markov polynomials; taking the homogeneous degrees of *-Markov polynomials we obtained the Euclid triples; formulas (7.26) send us to triples solving the modified Markov equation (7.27); and the triples solving equation (7.27) approximate the true Markov triples. This circle of relations is a combination of "quantizations" and "de-quatizations".

7.6. Values of 2q - 3d

Theorem 7.2. Let P be a *-Markov polynomial of bi-degree (d, q). Then |2q-3d|=1 if d is odd and |2q-3d|=2 if d is even. Moreover, the only triples of integers attached to vertices of the deviation tree are the elements of the set

$$T^0 = \{(1, -1, -2), (-1, 1, 2), (-2, -1, 1), (2, 1, -1), (1, 2, 1), (-1, -2, -1)\}$$

Proof. The statement is true for the triple $t^0 = (1, -1, -2)$ assigned to the first vertex of the deviation tree, see (7.14). It is easy to check that the set T^0 is preserved by the L and R transformations in formulas (7.16) and (7.17). This

$$q = \frac{3d}{2} + \mathcal{O}$$

proves the theorem.

Corollary 7.3. We have

(1) as
$$d \to \infty$$
. (7.28)

7.7. Newton polygons. Let P be a *-Markov polynomial of bi-degree (d, q). Let N_P be the *Newton* polytope of P. Recall that for each monomial $S_1^{a_1} S_2^{a_2} S_3^{a_3}$, entering P with nonzero coefficient, we mark the point $(a_1, a_2, a_3) \in \mathbb{R}^3$, and the Newton polytope is the convex hull of marked points.

Since P is a quasi-homogeneous polynomial of degree q, the Newton polytope is a two-dimensional convex polygon, lying inside the *bounding polygon* $N_{d,q}$,

$$N_{d,q} = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \mid a_1 + 2a_2 + 3a_3 = q^{; 0} \in a_1, a_2, a_3 \in d\}.$$
 (7.29)

We divide all coordinates by d and obtain the *normalized Newton* polygon N_{p} inside the *normalized bounding* polygon $N_{d,q}$,

$$N_{d,q} = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \mid a_1 + 2a_2 + 3a_3 = q/d; 0 \in a_1, a_2, a_3 \in 1\}.$$
 (7.30)

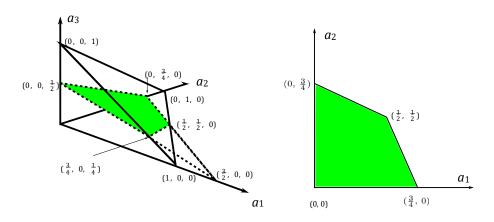


Figure 9.

It is convenient to project the polygons N_P and $N_{d,q}$ along the a_3 -axis to R^2 with coordinates a_1 , a_2 and obtain the *projected normalized Newton polygon* N_P inside the *projected normalized bounding polygon* $N_{d,q}$.

7.8. Limit $d \to \infty$. The Euclid tree shows the distribution of the homogeneous degrees of *-Markov polynomials. The homogeneous degree d tends to infinity along the paths of the planar binary tree from root to infinity. Along these paths we have $q \to 3d/2$. In this limit the normalized bounding polygon $N_{d,q}$ turns into the *quadrilateral* N_{∞} ,

$$N_{-\infty} = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \mid a_1 + 2a_2 + 3a_3 = 3/2; 0 \in a_1, a_2, a_3 \in 1\},$$
 (7.31)

and the projected normalized bounding polygon $N_{d,q}$ turns into the *projected* quadrilateral N_{∞} , the convex quadrilateral with vertices (0,0), (3/4,0), (1/2,1/2), (0,3/4). See the pictures of N_{∞} and N_{∞} in Figure 9.

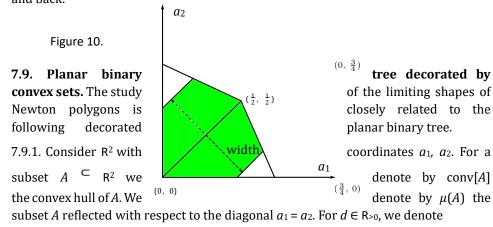
Question. Could it be that for any infinite path from root to infinity, the projected normalized Newton polygon $\tilde{N_P}$ tends in an appropriate sense to a limiting shape inside the projected quadrilateral $\tilde{N_\infty}$?

We show that this is indeed so in the two examples of the left and right paths of the planar binary tree, which are related to the *-Fibonacci and *-Pell polynomials discussed in Sections 8 and 9. In the first case the limiting shape is the interval with vertices (0,0), (1/2,1/2), see Section 8.3. In the second case the limiting shape is the whole projected quadrilateral \tilde{N}_{∞} , see Section 9.3.

7.8.1. Any *-Markov polynomial P has a monomial of the form $s_1 s_3^{a_3}$ or $s_2 s_3^{a_3}$ entering P with a nonzero coefficient and has no monomials of the form $s_3^{a_3}$. This easily follows

by induction. Hence for any infinite path from root to infinity the point (0, 0) is a limiting point of the projected normalized Newton polygon $\tilde{N_P}$.

7.8.2. Elementary computer experiments show that the expected limiting shape of the polygon N_P along an infinite path is a 6-gon like in Figure 10, with width monotonically increasing from 0, for the *-Fibonacci polynomials, to the maximal value, for the *-Pell polynomials, when the path changes from the leftmost to the rightmost. This 6-gon is symmetric with respect to the diagonal $a_1 = a_2$, and hence its width completely determines the 6-gon. It looks like the speed of convergence to the limiting shape increases if the path has many changes of direction from left to right and back.



$$dA = \{dv \mid v \in A\}.$$

For subsets $A, B \subset \mathbb{R}^2$ we denote by A + B the Minkowski sum, A + B =

$$\{a + b \mid a \in A, b \in B\}.$$

7.9.2. Define a set (S, T, t^0 , τ , L, R) with involution and transformations. Let S be the set of all pairs (A, d), where A is a convex subset of R^2 and d a positive number. Define the involution τ by the formula

$$\tau: S \to S$$
, $(A, d) 7 \to (\mu(A), d)$.

Let $T \subset S^3$ be the subset of all triples $((A_1, d_1), (A_2, d_2), (A_3, d_3))$ such that $d_2 = d_1 + d_3$. We fix the initial triple

$$t^0 = ((A_1^0, 1), (A_2^0, 3), (A_3^0, 2)) \in T, (7.32)$$

where A_1^0 is the point (0, 1), A_3^0 is the interval with vertices (1, 0), (0, 1/2), and A_2^0 is the triangle with vertices (1/3, 0), (2/3, 1/3), (0, 2/3).

Define the left and right transformations by the formulas

$$L: T \to T$$
, $((A_1,d_1),(A_2,d_2),(A_3,d_3)) \to ((\mu(A_1),d_1),(L_2,d_1+d_2),(A_2,d_2)), (7.33)$

$$R: T \to T,$$
 $((A_1,d_1),(A_2,d_2),(A_3,d_3)) \ 7 \to ((A_2,d_2),(R_2,d_2+d_3),(\mu(A_3),d_3)),$ (7.34)

where

$$L_{2} = \text{conv} \left[\left(\frac{d_{1}}{d_{1} + d_{2}} \mu(A_{1}) + \frac{d_{2}}{d_{1} + d_{2}} A_{2} \right) \cup \frac{d_{3}}{d_{1} + d_{2}} A_{3} \right],$$

$$R_{2} = \text{conv.} \quad \left[\left(\frac{d_{2}}{d_{2} + d_{3}} A_{2} + \frac{d_{3}}{d_{2} + d_{3}} \mu(A_{3}) \right) \cup \frac{d_{1}}{d_{2} + d_{3}} A_{1} \right]$$
(7.35)

Cf. (7.4) and (7.5).

Having this set with involution and transformations we may consider the associated decorated planar binary tree. The problem is to study the asymptotics of triples of convex subsets of R² along the paths of the tree. Such asymptotics reflect the asymptotics of the Newton polygons of the *-Markov polynomials.

Remark 7.4. The triple of convex sets in (7.32) are the projected normalized Newton polygons of the triple (s_2 , $s_2(s_1^2 - s_2) - s_3s_1$, $s_1^2 - s_2$).

The L and R transformations in (7.33) and (7.34) are just the reformulations of the L and R transformations of polynomials in (7.4) and (7.5) in the language of the their projected normalized Newton polygons.

8. Odd *-Fibonacci Polynomials

8.1. Definition of odd *-**Fibonacci polynomials.** The left boundary path of the Markov tree corresponds to the sequence of Markov triples (3, 15, 6), (3, 39, 15), (3, 102, 19) with general term $(3, 3\phi_{2n+1}, 3\phi_{2n-1})$ where ϕ_{2n+1}, ϕ_{2n-1} are odd

(3, 102, 19), ..., with general term (3, $3\phi_{2n+1}$, $3\phi_{2n-1}$), where ϕ_{2n+1} , ϕ_{2n-1} are odd Fibonacci numbers,

$$\phi_1 = 1$$
, $\phi_3 = 2$, $\phi_5 = 5$, $\phi_7 = 13$, $\phi_9 = 34$, ...

with recurrence relation

$$\phi_{2n+3} = 3\phi_{2n+1} - \phi_{2n-1}. \tag{8.1}$$

We define the odd *-Fibonacci polynomials recursively by the formula

$$F_1(\mathbf{s}) = s_1, \quad F_3(\mathbf{s}) = s_1^2 - s_2,$$
 (8.2)

$$F_{2n+3}(s) = g_n F_{2n+1}(s) - s_3 F_{2n-1}(s), \tag{8.3}$$

where $g_n = s_2$ if n is odd, and $g_n = s_1$ if n is even. In other words we have

$$F_{4n+3} = S_1F_{4n+1} - S_3F_{4n-1},$$

$$F_{4n+5} = S_2F_{4n+3} - S_3F_{4n+1}.$$
(8.4)

Lemma 8.1. We have $ev_{so}(F_{2n+1}) = 3\phi_{2n+1}$.

The first odd *-Fibonacci polynomials are

$$F_1(s)=s_1,$$

$$F_3(s) = s^2_1 - s_2,$$

$$F_5(s) = s_{21}s_2 - s_{1}s_3 - s_{22},$$

$$F_7(s) = s_{31}s_2 - 2s_{21}s_3 - s_{1}s_{22} + s_{2}s_3$$

$$F_9(s) = s_{31}s_{22} - 3s_{21}s_{23} - s_{1}s_{32} + s_{1}s_{23} + 2s_{22}s_{3}$$

$$F_{11}(s) = s_{41}s_{22} - 4s_{31}s_{23} - s_{21}s_{32} + 3s_{21}s_{23} + 3s_{13}s_{22}s_{3} - s_{23}s_{33}$$

$$F_{13}(s) = s_{41}s_{32} - 5s_{31}s_{22}s_{3} - s_{12}s_{42} + 6s_{21}s_{22}s_{23} - s_{12}s_{33} + 4s_{12}s_{32}s_{3} - 3s_{22}s_{23}.$$

Theorem 8.2. For n > 1 the triple

$$(g_{n-1}^*, F_{2n+1}, F_{2n-1}^*)$$
 (8.5)

is the reduced polynomial presentation of the Markov triple (3, $3\phi_{2n+1}$, $3\phi_{2n-1}$). Proof.

The proof is by induction on n. The statement is true for n = 2, since

$$(g_1^*, F_5, F_3^*) = (s_2^*, s_2(s_1^2 - s_2) - s_3s_1, (s_1^2 - s_2)^*)$$

is the reduced polynomial presentation of the Markov triple (3, 15, 6), see (6.1).

Assume that $(g_{n-1}^*, F_{2n+1}, F_{2n-1}^*)$ is the reduced polynomial presentation of the Markov triple $(3, 3\phi_{2n+1}, 3\phi_{2n-1})$. Put $f = (f_1, f_2, f_3) := (g_{n-1}, F_{2n+1}, F_{2n-1})$. Let Lf be the triple defined in Theorem 6.4. By Theorem 6.4 the triple

$$Lf = (\mu(g_{n-1}), \mu(g_{n-1})F_{2n+1} - s_3F_{2n-1}, F_{2n+1})$$

$$= (g_n, g_nF_{2n+1} - s_3F_{2n-1}, F_{2n+1})$$

$$= (g_n, F_{2n+3}, F_{2n+1})$$

is such that the triple $(g_n^*, F_{2n+3}, F_{2n+1}^*)$ is the reduced polynomial presentation of the Markov triple

$$(3, 9\phi_{2n+1} - 3\phi_{2n-1}, 3\phi_{2n+1}) = (3, 3(3\phi_{2n+1} - \phi_{2n-1}), 3\phi_{2n+1})$$
$$= (3, 3\phi_{2n+3}, 3\phi_{2n+1}).$$

This proves the theorem.

Corollary 8.3. The odd *-Fibonacci polynomials are *-Markov polynomials.

Remark 8.4. There are many q-deformations of (odd) Fibonacci numbers. For example, S.Morier-Genoud and V.Ovsienko [33] consider the odd Fibonacci polynomials $f_{2k+1}(q)$, defined by the relations

$$f_1(q) = q^{-1}, f_3(q) = 1 + q,$$
 (8.6)

$$f_{2n+3} = (1+q+q_2)f_{2n+1} - q_2f_{2n-1}. \tag{8.7}$$

As V.Ovsienko informed us, our recurrence relation (8.3) turns into relation (8.7) under the specification $s_1 = s_2 = 1+q+q^2$, $s_3 = q^2$. Our initial conditions (8.2) turn into $1+q+q^2$, $(1+q+q^2)(q+q^2)$. Hence for any k the odd *-Fibonacci polynomials $F_{2k+1}(s)$ evaluated at $s_1 = s_2 = 1 + q + q^2$, $s_3 = q^2$ equals $s_1 = q^2 + q^2$

8.2. Formula for odd *-Fibonacci polynomials

Theorem 8.5. For n > 0, we have

$$F_{4n+1}(s) = s_1 \sum_{i=0}^{n} {2n-i \choose i} (-s_3)^i (s_1 s_2)^{n-i} - s_2 \sum_{i=0}^{n-1} {2n-1-i \choose i} (-s_3)^i s_1^{n-1-i} s_2^{n-i}$$

$$(8.8)$$

$$F_{4n+3}(s) = s_1 \sum_{i=0}^{n} {2n+1-i \choose i} (-s_3)^i s_1^{n+1-i} s_2^{n-i} - s_2 \sum_{i=0}^{n} {2n-i \choose i} (-s_3)^i (s_1 s_2)^{n-i}.$$

$$(8.9)$$

Proof. The proof is by induction. The formulas correctly reproduce F_1 , F_3 . Then $s_1F_{4n+1} - s_3F_{4n-1}$ equals

$$s_{1}\left(s_{1}\sum_{i=0}^{n}\binom{2n-i}{i}(-s_{3})^{i}(s_{1}s_{2})^{n-i}-s_{2}\sum_{i=0}^{n-1}\binom{2n-1-i}{i}(-s_{3})^{i}s_{1}^{n-1-i}s_{2}^{n-i}\right)$$
$$-s_{3}\left(s_{1}\sum_{i=0}^{n-1}\binom{2n-1-i}{i}(-s_{3})^{i}s_{1}^{n-i}s_{2}^{n-1-i}-s_{2}\sum_{i=0}^{n-1}\binom{2n-2-i}{i}(-s_{3})^{i}(s_{1}s_{2})^{n-1-i}\right).$$

We have

$$s_1^2 \sum_{i=0}^n {\binom{2n-i}{i}} (-s_3)^i (s_1 s_2)^{n-i} - s_3 s_1 \sum_{i=0}^{n-1} {\binom{2n-1-i}{i}} (-s_3)^i s_1^{n-i} s_2^{n-1-i}$$

$$= s_1 \sum_{i=0}^n {\binom{2n+1-i}{i}} (-s_3)^i s_1^{n+1-i} s_2^{n-i}$$

and

$$s_1 s_2 \sum_{i=0}^{n-1} {\binom{2n-1-i}{i}} (-s_3)^i s_1^{n-1-i} s_2^{n-i} - s_3 s_2 \sum_{i=0}^{n-1} {\binom{2n-2-i}{i}} (-s_3)^i (s_1 s_2)^{n-1-i}$$

$$= s_2 \sum_{i=0}^{n} {\binom{2n-i}{i}} (-s_3)^i (s_1 s_2)^{n-i}$$

Hence, $s_1F_{4n+1} - s_3F_{4n-1} = F_{4n+3}$. The other identity is proved similarly. **Corollary 8.6.**

For the ordinary Fibonacci integers we have formulae

$$\varphi_{4n+1} = \sum_{i=0}^{n} {2n-i \choose i} (-1)^{i} 3^{2n-2i} - \sum_{i=0}^{n-1} {2n-1-i \choose i} (-1)^{i} 3^{2n-1-2i}
\varphi_{4n+2} = \sum_{i=0}^{n} {2n-i \choose i} (-1)^{i} 3^{2n+1-2i} - 2 \sum_{i=0}^{n} {2n-i \choose i} (-1)^{i} 3^{2n-2i},
\varphi_{4n+3} = \sum_{i=0}^{n} {2n+1-i \choose i} (-1)^{i} 3^{2n+1-2i} - \sum_{i=0}^{n} {2n-i \choose i} (-1)^{i} 3^{2n-2i},$$
(8.11)

$$\varphi_{4n+4} = \sum_{i=0}^{n} {2n+1-i \choose i} (-1)^{i} 3^{2n+1-2i}.$$
(8.12)

$$\varphi_{4n+4} = \sum_{i=0}^{n} {\binom{2n+1-i}{i}} (-1)^i 3^{2n+1-2i}.$$
(8.13)

Proof. Formulae (8.10) and (8.12) follow from (8.8) and (8.9). Formulae (8.11) and (8.13) easily follow from the identities

$$\phi_{4n+2} = \phi_{4n+3} - \phi_{4n+1},$$
 $\phi_{4n+4} = \phi_{4n+3} + \phi_{4n+2}.$

8.3. Newton polygons of odd *-Fibonacci polynomials

Lemma 8.7. The odd *-Fibonacci polynomials F_{4n+1} and F_{4n+3} are of bi-degree (2n+1, 3n+1) and (2n+2, 3n+2), respectively.

