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THE *-MARKOV EQUATION FOR LAURENT POLYNOMIALS
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Abstract. We consider the *-Markov equation for the symmetric Laurent
polynomials in three variables with integer coefficients, which appears as
an equivariant analog of the classical Markov equation for integers. We
study how the properties of the Markov equation and its solutions are
reflected in the properties of the *-Markov equation and its solutions.
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1. Introduction

1.1. Markov equation
1.1.1. The Markov equation is the Diophantine equation

a’+ b2+ c2-abc=0 ab c€eEZ (1.1)

with initial solution (3, 3, 3). Ifa triple (a, b, ¢) is a solution, then a permutation of the
triple is a solution. One may also change the sign of two of the three coordinates of a
solution. The braid group Bz acts on the set of solutions,

t1:(a, b,c)7- (-a, ¢, b - ac),
(1.2)
12:(a, b, c) =7 (b, a-bc -c).

The classical Markov theorem says that all nonzero solutions of the Markov equation
can be obtained from the initial solution (3, 3, 3) by these operations, see [31], [30].
This group of symmetries of the equation is called the Markov group. A solution with
positive coordinates is called a Markov triple, the positive coordinates are called the
Markov numbers.

The Markov equation is traditionally studied in the form

a?+ b%2+c2-3abc=0, ab cEZ (1.3)

Equations (1.1) and (1.3) are equivalent. A triple (a, b, c) € Z3is a solution of (1.3) if
and only if (3a, 3b, 3c) is a solution of (1.1).

The equation was introduced by A.A.Markov in [31], [30] in the analysis of minimal
values of indefinite binary quadratic forms and was studied in hundreds of papers,
see for example the book [1] and references therein.

1.2. Motivation from exceptional collections and Stokes matrices

1.2.1. Our motivation came from the works by A.Rudakov [39] on full exceptional
collections in derived categories and by B.Dubrovin [20], [21], [22] on Frobenius
manifolds and isomonodromic deformations.
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In 1989 A.Rudakov studied the full exceptional collections in the derived category
Db(P2) of the projective plane P2 These are triples (E1, E2, E3) of objects in D?(P?)

generating D?(P?) and such that the matrix of Euler characteristics

1
. )
(X(Ef ® Ej) has the 0

is

b

a
1 ¢
0 1 form . Rudakov observed that the triple (q, b, c)

a solution of the Markov equation. The braid group Bs naturally acts on the set of full
exceptional collections and the induced action on the set of matrices of Euler
characteristics coincides with the action of the braid group on the set of solutions of
the Markov equation.

In the 90’s Dubrovin considered the isomonodromic deformations of the quantum
differential equation of the projective plane P2, see [22]. This is a system of three first
order linear ordinary differential equations with two singular points: one regular
point at the origin and one irregular at the infinity. Dubrovin observed that the Stokes
matrix (1 p Sofa Stokes basis of the space of solutions at the infinity is of
! S=1o

S = 2

c
0 1
the form, where (q, b, c) is a solution of the Markov equation. The
braid group Bs naturally acts on the set of Stokes bases, and the induced action on the
set of Stokes matrices coincides with the action of the braid group on the set of
solutions of the Markov equation.
These two observations allowed to Dubrovin to conclude that the Stokes bases of
the isomonodromic deformations of the quantum differential equation of P2
correspond to the full exceptional collections in the derived category D?(P%) and more

generally to conjecture that the derived category of an algebraic variety is responsible
for the monodromy data of its quantum differential equation, see [21], [16].

1.2.2. Recently in [45] V.Tarasov and the second author considered the equivariant
quantum differential equation for P2 with respect to the torus T = (C*)3 action on P2.
That equivariant quantum differential equation is a system of three first order linear
ordinary differential equations depending on three equivariant parameters z = (z1, z2,
z3). The system has two singular points: one regular point at the origin and one
irregular at the infinity. It turns out that the Stokes matrix S of a

Stokes basis of the space of solutions at the infinity is of the form,

where g, b, c are symmetric Laurent polynomials in the equivariant parameters z with
integer coefficients. In [17] we observed that the Stokes bases correspond to T-full
exceptional collections in the equivariant derived category DI}(PZ). If (Ey, E2 E3) isa
T-full exceptional collection, then the equivariant Euler characteristicX? (B ® Ej) is
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an element of the representation ring of the torus, that is, a Laurent polynomial in the
equivariant parameters with integer coefficients. It turns out that if a T-full
exceptional collection (Ei, E2 E3) corresponds to a Stokes basis, then the
corresponding Stokes matrix equals the matrix (yr(E* ® E;)) of equivariant Euler
characteristics. Moreover the three symmetric Laurent polynomials (a, b, c),
appearing in this construction, satisfy the equation

5+ + 23

Z12223

aa” +bb* +cc* —ab*e =3 —
, (1.4)

where f*(z1, z2, z3) := f(1/21, 1/Z2, 1/z3) for any Laurent polynomial, see [17, Formula
(3.20)]. If z1 = z2= z3 = 1, then the right-hand side of (1.4) equals zero, the equivariant
Euler characteristics yr(E*@E;) become the non-equivariant Euler characteristics
x(Er QE)), and the triple of symmetric Laurent polynomials (a, b, c) evaluated at z1 =
z2=z3=1 becomes a solution of the Markov equation

(1.1).

We call equation (1.4) for symmetric Laurent polynomials with integer coefficients
the x-Markov equation.

The transition from the Markov equation to the *-Markov equation provides us
with a deformation of the Markov numbers by replacing Markov numbers with
symmetric Laurent polynomials, which recover the numbers after the evaluation at z1
=z2=2z3=1.

The goal of this paper is to observe how the properties of the Markov equation and
its solutions are reflected in the properties of the *-Markov equation and its solutions.

1.2.3. There are interesting instances of the transition from the Diophantine Markov
equation (1.1) to an equation of the form

a(t)2+ b(t)2+ c(t)2- a(t)b(t)c(t) = R(t),

where a(t), b(t), c(t) are unknown functions in some variables ¢t and R(¢) is a given
function. Such deformations among other subjects are related to hyperbolic geometry
and cluster algebras, see the fundamental papers [15], [25].

The difference between deformations of this type and the *-Markov equation is
that equation (1.4) includes the *-operation dictated by the equivariant K-theoretic
setting. It is an interesting problem to find relations of the *-Markov equation to
hyperbolic geometry and cluster algebras.

1.3. »Markov equation and »Markov group
1.3.1. It is convenient to use the elementary symmetric functions (s, sz, 53),
S1=2Z1+ 22+ 73, S2= 7122 + 7123 + 7273, §3 = 712273,

change variables (a, b, ¢) to (a, b* c), and reformulate equation (1.4) in a more
symmetric form
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35182 — sf
53 . (1.5)

The problem is to find Laurent polynomials® b, ¢ € Z[s1, sa, ~"'§El] satisfying equation
(1.5). The equation has the initial solution

z1+ 22+ 23 51
I= (21 +z2t 23, ——, 21+ 22 +2’:3) = (51-, —, 51)

Z1%223

aa® 4+ bb* + cc* — abe =

(1.6)

whose evaluation at s1 = s2 = 3, s3 = 1 is the initial solution (3,3,3) of the Markov
equation.
From now on we call equation (1.5) the *-Markov equation.

1.3.2. The group I'n of symmetries of the *-Markov equation is called the *-Markov
group. It consists of permutations of variables, changes of sign of two of the three
variables, the braid group B3 transformations

11:(a, b, c) 7- (-a, c, b* - ac),

* *—bc, -c¥), (1.7) t2: (a, b, c) 7- (b,
a

and the new transformations
i (a, b, ) (ska, s3'77b, she), i, j€ VA

We have an obvious epimorphism of the *-Markov group onto the Markov group. This
fact and the Markov theorem imply that for any Markov triple of numbers there exists
a triple of Laurent polynomials, solving the *-Markov equation, obtained from the
initial solution I by transformations of the *-Markov group, whose evaluation at s1 =
s2=3, s3= 1 gives the Markov triple.
It is an open question if any solution of the *-Markov equation can be obtained

from the initial solution I by a transformation of the *-Markov group. In analogy with
the Markov equation we may expect that all solutions lie in I'ml.

1.4. Solutions in the orbit of the initial solution

1.4.1. As the first topic of this paper we study I'ul, the set of solutions of the *-Markov
equation obtained from the initial solution I by transformations of the *-Markov

group.

In the interpretation of solutions of the *-Markov equation as matrices of
equivariant Euler characteristics (yr(Ei ® Ej)) for T-full exceptional collections, the
set T'ml corresponds to the set of matrices (yr(Eir ®Ej)) for the T-full exceptional

collections in D7 (P?) lying in the braid group orbit of the so-called Beilinson T-full

exceptional collection, see [17], [5]-
Several first elements of '/ different from I are

(s*1, $21 - 52, 5™1), (1.8)
(5+2, S2152 — 5153 = 522, (521 — 52)+), (1.9)

(s*1, $3152 — 252153 — 51522 + $253, (S1252 — §153 — 522)+), (1.10)
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((s2152 — 5153 — 522)+, S12532 — §315253 — 52523 + 521523 — 542, (522 — 5153)+). (1.11)

Evaluated at s1=s2= 3, s3= 1 they represent the Markov triples (3, 6, 3),
(3,15, 6), (3, 39, 15), (15, 87, 6), respectively.

Random application of generators of the *-Markov group to the initial solution I
will produce the Laurent polynomial solutions of the *-Markov equation, but they will
not be polynomial. We make them close to being polynomial as follows.

We look for solutions of the *-Markov equation in the form (ff, Ja: f:?). We say that
a solution ( fis J2, f:?) is a reduced polynomial solution if each of fi, fo, f3is a
nonconstant polynomial in 53, s2, s3 not divisible by ss.

For example, all triples in (1.8)-(1.11) are reduced polynomial solutions.

Theorem 1.1. Let (a, b, ¢) be a Markov triple, 0 <a <b, 0 <c < b, 6 6 b. Then there exists

a unique reduced polynomial solution (fFs fos 7)) € Tl representing
(a, b, c).

See Theorem 6.4.

Remark 1.2. Consider the three versions of the *-Markov equation,

Qe o o3
aa® + bb* + cc* —ab*e = ,3q1f,2—g
s, (1.12)
; . . 35182 — 85
aa™ + bb* + cc™ — abc = ——,
53 (1.13)
35189 — 83
aa® + bb* + cc* — a*bet = 5152 7 51 .
53 (1.14)

These equations are equivalent: the second equation is obtained from the first by the
change (a, b, ¢) = (a, b*, c) and the third is obtained from the second by the change (a,
b, c) = (a*, b, c*). The first of the equations is equation (1.4) coming from the
equivariant derived category D’ (P2), see [17]. The second equation was obtained
from the first equation to make the *-Markov equation more symmetric, see (1.5).
This second equation is studied in this paper. The third of these equations also has
advantages.