The Newton polygon N_{F4n+1} of F_{4n+1} is the convex hull of four points (n+1, n, 0), (1, 0, n), (n-1, n+1, 0), (0, 2, n-1). The projected normalized Newton polygon

 N_{F4n+1} is the convex hull of four points

$$\left(\frac{n+1}{2n+1}, \frac{n}{2n+1}\right), \left(\frac{1}{2n+1}, 0\right), \left(\frac{n-1}{2n+1}, \frac{n+1}{2n+1}\right), \left(0, \frac{2}{2n+1}\right)$$

The limit of N_{F4n+1} as $n \to \infty$ is the interval with vertices (0, 0) and (1/2, 1/2).

The Newton polygon $N_{F_{4n+3}}$ is the convex hull of four points (n + 2, n, 0),

(2, 0, n), (n, n+1, 0), (0, 1, n). The projected normalized Newton polygon N_{F4n+3} is the convex hull of four points

$$\left(\frac{n+2}{2n+2}, \frac{n}{2n+2}\right), \left(\frac{2}{2n+2}, 0\right), \left(\frac{n}{2n+2}, \frac{n+1}{2n+2}\right), \left(0, \frac{1}{2n+2}\right)$$

The limit of N_{F4n+3} as $n \to \infty$ is the interval with vertices (0, 0) and (1/2, 1/2), see Section 7.8.

8.4. Generating function. Introduce the generating power series of odd *-Fibonacci polynomials,

$$\mathcal{F}(s,t) := \sum_{n=0}^{\infty} F_{2n+1}(s)t^{2n+1}$$
(8.14)

Theorem 8.8. We have

$$\mathcal{F}(s,t) = \frac{s_2 s_3 t^7 + t^5 (s_2^2 - s_1 s_3) + t^3 (s_2 - s_1^2) - s_1 t}{-s_3^2 t^8 - (2s_3 - s_1 s_2) t^4 - 1}.$$
(8.15)

Proof. Split the series F(s, t) as follows

$$\mathcal{F}(s,t) = \underbrace{\sum_{k=0}^{\infty} F_{4k+1}(s) t^{4k+1}}_{\mathcal{F}_{1}(s,t)} + \underbrace{\sum_{n=0}^{\infty} F_{4k+3}(s) t^{4k+3}}_{\mathcal{F}_{2}(s,t)}.$$
(8.16)

From the recursive relation (8.2), we deduce

$$\underbrace{(1+s_3t^4)\mathcal{F}_1(\boldsymbol{s},\,t)}_* - t^2s_1\mathcal{F}_1(\boldsymbol{s},\,t) + (1+s_3t^4)\mathcal{F}_2(\boldsymbol{s},\,t) \underbrace{-t^2s_2\mathcal{F}_2(\boldsymbol{s},\,t)}_*$$

$$= \underbrace{F_1t}_* - F_{-1}s_3t^3$$

where $F_{-1} = s_2/s_3$, $F_1 = s_1$. The terms marked by * have only powers t^{4k+1} , with k > 0. The remaining terms have only powers t^{4k+3} , with k > 0. We have a linear system

$$\begin{pmatrix} 1 + s_3 t^4 & -s_2 t^2 \\ -s_1 t^2 & 1 + s_3 t^4 \end{pmatrix} \begin{pmatrix} \mathcal{F}_1(\boldsymbol{s}, t) \\ \mathcal{F}_2(\boldsymbol{s}, t) \end{pmatrix} = \begin{pmatrix} F_1 t \\ -F_{-1} s_3 t^3 \end{pmatrix}. \tag{8.17}$$

Hence

$$\mathcal{F}_1(s,t) = \frac{(s_1 s_3 - s_2^2)t^5 + s_1 t}{(s_3 t^4 + 1)^2 - s_1 s_2 t^4}, \quad \mathcal{F}_2(s,t) = \frac{s_2 s_3 t^7 + (s_2 - s_1^2)t^3}{s_1 s_2 t^4 - (s_3 t^4 + 1)^2}.$$
(8.18)

$$F_{2n+1}(s) = \frac{1}{(2n+1)!} \left. \frac{\partial^{2n+1}}{\partial t^{2n+1}} \right|_{t=0} \mathcal{F}(s, t)$$

Equation (8.15) follows from (8.16) and (8.18).

Corollary 8.9. For any n > 0, we have

Remark 8.10. At $s = s_o$, the generating function F(s, t) reduces to

$$\mathcal{F}(\boldsymbol{s}_o, t) = \frac{3(t - t^3)}{t^4 - 3t^2 + 1} = 3(t + 2t^3 + 5t^5 + 13t^7 + 34t^9 + \dots)$$

the generating function of odd Fibonacci numbers multiplied by 3.

8.5. Binet formula for odd *-**Fibonacci polynomials.** In this section we consider the generating function F(s, t) as a rational function of t with coefficients depending on the parameters s varying in a neighborhood of s_o .

The poles of F(s, t) are the roots of the polynomial $s_3^2 t^8 + (2s_3 - s_1 s_2)t^4 + 1$.

We will use the roots of $s_3^2t^2 + (2s_3 - s_1s_2)t_{+}$ 1.

$$a_{\pm}(s) := \frac{s_1 s_2 - 2s_3 \pm \left(s_1^2 s_2^2 - 4s_1 s_2 s_3\right)^{\frac{1}{2}}}{2s_3^2}$$
(8.20)

with $a_{\pm}(s_0) = \frac{7\pm 3\sqrt{5}}{2}$.

Introduce α_0 , α_1 , β_0 , β_1 , γ_1 , γ_2 by the formulas

$$t((s_1s_3 - s_2)t^4 + s_1) = \alpha_1t^5 + \alpha_0t,$$

$$t_3(-s_2 + s_{21} - s_{2s_3}t_4) = \beta_1t_7 + \beta_0t_3,$$

$$s_3^2t^8 + (2s_3 - s_1s_2)t^4 + 1 = \gamma_2t^8 + \gamma_1t^4 + 1.$$

Then

$$\mathcal{F}_1(s, t) = \frac{\alpha_1 t^5 + \alpha_0 t}{\gamma_2 t^8 + \gamma_1 t^4 + 1}, \quad \mathcal{F}_2(s, t) = \frac{\beta_1 t^7 + \beta_0 t^3}{\gamma_2 t^8 + \gamma_1 t^4 + 1}$$

Theorem 8.11. We have

$$\mathcal{F}_{1}(s,t) = -\sum_{k=0}^{\infty} \left(\frac{\alpha_{1}a_{+} + \alpha_{0}}{a_{+}^{k+1}(2\gamma_{2}a_{+} + \gamma_{1})} + \frac{\alpha_{1}a_{-} + \alpha_{0}}{a_{-}^{k+1}(2\gamma_{2}a_{-} + \gamma_{1})} \right) t^{4k+1}$$

$$\mathcal{F}_{2}(s,t) = -\sum_{k=0}^{\infty} \left(\frac{\beta_{1}a_{+} + \beta_{0}}{a_{+}^{k+1}(2\gamma_{2}a_{+} + \gamma_{1})} + \frac{\beta_{1}a_{-} + \beta_{0}}{a_{-}^{k+1}(2\gamma_{2}a_{-} + \gamma_{1})} \right) t^{4k+3}.$$
(8.21)

Proof. We prove the first formula. The proof of the second is similar.

The roots of
$$s_3^2t^8+(2s_3-s_1s_2)t^4+1$$
 are
$$b_n(\boldsymbol{s}):=\omega^na_+(\boldsymbol{s})^{\frac{1}{4}},\quad b_{4+n}(\boldsymbol{s}):=\omega^na_-(\boldsymbol{s})^{\frac{1}{4}},\quad n=1,\,2,\,3,\,4$$

$$A_{n}(s) = \operatorname{res}^{t=b_{n}(s)} \mathcal{F}_{1}(s, t) = \frac{\alpha_{1}b_{n}(s) + \alpha_{0}}{b (s)^{2}(8\gamma \ b \ (s)^{4} + 4\gamma)_{n}} \frac{4}{a_{n}(s)}$$

Hence

$$\mathcal{F}_{1}(s,t) = \sum_{n=1}^{8} \frac{A_{n}(s)}{t - b_{n}(s)} = -\sum_{n=1}^{8} \frac{A_{n}(s)}{b_{n}(s)} \frac{1}{1 - \frac{t}{b_{n}(s)}}$$

$$= -\sum_{m=0}^{\infty} \sum_{n=1}^{8} \frac{A_{n}(s)}{b_{n}(s)^{m+1}} t^{m} = -\sum_{m=0}^{\infty} \sum_{n=1}^{8} \frac{\alpha_{1}b_{n}(s)^{4} + \alpha_{0}}{b_{n}(s)^{m+3}(8\gamma_{2}b_{n}(s)^{4} + 4\gamma_{1})} t^{m}$$

$$= -\sum_{k=0}^{\infty} \left(\frac{\alpha_{1}a_{+}(s) + \alpha_{0}}{a_{+}(s)^{k+1}(2\gamma_{2}a_{+}(s) + \gamma_{1})} + \frac{\alpha_{1}a_{-}(s) + \alpha_{0}}{a_{-}(s)^{k+1}(2\gamma_{2}a_{-}(s) + \gamma_{1})} \right) t^{4k+1}$$

Corollary 8.12. We have

$$F_{4k+1}(s) = -\frac{\alpha_1 a_+ + \alpha_0}{a_+^{k+1} (2\gamma_2 a_+ + \gamma_1)} - \frac{\alpha_1 a_- + \alpha_0}{a_-^{k+1} (2\gamma_2 a_- + \gamma_1)} ,$$

$$F_{4k+3}(s) = -\frac{\beta_1 a_+ + \beta_0}{a_-^{k+1} (2\gamma_2 a_+ + \gamma_1)} - \frac{\beta_1 a_- + \beta_0}{a_-^{k+1} (2\gamma_2 a_- + \gamma_1)} .$$
(8.22)

If s is in a small neighborhood of s_o , then $|a_+(s)| > |a_-(s)|$ and

$$F_{4k+1}(s) \sim -\frac{\alpha_1 a_- + \alpha_0}{a_-^{k+1} (2\gamma_2 a_- + \gamma_1)}, \quad F_{4k+3}(s) \sim -\frac{\beta_1 a_- + \beta_0}{a_-^{k+1} (2\gamma_2 a_- + \gamma_1)}, \quad (8.23)$$

$$s_2 \frac{F_{4k+3}(\mathbf{s})}{F_{4k+1}(\mathbf{s})} \sim s_2 \frac{\beta_1 a_- + \beta_0}{\alpha_1 a_- + \alpha_0}, \qquad s_1 \frac{F_{4k+5}(\mathbf{s})}{F_{4k+3}(\mathbf{s})} \sim s_1 \frac{\alpha_1 a_- + \alpha_0}{a_-(\beta_1 a_- + \beta_0)},$$
 (8.24)

as $n \to \infty$.

Lemma 8.13. We have

$$s_2 \frac{\beta_1 a_{\pm} + \beta_0}{\alpha_1 a_{\pm} + \alpha_0} = s_1 \frac{\alpha_1 a_{\pm} + \alpha_0}{a_{\pm} (\beta_1 a_{\pm} + \beta_0)}.$$
 (8.25)

Proof. The proof is by direct verification.

8.6. Odd *-Fibonacci polynomials with negative indices. The relations

$$F_{4n+3} = S_1F_{4n+1} - S_3F_{4n-1}$$

$$F_{4n+5} = S_2F_{4n+3} - S_3F_{4n+1}$$

can be reversed and written as

$$F_{-(4n+3)} = \frac{s_2}{s_3} F_{-(4n+1)} - \frac{1}{s_3} F_{-(4n-1)}$$
$$F_{-(4n+5)} = \frac{s_1}{s_3} F_{-(4n+3)} - \frac{1}{s_3} F_{-(4n+1)}.$$

This allows us to define the *-Fibonacci Laurent polynomials with negative indices.

Theorem 8.14. For any n we have $F_{-2n-1} = (F_{2n+1})^*$.

For example,
$$F_1 = s_1, F_{-1} = (F_1)^* = \frac{s_2}{s_3}$$
.

8.7. Cassini identity for odd *-**Fibonacci polynomials.** The odd *-Fibonacci numbers satisfy the following identities:

$$\varphi_{2n+3}^2 - \varphi_{2n+5}\varphi_{2n+1} = \varphi_{2n+1}^2 - \varphi_{2n+3}\varphi_{2n-1} = \dots = -1$$

Indeed, we have

$$\phi_{2_{2n+3}} - \phi_{2n+5}\phi_{2n+1} = \phi_{2n+3}(3\phi_{2n+1} - \phi_{2n-1}) - \phi_{2n+5}\phi_{2n+1}$$
$$= \phi_{2n+1}(3\phi_{2n+3} - \phi_{2n+5}) - \phi_{2n+3}\phi_{2n-1} = \phi_{2_{2n+1}} - \phi_{2n+3}\phi_{2n-1}.$$

Theorem 8.15. *The odd* *-*Fibonacci polynomials satisfy the following identities:*

$$g_{n+1}F_{2^{2}n+3} - g_{n}F_{2n+5}F_{2n+1} = s_{3}(g_{n}F_{2^{2}n+1} - g_{n-1}F_{2n+3}F_{2n-1})$$

$$= s_{3n-1}(s_{31}s_{3} + s_{32} - s_{21}s_{22}).$$

Proof. We have

$$g_{n+1}F_{2^{2}n+3} - g_{n}F_{2n+5}F_{2n+1} = g_{n+1}F_{2n+3}(g_{n}F_{2n+1} - s_{3}F_{2n-1}) - g_{n}F_{2n+5}F_{2n+1}$$

$$= g_{n}F_{2n+1}(g_{n+1}F_{2n+3} - F_{2n+5}) - s_{3}g_{n+1}F_{2n+3}F_{2n-1}$$

$$= s_{3}(g_{n}F_{2^{2}n+1} - g_{n-1}F_{2n+3}F_{2n-1})$$

and

$$g_0F_1^2 - g_{-1}F_{-1}F_3 = s_3^{-1}(s_1^3s_3 + s_2^3 - s_1^2s_2^2).$$

Corollary 8.16. We have

(8.26)
$$g_n \frac{F_{2n+5}}{F_{2n+3}} - g_{n-1} \frac{F_{2n+3}}{F_{2n+1}} = s_3^{n-1} \frac{s_1^2 s_2^2 - s_1^3 s_3 - s_2^3}{F_{2n+3} F_{2n+1}}$$

Identity (8.26) evaluated at $s = s_0$ takes the form

$$\frac{\varphi_{2n+5}}{\varphi_{2n+3}} - \frac{\varphi_{2n+3}}{\varphi_{2n+1}} = \frac{1}{\varphi_{2n+5}\varphi_{2n+3}}$$

If *s* lies in a small neighborhood of s_0 , then the right-hand and left-hand sides of formula (8.26) tend to zero as $n \to \infty$, see (8.23), (8.24), (8.25).

8.8. Continued fractions for odd *-Fibonacci polynomials. It is known that the ratios of odd Fibonacci numbers have the following continued fraction presentation

numbers have the following continued
$$\frac{\varphi_{2n+3}}{\varphi_{2n+1}}=3-\frac{1}{3-\frac{1}{3-\frac{1}{\ddots}}}, \quad n\geqslant 0$$

where the number 3 appears n + 2 times in the right-hand side. Here we give *-analogs.

Consider the field Q(s) of rational functions in variables s with rational coefficients. Consider a continued fraction of the following form

$$\left[a_0; \frac{b_1}{a_1}, \dots, \frac{b_n}{a_n}\right] := a_0 + \frac{b_1}{a_1 + \frac{b_2}{a_2 + \frac{b_3}{a_3 + \frac{b_4}{\ddots}}}} \in \mathbb{Q}(s)$$

where a_0 , ..., $a_n \in Z[s_1, s_2, s_3]$ and each of b_1 , ..., b_n is of the form

$$s_1^{d_1} s_2^{d_2} s_3^{d_3}, \quad d_1, d_2 \in \mathbb{Z}_{\geqslant 0}, \ d_3 \in \mathbb{Z}_{\underline{\bullet}}$$

For example.

$$\left[s_2; \frac{s_1}{s_2}, \frac{s_1}{s_3}\right] = s_2 + \frac{s_1}{s_2 + \frac{s_1}{s_3}} = \frac{s_2^2 s_3 + s_1 s_2 + s_1 s_3}{s_2 s_3 + s_1}$$

Our definition of a continued fraction and the notation $\left[a_0; \frac{b_1}{a_1}, \dots, \frac{b_n}{a_n}\right]$ are nonstandard, but convenient for our purposes.

Theorem 8.17. For n > 1 we have

$$\frac{F_{2n+3}}{F_{2n+1}} = \left[g_n; \frac{-s_3}{g_{n-1}}, \frac{-s_3}{g_{n-2}}, \dots, \frac{-s_3}{g_1}, \frac{-s_3}{g_0}, \frac{-s_2}{s_1}\right]$$

where $g_n = s_2$ if n is odd, and $g_n = s_1$ if n is even, see Section 8.1.

Proof. The formula follows from the recurrence relations for the *-Fibonacci polynomials.

For example,

$$\frac{F_5}{F_3} = \left[g_1; \frac{-s_3}{g_0}, \frac{-s_2}{s_1} \right] = g_1 - \frac{s_3}{g_0 - \frac{s_2}{s_1}} = s_2 - \frac{s_3}{s_1 - \frac{s_2}{s_1}},
\frac{F_7}{F_5} = \left[g_2; \frac{-s_3}{g_1}, \frac{-s_3}{g_0}, \frac{-s_2}{s_1} \right] = g_2 - \frac{s_3}{g_1 - \frac{s_3}{g_0 - \frac{s_2}{s_1}}} = s_1 - \frac{s_3}{s_2 - \frac{s_3}{s_1 - \frac{s_2}{s_1}}}$$

Remark 8.18. Formulas (8.24) show that the continued fraction of Theorem 8.17 converges to a an element of a quadratic extension of the field Q(s).

9. Odd *-Pell Polynomials

9.1. Definition of odd *-**Pell polynomials.** The right boundary path of the Markov tree corresponds to the sequence of Markov triples (3, 15, 6), (15, 87, 6),

(87, 507, 6), ..., with general term $(3\psi_{2n-1}, 3\psi_{2n+1}, 6)$, where ψ_{2n+1}, ψ_{2n-1} are odd Pell numbers,

$$\psi_1 = 1$$
, $\psi_3 = 5$, $\psi_5 = 29$, $\psi_7 = 169$, ...,

with the recurrence relation

$$\psi_{2n+3} = 6\psi_{2n+1} - \psi_{2n-1}. \tag{9.1}$$

We define the odd *-Pell polynomials recursively by the formula

$$P_1(s) = s_2,$$
 $P_3(s) = s^2_1 s_2 - s_1 s_3 - s^2_2,$
9.2. $P_{2n+3}(s) = h_n P_{2n+1}(s) - s_{23} P_{2n-1}(s),$

where $h_n = s_2^2 - s_1 s_3$ if n is odd and $h_n = s_1^2 - s_2$ if n is even. In other words we have

$$P_{4n+3} = (s^2_1 - s_2)P_{4n+1} - s^2_3P_{4n-1},$$

$$P_{4n+5} = (s^2 - s_1 s_3) P_{4n+3} - s^2 P_{4n+1}$$

Lemma 9.1. We have $ev_{so}(P_{2n+1}) = 3\psi_{2n+1}$.

The first odd *-Pell polynomials are

$$P_1(s)=s_{2,}$$

$$P_3(s) = s_{21}s_2 - s_{1}s_3 - s_{22},$$

$$P_5(s) = s_{21}s_{32} - s_{31}s_{2}s_{3} - s_{2}s_{32} + s_{21}s_{23} - s_{42},$$

$$P7(s) = s41s32 + s41s23 - s51s2s3 + s31s22s3 - 2s21s42 - 3s12s2s23 + s1s33 + s52 + 2s22s32$$

$$P_{9}(s) = s_{41}s_{52} - 2s_{21}s_{62} + s_{72} - s_{155}s_{33} + 3s_{42}s_{32} + 3s_{13}s_{42}s_{3} - 4s_{12}s_{32}s_{23} - 2s_{51}s_{32}s_{3}$$
$$- s_{1}s_{2}^{2}s_{3}^{3} + s_{2}s_{3}^{4} + 4s_{1}^{3}s_{2}s_{3}^{3} + s_{1}^{6}s_{2}s_{3}^{2} - 2s_{1}^{2}s_{3}^{4} - s_{1}^{5}s_{3}^{3}$$

Theorem 9.2. *For* n > 0 *the triple*

$$(P_{2n-1}^*, P_{2n+1}, h_{n-1}^*) (9.3)$$

is the reduced polynomial presentation of the Markov triple $(3\psi_{2n-1}, 3\psi_{2n+1}, 6)$. Proof.

The proof is by induction on n. The statement is true for n = 1, since

$$(P_1^*, P_3, h_0^*) = (s_2^*, s_2(s_1^2 - s_2) - s_3s_1, (s_1^2 - s_2)^*)$$

is the reduced polynomial presentation of the Markov triple (3, 15, 6), see (6.1).

Assume that $(P_{2n-1}^*, P_{2n+1}, h_{n-1}^*)$ is the reduced polynomial presentation of the Markov triple $(3\psi_{2n-1}, 3\psi_{2n+1}, 6)$. Put $f = (f_1, f_2, f_3) := (P_{2n-1}, P_{2n+1}, h_{n-1})$. Let Rf be the triple defined in Theorem 6.4. By Theorem 6.4 the triple

$$Rf = (P_{2n+1}, P_{2n+1}\mu(h_{n-1}) - s_{23}P_{2n-1}, \mu(h_{n-1}))$$

$$= (P_{2n+1}, P_{2n+1}h_n - s_{23}P_{2n-1}, h_n)$$

$$= (P_{2n+1}, P_{2n+3}, h_n)$$

is such that the triple $(P_{2n+1}^*, P_{2n+3}, h_n^*)$ is the reduced polynomial presentation of the Markov triple

$$(3\psi_{2n+1}, 18\psi_{2n+1} - 3\psi_{2n-1}, 6) = (3\psi_{2n+1}, 3(6\psi_{2n+1} - \psi_{2n-1}), 6) = (3\psi_{2n+1}, 3\psi_{2n+3}, 6).$$

This proves the theorem.

Corollary 9.3. The odd *-Pell polynomials are *-Markov polynomials.

9.2. Formula for odd *-Pell polynomials

Theorem 9.4. For n > 0, we have

$$P_{4n+1}(\mathbf{s}) = s_2 \sum_{i=0}^{n} (-1)^i \binom{2n-i}{i} (h_0 h_1)^{n-i} s_3^{2i}$$

$$- s_1 \sum_{i=0}^{n-1} (-1)^i \binom{2n-1-i}{i} h_1 (h_0 h_1)^{n-i-1} s_3^{2i+1}$$

$$P_{4n+3}(\mathbf{s}) = s_2 \sum_{i=0}^{n} (-1)^i \binom{2n+1-i}{i} h_0 (h_0 h_1)^{n-i} s_3^{2i}$$

$$- s_1 \sum_{i=0}^{n} (-1)^i \binom{2n-i}{i} (h_0 h_1)^{n-i} s_3^{2i+1}$$

Proof. The proof is by induction. First one checks that the formulas correctly reproduce P_1 , P_3 . Then $h_0P_{4n+1}-s_3^2P_{4n-1}$ equals

$$s_{2} \sum_{i=0}^{n} (-1)^{i} {2n-i \choose i} h_{0} (h_{0}h_{1})^{n-i} s_{3}^{2i} - s_{1} \sum_{i=0}^{n-1} (-1)^{i} {2n-1-i \choose i} (h_{0}h_{1})^{n-i} s_{3}^{2i+1}$$

$$- s_{2} \sum_{i=0}^{n-1} (-1)^{i} {2n-1-i \choose i} h_{0} (h_{0}h_{1})^{n-i-1} s_{3}^{2i+2}$$

$$+ s_{1} \sum_{i=0}^{n-1} (-1)^{i} {2n-i-2 \choose i} (h_{0}h_{1})^{n-i-1} s_{3}^{2i+3}$$

$$\cdot \sum_{i=0}^{n-1} (-1)^{i} {2n-i-2 \choose i} (h_{0}h_{1})^{n-i-1} s_{3}^{2i+3}$$

We have

$$\begin{split} s_2 \left(\sum_{i=0}^n (-1)^i \binom{2n-i}{i} h_0(h_0 h_1)^{n-i} s_3^{2i} + \sum_{i=0}^{n-1} (-1)^{i+1} \binom{2n-1-i}{i} h_0(h_0 h_1)^{n-i-1} s_3^{2i+2} \right. \\ &= s_2 \left(\sum_{i=0}^n (-1)^i \binom{2n+1-i}{i} h_0(h_0 h_1)^{n-i} s_3^{2i} \right), \\ s_1 \left(\sum_{i=0}^{n-1} (-1)^{i+1} \binom{2n-1-i}{i} (h_0 h_1)^{n-i} s_3^{2i+1} + \sum_{i=0}^{n-1} (-1)^i \binom{2n-i-2}{i} (h_0 h_1)^{n-i-1} s_3^{2i+3} \right) \\ &= -s_1 \left(\sum_{i=0}^n (-1)^i \binom{2n-i}{i} (h_0 h_1)^{n-i} s_3^{2i+1} \right). \end{split}$$

Hence, $h_0P_{4n+1}-s_3^2P_{4n-1}=P_{4n+3}$. The other identity is proved similarly. **Corollary 9.5.** For the ordinary Pell numbers, we have

$$\psi_{4n+1} = \sum_{i=0}^{n} (-1)^{i} {2n-i \choose i} 6^{2n-2i} - \sum_{i=0}^{n-1} (-1)^{i} {2n-i-1 \choose i} 6^{2n-2i-1}, \tag{9.4}$$

$$\psi_{4n+2} = \frac{1}{2} \sum_{i=0}^{n} (-1)^{i} {2n-i \choose i} 6^{2n-2i+1} - \sum_{i=0}^{n} (-1)^{i} {2n-i \choose i} 6^{2n-2i}, \tag{9.5}$$

$$\psi_{4n+3} = \sum_{i=0}^{n} (-1)^{i} {2n-i+1 \choose i} 6^{2n-2i+1} - \sum_{i=0}^{n} (-1)^{i} {2n-i \choose i} 6^{2n-2i},$$
(9.6)

$$\psi_{4n+4} = 2\sum_{i=0}^{n} (-1)^{i} {\binom{2n-i+1}{i}} 6^{2n-2i+1} + \frac{1}{2} \sum_{i=0}^{n} (-1)^{i} {\binom{2n-i}{i}} 6^{2n-2i+1}$$

$$-3\sum_{i=0}^{n}(-1)^{i}\binom{2n-i}{i}6^{2n-2i} \tag{9.7}$$

Proof. Formulas (9.5), (9.7) follow from the recurrence relation for Pell numbers

$$\psi_{n+1} = 2\psi_n + \psi_{n-1}, \qquad n > 1$$

9.3. Limiting Newton polygons of odd *-Pell polynomials.

Lemma 9.6. The odd *-Pell polynomials P_{4n+1} and P_{4n+3} are polynomials of bidegree (4n + 1, 6n + 2) and (4n + 3, 6n + 4), respectively.

The Newton polygon N_{P4n+1} of P_{4n+1} contains the points

$$(0, 1, 2n)$$
, $(2n, 2n + 1, 0)$, $(0, 3n + 1, 0)$, $(3n, 1, n)$.

Hence the limit of N_{P4n+1} as $n \to \infty$ contains the points (0, 0), (1/2, 1/2), (0, 3/4), (3/4, 0). Therefore the limit of N_{P4n+1} is the projected quadrilateral N_{∞} .

Similarly one checks that the limit of N_{P4n+3} as $n \to \infty$ is the projected quadrilateral N_{∞} , see Section 7.8.

9.4. Generating function. Introduce the generating power series of odd *-Pell polynomials

$$\mathcal{P}(s,t) := \sum_{n=0}^{\infty} P_{2n+1}(s)t^{2n+1}$$
(9.8)

Theorem 9.7. We have

$$\mathcal{P}(\boldsymbol{s},t) = \frac{-s_1 s_3^3 t^7 + ((s_1^2 + s_2) s_3^2 - s_1 s_2^2 s_3) t^5 + ((s_1^2 - s_2) s_2 - s_1 s_3) t^3 + s_2 t}{s_3^4 t^8 + (s_1^3 s_3 - s_1 s_2 s_3 + s_2^3 - s_1^2 s_2^2 + 2s_3^2) t^4 + 1}.$$
 (9.9)

Proof. The proof is similar to the proof of the corresponding theorem on the odd

Fibonacci polynomials.

Corollary 9.8. For any n > 0, we have

$$P_{2n+1}(s) = \frac{1}{(2n+1)!} \left. \frac{\partial^{2n+1}}{\partial t^{2n+1}} \right|_{t=0} \mathcal{P}(s, t)$$
(9.10)

where P(s, t) is given by (9.9).

Remark 9.9. At $s = s_0$, the generating function P(s, t) reduces to

$$\mathcal{P}(\mathbf{s}_o, t) = \frac{3(t - t^3)}{t^4 - 6t^2 + 1} = 3(t + 5t^3 + 29t^5 + 169t^7 + 985t^9 + \dots)$$
(9.11)

namely the generating series of odd Pell numbers multiplied by 3.

9.5. Other properties of *-Pell polynomials. The *-Pell polynomials have properties similar to the properties of *-Fibonacci polynomials discussed in Section 8. In particular one easily obtains a Binet-type formula like in Corollary 8.12.

As examples of properties of *-Pell polynomials we formulate the continued fraction property and an analog of the Cassini identity.

Theorem 9.10. For n > 1 we have

$$\frac{P_{2n+3}}{P_{2n+1}} = \left[h_n; \frac{-s_3^2}{h_{n-1}}, \frac{-s_3^2}{h_{n-2}}, \dots, \frac{-s_3^2}{h_1}, \frac{-s_3^2}{h_0}, \frac{-s_1s_3}{s_2}\right]$$

where $h_n = s_2^2 - s_1 s_3$ if n_{is} odd and $h_n = s_1^2 - s_2$ if n_{is} even, see Section 9.1.

Theorem 9.11. The odd *-Pell polynomials satisfy the following identities:

$$h_{n+1}P_{2n+3}^2 - h_n P_{2n+5}P_{2n+1} = s_3^2 (h_n P_{2n+1}^2 - h_{n-1}P_{2n+3}P_{2n-1})$$

= $s_3^{2n-1} ((s_1^2 - s_2)s_2^2 s_3 - s_1 (s_2^2 - s_1 s_3))((s_1^2 - s_2)s_2 - s_1 s_3))$

10. *-Markov Group Actions

In this section we study the action of the *-Markov group on C⁶ with coordinates (a, a^*, b, b^*, c, c^*) . It is convenient to denote these coordinates by $(x_1, ..., x_6)$.

10.1. Space C⁶ with involution and polynomials. Consider C⁶ with coordinates $x = (x_1, ..., x_6)$, involution

$$\nu \colon \mathbb{C}^6 \to \mathbb{C}^6, \quad (x_1, x_2, x_3, x_4, x_5, x_6) \mapsto (x_2, x_1, x_4, x_3, x_6, x_5),$$

polynomials

$$H_1 = x_1x_2 + x_3x_4 + x_5x_6 - x_1x_3x_5$$
, $H_2 = x_1x_2 + x_3x_4 + x_5x_6 - x_2x_4x_6$.

The *-Markov group Γ_M acts on C^6 by the formulas

$$\lambda_{i,j} \colon \boldsymbol{x} \mapsto \left((-1)^i x_1, \ (-1)^i x_2, \ (-1)^{i+j} x_3, \ (-1)^{i+j} x_4, \ (-1)^j x_5, \ (-1)^j x_6 \right)$$

$$\sigma_1 \colon \boldsymbol{x} \mapsto (x_3, \ x_4, \ x_1, \ x_2, \ x_5, \ x_6),$$

$$\sigma_2 \colon \boldsymbol{x} \mapsto (x_1, \ x_2, \ x_5, \ x_6, \ x_3, \ x_4),$$

$$\tau_1 \colon \boldsymbol{x} \mapsto (-x_2, \ -x_1, \ x_6, \ x_5, \ x_4 - x_1 x_5, \ x_3 - x_2 x_6),$$

(10.1)

 $\tau_2: x \ 7 \rightarrow (x_4, x_3, x_2 - x_3 x_5, x_1 - x_4 x_6, -x_6, -x_5)$, (10.2) and the elements $\mu_{i,j}$ act on C⁶ by the identity maps.