Namely, the initial solution I° for equation (1.14) is the triple of Laurent

S1 52

polynomials (é 3’ 83 ) The x-Markov group I'macts on solutions of equation (1.14)
since equations (1.13) and (1.14) are equivalent. Theorem 1.1 can be reformulated as
follows.

Theorem 1.3. Let (a, b, ¢) be a Markov triple, 0 <a <b, 0 <c < b, 6 6 b. Then there exists
a unique triple of polynomials (fi, f2, f3) solving equation (1.14) and such that (fy, f2, f3)
€ T'ml% each of fi, f, f3 is nonconstant and not divisible by s3, and the triple (fi, f2, f3)
represents (a, b, c).

1.4.2. Let f{sy, 52, s3) be a polynomial. We consider two degrees of f: the homogeneous
degree d := degf with respect to weights (1, 1, 1) and the quasihomogeneous degree q
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a1 _az _a3

:= Degf with respect to weights (1, 2, 3). For example, deg(51' 52°55") = a1 + a2 + ag
Deg(s'l"l.s;” §5%) = ay + 2aa + 3as,
Let f{s1, 52, s3) be a polynomial of homogeneous degree d not divisible by s3, then
(81, 82, 53) 1= &4 (32 il 1)
81, 82, 83) =8y [ —, —, —
LS B2 5 T \ss" 537 sy (1.15)
is a polynomial of homogeneous degree d not divisible by ss. If additionally f{s1, s2, 53)
is a quasi-homogeneous polynomial of quasi-homogeneous degree g, then g(s, s2, 53)
is a quasi-homogeneous polynomial of quasi-homogeneous degree 3d - q.

The polynomial g is denoted by p(f).

1.4.3. Let f{s1, Sz, s3) be a quasi-homogeneous polynomial with respect to weights (1,
2, 3). The assignment to fits bi-degree vector (d, q) could be seen as a “dequatization”
in the following sense. Let

S1 = Clea+p, S§2 = C2@a+2p, S§3 = C3€ea+3p,

where a, § are real parameters which tend to +o0 and c1, ¢z, c3 are fixed generic real
numbers. Then
Inf{ciea+, c2ea+28, c3ea+3p)

has leading term da + qff independent of the choice of ci, c3, ¢3. The leading term may
be considered as a vector (d, q).

1.4.4. We say that a polynomial P(s1, sz, s3) is a *-Markov polynomial if there exists a
Markov triple (a, b, c),0<a<b,0 <c<b, 6 6 b, with reduced polynomial presentation
[fl*' f2: f3) € Paidguch that P = f2. The polynomial sz will also be called a *-Markov
polynomial.

We say that a polynomial Q(s1, s2, s3) is a dual *-Markov polynomial if Q is not
divisible by s3and u(Q) is a *-Markov polynomial.

For example, 51 — s2, s2(s7 — 52) — 5351 are *-Markov polynomials, since they
appear as the middle terms in the reduced polynomial presentations in (1.8) and

1 4
(3,39,15) (15,87, 6) 1

(3,15,6)

Figure 1.

(1.9) and 5 — 5183, 51(s3 — 8183) — 8352 are the corresponding dual *-Markov
polynomials.

Theorem 1.4. Let f{s1, s2, s3) be a *-Markov polynomial or a dual x-Markov polynomial
of bi-degree (d, q). Then f{(s1, S, 53) is a quasi-homogeneous polynomial with respect to
weights (1, 2, 3). Moreover, |2q - 3d| =1 if dis odd and |2q - 3d| = 2 if d is even.



8 G. COTTI AND A. VARCHENKO

Theorem 1.5. Let (/1 f2, f3) € U'ni! pe the reduced polynomial presentation of a
Markov triple (a, b, c), 0 <a <b, 0 <c<b, 6 6 b. Then each of fi, f3 is either a *-Markov
polynomial or a dual *-Markov polynomial. If f, f>, fs have bi-degree vectors (d1, q1), (d,
q2), (d3, q3), then

(d2, q2) = (d1, q1) + (d3, @3).
See Theorems 6.4, 7.2, and examples (1.8)-(1.11).

1.4.5. It is convenient to put Markov triples at the vertices of the infinite binary planar
tree as in Figure 1 and obtain what is called the Markov tree. Similarly, we may put at
the vertices the triples of polynomials (fi, f2, f3) such that the triples
(fT, fos [f3) are the reduced polynomial presentations of the corresponding Markov
triples. In that way we would put in Figure 1 the triple (fi, f>, f3) shown in (1.9) instead
of (3, 15, 6), the triple (fi, f2, f3) shown in (1.10) instead of (3, 39, 15), the triple (f3, f2,
f3) shown in (1.11) instead of (15, 87, 6). Or we may put at the vertices the triples (d1,
q1), (d2, q2), (d3, q3) of bi-degree vectors of the triples (fi, f2, f3), or the triples (di, da,
ds) of degrees, see Figure 1, or we may even put at the vertices the triples of Newton
polytopes of the polynomials (fj, f>, f3), see Sections 7.7 and 7.8.

These decorated trees have interesting interrelations consisting of “quatizations”
and “de-quantizations”, see short discussion in Section 7.5.

A compelling problem is to study asymptotics of these decorations along the
infinite paths going from the root of the tree to infinity, see remarks in Sections 7.8
and 7.9.

1.4.6. It is well known that the Markov triples of the left branch of the Markov tree are
composed of the odd Fibonacci numbers, multiplied by 3. These triples have the form
(3, 3¢p2n+1, 3¢p2n-1), where ¢an+1, ¢p2n-1 are odd Fibonacci numbers. We describe the
reduced polynomial presentations (9;71: Fonqt, anfl) of these
Markov triples, where gn-1 = sz if n is even, gn-1 = s1if n is odd, and Fzn+1, F2n-1 are
polynomial in s1, 52, 53, called the odd *-Fibonacci polynomials.

The first of them are

F3(s) = s%1- s2,
F5(s) = s2152 - 5183 - 522,
F7(s) = 53152 — 252153 — 51522 + $253.

We describe the recurrence relations for the odd *-Fibonacci polynomials, explicit
formulas for them, their Newton polytopes, the Binet formula, the Cassini identity,
describe the continued fractions for Fzn+3/Fzn+1and the limit of this ratio as n — oo.

1.4.7. It is well known that the Markov triples of the right branch of the Markov tree
are composed of the odd Pell numbers, multiplied by 3. We describe the reduced
polynomial presentations of these Markov triples in terms of the polynomials, which
we call the odd #-Pell polynomials. We develop the properties of the odd *-Pell
polynomials, which are analogous to properties of odd Pell numbers and to properties
of the odd *-Fibonacci polynomials.



THE *-MARKOV EQUATION FOR LAURENT POLYNOMIALS 9

1.4.8. The g-deformations of Fibonacci and Pell numbers is an active subject related
to several branches of combinatorics and number theory, see for example [8], [3],
[38], [33] and references therein. It would be interesting to determine if these
numerous g-deformations of Fibonacci and Pell numbers could be obtained by
specifications of our *-deformation depending on the three parameters sj, s, s3.

1.5. »Analogs of the Dubrovin Poisson structure. In [20] Dubrovin considered C3
with coordinates (a, b, ), the braid group Bs action (1.2), and introduced a Poisson
structure on C3,

{a, b}u=2c-ab, {b, c}n=2a - bc, {¢ a}u=2b - ac,

which is braid group invariant and has the polynomial a2+b%+c2-abc as a Casimir
element!.

The second topic of this paper is a construction of a *-analog of the Dubrovin
Poisson structure. Our Poisson structure is defined on C¢, is anti-invariant with
respect to the braid group Bz action (1.7), is invariant with respect to the involution

(a, a% b, b*, ¢, c*) 7= (a*, a, b*, b, c*, c),

has the polynomials aa* + bb* + cc* - abc, aa* + bb* + cc*

- a*b*c*’

as Casimir elements, and is log-canonical, see Section 11. Here the word antiinvariant
means that the Poisson structure is multiplied by -1 under the action of generators
of the braid group. Recall also that a Poisson structure on a space with coordinates xi,
., Xn is log-canonical if {x; x;} = ai;xx; for all i, j, where a;; are constants. Our log-
canonical Poisson structure has a;;= 1, 0.

1.5.1. The space C3 considered by Dubrovin is actually identified with the group Us of
unipotent upper triangular matrices (the Stokes matrices of three dimensional
Frobenius manifolds). Standing on such an identification, M.Ugaglia generalized the
construction of Dubrovin’s Poisson structure to all groups Un, see [46] for the explicit
equations. Remarkably enough, the same braid invariant Poisson structure on U, was
found independently also in [6], [7] from two completely different perspectives. Let
B:be the groups of upper and lower triangular nxn matrices. In [6], P.Boalch proved
that Unis the stable locus of a Poisson involution of the Poisson- Lie group B: *B-, and
that the standard Poisson structure of B+ *B- induces the braid invariant Poisson
structure on Un. The construction in [7], is based on the identification of the group U
with the space of Gram matrices (x(E; Ej))ijfor exceptional collections (EY, ..., En) in
triangulated categories?. A.Bondal discovered a symplectic groupoid whose space of
objects is Ux: the existence of a braid invariant Poisson structure on Uy is then deduced

1 Recall that a function fis a Casimir element for a Poisson structure {, } if {£, g} = 0 for any g.

2 Notice that the two identifications of U,as Stokes matrices or Gram matrices of the y-pairing should
coincide, at least for quantum cohomologies, according to a conjecture of Dubrovin, see

[21], [16].
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from the general theory of symplectic groupoids. The quantization of the Poisson
structure on U is also known as Nelson-Regge algebra in 2+1 quantum gravity [35],
[36], and as Fock-Rosly bracket in Chern-Simons theory [26]. Furthermore,
L.Chekhov and M.Mazzocco generalized the construction of the Dubrovin Poisson
structures to the space of bilinear forms with block-upper-triangular Gram matrix,
they also extensively studied the related Poisson algebras, their quantization and
affinization, see [11], [13]. See very interesting short paper [12] by L.0.Chekhov and
V.V.Fock.
It would be interesting to see the *-analogs of these considerations.

1.6. »-Analogs of the Horowitz theorem. In [29], R.D.Horowitz proved the following
result, characterizing the Markov group as a subgroup of the group of ring
automorphisms of Z[a, b, c].