The action of the *-Markov group on C^6 commutes with the involution ν .

Lemma 10.1. The Γ_M -action preserves each of the polynomials H_1 , H_2 , and

$$v_2H_1 = H_2$$
, $v_2H_2 = H_1$,

Hence the differential forms dH_1 , dH_2 , $dH_1 \wedge dH_2$ are Γ_M -invariant, and $dH_1 \wedge dH_2$ is ν antiinvariant.

Lemma 10.2. The holomorphic volume form

 $dV := dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 \wedge dx_5 \wedge dx_6$

is $\lambda_{i,j}$, σ_1 , σ_2 invariant and τ_1 , τ_2 , ν anti-invariant.

Lemma 10.3. The differential 4-form

$$\Omega = x_1 x_3 dx_2 \wedge dx_4 \wedge dx_5 \wedge dx_6 + x_1 x_4 dx_2 \wedge dx_3 \wedge dx_5 \wedge dx_6$$
$$- x_1 x_5 dx_2 \wedge dx_3 \wedge dx_4 \wedge dx_6 - x_1 x_6 dx_2 \wedge dx_3 \wedge dx_4 \wedge dx_5 + x_2 x_3 dx_1$$

 $\wedge dx_4 \wedge dx_5 \wedge dx_6 + x_2x_4 dx_1 \wedge dx_3 \wedge dx_5 \wedge dx_6 - x_2x_5 dx_1 \wedge dx_3 \wedge dx_4$

$$\wedge dx_6 - x_2x_6 dx_1 \wedge dx_3 \wedge dx_4 \wedge dx_5$$

$$+ x_3x_5 dx_1 \wedge dx_2 \wedge dx_4 \wedge dx_6 + x_3x_6 dx_1 \wedge dx_2 \wedge dx_4 \wedge dx_5 + x_4x_5 dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_6 + x_4x_6 dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5.$$
 (10.3) is $\lambda_{i,j}$, τ_1 , τ_2 invariant and σ_1 , σ_2 , ν anti-invariant.

Proof. The proof is by direct verification. For example, we have $\tau_1\Omega = x_5(x_4 - x_1x_5)dx_1$

 $\wedge \, dx_2 \wedge dx_3 \wedge dx_6 + x_6 \big(x_3 - x_2 x_6 \big) dx_1 \wedge dx_2 \wedge dx_4 \wedge dx_5$

- $+ x_5(x_3 x_2x_6)(dx_1 \wedge dx_2 \wedge dx_4 \wedge dx_6 x_1dx_1 \wedge dx_2 \wedge dx_5 \wedge dx_6)$
- $-x_6(x_4-x_1x_5)(-dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5 x_2dx_1 \wedge dx_2 \wedge dx_5 \wedge dx_6)$
- $+ x_2x_5(-x_1(x_6dx_1 \wedge dx_2 \wedge dx_5 \wedge dx_6 dx_1 \wedge dx_3 \wedge dx_5 \wedge dx_6)$

$$+ x_6 dx_1 \wedge dx_2 \wedge dx_4 \wedge dx_6 - dx_1 \wedge dx_3 \wedge dx_4 \wedge dx_6)$$

$$- x_2 (x_4 - x_1 x_5) (x_6 dx_1 \wedge dx_2 \wedge dx_5 \wedge dx_6 - dx_1 \wedge dx_3 \wedge dx_5 \wedge dx_6)$$

$$+ x_2 (x_3 - x_2 x_6) dx_1 \wedge dx_4 \wedge dx_5 \wedge dx_6 -$$

$$x_2 x_6 (-x_6 dx_1 \wedge dx_2 \wedge dx_4 \wedge dx_5$$

$$- x_2 dx_1 \wedge dx_4 \wedge dx_5 \wedge dx_6 + dx_1 \wedge dx_3 \wedge dx_4 \wedge dx_5)$$

$$+ x_1 (x_4 - x_1 x_5) dx_2 \wedge dx_3 \wedge dx_5 \wedge dx_6 +$$

$$x_1 x_5 (x_5 dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_6)$$

$$+ x_1 dx_2 \wedge dx_3 \wedge dx_5 \wedge dx_6 - dx_2 \wedge dx_3 \wedge dx_4 \wedge dx_6)$$

$$+ x_1 (x_3 - x_2 x_6) (x_5 dx_1 \wedge dx_2 \wedge dx_5 \wedge dx_6 + dx_2 \wedge dx_4 \wedge dx_5 \wedge dx_6)$$

$$- x_1 x_6 (x_5 (-dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5 - x_2 dx_1 \wedge dx_2 \wedge dx_5 \wedge dx_6)$$

See another proof of the lemma in Corollary 10.10. That other proof also provides reasons for the existence of such a 4-form Ω .

 $+ dx_2 \wedge dx_3 \wedge dx_4 \wedge dx_5 - x_2 dx_2 \wedge dx_4 \wedge dx_5 \wedge dx_6) = \Omega$

10.2. Casimir subalgebra. Denote $h_1 = x_1x_2$, $h_2 = x_3x_4$, $h_3 = x_5x_6$, $h_4 = x_1x_3x_5$, $h_5 = x_2x_4x_6$, (10.4) and $h = (h_1, ..., h_5)$. Then

$$h_1h_2h_3 - h_4h_5 = 0$$

and

$$H_1 = h_1 + h_2 + h_3 - h_4$$
, $H_2 = h_1 + h_2 + h_3 - h_5$.

Define the *Casimir subalgebra* $C \subset C[x]$ to be the subalgebra generated by h_1 , ..., h_5 .

Theorem 10.4. The Casimir subalgebra is v and Γ_M invariant. More precisely, v: $h \ 7 \rightarrow (h_1, h_2, h_3, h_5, h_4)$, $\tau_1 : h \ 7 \rightarrow (h_1, h_3, h_2 + h_1h_3 - h_4 - h_5, -h_5 + h_1h_3, -h_4 + h_1h_3)$, $\tau_2 : h \ 7 \rightarrow (h_2, h_1 + h_2h_3 - h_4 - h_5, h_3, -h_5 + h_2h_3, -h_4 + h_2h_3)$, $\sigma_1 : h \rightarrow 7 \ (h_2, h_1, h_3, h_4, h_5)$, $\sigma_2 : h \ 7 \rightarrow (h_1, h_3, h_2, h_4, h_5)$,

and the elements $\lambda_{i,j}$, $\mu_{i,j} \in \Gamma_M$ fix elements of C point-wise.

10.3. Space C⁵ with polynomials. Consider C⁵ with coordinates $y=(y_1, ..., y_5)$, and involution $v: C^5 \to C^5$, $(y_1, y_2, y_3, y_4, y_5) \to (y_1, y_2, y_3, y_5, y_4)$.

The *-Markov group acts on C^5 by the formulas of Theorem 10.4. The *-Markov group action on C^5 commutes with the involution ν . Denote

$$J = y_1y_2y_3 - y_4y_5$$
, $J_1 = y_1 + y_2 + y_3 - y_4$, $J_2 = y_1 + y_2 + y_3 - y_5$,

$$dW = dy_1 \wedge dy_2 \wedge dy_3 \wedge dy_4 \wedge dy_5$$
.

Lemma 10.5. The polynomials J, J_1 , J_2 are Γ_M -invariant. We have

$$v^{2}J = J$$
, $v^{2}J_{1} = J_{2}$, $v^{2}J_{2} = J_{1}$.

The differential form dW is τ_1 , τ_2 invariant and σ_1 , σ_2 , ν anti-invariant. The differential form $dJ \wedge dJ_1 \wedge dJ_2$ is τ_1 , τ_2 , σ_1 , σ_2 invariant and ν anti-invariant.

Let $Y = \{y \in C^5 : J(y) = 0\}$ be the zero level hypersurface of the polynomial J. The hypersurface Y has a well-defined holomorphic nonzero differential 4-form at its nondegenerate points, $\omega = dW/dI$, called the Gelfand-Leray residue form. It is uniquely determined by the property

$$dW = dJ \wedge \omega. \tag{10.5}$$

For example, if at some point $q \in Y$ we have $\frac{\partial J}{\partial y_1}(q) /= 0$, then at a neighborhood of that point

$$\omega = \frac{1}{\frac{\partial J}{\partial y_1}} dy_2 \wedge dy_3 \wedge dy_4 \wedge dy_5 = \frac{1}{y_2 y_3} dy_2 \wedge dy_3 \wedge dy_4 \wedge dy_5$$

with property (10.5).

Corollary 10.6. The form

$$\omega = \frac{1}{y_2 y_3} dy_2 \wedge dy_3 \wedge dy_4 \wedge dy_5,$$

restricted to Y, extends to a nonzero differential 4-form on the regular part of Y. This form is τ_1 , τ_2 invariant and σ_1 , σ_2 , ν anti-invariant.

Consider the map $F: \mathbb{C}^6 \to \mathbb{C}^5$ defined by the formulas $y_1 = x_1x_2$, $y_2 = x_3x_4$, $y_3 = x_5x_6$, $y_4 = x_1x_2$

- = $x_1x_3x_5$, y_5 = $x_2x_4x_6$. (10.6) **Lemma 10.7.** *We have the following statements*:
 - (i) The map F commutes with the actions of the *-Markov group on C⁶ and C⁵.
 - (ii) The Casimir subalgebra $C \subset C[x]$ is the preimage of the algebra C[y] under the тар Ғ.
 - (iii) The image of F lies in the hypersurface Y.

Corollary 10.8. The preimage $F^2\omega$ of the differential form ω under the map F is $\tau_1,\,\tau_2$ invariant and σ_1 , σ_2 , ν anti-invariant.

Lemma 10.9. We have $F^{?}\omega = \Omega$, where Ω is defined in (10.3).

Proof. The lemma easily follows by direct verification from the formula
$$F^*\omega = \left(\frac{dx_3}{x_3} + \frac{dx_4}{x_4}\right) \wedge \left(\frac{dx_5}{x_5} + \frac{dx_6}{x_6}\right) \\ \wedge \left(x_3x_5dx_1 + x_1x_5dx_3 + x_1x_3dx_5\right) \wedge \left(x_4x_6dx_2 + x_2x_6dx_4 + x_2x_4dx_6\right). \quad (10.7)$$

Corollary 10.10. The differential form Ω is τ_1 , τ_2 invariant and σ_1 , σ_2 , ν antiinvariant.

Cf. Lemma 10.3.

11. Poisson Structures on C⁶ and C⁵

11.1. Nambu-Poisson manifolds

Definition 11.1 [44]. Let A be the algebra of functions of a manifold Y. The manifold Y is a $Nambu-Poisson\ manifold$ of order n if there exists a multi-linear map

$$\{,...,\}:A^{\otimes n}\to A,$$

a *Nambu bracket* of order *n*, satisfying the following properties.

(i) Skew-symmetry,

$$\{f_1, \ldots, f_n\} = (-1)^{\epsilon(\sigma)} \{f_{\sigma(1)}, \ldots, f_{\sigma(n)}\}$$

for all f_1 , ..., $f_n \in A$ and $\sigma \in S_n$.

(ii) Leibniz rule,

$$\{f_1f_2, f_3, ..., f_{n+1}\} = f_1\{f_2, f_3, ..., f_{n+1}\} + f_2\{f_1, f_3, ..., f_{n+1}\}, \text{ for all } f_1, ..., f_{n+1} \in A.$$

(iii) Fundamental Identity (FI),

$$\{f_1, \ldots, f_{n-1}, \{g_1, \ldots, g_n\}\} = \{\{f_1, \ldots, f_{n-1}, g_1\}, g_2, \ldots, g_n\}$$

$$+ \{g_1, \{f_1, \ldots, f_{n-1}, g_2\}, g_3, \ldots, g_n\} + \ldots$$

$$+ \{g_1, \ldots, g_{n-1}, \{f_1, \ldots, f_{n-1}, g_n\}\}, \quad (11.1)$$

for all $f_1, ..., f_{n-1}, g_1, ..., g_n \in A$.

In particular, for n = 2 this is the standard Poisson structure.

Remark 11.2. The brackets with properties (i–ii) were considered by Y.Nambu [34], who was motivated by problems of quark dynamics. The notion of a Nambu– Poisson manifold was introduced by L.Takhtajan [44] in order to formalize mathematically the *n*-ary generalization of Hamiltonian mechanics proposed by Y.Nambu. The fundamental identity was discovered by V.Filippov [24] as a generalization of the Jacobi identity for an *n*-ary Lie algebra and then later and independently by Takhtajan [44] for the Nambu–Poisson setting.

The fundamental identity is also called the Filippov identity.

The dynamics associated with the Nambu bracket on a Nambu–Poisson manifold of order n is specified by n-1 Hamiltonians $H_1, ..., H_{n-1} \in A$, and the time evolution of $f \in A$ is given by the equation

$$\frac{df}{dt} = \{H_1, \dots, H_{n-1}, f\}. \tag{11.2}$$

Let ϕ_t be the flow associated with equation (11.2) and U_t the one-parameter group acting on A by $f \to U_t(f) = f \circ \phi_t$.

Theorem 11.3 [44]. The flow preserves the Nambu bracket,

$$U_t(\{f_1, ..., f_n\}) = \{U_t(f_1), ..., U_t(f_n)\},$$
(11.3)

for all $f_1, ..., f_n \in A$.

A function $f \in A$ is called an *integral of motion* for the system defined by equation (11.2) if it satisfies $\{H_1, ..., H_{n-1}, f\} = 0$.

Theorem 11.4 [44]. Given H_1 , ..., H_{n-1} , the Nambu bracket of n integrals of motion is also an integral of motion.

These two theorems follow from the fundamental identity.

11.2. Examples. An example of a Nambu–Poisson manifold of order n is C^n with standard coordinates $x_1, ..., x_n$ and *canonical Nambu bracket* given by

$$\{f_1, \ldots, f_n\} = \det_{i,j=1}^n \left(\frac{\partial f_i}{\partial x_j}\right).$$
 (11.4)

This example was considered by Nambu [34]. Other examples of Nambu-Poisson manifolds see in [10], [44]. See also [4], [9], [18], [28], [37].

It turns out that any Nambu–Poisson manifold of order n > 2 has presentation (11.4) locally.

Theorem 11.5. Let Y be an m-dimensional manifold which is a Nambu–Poisson manifold of order n, m > n > 2, with bracket $\{ ,..., \}$. Let $x \in X$ be a point such that $\{ ,..., \}$ is nonzero at x. Then there exists local coordinates $x_1, ..., x_m$ in a neighborhood of x such that

$$\{f_1, \ldots, f_n\} = \det_{i,j=1}^n \left(\frac{\partial f_i}{\partial x_j}\right)$$

This statement was conjectured by L. Takhtajan [44], proved in [2], [27]. It was discovered eventually that the theorem is a consequence of an old result in [47], reproduced in the textbook by Schouten [40, Chap. II, Sections 4 and 6, formula (6.7)]. See on that in [19].

11.3. Hierarchy of Nambu–Poisson structures. A Nambu–Poisson manifold structure of order n on a manifold X induces an infinite family of subordinated Nambu–Poisson manifold structures on X of orders n-1 and lower, including a family of Poisson structures, [44].

Indeed for H_1 , ..., $H_{n-k} \in A$ define the k-bracket $\{,...,\}_H$ by the formula

$${h_1, ..., h_k}_H = {H_1, ..., H_{n-k}, h_1, ..., h_k}.$$
 (11.5)

Clearly, the bracket $\{ ,..., \}_H$ is skew-symmetric and satisfies the Leibnitz rule. The fundamental identity for $\{ ,..., \}_H$ follows from the fundamental identity (11.1) for the original bracket.

For example, for n = 6 and k = 4, the fundamental identity for the bracket

$${h_1, h_2, h_3, h_4}_{H_1,H_2} := {H_1, H_2, h_1, h_2, h_3, h_4}$$
 (11.6)

and 7 functions u_1 , u_2 , u_3 , v_1 , v_2 , v_3 , v_4 follows from the fundamental identity for n=6 and 11 functions f_1 , f_2 , f_3 , f_4 , f_5 , g_1 , g_2 , g_3 , g_4 , g_5 , g_6 if

$$(f_1, f_2, f_3, f_4, f_5, g_1, g_2, g_3, g_4, g_5, g_6) = (H_1, H_2, u_1, u_2, u_3, H_1, H_2, v_1, v_2, v_3, v_4).$$

The family of subordinated k-brackets, obtained by this construction from a given n-bracket, satisfy the matching conditions described in [44].

Example. Consider C^3 with coordinates a, b, c and canonical Nambu bracket of order 3,

$$\{f_1, f_2, f_3\} = \frac{df_1 \wedge df_2 \wedge df_3}{da \wedge db \wedge dc}.$$

The braid group B₃ acts on C³ by the formulas,

$$\tau_1$$
: (a, b, c) $7 \rightarrow (-a, c, b - ac), \tau_2$:
 (a, b, c) $7 \rightarrow (b, a - bc, -c).$

The polynomial $H = a^2 + b^2 + c^2 - abc$ is braid group invariant. The subordinated 2-bracket

$${h_1, h_2}_H := {H, h_1, h_2}$$

is the braid group invariant Dubrovin Poisson structure on C3,

$$\{a, b\}_H = 2c - ab,$$
 $\{b, c\}_H = 2a - bc,$ $\{c, a\}_H = 2b - ac.$ (11.7)

11.4. Poisson structure on C^6 . Let us return to the space C^6 with involution ν , two polynomials H_1 , H_2 , the holomorphic volume form dV, differential form Ω , considered in Section 10.

On C⁶ consider the canonical Nambu bracket of order 6,

$$\{f_1, \ldots, f_6\} = \frac{df_1 \wedge df_2 \wedge df_3 \wedge df_4 \wedge df_5 \wedge df_6}{dV},$$
 (11.8)

and associated brackets

associated brackets
$$\{f_1, f_2, f_3, f_4\}_{H_1, H_2} = \frac{dH_1 \wedge dH_2 \wedge df_1 \wedge df_2 \wedge df_3 \wedge df_4}{dV}$$

$$\{f_1, f_2\}_{\Omega} = \frac{\Omega \wedge df_1 \wedge df_2}{dV}.$$

$$(11.10)$$

Theorem 11.6. The Nambu bracket { ,..., }H1,H2 defines a Nambu-Poisson manifold structure on C⁶ of order 4. The structure $\{ ,..., \}_{H_1,H_2}$ is $\lambda_{i,j}$, σ_1 , σ_2 , ν invariant and τ_1 , τ_2 antiinvariant.

Proof. The theorem is a corollary of Lemmas 10.1 and 10.2.

Theorem 11.7. The bracket $\{ , \}_{\Omega}$ defines a Poisson structure on C^6 . The Poisson structure $\{ , \}_{\Omega}$ is $\lambda_{i,j}$, ν invariant and τ_1 , τ_2 , σ_1 , σ_2 anti-invariant.

Proof. By formula (10.7), the form Ω is the wedge-product of four differentials. Hence the bracket $\{ , \}_{\Omega}$ defines a Nambu-Poisson manifold structure on C^6 of order 2. The invariance properties of it follow from Lemmas 10.2 and 10.3.

Lemma 11.8. The Poisson structure $\{,\}_{\Omega}$ is log-canonical. The Poisson brackets $\{x_i, x_j\}_{\Omega}$ are given by the following matrix,

 $-x_{1}x_{6}$?

X2X6 ?

X3X6 ? ?.

 $-x_{4}x_{6}$?

$$\begin{pmatrix} 0 & 0 & -x_1x_3 & x_1x_4 & x_1x_5 & & 0 & \boxed{2} \\ 0 & 0 & x_2x_3 & -x_2x_4 & -x_2x_5 & & 0 & \boxed{2} \\ x_1x_3 & -x_2x_3 & 0 & 0 & -x_3x_5 & & & & \\ -x_1x_4 & x_2x_4 & 0 & 0 & x_4x_5 & & & \\ -x_1x_5 & x_2x_5 & x_3x_5 & -x_4x_5 & 0 & 0 & & \\ x_1x_6 & -x_2x_6 & -x_3x_6 & x_4x_6 & 0 & 0 & & \\ \end{pmatrix}$$

Proof. Explicit computations give

$$\Omega \wedge dx_1 \wedge dx_2 = 0,$$

$$\Omega \wedge dx_1 \wedge dx_3 = -x_1 x_3 dV,$$

$$\Omega \wedge dx_1 \wedge dx_4 = x_1 x_4 dV,$$

$$\Omega \wedge dx_1 \wedge dx_5 = x_1 x_5 dV,$$

and so on.

Lemma 11.9. For any $f \in C[x]$ and $h \in C$, we have $\{f, h\}_{\Omega} = 0$. In particular, $\{f, H_1\}_{\Omega} = \{f, H_2\}_{\Omega} = 0$ for any $f \in C[x]$.

This statement justifies the name of the Casimir subalgebra for the subalgebra $C \subset C[x]$.

Proof. The equalities $\{x_i, h_j\}_{\Omega} = 0$, i = 1, ..., 6, j = 1, ..., 5, are easily checked directly. The statement also follows from the fact that the image of F lies in Y and ω is a top degree form on Y.

Lemma 11.10. The symplectic leaves of the Poisson structure $\{\ ,\ \}_\Omega$ are at most two-dimensional and lie in fibers of the map F.

11.5. Remarks

11.5.1. The log-canonical Poisson structure $\{\ ,\ \}_\Omega$ can be encoded by the quiver in Figure 11. It would be interesting to determine if some of the *-Markov group transformations can be obtained as a sequence of mutations in the cluster algebra of that quiver. We were able to represent in this way only the action of the permutations σ_1 , σ_2 . To obtain σ_1 one needs to mutate the cluster variables at vertex 1, then at vertex 3, then at vertex 1 and so on as in the sequence 1313124242 (10 mutations). The permutation σ_2 is obtained by the sequence of mutations 3535346464. Cf. [14], where the braid group action was presented by mutations for the A_n quivers.

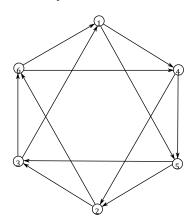


Figure 11.

11.5.2. We say that a Poisson structure on C^6 is *quadratic*, if the $\{x_i, x_j\}$ are homogeneous quadratic polynomials in x.

Lemma 11.11. The Poisson structure $\{\ ,\ \}_\Omega$ is the unique, up to rescaling by a nonzero constant, nonzero quadratic Poisson structure on C^6 having both H_1 and H_2 as Casimir elements.

Proof. Let $\{x_i, x_j\} = \sum_{k,l} Q_{ij}^{kl} x_k x_l$ with unknown coefficients $Q_{ij}^{kl} \in \mathbb{C}$. Assume the skew-symmetry of $\{\cdot, \cdot\}$, and that both H_1 and H_2 are Casimir elements. This gives a system of linear equations for Q^{kl}_{ij} . A computer-assisted calculation shows that the matrix of coefficients of that system has rank 1, and the space of solutions is spanned by the Poisson tensor $\{\cdot,\}_{\Omega}$.

11.5.3. Let $\{x_i, x_j\} = Q_{i,j}(x)$ be a polynomial Poisson structure on C^6 having

 H_1 , H_2 as Casimir elements. Expand the coefficients $Q_{ij}(x)$ at the origin, $Q_{ij}(x)$ =

$$\sum_{k=1}^6 Q_{ij}^k x_k + \cdots, \ Q_{ij}^k \in \mathbb{C}$$
. A computer-assisted calculation shows that $Q^k_{i,j} = 0$ for all i, j, k .

11.5.4. A computer-assisted calculation shows that the Poisson structure $\{\ ,\ \}_\Omega$ is the unique, up to rescaling by a nonzero constant, nonzero log-canonical Poisson structure on C^6 , which remains to be log-canonical after the action on it by any element of the braid group B_3 .

11.6. Poisson structure on C⁵. Consider C⁵ with coordinates $y = (y_1, ..., y_5)$, and objects discussed in Section 10.3.

Consider on C5 the canonical Nambu bracket of order 5,

$$\{f_1, \ldots, f_5\} = \frac{df_1 \wedge df_2 \wedge df_3 \wedge df_4 \wedge df_5}{dW},$$
 (11.11)

and the associated bracket

$$\{f_1, f_2\}_{J,J_1,J_2} = \frac{dJ \wedge dJ_1 \wedge dJ_2 \wedge df_1 \wedge df_2}{dW}$$
 (11.12)

Theorem 11.12. The bracket $\{\ ,\ \}_{J,J_1,J_2}$ defines a Poisson structure on C^5 with Casimir elements J, J1, J2. The Poisson structure $\{ , \}_{J,J_1,J_2}$ is $\lambda_{i,j}$, τ_1 , τ_2 , ν invariant and σ_1 , σ_2 antiinvariant.

Proof. The theorem follows from Lemma 10.5.

Introduce new linear coordinates on C^5 , $(u_1, u_2, u_3, u_4, u_5) := (y_1, y_2, y_3, J_1, J_2)$.

Lemma 11.13. The Poisson brackets $\{u_i, u_j\}_{J,J_1,J_2}$ are given by the formulas:

$$\{u_1, u_2\}_{J,J_1,J_2} = u_1u_2 - 2(u_1 + u_2 + u_3) + u_4 + u_5, \{u_2, u_3\}_{J,J_1,J_2} =$$

$$u_2u_3 - 2(u_1 + u_2 + u_3) + u_4 + u_5,$$

$$\{u_3, u_1\}_{J,J_1,J_2} = u_3u_1 - 2(u_1 + u_2 + u_3) + u_4 + u_5,$$

and $\{u_i, u_4\}_{J,J_1,J_2} = \{u_i, u_5\}_{J,J_1,J_2} = 0$ for all i.

Notice the similarity of these formulas with Dubrovin's formulas (11.7). Similarly to Dubrovin's case the linear and quadratic parts of the Poisson structure $\{,\}_{l,l,l^2}$ form a pencil of Poisson structures, that is, any linear combination of them is a Poisson structure too.

Remark 11.14. It would be interesting to compare the Poisson structures of this Section 11 with numerous examples in [37].

12. *-Analog of Horowitz Theorem

In Section 2 we defined the *-Markov group as a group of transformations of the set $(\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3$. In this section we define a certain group of transformations of the algebra $\mathbb{Z}[s_1, s_2, s_3^{\pm 1}][x_1, \dots, x_6]$, we show that this new group is isomorphic to the *-Markov group, and discuss analogs of the Horowitz Theorem 1.6. **12.1. Algebra** R and ν -endomorphisms. Let $x = (x_1, ..., x_6)$. Define an involution ν on

the polynomial algebra $\mathcal{R}:=\mathbb{Z}[s_1,\,s_2,\,s_3^{\pm 1}][x]$ as follows. For an element

$$f = \sum_{\mathbf{a} \in \mathbf{N}^6} \, A_{\mathbf{a}} \, \, x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4} x_5^{a_5} x_6^{a_6}, \quad \, A_{\mathbf{a}} \in \mathbb{Z}[s_1, \, s_2, \, s_3^{\pm 1}]_{,}$$

define

$$\nu f = \sum_{\mathbf{a} \in \mathbb{N}^6} A_{\mathbf{a}}^* \ x_1^{a_2} x_2^{a_1} x_3^{a_4} x_4^{a_3} x_5^{a_6} x_6^{a_5}.$$

 $\mathbb{Z}[s_1,\ s_2,\ s_3^{\pm 1}]$ -algebra endomorphism $\phi\colon R\to R$ is called a ν -endomorphism if A $\phi(\nu f) = \nu \phi(f)$ $f \in \mathbb{R}$.

If ϕ is invertible, then ϕ is called a *v-automorphism* of R. The group of *v*automorphisms of R is denoted by $Aut_{\nu}(R)$.

There is a one-to-one correspondence between v-endomorphisms of R and triples of polynomials $(P, Q, R) \in \mathbb{R}^3$. Such a triple defines a ν -endomorphism

$$x_1 7 \rightarrow P$$
, $x_3 7 \rightarrow Q$, $x_5 7 \rightarrow R$, $x_2 7 \rightarrow \nu P$,
 $x_4 7 \rightarrow \nu Q$, $x_6 7 \rightarrow \nu R$.

In what follows we often define a ν -endomorphism by giving a triple (P, Q, R).

12.2. Markov group of ν -automorphism. Consider the following four groups of ν automorphisms of R:

Type I. The group G^{aut_1} of ν -automorphisms generated by transformations

$$\Lambda_{i,j}: x_1 \to 7 \quad (-1)^i x_1, \qquad x_3 \ 7 \to (-1)^{i+j} x_3, \qquad x_5 \ 7 \to (-1)^j x_5, \qquad i, j \in \mathbb{Z}_2.$$

Type II. The group G^{aut_2} of ν -automorphisms generated by transformations,

$$\Sigma_1: x_1 \ 7 \rightarrow x_3, \ x_3 \ 7 \rightarrow x_1, x_5 \rightarrow 7 \ x_5, \ \Sigma_2: x_1 \rightarrow 7$$

$$x_1, \qquad x_3 \ 7 \rightarrow x_5, x_5 \rightarrow 7 \ x_3.$$

Type III. The group G^{aut_3} of ν -automorphisms generated by transformations

$$T_1: x_1 7 \to -x_2,$$
 $x_3 7 \to x_6 - x_1 x_3,$ $x_5 7 \to x_4,$ $T_2: x_1 \to 7$ $x_4 - x_1 x_5,$ $x_3 \to 7$ $x_2,$ $x_5 \to 7$ $-x_6.$

We have $T_1T_2T_1 = T_2T_1T_2$.

Type IV. The group G^{aut_4} of ν -automorphisms generated by transformations

$$M_{i,j}: x_1 \mapsto s_3^{-i} x_1, \quad x_3 \mapsto s_3^{i+j} x_3, \quad x_5 \mapsto s_3^{-j} x_5, \quad i, j \in \mathbb{Z}$$

Define the *-Markov group Γ^{aut}_{M} of ν -automorphisms of R as the group generated $\mathbf{by}G_1^{\mathrm{aut}}, G_2^{\mathrm{aut}}, G_3^{\mathrm{aut}}, G_4^{\mathrm{aut}}$

Define the Vi'ete v-involutions V_1 , V_2 , $V_3 \in \Gamma^{aut_M}$ by the formulas

$$V_1: x_1 7 \to x_3 x_5 - x_2,$$
 $x_3 \to 7 \ x_4,$ $x_5 \to 7 \ x_6,$ $V_2: x_1 \to 7 \ x_2,$ $x_3 7 \to x_1 x_5 - x_4,$ $x_5 7 \to x_6,$

$$V_3: x_1 7 \rightarrow x_2$$
, $x_3 7 \rightarrow x_4$, $x_5 7 \rightarrow x_1 x_3 - x_6$.

We denote by Γ^{aut}_{V} the group generated by V_{1} , V_{2} , V_{3} . We have $V_{1} = \Lambda_{1,1}$

$$\Sigma_1 T_2$$
, $V_2 = \Lambda_{1,0} \Sigma_2 T_1$, $V_3 = \Lambda_{1,1} T_1 \Sigma_2$.

Theorem 12.1. We have the following identities:

$$\Sigma_{1}\Lambda_{i,j}\Sigma_{1} = \Lambda_{i+j,j},$$

$$\Sigma_{2}\Lambda_{i,j}\Sigma_{2} = \Lambda_{i,i+j},$$

$$\Sigma_{1}V_{1}\Sigma_{1} = V_{2}, \qquad \Sigma_{2}V_{1}\Sigma_{2} = V_{1},$$

$$\Sigma_{1}V_{2}\Sigma_{1} = V_{1}, \qquad \Sigma_{2}V_{2}\Sigma_{2} = V_{3},$$

$$\Sigma_{1}V_{3}\Sigma_{1} = V_{3}, \qquad \Sigma_{2}V_{3}\Sigma_{2} = V_{2},$$

$$\Lambda_{k,l}V_{l}\Lambda_{k,l} = V_{l}, \quad i = 1, 2, 3, \Lambda_{k,l}M_{l,j}\Lambda_{k,l} = M_{l,j}, k, l$$

$$\in Z_{2}, i, j \in Z,$$

$$\Sigma_{1}M_{i,j}\Sigma_{1} = M_{-i-j,j}, \qquad \Sigma_{2}M_{i,j}\Sigma_{2} = M_{l,-i-j}, V_{k}M_{l,j}V_{k} = M_{-i,-j}, k$$

$$= 1, 2, 3.$$

Proof. These identities are proved by straightforward computations.