Theorem 1.6 [29, Theorem 2]. The group of ring automorphisms of Z[a, b, c] which
preserve the polynomial

H=a?+ b2+ c2-abc
is isomorphic to the Markov group.

As the third topic of this paper we develop *-analogs of the Horowitz theorem, see
Section 12 and Appendix A.

1.7. Exposition of material. In Section 2 we introduce the *-Markov equation and
evaluation morphism. The *-Markov group and its subgroups, in particular, the
important *-Vi'ete subgroup, are defined in Section 3. The Markov and extended
Markov trees are introduced in Section 4. In Section 5 we introduce the notion of a
distinguished representative of a Markov triple and show that the *-Vi'ete group acts
freely and transitively on the set of distinguished representatives.

In Section 6 we introduce the notion of an admissible triple of Laurent polynomials
and the notion of a reduced polynomial presentation of a Markov triple. One of the
main theorems of the paper, Theorem 6.4 says that a Markov triple has a unique
reduced polynomial presentation. We also introduce the notion of a *-Markov
polynomial.

In Section 7 six decorated infinite planar binary trees are defined. They are the *-
Markov polynomial tree, 2-vector tree, matrix tree, deviation tree, Markov tree, Euclid
tree. We discuss the interrelations between the trees. An interesting problem is to
study the asymptotics of the decorations along the infinite paths from the root of the
tree to infinity.

In Sections 8 and 9 we introduce the odd *-Fibonacci and odd #-Pell polynomials
and discuss their properties.

In Section 10 we construct actions of the *-Markov group on the spaces C®and C5

and a map F: C6 - C°> commuting with the actions. Using these objects we construct

equivariant Poisson structures on C®and C°in Section 11.
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In Section 12 we establish *-analogs of the Horowitz theorem on C¢ and C°. In
Appendix A we discuss more analogs of the Horowitz theorem.

In Appendix B we discuss briefly the *-equations for P3 and associated Poisson
structures on C12,

The authors thank P.Etingof, M.Mazzocco, V.Ovsienko, V.Rubtsov, V.Schechtman,
M.Shapiro, L.Takhtajan, A.Veselov, A.Zorich for useful discussions. The authors thank
HIM and MPI in Bonn, Germany for hospitality in 2019. The authors are grateful to the
referee for helpful remarks improving the exposition.

2. *-Markov Equation

2.1. »Involution. Denote z = (z1, zz, 23), s = (51, S2, s3). Let Z[z*1]* be the ring of
symmetric Laurent polynomials in z with integer coefficients. We define an

O 2 Z[sy, s, "-’gﬂ] by sending

isomorphismz[z
(z1+ z2 + 73, 122 + 7123 + 7223, Z12223) = (S1, S2, S3).

Define the involution

(=)*: Z[z21]s3 = Z[z£1]s3, f7-fs
where
. 11 1 =
@)= =) fenEt
21 292 Z3 .
+
This induces a *-involution onZ[51: $2; $3 1]-
f*(sl: S92, 53) = f(b_z'« b_l'« i)
S3 83 S3/,

Denote so:= (3, 3, 1). Define the evaluation morphisms
eveo  L[s1, s2, s -z, f(s) = f(s0)
Evs,: (Z[s1, s2, s?l])” —Z3  (a, b, c) — (a(s,), b(s,), c(8,)).
The evaluation morphism corresponds to the evaluation of a Laurent polynomial f{z1,

72,z3) at z1=z2=z3=1.
2.2. Evaluation morphism. The *-Markov equation is the equation

35155 — &9

aa* + bb* + cc* — abe = =221
53, (2.1)

+1
where®: b, ¢ € Z[s1, $2, 53 ]- The solution
S
I= (517 ! 51)

53 (2.2)

is call the initial solution.
We have

(35152 sf) —0
evs 53 )
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Proposition 2.1. If f= (fi, f2, f3) is a solution of the x-Markov equation (2.1), then Evs(f)
is a solution of the Markov equation (1.1).

For example, the evaluation of the initial solution I gives the triple (3,3,3).

Remark 2.2. The *-Markov equation (2.1) can be studied by looking fio]r solutions (a,
b, c) in A3, where A is a ring more general thanZ[z™']%¢ = Z[s1, s2, s3],

wsy, B

SR
For instance, if we look for solutions of the form ( 53t ’5]), wherea, f,y €

C, then
a’+ f2+yr=3, afy =1

This curve has infinitely many algebraic points, for example

1
o = \,’*]., 8= \,’2+\/5, ’}227\/_
—2—/5.

3. Groups of Symmetries

3.1. Symmetries of Markov equation. Consider the following three groups of
transformations of Z3:

Type I. The groqu'f generated by transformations
A7 (ay by o) = ((=D'a, (=1)"b, (=1)c), i,j€Zy

Type IIl. The groqu§ generated by transformations
oi: (a, b, ¢)— (bya, ), a5:(a, b, c)— (a,cb)

Type lll. The group(;&3 generated by transformations
T1%(a, b, c) 7- (-a, ¢ b - ac),
72¢ (a, b, ) »7 (b, a - bc,
-C).
We haveS 7§75 = TSTETS,
In these notations the superscript c stays for the word classical.

Remark 3.1. Let B3 be the braid group with three strands, and p1, Sz its standard
generators (elementary braids) with 518251 = 21f2. There is a group epimorphism
O 33 — G(j ﬁ,j = T{-('l., i = l, 2

The center Z(B3) = h(B12)3i is contained in ker¢. Thus, the group
B3/ Z(Bs) = psy,(2, 2)
acts on the set of solutions of (1.1).

Proposition 3.2. The set of nonzero Markov triples is invariant under the action of each
of the groupsG1> G5 G5,

3.2. Markov and Vi'ete groups. Define the Markov group Tuc as the group of
transformations of Z3 generated byG i, G5, G,
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v o= (GY, G3, G3), (3.1)
Define the Vi‘ete involutions V1> V3, V5 € Ly by the formulas
vi¢: (a, b, c) 7= (bc - a, b, c), va¢
:(a, b, c)7- (a,ac-b,c), vs:
(a, b, c)7- (a, b, ab - c).
Define the Vi'ete group I3 as the group generated by the Vi'ete involutions?T: V5 U3,
IV o= (uf, v5, v3), (3.2)
We have
Vi =A101Ty, V5=A{ 057, U3=A[q7] Uﬁ, (3.3)

[ C C
indeed, for example,)\lJ 91 T2 sends
c

(b, a — be, —c) - (a —be, b, —c) (bc —a, b, c)/
/ / ,

—C ©
To '\l.]

(a, b, ¢

as stated.

Theorem 3.3 [23, Theorem 1]. The group T'v¢is freely generated by@’(l:~ U3, U3 that
is, Tve~=2Z2% Z2* Z2.

Proposition 3.4. We have the following identities:

O1cAcklO1c = )Lck+1,l, 02cAckiO2¢c = Acl,k+l,

01cV1cO1c = V2, 02cV1cO02c = Vg,
01cV2cO1c = Vg, 02cV2c02c = V3g,
01cV3cO1c = V3, 02cV3c02c = V2,

N =0 i=1,2,3

YC

Corollary 3.5. We have Iy = I, GL. GY) Moreover, I is @ normal subgroup of Tmc

e AL

Proof. The inclusion rir 2 (I3, Gi, G5) is clear. We have G5 € (I, Gf, G5 , gy

c J— C c C C c
equations (3.3). Hence 't = (I7. G1, G5). We have gvicg-t€ T forany ¥ € G, G3
by Proposition 3.4.

Proposition 3.6. We have I N (G, G3) = {id},
Proof. Any element of I'*fixes the triple (2, 2, 2). The only elements of (G, GS)which
fix (2, 2, 2) are the elements of G5,

Extend the action of both I'*andC% to the space C3. The point (0, 0, 0) is a fixed
point for both actions. The Jacobian matrices at (0, 0, 0) of the Vi'ete
transformations vi¢, v2¢, vscare

21 0 o%1 o om@E1 o0 o@
@o 1 0@, @0 -1 0@, @0 1 08
0 0 1 0 0 1 0 0 -1
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respectively. Hence, any element of I'v* has diagonal Jacobian matrix at (0, 0, 0). The
only transformation of G5 which can be represented by a diagonal matrix is the
identity.

Corollary 3.7. For any element g € T'n¢, there exist unique v € I'vand h € (G, G3) such
that g = vh. This implies that Iy = 1Y =« {GY, G3),

Proof. Since rir = (V. Gf, G5 ), any g can be expressed as a product
g =V Vg Qg o« V5, Ay Qi S (G(l G;)
We can factor g as
9= Uiy Uiy - - Vg a, - oah o a; € (G, Gg)’ (3.4)
by using the commutation rules described in Proposition 3.4. The decomposition in
(3.4) is unique, by Proposition 3.6.

3.3. Symmetries of *Markov equati(ﬂ. Consider the following four groups of
transformations of the space (Z[-"l: s2, 53])°,

Type I. The group G1 generated by transformations
At (a, b, ) — ((—1)%. (—1)"*7p, (—1)3'(;) v by JE Ly
Type Il. The group G2 generated by transformations o1: (a, b, ¢) 7—
(b,a,c), o2:(a, b,c)7- (a ¢ b).
Type lll. The group Gs generated by transformations
11:(a, b, c) 7- (-a, c*, b* - ac),

* *—=bc, -c¥). (35)t2:(a, b c)7- (b,

We have 117271 = 127172
Type IV. The group G4 generated by transformations
i (a, b, ) (sha, s377b, she), i, jEL

Proposition 3.8. The set of all solutions of the *-Markov equation (2.1) is invariant
under the action of each of the groups G, Gz, G3, Ga.

As in the case of the Markov equation (1.1), we have the action of B-‘-"J/Z(B-‘-‘) =
PSL(2, Z) on the set of all solutions of the *-Markov equation (2.1). See Remark

3.1
3.4. »Markov and Vi ete grolup%s. Define the *-Markov group I'm as the group of
transformations of (Z[Sle s, 85 ])° generated by Gi, Gz, G3, G4,

I'm:=hG1, Gz, G3, Gai. (3.6)

Define the *-Vi'ete involutions v1, v2, v3 € I'mby the formulas
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vi:(a b, c) 7- (bc - a*, b*, c*), va:
(a, b, c) 7- (a* ac - b*, ¢*), v3: (q,
b, ¢) 7- (a*, b*, ab - c*).
Define the *-Vi'ete group I'vas the group generated by Vi ete involutions vi, v, v3,

v := hvy, vz, v3i. We
have
V1=A110172, V2= A1,002T1, v3=AL1T102 (3.7)

Proposition 3.9. We have the following identities,

01AkI01 = Ak+1], 02Ak102 = Akk+l,
01V101=V2, 02V102=V1,
01V201=V1, 02V202 = V3,
01V301=V3, 02V302 = V2,
Ak IVidk1= Vi, i=1,23,

Akl pij Akl = pij, k, 1 € 22, i, j € Z, 014ijo1 = p-i-jj,
O2UijO2 = Ui-i-j, VkijVk= p-i-, k=1, 2, 3.
Proof. These identities are proved by straightforward computations.
Remark 3.10. We can take {A1,0, Ao,1, 01, 02, T1, fo,1, U1,0} as “minimal set” of generators
of the *-Markov group, with commutation relations given by Proposition 3.9. This
“minimal set” generates I'm since vz, vs can be obtained by formulas (3.7), then vi=
o1v201and 72 can be recovered by the first of formulas (3.7).