Theorem 12.2. We have an epimorphism of groups ι : $\Gamma_M \to \Gamma^{\operatorname{aut}}_M$ defined on generators by $\iota(\lambda_{i,j}) := \Lambda_{i,j}$, $\iota(\sigma_i) := \Sigma_i$, $\iota(\nu_j) := V_j$, $\iota(\mu_{i,j}) := M_{i,j}$. (12.1)

Proof. Let us show that the morphism ι : $\Gamma_M \to \Gamma^{\text{aut}}_M$ is well defined. First, notice that (12.1) uniquely extends to a group morphism on each of the groups G_1 , G_2 , G_4 , Γ_V . Any $g \in \Gamma_M$ admits a unique decomposition $g = vg_4g_1g_2$ with $v \in \Gamma_V$, $g_1 \in G_1$, $g_2 \in G_2$, $g_4 \in G_4$, by Corollaries 3.11 and 3.14. We define

$$\iota(g) := \iota(v)\iota(g_4)\iota(g_1)\iota(g_2).$$

Given $\tilde{g} \in \Gamma_M$, we have to show that $\iota(gg\tilde{g}) = \iota(g)\iota(g\tilde{g})$. We have $g\tilde{g} = vg_4g_1g_2\tilde{v}\tilde{g}_4\tilde{g}_1\tilde{g}_2 = v\tilde{v}'g_4\tilde{g}_4'g_1\tilde{g}_1'g_2\tilde{g}_2$.

where in the second line we use the commutations relations of Proposition 3.9. The map ι preserves the commutations relations among the generators $\Lambda_{\alpha,\beta}$, Σ_i , V_j , $M_{\alpha,\beta}$, by Theorem 12.1. So, we have

$$\begin{split} \iota(gg^{\tilde{}}) &= \iota(vv^{\tilde{}}0)\iota(g_{4}g^{\tilde{}}_{4}^{0})\iota(g_{1}g^{\tilde{}}_{1}^{0})\iota(g_{2}g^{\tilde{}}_{2}) \\ &= \iota(v)\iota(v^{\tilde{}}0)\iota(g_{4})\iota(g^{\tilde{}}_{4}^{0})\iota(g_{1})\iota(g^{\tilde{}}_{1}^{0})\iota(g_{2})\iota(g^{\tilde{}}_{2}) \\ &= \iota(v)\iota(g_{4})\iota(g_{1})\iota(g_{2})\iota(v^{\tilde{}})\iota(g^{\tilde{}}_{4})\iota(g^{\tilde{}}_{1})\iota(g^{\tilde{}}_{2}) = \\ \iota(g)\iota(g^{\tilde{}}). \end{split}$$

This completes the proof.

Let $P(\mathbf{x}) \in \mathbb{R}$. Define the map $\widehat{P} : (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3 \to \mathbb{Z}[s_1, s_2, s_3^{\pm 1}]$ by the formula $\widehat{P} : (f_1, f_2, f_3) \mapsto P(f_1, f_1^*, f_2, f_2^*, f_3, f_3^*)$

Proposition 12.3. For any
$$P \in \mathcal{R}, g \in \Gamma_M, (f_1, f_2, f_3) \in (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3$$
, we have $\widehat{\iota(g)P}(f_1, f_2, f_3) = \widehat{P}\big(g^{-1}(f_1, f_2, f_3)\big)$.

Proof. This is easily checked on the generators of Γ_M . **Proposition 12.4.** The morphism ι is an isomorphism.

Proof. Consider the polynomials x_1 , x_3 , $x_5 \in \mathbb{R}$. They define the natural projections

$$\widehat{x}_1 \colon (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3 \to \mathbb{Z}[s_1, s_2, s_3^{\pm 1}], \quad (f_1, f_2, f_3) \ 7 \to f_1,$$

$$\widehat{x}_3 \colon (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3 \to \mathbb{Z}[s_1, s_2, s_3^{\pm 1}], \quad (f_1, f_2, f_3) \ 7 \to f_2,$$

$$\widehat{x}_5 \colon (\mathbb{Z}[s_1, s_2, s_3^{\pm 1}])^3 \to \mathbb{Z}[s_1, s_2, s_3^{\pm 1}], \quad (f_1, f_2, f_3) \ 7 \to f_3.$$

Let $g \in \ker \iota$. By Proposition 12.3, we have

$$\widehat{x}_1(g^{-1}(f_1,\,f_2,\,f_3))=f_1,\quad \widehat{x}_3(g^{-1}(f_1,\,f_2,\,f_3))=f_2,\quad \widehat{x}_5(g^{-1}(f_1,\,f_2,\,f_3))=f_3.$$
 Hence g^{-1} = id.

12.3. ν -Endomorphisms of maximal rank. Let ϕ : $R \to R$ be a ν -endomorphism, defined by a triple P, Q, $R \in R$,

$$x_1 ext{ } ext{ }$$

For any fixed $p \in C^3$, we have a polynomial map $\phi_p: C^6 \to C^6$ defined by

$$\mathbf{q} \mapsto (P_{\mathbf{p}}(\mathbf{q}), \nu P_{\mathbf{p}}(\mathbf{q}), Q_{\mathbf{p}}(\mathbf{q}), \nu Q_{\mathbf{p}}(\mathbf{q}), R_{\mathbf{p}}(\mathbf{q}), \nu R_{\mathbf{p}}(\mathbf{q}))$$

A ν -endomorphism ϕ of R is said to be *of maximal rank* if there exist $p \in C^3$ and $q \in C^6$ such that the Jacobian matrix of ϕ_P at the point q is invertible.

12.4. Horowitz type theorem for *-**Markov group.** Define the ν -Horowitz group G_{Hor} as the group of ν -automorphisms of R which preserve the polynomial

$$H = x_1x_2 + x_3x_4 + x_5x_6 - x_1x_3x_5.$$

Define Γ^{\max} to be the set of ν -endomorphisms of R of maximal rank which preserve the polynomial H.

We have $\Gamma_{\text{aut}M} \subseteq G_{\text{Hor}} \subseteq \Gamma_{\text{max}}$.

Theorem 12.5. We have $\Gamma^{\text{aut}}_{M} = G_{\text{Hor}} = \Gamma^{\text{max}}$. In particular, any element of Γ^{max} is a vautomorphism.

Proof. It is sufficient to prove that $\Gamma^{\max} \subseteq \Gamma^{\operatorname{aut}_M}$. The proof is an adaptation of the original argument of [29, Theorem 2]. Let

 $x_1 \ 7 \rightarrow P$, $x_3 \ 7 \rightarrow Q$, $x_5 \ 7 \rightarrow R$, $x_2 \ 7 \rightarrow \nu P$, $x_4 \ 7 \rightarrow \nu Q$, $x_6 \ 7 \rightarrow \nu R$, (12.2) be an element of Γ^{\max} , where P, Q, $R \in \mathbb{R}$. Up to an action of G^{aut_2} , we can assume that the total degrees of P, Q, P with respect to x_1 , x_2 , x_3 , x_4 , x_5 , x_6 are in ascending order, i.e.,

degP 6 degQ 6 degR.

Set

$$P = P_p + P_{p-1} + \dots + P_0,$$

$$Q = Q_q + Q_{q-1} + \dots + Q_0, \quad (12.3)$$

$$R = R_r + R_{r-1} + \dots + R_0.$$

where P_k , Q_k , R_k are homogeneous polynomials in x_1 , x_2 , x_3 , x_4 , x_5 , x_6 of degree k. Necessarily, we must have p, q, r > 1, otherwise (12.2) does not define an endomorphism of maximal rank. Since (12.2) is an element of Γ^{max} , we have

$$P \cdot \nu P + Q \cdot \nu Q + R \cdot \nu R - PQR = x_1 x_2 + x_3 x_4 + x_5 x_6 - x_1 x_3 x_5. \tag{12.4}$$

Suppose that p = q = r = 1. By comparison of the highest degree terms of the l.h.s. and r.h.s. of (12.4), we deduce that $P_1Q_1R_1 = x_1x_3x_5$. Since x_1 , x_3 , x_5 are irreducible, unique factorization implies that up to reordering of P_1 , Q_1 , R_1 we have

$$P_1 = \gamma_1 x_1, \qquad Q_1 = \gamma_3 x_3, \qquad R_1 = \gamma_5 x_5,$$
 (12.5)

where $\gamma_1, \gamma_3, \gamma_5 \in \mathbb{Z}[s_1, s_2, s_3^{\pm 1}]$ and $\gamma_1 \gamma_3 \gamma_5 = 1$. Hence each of γ_j is of the form $\pm s_3^{a_j}$

If we substitute (12.5) in (12.3), and expand (12.4), we deduce that $P_0 = Q_0 = R_0 = 0$ (since the r.h.s. of (12.4) has no terms x_1x_3 , x_1x_5 , x_3x_5). Thus, the only possible form of (12.2) is $x_1 7 \rightarrow (-1)isa_3x_1$, $x_3 \rightarrow 7$ $(-1)i+js_3a_3x_3$, $x_5 \rightarrow 7$ $(-1)jsa_3s_5x_5$, $x_2 \rightarrow 7$ (-1)is-3 a_1x_2 , $x_4 \rightarrow 7$ $(-1)i+js_3-a_3x_4$, $x_6 \rightarrow 7$ (-1)js-3 a_5x_6 ,

where i, $j \in \mathsf{Z2}$ and a_1 , a_2 , $a_3 \in \mathsf{Z}$, $a_1 + a_2 + a_3 = 0$. All these transformations are in $\langle G_1^{\mathrm{aut}}, G_4^{\mathrm{aut}} \rangle \subseteq \Gamma_M^{\mathrm{aut}}$.

Now we proceed by induction on the maximum r of the degrees of P, Q, R. If we expand (12.4) using (12.3), we obtain

 $P_p \cdot v P_p + Q_q \cdot v Q_q + R_r \cdot v R_r - P_p Q_q R_r + \cdots = x_1 x_2 + x_3 x_4 + x_5 x_6 - x_1 x_3 x_5$, (12.6) where the dots denote lower degree terms. The term $P_p Q_q R_r$ is of degree at least 4. The degree of every term of the r.h.s. of (12.6) is less than 4. Hence $P_p Q_q R_r$ must cancel with another term of the l.h.s. This is possible if and only if r = p + q. If r = p + q, then the terms of highest degree are $R_r \cdot v R_r$ and $P_p Q_q R_r$, and we must have $R_r \cdot v R_r - P_p Q_q R_r = 0$. Thus,

$$\nu R_r = P_p Q_q. \tag{12.7}$$

The transformation

$$x_1 7 \rightarrow \nu P$$
, $x_3 7 \rightarrow \nu Q$, $x_5 7 \rightarrow PQ - \nu R$, (12.8)

extends to a ν -endomorphism of R. Such an endomorphism is the composition of (12.2) with $V_3 \in \Gamma^{\operatorname{aut}_M}$. The endomorphism (12.8) has the highest degree less than r, because of (12.7). Hence, by induction hypothesis, the endomorphism (12.8) is a ν -automorphism in $\Gamma^{\operatorname{aut}_M}$. This completes the proof.

12.5. Horowitz type theorem for C^5 . Recall the action of the *-Markov group on C^5 with coordinates $(y_1, ..., y_5)$. In particular, the *-Vi`ete involutions act on

C⁵ by the formulas $v_1: (y_1, ..., y_5)$ 7 \rightarrow $(y_1 + y_2y_3 - y_4 - y_5, y_2, y_3, -y_5 + y_2y_3, -y_4 + y_2y_3)$,

$$v_2: (y_1, ..., y_5) \rightarrow 7 \ (y_1, y_2 + y_1 y_3 - y_4 - y_5, y_3, -y_5 + y_1 y_3, -y_4 + y_1 y_3), \ v_2: (y_1, ..., y_5)$$

$$7 \rightarrow (y_1, y_2, y_3 + y_1y_2 - y_4 - y_5, -y_5 + y_1y_2, -y_4 + y_1y_2).$$

Theorem 12.6. Let ψ : $C^5 \to C^5$ be a maximal rank polynomial map preserving the polynomials

$$J = y_1y_2y_3 - y_4y_5$$
, $J_1 = y_1 + y_2 + y_3 - y_4$, $J_2 = y_1 + y_2 + y_3 - y_5$.

Then ψ is invertible and lies in the image of the *-Markov group.

Remark 12.7. One can easily add the parameters $\mathbb{Z}[s_1, s_2, s_3^{\pm 1}]$ and reformulate Theorem 12.6 similarly to Theorem 12.5.

Corollary 12.8. If the map ψ satisfies the assumptions of Theorem 12.6, then it commutes with the involution

$$\nu$$
: $(y_1, ..., y_5)$ $7 \rightarrow (y_1, y_2, y_3, y_5, y_4)$.

Proof of Theorem 12.6. Let ψ send $(y_1, ..., y_5)$ to $(P_1, ..., P_5)$. Then

$$P_1P_2P_3 - P_4P_5 = y_1y_2y_3 - y_4y_5$$

$$P_4 - P_1 - P_2 - P_3 = y_4 - y_1 - y_2 - y_3$$
, $P_5 - P_1 - P_2 - P_3 = y_5 - y_1 - y_2 - y_3$.

Hence

$$P_4 = y_4 - y_1 - y_2 - y_3 + P_1 + P_2 + P_3$$

$$P_5 = y_5 - y_1 - y_2 - y_3 + P_1 + P_2 + P_3$$

and the map ψ is completely determined by the three polynomials P_1 , P_2 , P_3 .

First assume that ψ is a linear map, $P_i = P_{i,0} + a_i$, where $a_i \in C$ and $P_{i,0}$ are homogeneous polynomials in y of degree 1. Then

$$y_1y_2y_3 = P_{1,0}P_{2,0}P_{3,0}$$
.

Hence after a permutation of P_1 , P_2 , P_3 we will have

$$P_i = b_i y_i + a_i$$
, $i = 1, 2, 3, b_i \in C$, $b_1 b_2 b_3 = 1$.

We have

$$P_4 = y_4 - y_1 - y_2 - y_3 + P_1 + P_2 + P_3$$

$$= y_4 + (b_1 - 1)y_1 + (b_2 - 1)y_2 + (b_3 - 1)y_3 + a_1 + a_2 + a_3,$$

$$P_5 = y_5 - y_1 - y_2 - y_3 + P_1 + P_2 + P_3$$

$$= y_4 + (b_1 - 1)y_1 + (b_2 - 1)y_2 + (b_3 - 1)y_3 + a_1 + a_2 + a_3, \text{ Hence}$$

$$(y_4 + (b_1 - 1)y_1 + (b_2 - 1)y_2 + (b_3 - 1)y_3 + a_1 + a_2 + a_3)$$

$$\times (y_5 + (b_1 - 1)y_1 + (b_2 - 1)y_2 + (b_3 - 1)y_3 + a_1 + a_2 + a_3)$$

$$- (b_1y_1 + a_1)(b_2y_2 + a_2)(b_3y_3 + a_3) = y_4y_5 - y_1y_2y_3$$

This means that $b_i = 1$ for all i and hence

$$(y_4 + a_1 + a_2 + a_3)(y_5 + a_1 + a_2 + a_3) - (y_1 + a_1)(y_2 + a_2)(y_3 + a_3) = y_4y_5 - y_1y_2y_3.$$

This implies that $a_i = 0$ for all i.

Equation $P_4P_5 - P_1P_2P_3 = y_4y_5 - y_1y_2y_3$ can be rewritten as

$$(y_4 - y_1 - y_2 - y_3 + P_1 + P_2 + P_3)(y_5 - y_1 - y_2 - y_3 + P_1 + P_2 + P_3) - P_1P_2P_3$$

= $y_4y_5 - y_1y_2y_3$. (12.9)

Let us write $P_i = P_{i,1} + \cdots$, i = 1, 2, 3, where $P_{i,1}$ is the top degree homogeneous component of P_i . Denote d_i the degree of P_i . Since ψ is of maximal rank, we have $d_i > 0$.

Assume that the maximum of d_1 , d_2 , d_3 is greater than 1. After a permutation of the first three coordinates we may assume that $d_1 > d_2 > d_3$. Then equation (12.9) implies that $d_1 = d_2 + d_3$ and there are exactly two terms of degree $2d_1$ which have to cancel,

$$P_{1,1}P_{2,1}P_{3,1} - P_{1,1}^2 = P_{1,1}(P_{2,1}P_{3,1} - P_{1,1}) = 0$$

Let us compose ψ with involution v_1 . Then $v_1 \circ \psi$ sends $(y_1, ..., y_5)$ to $(\tilde{P_1}, ..., \tilde{P_5})$, where $\tilde{P_2} = P_2, \tilde{P_3} = P_3$,

$$P^{-}_{1} = P_{1} + P_{2}P_{3} - P_{4} - P_{5}$$

$$= P_{1} + P_{2}P_{3} - (y_{4} - y_{1} - y_{2} - y_{3} + P_{1} + P_{2} + P_{3})$$

$$- (y_{5} - y_{1} - y_{2} - y_{3} + P_{1} + P_{2} + P_{3})$$

$$= P_{2}P_{3} - P_{1} - 2P_{2} - 2P_{3} - y_{4} - y_{5} + 2y_{1} + 2y_{3} + 2y_{3},$$

$$\tilde{P}_{4} = -(y_{5} - y_{1} - y_{2} - y_{3} + P_{1} + P_{2} + P_{3}) + P_{2}P_{3},$$

$$\tilde{P}_{5} = -(y_{4} - y_{1} - y_{2} - y_{3} + P_{1} + P_{2} + P_{3}) + P_{2}P_{3},$$

These formulas show that $degP_1 < degP_1$, while $degP_i = degP_i$ for i = 2, 3, and the theorem follows from the iteration of this procedure.