Corollary 3.11. For any element g € hG1, G2, G4i, there exist unique g1 € G1, g2 € G2, g4+ €
Gasuch that

g = g49192. (3.8)
Proof. Any g € hGi, Gz, Gsi can be put in the form (3.8) by Proposition 3.9. The
uniqueness follows from the identities
Ga4N hGy, G2i = {id}, G1N G2={id}.
Corollary 3.12. We have I'm=hTI'v, G1, G2, G4i. Moreover I'vis a normal subgroup of T'm.

Proof. The inclusion I'v 2hG1, G2, G4, Tvi is clear. We have G3 ChGi, G2, Gs, T'vi, by
equations (3.7). Hence 'm= hGy, Gz, G4, T'vi. It follows that gvig- € I'vfor any g € Gy, Go,
G4, by Proposition 3.9. Proposition 3.13. We have I'vN hGy, Gz, G4i = {id}.

Proof. Letg € T'vn hGy, G2, G4i. We have g € ker¢mby Proposition 3.6. The only elements
of the form (3.8) which are in ker¢m are the elements of Gs. Any element of I'vfixes the
triple of constant polynomials (2, 2, 2). The only element of G4+ which fixes (2, 2, 2) is
the identity.
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Corollary 3.14. For any element g € 'y, there exist unique v € I'vand h € hGi, Gz, G4i
such that g = vh. This implies that T'm=Tvo hGi, Gz, Gai.

Proof. Since I'm=hI'v, G1, G2, Gai, any g can be expressed as a product

g = Vi@iwi2Qiz.... ViQix, ai; € hGy, G2, Gai.

We can factor g as
g = Uiy Viy ... V3,05 Q5 ... 0] a;, € {G1, G2, Gu) (3.9)

ig?

by using the commutation rules described in Proposition 3.9. The decomposition in
(3.9) is unique, by Proposition 3.13.

o . 3 £17143
Let g € I'm. Consider its restriction g|zto the subset 73 C (Z[s1, s2, 537])°,

Define the transformation ¢um(g): Z3 — Z3 as the composition Evs, ° g|z, i.e,
73 LLJ (Z[s1, s2, sT])* —= 7
Proposition 3.15. We have a group epimorphism
war: Doy — T3
which acts on the generators as
/\(,.‘;g — A;wi g; Uf’i, T —r T;:, e, g ld (310)

Proof. ldentities (3.10) are easily checked. Let g, h € I'm. From the commutative
diagram
(Z[s1, s2, s3'))> —2— (Z[s1, 52, 531])° —— (Z[s1, 52, s3'])?
/ /0l

i i ( ) Evso Evso

Z:& Z:,’, Z.‘i

em(g) pum(h)
/

it readily follows that ¢pu(hg) = pu(h)pm(g).

Proposition 3.16. We have ker¢gm = G, so that Tu¢ ™ = Tmu/Ga.
Proof. Let g € ker¢om. By Corollaries 3.14 and 3.11, there exist unique elements v € 'y,
g1 € G1, g2 € Gz, g4 € Gasuch that
g =Vvgigigz.
We have
Pu(g) = pu(v)pm(g1)pu(gz) = id.
By Corollary 3.7, together withG1 N G% = {id}, we have
¢u(v) =id, ¢m(g1) =1id, ¢u(g2) = id.

_ 1 ny.
This clearly implies that g1 = id and g2 = id. The element v is of the form ¥ = H.f:l Ui,
with i€ {1, 2, 3}, so that
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mn

n
em(v) = H o (vi;) = H v,
j=1 ]

Jj=1

id=
Since vi freely generate I'* (by Theorem 3.3), we necessarily have n = 0, and v = id.

This shows that ker¢pu € G4. The opposite inclusion is obvious.

Lemma 3.17. The morphism ¢u defines isomorphisms between the group G:and G;:‘for
i=1, 2, 3, and between the group I'vand 1y,

Lemma 3.18. The evaluation morphism Evs,is ¢u-equivariant, i.e.,

Eva(g - 0) = dm(g) - Eva(a),  g€Tw, o€ (Zlsi. 52, 55'])°

4. Markov Trees

4.1. Decomposition of M¢. The set M¢ of all nonzero solutions of the
Markov equation (1.1) admits a partition in four subsets,
M = Mf,_ UMi, U M'ri‘:; u M;:s, (4.1)

whereMY consists of all positive triples and™ij consists of all triples with negative
entries in the i-th and j-th position.
We have a projection™ - M = ME forgetting the minuses.
Lemma 4.1. The action of the Vi'ete group Iy on M° preserves each ofM:L,
My Mis, MSs The action of the group (GS, IY,) on M° preserves the setsM5
and M2 U M{3UMS;s and commutes with the projection™ * M — M4,
4.2, Markov tree. Solutions of the Markov equation (1.1) can be
arranged in a graph, called the Markov tree.

Definel := o505, R :=ofvi € I'y; Given (* Y z) € M:-, we have

xxy-2Yy) yyz - xz ) (

(42) -

xyz ) g

The Markov tree T is the infinite graph obtained by iterating the operations (4.2)
starting from the initial solution (3, 3, 3).
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(3,102 39) (39 582 15) (15 1299 87) (87, 507, 6)
~ _— ~ _
(3 39 15) (15, 87, 6)
— -

(3 15 6)
|
(3 6 3)
|
33 3
h ( ) h

0
0

Thgorem 4.2 [31],[30], [1, Theorem 3.3]. Up to permutations in*5, all the elements of
+ appear exactly once in the Markov tree T .

Corollary 4.3. The group I'n* acts transitively on the set M¢.

Proof. Let x, y € M¢. There exist 71: 72 € {GY, GY5) such that y1x, y2y are vertices of T,
by Theorem 4.2. So, there existo1, 92 € I'i; such that 61(3,3,3)=yixand 62(3, 3, 3) =
y2y. We have

vy 0a0 ' =y,

Theorem 4.4 [1, Lemma 3.1]. The triples (3, 3, 3) and (3, 6, 3) are the only vertices of
T with repeated numbers.

4.3. Extended Markov tree. Define the extended Markov graph as the infinite graph
T ext with vertex set M. We connect two vertices (a, b, c), (a% b, c0) of T extby an edge
if (a, b, c) = vic(a®, bP, c0) for some i € {1, 2, 3}, where vicare Vi'ete involutions.

(15 3, 6) (3 15 6)
\ /
(3 3 6)

(6, 15 3) (3 3 3) (15 6 3)

(6 3 3) (3 6 3)

(6, 3, 15) (3, 6, 15)
|
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Theorem 4.5. The Vi'ete gro%p acts freely on the vertex setM% of the extended Markov
graph with one orbit,Mir =17(3, 3. 3), Moreover T extis a tree.

The graph T extis called the extended Markov tree.

Thg proof of Theorem 4.5 requires the following lemma. Define the function
m: MG = Nyhich assigns to a triple (x, y, z) its maximal entry. It is known that
minm(M) =3

and that such a minimum is achieved at (3, 3, 3).

Lemma 4.6. For any (7> 4. %) € MEAAG, 3. 3)} there exists a unique Viete
transformation”'?, with i € {1, 2, 3}, such thatm(v§ (z, y, 2)) < m(x, y. z)

Proof. We have vi¢(x, y, z) = (yz - x, ), ), v2°(x, y, Z) = (%, xz
-22),vs(x Y, 2) = (X, y, Xy -
z).

We claim that if m(x, y, z) = x, then the transformation isvis if m(z, y, z) = Y then the
PR - —_— -

transformation isv3: if m(z, y, z) = Z then the transformation is?5.
To prove the first case we need to show that yz -x 6 x, xz -y > x, xy -z > x. We may

assume that z 6 y < x. Consider the function ¢: R — R defined by
¢(t) :=t2+y2+ 72 - tyz
We have ¢(x) = ¢p(yz - x) = 0, so that
() = (t-x)(t- vz -x)).
If yz — x> x, so that ¢(t) > O for all £ <x. Then on the one hand we have y < x, but on the
other hand we have z26 y2= 2y2+ 726 3y26 zy2= ¢(y) = 2y2+ z2 - y2z6 0.
This shows that the assumption yz - x > x is contradictory. We also have

XZ-y>3X-Yy>2X>XXy-Z

>3x-z>2x>Xx

This completes the proof in the first case. The other two cases are proved similarly.

Corollary 4.7. Any (7, y, 2) € M} can be transformed to (3, 3, 3) by an element of the
Vi‘ete group I'ey. Consequently,MJr =1y(3.3,3)

Proof of Theorem 4.5. 1t is sufficient to prove that if v(3, 3, 3) = (3, 3, 3) for some v €
ey, then v = id. Any element v € I'“vis of the form

n
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v=Yye k=123 (4.3)
k=1
Define
J
mj = m[( H v,‘k)(S 3, 3)} j=1,...,n.
k=1
Define

M := max m;, J:=min{j:m; =M}
i=1,....n .
We claim that?"gm = '”f,,_ Indeed, the assumption vi.1 6= vywould imply that my.1 > my
= M, which is impossible. Hence, we can decrease the number of factors in (4.3) by
two. By repeating the argument, we prove that all the factors in (4.3) cancel.
The same argument shows that the graph T ethas no loops.

Corollary 4.8. For any i, j the Vi‘ete group T'“vacts freely on the set M<; with one orbit.

5. Distinguished Representatives

5.1. *»-Markov group orbit of initial solution. Let '] be the orbit of the
initial solution I of the *-Markov equation (2.1) under the action of the *-
Markov group I'm. Any element of I'm/ is a solution of the *-Markov equation
(2.1), see Proposition 3.8.

Proposition 5.1. The evaluation morphism Evs,maps the set I'ul onto the set Mcof all
nonzero solutions of the Markov equation (1.1).

Proof. If a € T'ml, then Evs,(a) € M¢, by Proposition 2.1. We check surjectivity. Let x € Me.
There exists y € I'mcsuch thatx =y - (3, 3, 3), by Corollary 4.3. There exists "y € 'vsuch
that ¢u(y") =y, by Proposition 3.15. We have that Ev:. (7 (s1, 83, 1)) = X, by Lemma
3.18.
5.2. Initial solution and *Vi'ete group. Let
p=(a, b, c) e M. Let v € T pe the unique element of the Vi'ete group
such thatvr(3, 3, 3) = (a, b, c). Define the distinguished element f° € T'ul by the
formula

ﬁ’ = VPI,
where v?is considered as an element of the *-Vi'ete group I'v. Notice that evs,(f?)= (a,
b, c).

r, : e g .
Lemma 5.2. For?: P € M 1t """ € I pe the unique element such that vrorp =
p°. Then vroprfp = fpo, where vror is considered as an element of T'v.

Proof. We have vpopfp = vpopVpl = vpol.
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Theorem 5.3. Let? = (@, b, ¢), p" = (a', V', ¢') € MS o cuch that the triple p®is a
permutation of the triple p. Then frois obtained from f° by the same permutation of
coordinates of fp composed with a transformation from the group Ga.

Proof. Let =B 3) andfp = (i 7 N f}f). Let w be the permutation such
that the evaluation of wﬁﬂls (a, b, c), the same as the evaluation of f?.
The triple wffolies in the orbit I'ul. So
po

of =vgag1g2l = vgagal = vg~4l, (5.1)
where v € T'v, g; € Gj, "g4 € Ga. Here we may conclude that g1 = 1, since (a, b, ¢) are
positive. We may also conclude that gsgzl = g4l for some “gs € Ga since any
permutation of coordinates of the initial solution (s1, s1/s3, s1) can be performed by a
transformation from Gs. On the other hand, we also have

fo=vi, (5.2)
where vin (5.2) is the same as in (5.1). We also know that?d1 = 94v, for some
94 € G4 by Proposition 3.9. Hencew/? = vgsl = givl = g4 f" This proves the
theorem.
Theorem 5.4. Let? = (@, b, ¢) € MS [ p° = (a® bo, c®) € M¢be such that
(a% bo, c9) is obtained from (a, b, c) by a permutation and possibly also by change of sign
of two coordinates. Let f € Tul be an element, whose evaluation is p°. Then fis obtained
from f? by an element of hG1, Gz, Gai.

Proof. We have f0 = gvl, where g € hGi, Gz, Gsi and v € T'v. The evaluation of vl has to be
a permutation of (a, b, c),

Evs(vl) = a(a, b, ¢), 0 € G2

Hence VI = fo(a,b,c). By Theorem 5.3, fo(a,bc) = uof(abc), 1 € Ga. Hence f0 = gvl = guoflaba),

which proves the theorem.

6. Reduced Polynomials Solutions and *-Markov Polynomials

Any solution of the *-Markov equation (2.1) can be written as [fl*s 2 f:ik), where

fi, f2, f3are Laurent polynomials. For any mi, ms € Z, the triple
(S5 F1)" S5 o (57 f3))
is also a solutlon Given a solution (/1 /2 f?) there eXISt unique mi, m3 € Z such that
s5'' f1, 83" fsare polynomials and each of$3 f1. 85" f3is not divisible by s3.

A solution (fl J2u [3) of (2. 1y is called a reduced polynomial solution if each of fi,
f2, f3is a nonconstant polynomial in s1, 52, s3not divisible by ss. In this case we say that
[fl*' 2. f;) is a reduced polynomial presentation of the Markov triple
(a, b, c):= Evsu(ff: fa, £3).

For example,

(s, 83— s, 81). (5B sas? — 52) — sas, (83 — 2)") 61)



22 G. COTTI AND A. VARCHENKO

are reduced polynomial presentations of the Markov triples (3, 6, 3) and (3, 15, 6).
In this section we prove that any Markov triple (a, b, c),0 <a<b,0<c<b,6 6 b has

a unique reduced polynomial presentation (fik.n f2, 13) € Tl gee

Theorem 6.4.

6.1. Degrees of a polynomial. Let f{s1, sz, s3) be a polynomial. We consider two
degrees of f: the homogeneous degree d := degf with respect to weights (1, 1, 1) and
the quasi-homogeneous degree q := Degf with respect to weights (1, 2, 3).

Lemma 6.1. Let f{s1, 52, s3) be a polynomial of homogeneous degree d not divisible by s3,
then

[ S2 81 1
9(511 52:33) = ‘Sg.f(_a D _)
53 S3  S3

(6.2)

is a polynomial of homogeneous degree d not divisible by ss. If additionally the
polynomial f(s1, sz, $3) is quasi-homogeneous of quasi-homogeneous degree q, then g(s,
2, $3) Is a quasi-homogeneous polynomial of quasi-homogeneous degree 3d-q.

L1 U2 UG, : . . : . .
Proof. If¥1 92 ;'s is a monomial entering the polynomial f with a nonzero coefficient,
ay jas d—(a1+azx+taz) . . . .
then%2 81753 is a monomial entering g with a nonzero coefficient. Hence g

is a polynomial.

a1 _as d—(a1+az+tas)
The homogeneous degree of2 51753 equals d-as. Hence degg 6 d.

- - e . . U1 G2 .
Since f is not divisible by s3, there is a monomial 51 52" entering f. Hence the

. ay _as d—(ar1+az)
monomial %2 51”53 enters g and has homogeneous degree d. Hence degg = d.
) . . ay ag _ag )
Since degf = d, there is a monomial®i 52" 53" entering f such that a1 + a2 + a3 = d.
. ay ag d—(ar+as+az) _ _ay as . .
Then the monomial 52" 51753 = 527 51" enters g and hence g is not divisible

by ss.
If additionally all monomials®1’ 527 83° ‘i’f (f ha"‘i_ th)e property a1 + 2az + 3a3 = q,
1o (d—(a1+as+a: .
then the corresponding monomials2 $1°%3  ~  of ghave the property

2a1+az+ 3(d - (a1+ az+a3))=3d - q.

The polynomial g will be denoted by u(f). Clearly

eVsn(f) = eVSD(g), ,uz(f) :f: (63)
The polynomials f, g are called dual. The bi-degree vectors of dual polynomials are
(dq), (d3d-q) (6:4)

The linear transformation
72> 72, (dq)7—(d 3d-q),

is an involution with invariant vector (2, 3) and anti-invariant vector (0, 1). It is
convenient to assign to the polynomial fthe 2 x 2 degree matrix

d d
ue (o)
¢ 3d—q) (6.5)

whose columns are the bi-degrees of fand u(f). Then
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d d d d 0 1 N
M, = (3d_ q q) - (q 3d — q) (1 U) = M;P, 66)

where P is the permutation matrix.

6.2. Transformations of triples of polynomials. Suppose that f = (f3, f2, f3) is a triple
of polynomials fi, f2, f3in s1, s2, s3such that

(1) each fiis not divisible by s3,

(2) each fjis a quasi-homogeneous polynomial with respect to weights (1,2,3),

(3) denote by (d; g;) the bi-degree vector of f;, then
(dy, q1) + (d3, q3) = (d2, q2). (6.7)
Such a triple (f3, f2, f3) is called an admissible triple. Equation
(6.7) is equivalent to the equation

Mpa+ Mp= Mp.
Define new triples
Lf = (u(f1), p(fr)f2 — 55 fs, f2), (6.8)
Rf = (fa, fanl(fs) — s 1. n(fs)), (6.9)

The transformation f 7— Lfis called the left transformation of an admissible triple f,
because of the new first and second terms of Lfare on the left from the surviving term
f2. Similarly the transformation f7— Rfis called the right transformation, because of
the new second and third terms of Rf are on the right from the surviving term f2.
Theorem 6.2. Let f = (fi, f2, f3) be an admissible triple of polynomials with bi-degree
vectors ((di, q1), (dz, qz2), (d3, 3)). Then the triples Lf and Rf are admissible. The bi-
degree vectors of Lf are

((d1, 3d1-q1), (d1+ d2, 3d1- q1+ q2), (d2, q2)) (6.10)
and the bi-degree vectors of Rf are

((d2, q2), (dz+ d3, gz + 3d3 - q3), (d3, 3d3 - q3)). (6.11)

: di g . d3

Proof. Clearly the polynomialsl‘-(fl)fz — 53" f3, Jan(f3) — 53" J1 are nonconstant and
are not divisible by s3. The homogeneous degrees of Lf are (di, d1 + dz, d2). This follows
from Lemma 6.1 and admissibility of the triple f. For the quasihomogeneous degrees
we have

Deg(u(fi)f2) = 3d1 - g1 + g2 = 31 + qa= Deg(*5 f2),
by Lemma 6.1. Hence n(fr)fo— '-"'gl fsis a quasi-homogeneous polynomial of
quasihomogeneous degree 3d1 - q1+ qz2. The quasi-homogeneous degree of u(f1) is 3d1
- q1. This proves the statement for Lf. The argument for Rfis similar.

Corollary 6.3. Let f = (f1, f2, f3) be an admissible triple of polynomials with degree
matrices (M1, M2, M3). Then the degree matrices of Lf and Rf are

(MiB M1P + M2, M2), (M2, M2 + MsP, MsP), (6.12) where P is the

permutation matrix.
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6.3. Reduced polynomial solutions

Theorem 6.4. (i) Let (a, b, ¢) be a Markov triple, 0 <a < b, 0 <c < b, 6 6 b. Then there

exzsts a unique reduced polynomzal solution (f¥s foy f3) € Tl , such that

Evs, (f1, f2, Jq i) = (a, b, c), Moreover, for that reduced polynomial solution
(ff. f2 f3) the triple f= (f1, f>, f3) is admissible.

(i) Let (fi+ f2. f3) be the reduced polynomial presentation of a Markov triple

(a,b,c)with0<a<b,0<c<b, 66b. Denote f=(fi, f2, f3). Let Lf =

(1) p(fi1)f2 = s5° f3, f2) and RS = (2. fon(fs) — s5° f1, 11(f3)) be the left and

right transformations of f. Then

(u(f1)*s u(fi)fo = 55 fa, f3) (6.13)
is the reduced polynomial presentation of the Markov triple (a, ab - ¢, b) and
(f35 fan(fz) = 5 i n( )"y (6.14)

is the reduced polynomial presentation of the Markov triple (b, bc - q, c).

Proof. First we prove the existence. The proof is by induction on the distance in the
Markov tree from (a, b, c) to (3, 3, 3).