Appendix A. Horowitz Type Theorems

A.1. Classical setting. Let $a_0, ..., a_n \in Z$ be non-zero integers such that

$$a_j$$
 divides a_0 , for $j = 1, ..., n$. Consider the

polynomial in n variables $x_1, ..., x_n$,

$$H := \sum_{j=1}^{n} a_j x_j^2 - a_0 \prod_{j=1}^{n} x_j$$

The polynomial H is quadratic with respect to each variable x_i . This ensures that the polynomial has a nontrivial group of symmetries.

Theorem A.1. Let $\sigma \in S_n$ be such that $(a_{\sigma(1)}, ..., a_{\sigma(n)}) = (a_1, ..., a_n)$. Then the permutation $(x_1,...,x_n)$ $7 \rightarrow (x_{\sigma(1)},...,x_{\sigma(n)})$ preserves the polynomial H' **Theorem A.2.** For any $i=1,...,x_n$ n, the transformation

$$v_i: (x_1, \ldots, x_n) \mapsto \left(x_1, \ldots, x_{i-1}, -x_i + \frac{a_0}{a_i} \prod_{j \neq i} x_j, x_{i+1}, \ldots, x_n\right)$$

is an involution preserving the polynomial H.

Proof. We check this for
$$v_1$$
. Denote $y = \frac{a_0}{a_1} \prod_{j>1} x_j$. Then
$$H(-x_1 + y, x_2, \dots, x_n) = a_1(-x_1 + y)^2 - a_0(-x_1 + y) \prod_{j>1} x_j + \sum_{l>1} x_l^2$$
$$= a_1 x_1^2 - 2x_1 a_0 \prod_{j>1} x_j + \frac{a_0^2}{a_1} \prod_{j>1} x_j^2 + a_0 x_1 \prod_{j>1} x_j - \frac{a_0^2}{a_1} \prod_{j>1} x_j^2 + \sum_{l>1} x_l^2$$
$$= H(x_1, x_2, ..., x_n)^2$$

The permutations of Theorem A.1 and the Vi'ete maps of Theorem A.2 are automorphisms of the algebra Z[x].

We say that an endomorphism of algebras $\phi: Z[x] \to Z[x]$ defined by

$$x_j ext{ } ext{7} o P_j(x), \qquad P_j \in \mathsf{Z}[x], \qquad j = 1, ..., n,$$

is *of maximal rank* if there exists a point $q \in C^n$ such that the Jacobian matrix of ϕ at q is invertible.

The following is a stronger version of the original Horowitz Theorem.

Theorem A.3. Any endomorphism of maximal rank preserving the polynomial H is an automorphism. The group of all automorphisms of Z[x] preserving H is generated by the Vi'ete transformations, by the permutation of variables preserving the n-tuple $(a_1, ..., a_n)$, and by multiplication by -1 of an even number of variables.

Proof. The argument is the same of the proof of Theorem 12.5.

A.2. *-Setting. Let m, n be two positive integers. Let a_0 , ..., a_n be symmetric Laurent polynomials in z_1 , ..., z_m with integer coefficients and such that

$$a^*_j = a_j$$
, and a_j divides a_0 for $j = 1, ..., n$,

in the algebra $Z[z^{\pm 1}]^{S_m}$ of symmetric Laurent polynomials.

Consider the polynomial in 2n variables $x_1, x_2..., x_{2n-1}, x_{2n}$,

$$H := \sum_{j=1}^{n} a_j x_{2j-1} x_{2j} - a_0 \prod_{j=1}^{n} x_{2j-1}.$$

The algebra $Z[z^{\pm 1}]^{S_m}[x]$ admits an involution

$$v: x_{2j-1} \to x_{2j}, \qquad x_{2j} \to 7 \ x_{2j-1}, \qquad j = 1, ..., n.$$

The notions of a ν -endomorphism and a ν -automorphism given in Section 12.1 obviously extend to the algebra $Z[z^{\pm 1}]^{S_m}[x]$.

The polynomial *H* has a nontrivial group of symmetries.

Theorem A.4. Let $\sigma \in S_n$ be such that $(a_{\sigma(1)}, ..., a_{\sigma(n)}) = (a_1, ..., a_n)$. Then the permutation $x \to 7$ $(x_{2\sigma(1)^{-1}}, x_{2\sigma(1)}, ..., x_{2\sigma(n)^{-1}}, x_{2\sigma(n)})$ preserves the polynomial H. **Theorem A.5.** For any i = 1, ..., n, the transformation v_i defined by

$$x_{1} \mapsto x_{2}, \quad x_{2} \mapsto x_{1}, \quad \dots, \quad x_{2i-3} \mapsto x_{2i-2}, \quad x_{2i-2} \mapsto x_{2i-3},$$

$$x_{2i-1} \mapsto -x_{2i} + \frac{a_{0}}{a_{i}} \prod_{j \neq i} x_{2j-1}, \quad x_{2i} \mapsto -x_{2i-1} + \frac{a_{0}}{a_{i}} \prod_{j \neq i} x_{2j},$$

$$x_{2i+1} \mapsto x_{2i+2}, \quad x_{2i+2} \mapsto x_{2i+1}, \quad \dots, \quad x_{2n-1} \mapsto x_{2n}, \quad x_{2n} \mapsto x_{2n-1}$$

is an involution preserving the polynomial H.

Proof. The proof is by straightforward calculation, the same as for n = 3.

The permutations of Theorem A.4 and the Vi`ete maps of Theorem A.5 are vautomorphisms of the algebra $Z[z^{\pm 1}]^{S_m}[x]$.

Given $P \in \mathbb{Z}[z^{\pm 1}]^{\mathbb{S}_m}[x]$ and $p \in \mathbb{C}^m$ denotes by $P_p \in \mathbb{C}[x]$ the specialization of P at z = p.

Let $\phi: Z[z^{\pm 1}]^{S_m}[x] \to Z[z^{\pm 1}]^{S_m}[x]$ be a ν -endomorphism defined by $x_{2j-1} \to 7$

$$P_j(x)$$
, $x_{2j} 7 \rightarrow \nu P_j(x)$, $j = 1, ..., n$.

For any $p \in C^m$ there is a map $\phi_p: C^{2n} \to C^{2n}$ defined by

$$x \to 7$$
 $(P_{1,p}(x), \nu P_{1,p}(x), ..., P_{n,p}(x), \nu P_{n,p}(x)).$

The ν -endomorphism ϕ : $Z[z^{\pm 1}]^{S_m}[x] \to Z[z^{\pm 1}]^{S_m}[x]$ is said to be *of maximal rank* if there exist a point $p \in C^m$ and a point $q \in C^{2n}$ such that the Jacobian matrix of ϕ_p at q is invertible.

Theorem A.6. Any v-endomorphism of maximal rank preserving H is a v-automorphism. The group of all v-automorphisms of $Z[z^{\pm 1}]^{S_m}[x]$ preserving H is generated by the Vi'ète transformations of Theorem A.5, by the permutation of variables preserving $(a_1, ..., a_n)$, by multiplication by -1 of an even number of variables, and by multiplication of variables by powers of $s_m := \prod_{j=1}^m z_j$.

Proof. The proof is the same as for n = 3.

Appendix B. *-Equations for P³ and Poisson Structures

B.1. *-Equations for P³. As we wrote in the Introduction, a T-full exceptional collection (E_1 , E_2 , E_3) in D_T^b (P²) has the matrix ($\chi_T(E_i^* \otimes E_j)$) of equivariant Euler

characteristics of the form $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$, where (a, b, c) are symmetric Laurent polynomials in the equivariant parameters z_1 , z_2 , z_3 satisfying the *-Markov equation

$$aa^* + bb^* + cc^* - ab^*c = 3 - \frac{z_1^3 + z_2^3 + z_3^3}{z_1 z_2 z_3}$$
 (B.1)

Similar objects and equations are available for any projective space P^n . For exam-

ple, for P³ the matrix of equivariant Euler characteristics has the form $\begin{bmatrix} 2 & a & b & c \\ & 1 & d \\ & & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & a & b & c \\ & 1 & d \\ & & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & a & b & c \\ & 1 & d \\ & & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & a & b & c \\ & 1 & d \\ & & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & a & b & c \\ & 1 & d \\ & & 0 & 0 \end{bmatrix}$

where (a, b, c, d, e, f) are symmetric Laurent polynomials in the equivariant parameters z_1, z_2, z_3, z_4 satisfying the system of equations

$$aa^* + bb^* + cc^* + dd^* + ee^* + ff^* - a^*bd^* - a^*ce^* - b^*cf^* - d^*ef^* + a^*cd^*f^*$$

$$= 4 + \frac{z_2 z_3 z_4}{z_1^3} + \frac{z_1 z_3 z_4}{z_2^3} + \frac{z_1 z_2 z_4}{z_3^3} + \frac{z_1 z_2 z_3}{z_4^3}, \quad (B.2)$$

$$\begin{aligned} -2aa^* - 2bb^* - 2cc^* - 2dd^* - 2ee^* - 2ff^* \\ + ab^*d + a^*bd^* + ac^*e + a^*ce^* + b^*cf^* + bc^*f + de^*f + d^*ef^* \\ - ab^*ef^* - a^*be^*f - bc^*d^*e - b^*cde^* + aa^*ff^* + bb^*ee^* + cc^*dd^* \\ &= -6 + \frac{z_2^2 z_4^2}{z_1^2 z_2^2} + \frac{z_2^2 z_3^2}{z_1^2 z_4^2} + \frac{z_1^2 z_2^2}{z_2^2 z_4^2} + \frac{z_1^2 z_4^2}{z_2^2 z_2^2} + \frac{z_1^2 z_4^2}{z_2^2 z_2^2} + \frac{z_1^2 z_3^2}{z_2^2 z_4^2}, \end{aligned} \tag{B.3}$$

$$aa^* + bb^* + cc^* + dd^* + ee^* + ff^* - ab^*d - ac^*e - bc^*f - de^*f + ac^*df$$

$$= 4 + \frac{z_1^3}{z_2 z_3 z_4} + \frac{z_2^3}{z_1 z_3 z_4} + \frac{z_3^3}{z_1 z_2 z_4} + \frac{z_4^3}{z_1 z_2 z_3}, \quad (B.4)$$

see [17, Formulas (3.24)–(3.26)]. One may study this system of equations similarly to our study of the *-Markov equation.

In this appendix we briefly discuss the analogs for the system of equations (B.2)–(B.4) of the Poisson structure on C^6 constructed in Section 11. It will be a family of Poisson structures on C^{12} .

B.2. Poisson structures on C^{12} . Consider the affine space C^{12} with coordinates $x = (x_1, x_2, \dots, x_n)$

...,
$$x_{12}$$
), the involution $v: C_{12} \to C_{12}$, $x_{2j-1} \to x_{2j}$, $x_{2j} \to x_{2j-1}$, $j = 1, ..., 6$,

and polynomials

$$H_1(x) = x_1x_2 + x_3x_4 + x_5x_6 + x_7x_8 + x_9x_{10} + x_{11}x_{12}$$

$$- x_2x_3x_8 - x_2x_5x_{10} - x_4x_5x_{12} - x_8x_9x_{12} + x_2x_5x_8x_{12},$$

$$H_2(x) = -2x_1x_2 - 2x_3x_4 - 2x_5x_6 - 2x_7x_8 - 2x_9x_{10} - 2x_{11}x_{12}$$

$$+ x_3x_8x_2 + x_5x_{10}x_2 + x_{11}x_4x_7 + x_{11}x_6x_9 + x_3x_6x_{11}$$

$$+ x_7x_{10}x_{11} + x_4x_5x_{12} + x_8x_9x_{12} - x_3x_{10}x_{11}x_2 + x_{11}x_{12}x_2$$

$$+ x_5x_6x_7x_8 - x_3x_6x_8x_9 - x_4x_5x_7x_{10}$$

$$+ x_3x_4x_9x_{10} - x_{11}x_4x_9x_{12},$$

$$H_3(x) = x_1x_2 + x_3x_4 + x_5x_6 + x_7x_8 + x_9x_{10} + x_{11}x_{12}$$

$$- x_{11}x_4x_7 - x_{11}x_6x_9 - x_3x_6x_{11} - x_7x_{10}x_{11} + x_{11}x_6x_7x_{11}.$$

We have $v^2H_1 = H_3$, $v^2H_2 = H_2$, $v^2H_3 = H_1$.

Consider the braid group B_4 with standard generators τ_1 , τ_2 , τ_3 . The group B_4 acts on C^{12} .

Theorem B.1. The space V of all quadratic Poisson structures on C^{12} which have H_1 , H_2 , H_3 as Casimir elements, is a 3-dimensional vector space consisting of logcanonical structures. For suitable coordinates $b = (b_1, b_2, b_3)$ on V, the Poisson structures have the form:

$$\{x_1, x_2\} = 0, \qquad \{x_3, x_4\} = 0, \qquad \{x_5, x_6\} = 0,$$

$$\{x_7, x_8\} = 0, \qquad \{x_9, x_{10}\} = 0, \qquad \{x_{11}, x_{12}\} = 0,$$

$$\{x_1, x_{11}\} = b2x_1x_{11}, \qquad \{x_1, x_{12}\} = -b2x_1x_{12},$$

$$\{x_2, x_{11}\} = -b2x_2x_{11}, \qquad \{x_2, x_{12}\} = b2x_2x_{12},$$

$$\{x_3, x_9\} = -(b_1 - b_2 + b_3)x_3x_9, \qquad \{x_3, x_{10}\} = (b_1 - b_2 + b_3)x_3x_{10},$$

$$\{x_4, x_9\} = (b_1 - b_2 + b_3)x_4x_9, \qquad \{x_4, x_{10}\} = -(b_1 - b_2 + b_3)x_4x_{10},$$

$$\{x_5, x_7\} = (b_1 - b_3)x_5x_7, \qquad \{x_5, x_8\} = -(b_1 - b_3)x_5x_8,$$

$$\{x_6, x_7\} = -(b_1 - b_3)x_6x_7, \qquad \{x_6, x_8\} = (b_1 - b_3)x_6x_8,$$

$$\{x_1, x_3\} = -b_3x_1x_3, \qquad \{x_1, x_4\} = b_3x_1x_4,$$

$$\{x_2, x_3\} = b_3x_2x_3, \qquad \{x_1, x_4\} = b_3x_2x_4,$$

$$\{x_1, x_5\} = -(b_3 - b_2)x_1x_5, \qquad \{x_1, x_5\} = (b_3 - b_2)x_1x_6,$$

$$\{x_2, x_5\} = (b_3 - b_2)x_2x_5, \qquad \{x_2, x_6\} = -(b_3 - b_2)x_2x_6,$$

$$\{x_1, x_9\} = -(b_3 - b_2)x_1x_9, \qquad \{x_1, x_{10}\} = (b_3 - b_2)x_1x_{10},$$

$$\{x_2, x_{10}\} = -(b_3 - b_2)x_2x_{10},$$

$$\{x_2, x_{10}\} = -(b_3 - b_2)x_2x_{10},$$

$$\{x_2, x_{10}\} = -(b_3 - b_2)x_2x_{10},$$

$$\{x3, x5\} = -(b_1 - b_2)x_3x_5,$$

$$\{x4, x5\} = (b_1 - b_2)x_4x_5,$$

$$\{x3, x7\} = -b_3x_3x_7,$$

$$\{x4, x_8\} = -b_3x_4x_8,$$

$$\{x4, x_1\} = -(b_1 - b_2)x_3x_11,$$

$$\{x3, x_1\} = -(b_1 - b_2)x_4x_11,$$

$$\{x4, x_1\} = (b_1 - b_2)x_4x_11,$$

$$\{x5, x7\} = (b_1 - b_3)x_5x_7,$$

$$\{x6, x7\} = -(b_1 - b_3)x_5x_7,$$

$$\{x6, x9\} = -(b_3 - b_2)x_5x_9,$$

$$\{x6, x_9\} = (b_3 - b_2)x_5x_11,$$

$$\{x6, x_1\} = -(b_1 - b_2)x_5x_11,$$

$$\{x7, x9\} = -b_1x_7x_9,$$

$$\{x8, x9\} = b_1x_8x_9,$$

$$\{x8, x11\} = -b_1x_7x_11,$$

$$\{x8, x11\} = -b_1x_8x_11,$$

$$\{x9, x11\} = -b_1x_9x_11,$$

$$\{x9, x12\} = b_1x_1x_12,$$

$$\{x9, x12\} = -b_1x_1x_12,$$

$$\{x10, x12\} = -b_1x_1x_12,$$

$$\{x10, x12\} = -b_1x_1x_12,$$

$$\{x10, x12\} = -b_1x_1x_12,$$

$$\{x10, x12\} = -b_1x_1x_12,$$

Each of these Poisson structures is v-invariant. If (b_1, b_2, b_3) 6= (0, 0, 0), then the Poisson structure is of rank 2.