Let us find the reduced polynomial presentations in I'ul for the Markov triples
(3,6, 3), (3, 15, 6). We transform the initial solution as follows,

I=(s1,8%2,51) =7  (5+1, 521 - 52, S1+) = (52/53, 521 — 52, §%1)

7- (52, 521 = 82, (8351)%) =7 (5%2, 52(521 — 52) — 5351, (521 — §2)+).
The triples
(s, 82— 82, 81), (53, sa(s3 — s2) — sysu, (83— s2)") (6.15)
are desired reduced polynomial presentations of (3, 6, 3) and (3, 15, 6). For example,
the polynomials 52 sa(s] — s2) — s3s1, 51 — 52 are quasi-homogeneous of quasi-
homogeneous degrees (2, 4, 2) with 2 + 2 = 4 as predicted and of homogeneous
degrees (1, 3, 2) with 1+2 = 3. These three polynomials form an admissible triple.

Now assume that a Markov triple (a, b, ¢),0 <a <b,0 <c < b, 6 6 b, has a reduced
polynomial presentation (ff, [z, f:?), where (f, f2, f3) is an admissible triple. Then

(i f2, f3:) = ((f1)/sd3s, f2, f3+) 7= (1(f1), f2, (sd31f3)+)
7= (), ulf)fe-s%Ys ) (6.16)

and
(fix f2, f3+) = (f1x, fo, p(f3)/sd33) 7= ((sda35f1)+, f2, u(f3))
7= (f2r, u(B)f2 - 59331, p(f3)7)  (6.17)

are transformations by elements of I'm. The triple ( u(fo)*, u(fr)fa — 55" fa, f5)

presents the Markov triple (a, ab—c, b), and the triple (fz ﬂ(fs)f2 — 5 fi, 1(fa)")
presents the Markov triple (b, bc-a, c). These two triples satisfy the requirements of
part (ii) of the theorem.
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Let us prove the uniqueness. Let (ff, [z, f.‘?) and (h’f, ha, h‘?i) be two reduced
polynomial presentations of a Markov triple (a, b, c) with 0 <a <bh,0 <c<b, 6 6 b. By
Theorem 5.4 (17, k2, h?;) is obtained from (f1*- fa. f:?) by a transformation of the form
929194, where g; € G;. It is clear that a transformation g4 cannot be used because it will
destroy the property of fif2f3 to be not divisible by s3. We also cannot use g1 because it
will destroy the fact that (.ff 2 f:?) represents a positive triple (a, b, c). If the
numbers g, b, c are all distinct, we cannot use g2. If (a, b, c) = (3, 6, 3), the presentation
(515 st — 82, 51) is symmetric with respect to the permutation of the first and third
coordinates. The theorem is proved.

6.4. »Markov polynomials. We say that a polynomial P(si, sz, s3) is a *Markov
polynomial if there exists a Markov triple (a, b, ¢),0 <a<b,0 <c<b,
6 6 b, with reduced polynomial presentation (fl*v f2, f3) €T I such that P = fa.

In particular, this means that P is quasi-homogeneous and is not divisible by s3. The

polynomial sz will also be called a *-Markov polynomial.

We say that a polynomial Q(s1, sz s3) is a dual *-Markov polynomial if Q is not
divisible by s3and p(Q) is a *-Markov polynomial.

In particular this means that Q is quasi-homogeneous.

For example, 57 — 82, 52(s1 — s2) — 8351 are *-Markov polynomials, since they
appear as the middle terms in the reduced polynomial presentations in (6.1) and
53 — 5153, 51(53 — 5153) — 5352 are the corresponding dual *-Markov polynomials.

Corollary 6.5. Let (a, b, ¢) be a Markov triple with 0 <a<b,0<c<b,66 b.

Let [T+ f2. f3) € T'nil pe the reduced polynomial presentation of (a, b, c). Then each
of f, f3is either a x-Markov polynomial or a dual *-Markov polynomial. Moreover, if (g1,
92, g3) € T'ml is any presentation of (a, b, c), then

gL =s5'p(f1), g2 =s5fo. g3 =s5ulfs) (6.18)

for some ki, ke, ks € Z, and hence each of g1, g3 is either a *-Markov polynomial or a dual
*-Markov polynomial multiplied by a power of s3, and gz is a *-Markov polynomial
multiplied by a power of s3.

Proof. The first statement follows from Theorem 6.4 and the second statement follows
from Theorem 5.4.

7. Decorated Planar Binary Trees

7.1. Sets with involution and transformations. A set with involution and
transformations is a set S with an involution 7: S — §, t2=ids, a subset T C

S x S x Swith a marked pointt(l = (19, 13, 13) € T and two maps

L:T-T (t, t2, t3) 7— (t(t1), L2(ty, t2, t3), t2),
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(7.1)
RT-T (tytt3)>7 (t2, R2(ty, to, t3), T(t3)),

where L2, R2: T — S are some functions.
Amorphism¢: (S, T t% 1, L, R) = (S T9, t%, 79 LY, R%) isa map S — S°which commutes
with involutions and induces a map (T, t°) — (79, t%) commuting with transformations.

Here are examples.

7.1.1. Let S be the set of all polynomials in Z[s3, s2, s3] not divisible by s3and
T c S3the subset of all admissible triples. Let

t0 = (52, S2(5%1 — 52) — 5351, 521 - 52), (7.2)
T:5-5, f7- u(f), (7.3)
L:T-T (f1: fas f3) = (u(f1)s pfr) fo — 55 fa, f2), (7.4)
RT-T (f1, fo, f3) = (fo, fop(fa) — s5° 1, u(fa), (7.5)

where py was defined in Section 6.1.

7.1.2. LetS=C%and T c C2x C2x C2the subset of all triples of vectors wy,
w2, wasuch that w1+ ws = wa. Let

0=((12), (3 4), (2 2)), (7.6)
T:C2> (2 (dq)7-(d 3d-q), (7.7)
L:T-T (w1, w2, w3) 7= (t(w1), T(w1) + wa, wa), (7.8)
RT-T (w1, wz, w3) 7— (w2, w2 + T(ws), T(ws)). (7.9)

7.1.3. Let S be the set Mat(2, C) of all 2 x 2-matrices with complex entries
and T c Mat(2, C)3the subset of all triples of matrices M1, M2, M3 such that M1

+ M3= M. Let
() (G5 6 9)
2 1) \4 5] \2 4 : (7.10)
T : Mat(2, C) -» Mat(2, C), M7- MP (7.11)
L:T->T (M1, M2, M3) 7= (M1B, M1P + M2, M2), (7.12)
RT-T (M1, M2, M3) 7= (M2, M2+ M3B, M3P). (7.13)

7.1.4.Let S = Cand T c C3the subset of all triples (w1, w2, ws) such that
w1+ ws=wz. Let

t0=(1, -1, -2), (7.14)
T:C—>C( w7--w, (7.15)

L:T->T (w1, wz, w3) 7— (-w1, —W1+ Wz, wa), (7.16)
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RT-T (w1, wz, w3) 7= (w2, w2 - w3, —ws3). (7.17)

7.1.5.LetS=Cand T = C3. Let

t0=(3, 15, 6), (7.18)
T=1idc (7.19)
L:T-T (a b,c)7- (a,ab-c D), (7.20)
RT->T (a, b, c)7— (b, bc - aq, c). (7.21)
7.1.6.LetS=Cand T=C3. Let
t0=(1, 3, 2), (7.22)
T=1idc (7.23)
L:T-T (a,b,c)7— (a,a+b, b), (7.24)
RT-T (a, b c)7- (b b+cc) (7.25)

7.1.7. De-quantization. Let S be the set with involution and transformations in
Example 7.1.1 and S the set with involution and transformations in Example 7.1.2.
The map

$:5-5%  f7-(deg(f), Deg(f),
defines a morphism of the sets with involution and transformations.

We may think of that ¢ : S — S%is a de-quantization of the set S with involution and
transformations as explained in Section 1.4.3. Namely, Let s1 = c1e%*#, s2 = c2e%*26, s3=
c3ew3f, where a, f§ are real parameters which tend to +co and ¢y, ¢z, c3are fixed generic
real numbers. If f{’s1, 52, 53) is a quasi-homogeneous polynomial of bi-degree (d, q), then
Inf{cie**B, c2e*+28, c3e2+3F) has leading term da+qf3 independent of the choice of c1, ¢z,
c3, which may be considered as a vector (d, q).

Taking the leading terms of all quasi-homogeneous polynomials in formulas of
Example 7.1.1 we obtain the 2-vectors in formulas of Example 7.1.2. For instance,

Figure 2.
the triple of leading terms of the triple (52: s2(s7 — s2) — 8351, 57 — 52) is the triple
(a+ 2B 3a+4p 2a+ 2f), cf. (7.2) and (7.6).

7.1.8. Let S be the set with involution and transformations in Example 7.1.1 and
S%the set with involution and transformations in Example 7.1.3. The map

¢: S - S° f7- Mg
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where My see in (6.5), defines a morphism of the sets with involution and
transformations.

7.1.9. Let S be the set with involution and transformations in Example 7.1.3 and S°the
set with involution and transformations in Example 7.1.4. The map

. a a:
o: 8 — 5, ( H u) 9] — 29

az1  d22
7

defines a morphism of the sets with involution and transformations.

7.1.10. Let S be the set with involution and transformations in Example 7.1.1 and S°
the set with involution and transformations in Example 7.1.5. The map

P:S—> So, f7- evs(f),
defines a morphism of the sets with involution and transformations.

7.1.11. Let S be the set with involution and transformations in Example 7.1.1 and
S%the set with involution and transformations in Example 7.1.6. The map

¢: S - S°, f7— deg(f),

defines a morphism of the sets with involution and transformations.

7.2. Planar binary tree. Consider the oriented binary planar tree, growing from floor,
and the domains of its complement, see Figure 2. The boundary of any domain of the
complement has a distinguished vertex with shortest number of steps to the root
along the tree.

There are two initial domains, which touch the floor. In Figure 2 they are D1and Ds.
The root of the tree is the distinguished vertex of the two initial domains.

The boundary of the left initial domain Di consists of the left half-floor and the
infinite sequence of edges I, I, ..., see Figure 2. In the notation I, the letter I means
that the domain D1 is on the left from the edge, when we move from the

r3

r2 13

ri

Figure 3.

root to this edge along the tree, and k means that it is the k-th edge counted from the
root of the tree.
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The boundary of the right initial domain D3 consists of the right half-floor and the
infinite sequence of edges r, r», ..., see Figure 2.

The boundary of any other domain consists of two infinite sequences of edges ri,
ra, .. and I, I, ..., see Figure 3.

Every edge of the tree gets two labels, a label I from the left and a label r» from the
right. We denote such an edge with labels by lq|rs. The first edge of the tree has labels
I1|r1. All other edges of the tree have labels

hirk or Ilrn with k>1,

see Figure 3.

7.3. Decorations. Let (S, T t% 7, L, R) be a set with involution and transformations.
First we assign an element of the set T to every vertex of the planar binary tree
different from the root vertex, and then assign an element of the set S to every domain
of the complement. Thus the decoration procedure consists of two step.

Denote by vithe vertex of the tree surrounded by the domains D1, Dz, D3 in Figure
2. We assign to the vertex vi the marked tripletu = (8, 13, 13).

Let v2 be any other vertex of the tree different from the root. Let p be the path
connecting vi and vz in the tree. The path is a sequence of turns pspn-1...p2p1, where p;
is the turn to the left or right on the way from v1 to v2. We assign to vz the element t €
T obtained from t° by the application of the sequence of transformations L and R,
where we apply L if pjis the turn to the left and apply R if p;is the turn to the right. For
example, the element LRt?is assigned to the vertex v2in Figure 4.

This is the end of the first step of the decoration.

At the second step we assign to the initial domains D1, D3 in Figure 2 the elements
t1, tg, respectively, wherel!: 3 are the first and third coordinates of the initial triple (
9,14 19).

C2

Figure 4.

Let C be any domain of the complement different from Di, D3. Let v be the
distinguished vertex of the domain C, and ¢ = (3, tz, t3) the element of T assigned to v.
We assign to C the element ¢2.

For example we assign the element!? to the domain Dz in Figure 2.

This is the end of the decoration procedure.
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The decoration associated with (S, T t% 7, L, R) is functorial with respect to
morphisms of sets with involution and transformations.

Let us describe how to recover the element of T assigned to a vertex from the
elements of S assigned to the domains of the complement.

Theorem 7.1. Let v be a vertex surrounded by domains C1, C, C3 as in Figure 4. Let t,
t2, t3 be elements of S assigned to Ci, Cz, Cs, respectively, at the second step of the
decoration. Let the edge entering the vertex v has labels la|rp. Then the element (t9-1(t1),
tz2, T0-1(t3)) is an element of the set T, and that element was assigned to v at the first step
of the decoration.

Proof. The proof is by induction on the distance from v to the root.

7.4. Examples

7.4.1. Let (S, T t% 1, L, R) be the set of Example 7.1.1. Then the domains of the
complement to the binary tree are labeled by *-Markov polynomials. The resulting
decorated tree is called the *-Markov polynomial tree, see Figure 5.

As(s) As(s)

As(s) A7(s)

Figure 5.

Figure 6.

The polynomials Ai(s) are given by the formulas Ai(s) =

52,
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A2(s) = s2(5%1 — $2) — 5183,

A3(s) =521- 59,

A4(s) = 3152 — S1522 — 252153 + 5253,

As(s) = 521532 — S42 — $315253 + S12523 — 52523,

As(s) = 531522 - 51532 — 35215253 + 252253 + 51532,
A7(S) = S41532 — 2521524 + S52 — S155253 + S1352253 + §41523 — 352152523 + 2522523 + 51833,
A8(S) = 541532 — 521542 — §515253 — 251352253 + 25152353 + 2514523 + §1252523 — S22523 — 51533,
A9(s) = 531552 — 51526 — 254153253 + S5253 + S5152523 + 2531522523 — S1532523 — S41533 + S1543.

Let v be any vertex. It enters the boundary of three domains, which we denote by
C1, C2, C3 as in Figure 4. Let fi, f2, f3 be the *-Markov polynomials, assigned to the
domains Ci, Cz, C3, respectively at the second step of the decoration. Let the edge
entering the vertex v have labels Io|rs. Then the triple of polynomials (te-1(f1), f2,
th-1(f3)) is assigned to v at the first step of decoration, and the triple of polynomials

((ra-1(f1))» f2, (Tp-1(/3))+)
is a reduced polynomial solution of the *-Markov equation (2.1).

7.4.2. Let (S, T t°% 1, L, R) be the set of Example 7.1.2. Then the domains of the
complement to the binary tree are labeled by 2-vectors with positive integer
coordinates. The resulting decorated tree is called the 2-vector tree, see Figure 6.

7.43. Let (S, T t°% 1, L, R) be the set of Example 7.1.3. Then the domains of the
complement to the binary tree are labeled by 2 x 2-matrices with positive integer
coordinates. The resulting decorated tree is called the matrix tree, see Figure 7.

7.4.4. Let (S, T t°% 1, L, R) be the set of Example 7.1.4. Then the domains of the
complement to the binary tree are labeled by integers. The resulting decorated tree
is called the deviation tree, see Figure 6.

(ofn),  (5%)

Figure 7.
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154923

22360134

Figure 8.

7.4.5. Let (S, T t°% 1, L, R) be the set of Example 7.1.5. Then the domains of the
complement to the binary tree are labeled by Markov numbers. The resulting
decorated tree is called the Markov tree, see the left picture in Figure 8.

7.4.6. Let (S, T t°% 1, L, R) be the set of Example 7.1.6. Then the domains of the
complement to the binary tree are labeled by positive integers. The resulting
decorated tree is called the Euclid tree, see the right picture in Figure 8.

The decorated trees in Figures 6-8 can be obtained from the *-Markov polynomial
tree in Figure 5. Namely the 2-vector tree is obtained by taking the bi-degree vectors
of *-Markov polynomials; the matrix tree is obtained by taking the degree matrices of
*-Markov polynomials; the deviation tree is obtained by assigning to a *-Markov
polynomial with bi-degree (d, q) the number

q-(3d-q)=2q-3d;

the Markov tree is obtained by applying the evaluation map evs,; the Euclid tree is
obtained by taking the homogeneous degrees of *-Markov polynomials.

7.5. Do asymptotics exist? Having a decorated tree it would be interesting to study
asymptotics of the triples assigned to vertices along the infinite paths in the tree going
from root to infinity. In [41], [42], [43] the Markov and Euclid trees were considered.
For any such a path the Lyapunov exponent was defined. The Lyapunov function on
the space of paths was studied. Relations with hyperbolic dynamics were established.
The interrelations of the triples assigned to vertices of the Markov and Euclid trees
were analyzed in [48] to study the growth of Markov numbers ordered in the
increasing order. More precisely, if (u, v, w) is a Euclid triple with u+w = v, then the

triple
a=2coshuy, b=2coshy, c=2coshw (7.26)

is a solution of the modification of the Markov equation
a?+ b2+ c2-abc=4, (7.27)

considered by Mordell [32]. This observation was used in [48] to evaluate asymptotics
of Markov numbers in terms of asymptotics of Euclid numbers, see [42].
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Combining these remarks we observe a full circle of relations. We started with
Markov triples and upgraded them to triples of *-Markov polynomials; taking the
homogeneous degrees of *-Markov polynomials we obtained the Euclid triples;
formulas (7.26) send us to triples solving the modified Markov equation (7.27); and
the triples solving equation (7.27) approximate the true Markov triples. This circle of
relations is a combination of “quantizations” and “de-quatizations”.

7.6. Values of 2q - 3d

Theorem 7.2. Let P be a *-Markov polynomial of bi-degree (d, q). Then |2q-3d| =1 ifd
is odd and |2q - 3d| = 2 if d is even. Moreover, the only triples of integers attached to
vertices of the deviation tree are the elements of the set

T ={(1,-1,-2), (-1,1,2), (-2, -1,1), (2, 1, =1), (1, 2,1), (-1, =2, -1)}

Proof. The statement is true for the triple t°= (1, -1, -2) assigned to the first vertex of
the deviation tree, see (7.14). It is easy to check that the set T?is preserved by the L
and R transformations in formulas (7.16) and (7.17). This

_3d

2+O

q
proves the theorem.

Corollary 7.3. We have
(1) as d—oo. (7.28)

7.7. Newton polygons. Let P be a *-Markov polynomial of bi-degree (d, q). Let Nrbe
the Newton polytope of P. Recall that for each monomialsi" $3°55°, entering P with
nonzero coefficient, we mark the point (a1, az, as) € R3, and the Newton polytope is
the convex hull of marked points.

Since P is a quasi-homogeneous polynomial of degree g, the Newton polytope is a
two-dimensional convex polygon, lying inside the bounding polygon Na,

Naq={(ai, az a3) ER3| a1+ 2az2+ 3az=q’ Og ai, az as6 d}. (7.29)

We divide all coordinates by d and obtain the normalized Newton polygon N pinside

the normalized bounding polygon N_d,q,

N aq={(ay, az az) ER3| a1+ 2az+ 3az=q/d; 0 6 a1, az, az6 1}. (7.30)
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az

©, 0, 7)

ai

(0,0 %0

Figure 9.

It is convenient to project the polygons N rand N_d,q along the asz-axis to RZ with
coordinates ai, az and obtain the projected normalized Newton polygon N pinside the

projected normalized bounding polygon N~d,q.

7.8. Limit d - . The Euclid tree shows the distribution of the homogeneous degrees
of x-Markov polynomials. The homogeneous degree d tends to infinity along the paths
of the planar binary tree from root to infinity. Along these paths we have g —» 3d/2. In

this limit the normalized bounding polygon N_d,q turns into the quadrilateral N_oo,

N-, = {(ay, az, as) ER3| a1+ 2az+ 3a3=3/2; 06 a1, az, az6 1}, (7.31)

and the projected normalized bounding polygon N~d,q turns into the projected
quadrilateral NNoo, the convex quadrilateral with vertices (0, 0), (3/4, 0), (1/2, 1/2), (O,
3/4). See the pictures of N wand N win Figure 9.

Question. Could it be that for any infinite path from root to infinity, the projected
normalized Newton polygon N ptends in an appropriate sense to a limiting shape
inside the projected quadrilateral N o?

We show that this is indeed so in the two examples of the left and right paths of the
planar binary tree, which are related to the *-Fibonacci and #-Pell polynomials
discussed in Sections 8 and 9. In the first case the limiting shape is the interval with
vertices (0, 0), (1/2, 1/2), see Section 8.3. In the second case the limiting shape is the
whole projected quadrilateral N~oo, see Section 9.3.

7.8.1. Any x-Markov polynomial P has a monomial of the form 91;;3"3 or .92r9§3entering
P with a nonzero coefficient and has no monomials of the form#3". This easily follows
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by induction. Hence for any infinite path from root to infinity the point (0, 0) is a

limiting point of the projected normalized Newton polygon N ».
7.8.2. Elementary computer experiments show that the expected limiting shape of the

polygon N» along an infinite path is a 6-gon like in Figure 10, with width

monotonically increasing from 0, for the *-Fibonacci polynomials, to the maximal
value, for the #-Pell polynomials, when the path changes from the leftmost to the
rightmost. This 6-gon is symmetric with respect to the diagonal a1 = az, and hence its
width completely determines the 6-gon. It looks like the speed of convergence to the
limiting shape increases if the path has many changes of direction from left to right
and back.

az
Figure 10.
. © %
7.9. Planar binary tree decorated by
convex sets. The study R of the limiting shapes of
27 2

Newton polygons is closely related to the
following  decorated planar binary tree.