The Poisson structure with parameters b is denoted by $\{,\}_b$.

Proof. A computer-assisted calculation shows that the only requirements on a quadratic bracket $\{,\}$ to be skew-symmetric and have H_1 , H_2 , H_3 as Casimir elements uniquely determines the Poisson structures above.

Another computer-assisted calculation shows that if a polynomial Poisson structure $\{,\}$ on C^{12} has H_1, H_2, H_3 as Casimir elements, then its Taylor expansion at the origin, has to start with at least quadratic terms.

B.3. Braid group B_4 **action.** Given a Poisson bracket $\{,\}$ on C^{12} define the Poisson bracket $\{,\}^{\tau_i}$ by

$$\{f,g\}^{\tau_i} := \tau_i{}^{?}\{f \,\circ\, \tau_i{}^{-1},g \,\circ\, \tau_i{}^{-1}\}, \qquad i=1,\,2,\,3.$$

These formulas define a braid group B_4 action on the space of Poisson structures on C^{12} .

Theorem B.2. The three-parameter family of Poisson structures $\{\ ,\ \}_b$ is invariant with respect to the braid group B₄-action on the space of all Poisson structures. The induced braid group B₄ action ρ on the space of parameters V is a vector representation defined by the formulas,

$$\tau_1$$
: (b_1, b_2, b_3) 7 \rightarrow $(b_1 - b_2, -b_2, -b_3)$, τ_2 : (b_1, b_2, b_3) 7 \rightarrow $(-b_1, -b_1 + b_2 - b_3, -b_3)$, τ_3 : $(b_1, b_2, b_3) \rightarrow$ 7 $(-b_1, -b_2, -b_2 + b_3)$.

The representation ρ factors through a representation of the symmetric group S_4 , $\rho(\tau_i^2)$ = id, i = 1, 2, 3. The representation ρ : $S_4 \rightarrow GL(V)$ is irreducible and is isomorphic to the standard three-dimensional representation tensored with the sgn representation.

By Theorem B.2, there is no B₄-invariant or B₄-anti-invariant quadratic Poisson structure on C^{12} having H_1 , H_2 , H_3 as Casimir elements.

Remark B.3. A computer-asssisted calculation shows that if a log-canonical Poisson structure $\{,\}$ on C^{12} remains to be log-canonical after the action on it by any element of the braid group B₄, then $\{,\}$ is one of the Poisson structures $\{,\}_b$ in Theorem B.1.

B.4. Coefficients of $\{$, $\}_b$ and elements of weight lattice. Consider C⁴ with standard Euclidean quadratic form (,). Denote (1, -1, 0, 0), (0, 1, -1, 0), $(0, 0, 1, -1) \in C^4$ by v_1 , v_2 , v_3 . We identify the space of parameters V with the subspace $\{t \in \mathbb{C}^4 \colon \sum_{i=1}^4 t_i = 0\}$, by sending a point of V with coordinates (b_1, b_2, b_3) to the point $b_1v_1 + b_2v_2 + b_3v_3$. The vectors v_1 , v_2 , v_3 generate the root lattice in V.

For i = 1, 2, 3, the linear map $\rho(\tau_i) : V \to V$ permutes the i-th and i + 1-st coordinates of vectors of V and multiplies the vectors by -1.

The *weight lattice* in *V* is the lattice of the elements $t = (t_1, t_2, t_3, t_4) \in C^4$ such that $P_{4_{i=1}} t_i = 0$ and $(t, v_i) \in Z$, i = 1, 2, 3. The weight lattice has a basis $w_1 = (3, -1, -1, -1)/4$, $w_2 = (2, 2, -2, -2)/4$, $w_3 = (1, 1, 1, -3)/4$ with the property $(w_i, v_j) = \delta_{ij}$ for all i, j. There are exactly 8 vectors of the weight lattice of square length 12/16,

$$\pm w_1$$
, $\pm w_1 \mp w_2$, $\pm w_2 \mp w_3$, $\pm w_3$, (B.5)

and there are exactly 6 vectors of the weight lattice of square length 1,

$$\pm w_2$$
, $\pm w_1 \mp w_2 \pm w_3$, $\pm w_1 \mp w_3$. (B.6)

All other vectors of the root lattice are longer. These two groups of vectors form two S_4 -orbits

The scalar products of these 14 vectors with the vector $b_1v_1 + b_2v_2 + b_3v_3$ give us the linear functions in b_1 , b_2 , b_3 ,

$$\pm b_1$$
, $\pm b_1 \mp b_2$, $\pm b_2 \mp b_3$, $\pm b_3$, $\pm b_2$, $\pm b_1 \mp b_2 \pm b_3$, $\pm b_1 \mp b_3$. (B.7)

These are exactly the linear functions appearing as coefficients of the Poisson structure $\{,\}_b$ of Theorem B.1.

B.5. Casimir subalgebra. Denote by C the subalgebra of C[x] generated by the following 20 monomials:

$m_1=x_1x_2,$	$m_2 = x_3 x_4,$	$m_3 = x_5 x_6$,	$m_4 = x_7 x_8,$
$m_5 = x_9 x_{10}$,	$m_6 = x_{11}x_{12}$,	m7 = X2X3X8,	$m_8 = x_2 x_5 x_{10}$,
$m_9 = x_4x_5x_{12},$	$m_{10} = x_{8}x_{9}x_{12},$	$m_{11}=x_{1}x_{4}x_{7},$	$m_{12} = x_{1}x_{6}x_{9},$
$m_{13} = x_{3}x_{6}x_{11}$,	$m_{14} = x_7 x_{10} x_{11},$	$m_{15} = x_{2}x_{5}x_{8}x_{12},$	$m_{16} = x_2 x_3 x_{10} x_{11},$
$m_{17} = x_{3}x_{6}x_{8}x_{9},$	$m_{18} = x_{4}x_{5}x_{7}x_{10}$,	$m_{19} = x_{1}x_{4}x_{9}x_{12},$	$m_{20} = x_1 x_6 x_7 x_{11}.$

It is easy to see that the polynomials H_1 , H_2 , H_3 are elements of the subalgebra C.

Theorem B.4. For every b each element of the subalgebra C is a Casimir element of the Poisson structure $\{\ ,\ \}_b$. The subalgebra C is v-invariant and the braid group B_4 action invariant.

Proof. The theorem is proved by direct verification. For example, easy calculations lead to formulas like τ_{1} ? $m_{2} = -m_{11} + m_{1}m_{2} + m_{4} - m_{7}$,

$$\tau_{3}$$
? $m_{18} = m_{17} - m_{10}m_{2} - m_{13}m_{4} + m_{2}m_{4}m_{6}$,

which proves the braid group invariance of C.

B.6. Symplectic leaves. Since $\{,\}_b$ is of rank 2, the symplectic leaves of $\{,\}_b$ are two-dimensional. In logarithmic coordinates $\log x_i$, i=1,...,12, they are two-dimensional affine subspaces. More precisely, we have the following statement.

Theorem B.5. Given (b_1, b_2, b_3) 6= (0, 0, 0), then the function

$$C_b(x) = (b_1 - b_2)\log x_1 + (b_2 - b_3)\log x_3 + b_3\log x_5$$

is a Casimir element of $\{,\}_b$; the C-span of C_b and the functions $\log m_i$, i = 1, ..., 20, is 10-dimensional, while the C-span of the functions $\log m_i$, i = 1, ..., 20, is 9-dimensional.

Hence the symplectic leaves of $\{ , \}_b$ are the surfaces on which the functions of this 10-dimensional C-span are constant. In particular, the leaves do depend on b.

We may also conclude that $x_1^{b_1-b_2}x_3^{b_2-b_3}x_5^{b_3}$ is a Casimir element of $\{,\}_b$ functionally independent of the Casimir elements m_i , i=1,...,20.

References

- [1] M. Aigner, *Markov's theorem and 100 years of the uniqueness conjecture*, Springer, Cham, 2013. MR 3098784. A mathematical journey from irrational numbers to perfect matchings.
- [2] D. Alekseevsky and P. Guha, On decomposability of Nambu-Poisson tensor, Acta Math. Univ. Comenian. (N.S.) 65 (1996), no. 1, 1-9. MR 1422290
- [3] G. E. Andrews, q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics, vol. 66, Amer. Math. Soc., Providence, RI, 1986. MR 858826
- [4] F. Bayen and M. Flato, Remarks concerning Nambu's generalized mechanics, Phys. Rev. D (3) 11 (1975), 3049–3053. MR 455631
- [5] A. A. Beilinson, Coherent sheaves on Pⁿ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388. Engllish translation: Funct. Anal. Appl. 12 (1978), no. 3, 214–216.
- [6] P. P. Boalch, Stokes matrices, Poisson Lie groups and Frobenius manifolds, Invent. Math. 146 (2001), no. 3, 479–506. MR 1869848
- [7] A. I. Bondal, A symplectic groupoid of triangular bilinear forms and the braid group, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 4, 19–74 (Russian). MR 2084561. English translation: Izv. Math. 68 (2004), no. 4, 659–708.
- [8] L. Carlitz, Fibonacci notes. III. q-Fibonacci numbers, Fibonacci Quart. 12 (1974), 317-322. MR 364079
- [9] R. Chatterjee, Dynamical symmetries and Nambu mechanics, Lett. Math. Phys. 36 (1996), no. 2, 117– 126. MR 1371303
- [10] R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics, Lett. Math. Phys. 37 (1996), no. 4, 475–482. MR 1401050
- [11] L. Chekhov and M. Mazzocco, Isomonodromic deformations and twisted Yangians arising in Teichmu"iller theory, Adv. Math. 226 (2011), no. 6, 4731-4775. MR 2775883
- [12] L. O. Chekhov and V. V. Fock, *Observables in 3D gravity and geodesic algebras*, Czechoslovak J. Phys. **50** (2000), no. 11, 1201–1208. MR 1806262. Quantum groups and integrable systems (Prague, 2000).
- [13] L. Chekhov and M. Mazzocco, Poisson algebras of block-upper-triangular bilinear forms and braid group action, Comm. Math. Phys. 322 (2013), no. 1, 49–71. MR 3073157
- [14] L. Chekhov and M. Shapiro, Darboux coordinates for symplectic groupoid and cluster algebras, preprint arXiv:2003.07499 [math.OA].
- [15] L. O. Chekhov and R. C. Penner, On quantizing Teichmu'ller and Thurston theories, Handbook of Teichmu'ller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zu'rich, 2007, pp. 579–645. MR 2349681
- [16] G. Cotti, B. Dubrovin, and D. Guzzetti, Helix structures in quantum cohomology of Fano varieties, prepint arXiv:1811.09235 [math.AG].
- [17] G. Cotti and A. Varchenko, *Equivariant quantum differential equation and qKZ equations for a projective space: Stokes bases as exceptional collections, Stokes matrices as gram matrices, and B-theorem,* Integrability, quantization, and geometry. I, Proc. Sympos. Pure Math., vol. 103, Amer. Math. Soc., Providence, RI, [2021] ©2021, pp. 101–170. MR 4285678
- [18] Y. L. Daletskii and L. A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys. 39 (1997), no. 2, 127–141. MR 1437747
- [19] G. Dito, M. Flato, D. Sternheimer, and L. Takhtajan, *Deformation quantization and Nambu mechanics*, Comm. Math. Phys. **183** (1997), no. 1, 1–22. MR **1461949**

- [20] B. Dubrovin, Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 120–348. MR 1397274
- [21] B. Dubrovin, Geometry and analytic theory of Frobenius manifolds, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), no. Extra Vol. II, 1998, pp. 315–326. MR 1648082
- [22] B. Dubrovin, Painlev'e transcendents in two-dimensional topological field theory, The Painlev'e property, CRM Ser. Math. Phys., Springer, New York, 1999, pp. 287–412. MR 1713580 [23] M. H. El-Huti, Cubic surfaces of Markov type, Mat. Sb. (N.S.) 93(135) (1974), 331–346, 487 (Russian). MR 0342518. English translation: Math. USSR-Sb. 22 (1974), no. 3, 333–348.
- [24] V. T. Filippov, *n-Lie algebras*, Sibirsk. Mat. Zh. **26** (1985), no. 6, 126–140, 191 (Russian). MR **816511**. English translation: Siberian Math. J. **26** (1985), no. 6, 879–891.
- [25] V. V. Fock and A. B. Goncharov, *Dual Teichmu'ller and lamination spaces*, Handbook of Teichmu'ller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zu'rich, 2007, pp. 647–684. MR 2349682
- [26] V. V. Fock and A. A. Rosly, Moduli space of flat connections as a Poisson manifold, Internat. J. Modern Phys. B 11 (1997), no. 26-27, 3195–3206. MR 1603053. Advances in quantum field theory and statistical mechanics: 2nd Italian-Russian collaboration (Como, 1996).
- [27] P. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996), no. 1, 103–116. MR 1392151
- [28] J. Grabowski and G. Marmo, On Filippov algebroids and multiplicative Nambu-Poisson structures, Differential Geom. Appl. 12 (2000), no. 1, 35–50. MR 1757019
- [29] R. D. Horowitz, Induced automorphisms on Fricke characters of free groups, Trans. Amer. Math. Soc. 208 (1975), 41–50. MR 369540
- [30] A. Markoff, Sur les formes quadratiques binaires ind'efinies, Math. Ann. 17 (1880), no. 3, 379–399. MR 1510073
- [31] A. A. Markoff, Sur les formes quadratiques binaires ind'efinies, Math. Ann. 15 (1879), 381-407 (French).
- [32] L. J. Mordell, On the integer solutions of the equation $x^2 + y^2 + z^2 + 2xyz = n$, J. London Math. Soc. **28** (1953), 500–510. MR 56619
- [33] S. Morier-Genoud and V. Ovsienko, q-deformed rationals and q-continued fractions, Forum Math. Sigma 8 (2020), Paper No. e13, 55. MR 4073883
- [34] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3) 7 (1973), 2405-2412. MR 455611
- [35] J. E. Nelson and T. Regge, *Homotopy groups and* (2 + 1)-dimensional quantum gravity, Nuclear Phys. B **328** (1989), no. 1, 190–202. MR 1028020
- [36] J. E. Nelson, T. Regge, and F. Zertuche, Homotopy groups and (2+1)-dimensional quantum de Sitter gravity, Nuclear Phys. B 339 (1990), no. 2, 516-532. MR 1063598
- [37] A. V. Odesskii and V. N. Rubtsov, Polynomial Poisson algebras with a regular structure of symplectic leaves, Teoret. Mat. Fiz. 133 (2002), no. 1, 3–23. MR 1992166
- [38] H. Pan, *Arithmetic properties of q-Fibonacci numbers and q-Pell numbers*, Discrete Math. **306** (2006), no. 17, 2118–2127. MR 2251833
- [39] A. N. Rudakov, Markov numbers and exceptional bundles on P², Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 1, 100–112, 240 (Russian). MR 936525. English translation: Math. USSR-Izv. 32 (1989), no. 1, 99–112.
- [40] J. A. Schouten, Tensor Analysis for Physicists, Oxford, At the Clarendon Press, 1951. MR 0044890
- [41] A. Sorrentino and A. P. Veselov, *Markov numbers, Mather's* β function and stable norm, Nonlinearity **32** (2019), no. 6, 2147–2156. MR 3951959
- [42] K. Spalding and A. P. Veselov, Lyapunov spectrum of Markov and Euclid trees, Nonlinearity 30 (2017), no. 12, 4428–4453. MR 3734142

- [43] K. Spalding and A. P. Veselov, *Growth of values of binary quadratic forms and Conway rivers*, Bull. Lond. Math. Soc. **50** (2018), no. 3, 513–528. MR 3829738
- [44] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 160 (1994), no. 2, 295–315. MR 1262199
- [45] V. Tarasov and A. Varchenko, Equivariant quantum differential equation, Stokes bases, and K-theory for a projective space, preprint arXiv:1901.02990 [math.AG].
- [46] M. Ugaglia, On a Poisson structure on the space of Stokes matrices, Internat. Math. Res. Notices (1999), no. 9, 473–493. MR 1692595
- [47] R. Weitzenbo"ck, Invariantentheorie, P. Noordhoff, Groningen, 1923.
- [48] D. Zagier, On the number of Markoff numbers below a given bound, Math. Comp. 39 (1982), no. 160, 709–723. MR 669663

Faculdade de Ciencias da Universidade de Lisboa - Grupo de F^ 'isica Matematica,' Campo Grande Edif'icio C6, 1749-016 Lisboa, Portugal *E-mail address*: gcotti@fc.ul.pt, gcotti@sissa.it

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel

Hill, NC 27599-3250, USA;

Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow GSP-1, Russia

E-mail address: anv@email.unc.edu