7.9.1. Consider R2 with ‘\YVidt coordinates ai, az. For a

N ai
subset 4 & Rz we . denote by conv[A]
(0, 0) 1

the convex hull of A. We denote by u(A) the
subset A reflected with respect to the diagonal a1 = az2. For d € R0, we denote
dA ={dv|veEA}
For subsets 4, B € R2we denote by A + B the Minkowski sum, A + B =
{a+b|a€A beB).

7.9.2. Define a set (S, T t9, 7, L, R) with involution and transformations. Let S be the set
of all pairs (4, d), where A is a convex subset of RZand d a positive number. Define the
involution 7 by the formula

T:5-35, (4, d) 7- (u(A4), d).

Let T c S3be the subset of all triples ((41, d1), (A2 d2), (4s, d3)) such that dz2=d1 + ds.
We fix the initial triple
(0= (A9, 1), (A3, 3), (A, 2) € T (7.32)
where 41 is the point (0, 1),*4g is the interval with vertices (1, 0), (0, 1/2), and Alis
the triangle with vertices (1/3, 0), (2/3, 1/3), (0, 2/3).
Define the left and right transformations by the formulas
LT->T ((A1,d1),(A2,d2),(A3,d3)) 7- ((1(A1),d1),(L2,d1 + d2),(42,d2)), (7.33)

RT-T ((A1,d1),(Az,d2),(A3,d3)) 7 ((A2d2),(Rz,d2 + d3),(1(A3),d3)),
(7.34)

where
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dy da ds
Ay) + A | U ——F A
L= COHV|:((II + dg 'u’( 1) (11 + du) 2) d] -+ dz J:|’

da d'} (11 (735)
- A (A A
R2 = conv. {(dg + ds3 2t ds + ds 'U( })) Y do + dj 1:|

Cf. (7.4) and (7.5).

Having this set with involution and transformations we may consider the
associated decorated planar binary tree. The problem is to study the asymptotics of
triples of convex subsets of R2along the paths of the tree. Such asymptotics reflect the
asymptotics of the Newton polygons of the *-Markov polynomials.

Remark 7.4. The triple of convex sets in (7.32) are the projected normalized Newton
polygons of the triple (¥2: s2(sf — s2) — 8351, 5 — 82).

The L and R transformations in (7.33) and (7.34) are just the reformulations of the
L and R transformations of polynomials in (7.4) and (7.5) in the language of the their
projected normalized Newton polygons.

8. 0dd *-Fibonacci Polynomials

8.1. Definition of odd *Fibonacci polynomials. The left boundary path of the
Markov tree corresponds to the sequence of Markov triples (3, 15, 6), (3, 39, 15),

(3, 102, 19), .., with general term (3, 3¢2n+1, 3¢p2n-1), where ¢zn+1, ¢2n-1 are odd
Fibonacci numbers,

¢1=1, ¢p3=2, ¢s=5, ¢7=13, ¢o= 34, vy

with recurrence relation

@2n+3 = 3¢2n+1 — P2n-1. (8.1)

We define the odd *-Fibonacci polynomials recursively by the formula
Fi(s) =s1, F3(s) =s] — sa, (8.2)
F2n+3(s) = gnF2n+1(s) — s3F2n-1(s), (8.3)

where gn= szif n is odd, and g» = s1if n is even. In other words we have

Fan+3 = s1F4n+1 — S3F4n-1,
Fan+5 = s2F4n+3 — s3Fan+1, (8.4)

Lemma 8.1. We have evs,(Fzn+1) = 3¢p2n+1.
The first odd *-Fibonacci polynomials are

Fi(s) =51,
F3(s) =521 52,

Fs5(s) = 52152 — 5153 — 522,
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F7(s) = 53152 — 252153 — 51522 + S253,
Fo(s) = 531522 — 35215253 — 51532 + 51523 + 252253,
F11(s) = 541522 — 45315253 — 521532 + 3521523 + 35152283 — 52523,
F13(s) = 541532 — 553152253 — 512542 + 652152523 — 51533 + 45153253 — 3522523

Theorem 8.2. For n > 1 the triple
(g:.—lz F2n+1 ) F;n—l) (85)
is the reduced polynomial presentation of the Markov triple (3, 3¢2n+1, 3¢2n-1). Proof.

The proofis by induction on n. The statement is true for n = 2, since
(97, Fs, Fy) = (53, sa(s] — s2) — s351, (s — 52)")
is the reduced polynomial presentation of the Markov triple (3, 15, 6), see (6.1).
Assume that (9n—1> £2n+1, £3,,_1) is the reduced polynomial presentation of the
Markov triple (3, 3¢zn+1, 3¢p2n-1). Put f = (fi, f2, f3) := (gn-1, Fan+1, F2n-1). Let Lf be the
triple defined in Theorem 6.4. By Theorem 6.4 the triple
Lf = (u(gn-1), u(gn-1)F2n+1 - s3F2n-1, F2n+1)
= (gn, gnF2n+1 - 53F2n-1, F2n+1)
= (gn, Fan+3, F2n+1)

is such that the triple (9?:.- Fonys, f:2*n+1) is the reduced polynomial presentation of
the Markov triple

(3, 9p2n+1 - 3an1, 3an) = (3, 33panes - gon-1), 3gane)
= (3, 3¢2n+3, 3pzn+1).

This proves the theorem.

Corollary 8.3. The odd *-Fibonacci polynomials are *-Markov polynomials.

Remark 8.4. There are many g-deformations of (odd) Fibonacci numbers. For
example, S.Morier-Genoud and V.Ovsienko [33] consider the odd Fibonacci
polynomials fak+1(q), defined by the relations

fA@=q7, f@=1+q (8.6)

fene3= (1 + q + q2)f2n+1 - q2f2n-1. (8.7)

As V.Ovsienko informed us, our recurrence relation (8.3) turns into relation (8.7)
under the specification s1 = s2 = 1+g+q2 s3 = g2 Our initial conditions (8.2) turn into
1+q+q?% (1+q+q?)(q+q?). Hence for any k the odd *-Fibonacci polynomials Fak+1(s)
evaluated at s1=s2=1+ q + ¢ s3= g% equals (q + q2)f2k+1(q)-

8.2. Formula for odd *Fibonacci polynomials



38 G. COTTI AND A. VARCHENKO

Theorem 8.5. For n > 0, we have

mn

n—1
F4.r,+] (S) =5 Z (2-,,,;‘5)(753)1‘,(51 ‘32 n—i — 89 Z 2n 1 ¢ g )15111 1— 29?21 i
i=0

i=0

s

| (8.8)
Finis(s) = s1 Z ) T e Z (*"7) (—ss) (s152)" " (8.9)

i=0 i=0
Proof. The proofis by induction. The formulas correctly reproduce Fi, F3. Then s1Fan+1

- s3Fan-1equals

n
51 (812(272—1')( 91) (ql§2 ,'_qzz 'n—l 1 ?‘)lq?ljil tqz 1)

i=0
n—1 n—1
53(512(21&511)( ‘5‘1)25? t n 1—2 522 2n 2 i 7"‘3) (5152)71 1— r)
i=0 i=0 B
We have
n ) n—1 .
5,% Z (2‘!1}’—1)(_33)5(5132)n—1 — 8§38 Z (Q'n—il—'t)(_s )e();; 753—1 i
i=0 i=0
n
:S]Z(Qn-&-il—i)( q‘i)zq;ﬂrl 1‘;3 i
i=0

and
n—1

n—1
51522 211 1 L — 83 )2q;r 1— 193 7_SSSQZ(211}271')(_33)5,(31Sg)n—l—i
i=0

n

= 89 Z (2"1-_1.)(—53)2'(3132)n_i

i=0
Hence, s1Fan+1 — S3Fan-1= Fan+3. The other identity is proved similarly. Corollary 8.6.

For the ordinary Fibonacci integers we have formulae

Gy = En: (20-7) (—1)732n20 HE:I (2n=1=9) (—1)ig2n1-2i ’

. = (8.10)
Prusa = 30 () (1) 03 g,

W . (8.11)
Pant3 = Z (210 (—1)ig2nt o2 Z (2n=1) (—1)i320-2,

o = (8.12)
Panta = Z (2?'1"1;1—1‘)(_1)?'32-n+172?'_

N (8.13)

Proof. Formulae (8.10) and (8.12) follow from (8.8) and (8.9). Formulae (8.11) and
(8.13) easily follow from the identities
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¢4n+2 = ¢4n+3 - ¢4n+1, ¢4n+4 = ¢4n+3 + ¢4n+2.
8.3. Newton polygons of odd *Fibonacci polynomials

Lemma 8.7. The odd *-Fibonacci polynomials Fn+1 and Fans+3 are of bi-degree
(2n+1,3n+ 1) and (2n + 2, 3n + 2), respectively.

The Newton polygon Nru..:of Fan+1is the convex hull of four points (n+1, n, 0), (1, 0,
n), (n-1, n+1, 0), (0, 2, n-1). The projected normalized Newton polygon

N Finiis the convex hull of four points
(n+1 n ) ( 1 0) (n—l 71+1) (0 2 )
n+1"2n4+1/" \2n+1" /" \2n4+1" 2n+1/"\"7" 2n+1/,

The limit of N f1as n — oo is the interval with vertices (0,0)and (1/2, 1/2).

The Newton polygon Nr...sis the convex hull of four points (n + 2, n, 0),

(2,0, n), (n, n+1, 0), (0, 1, n). The projected normalized Newton polygon N~F4n+3 is the
convex hull of four points

(’Il+2 n )( 2 U)( n n+1) (U 1 )
n+2 2n+27" \2n+2" ) \2n+2" 2n+2/"\7 2n+ 2/,

The limit of N rmsas n - o is the interval with vertices (0, 0) and (1/2, 1/2), see
Section 7.8.

8.4. Generating function. Introduce the generating power series of odd *-Fibonacci
polynomials,

F(s, 1) =Y Fonpa(s)t>" !
n=>0 . [814)
Theorem 8.8. We have
s83tT +17(83 — s183) + t3(s0 — 83) — 81t

—5218 — (283 — s182)t* — 1 ] (8.15)

F(s, t)=

Proof. Split the series F(s, t) as follows

F(s, t) = Z Fipe (8)t 1 4 Z Fapepa(s)t+3
pr

n=0

Fi(s,t) Fa(s.t) . (816)

From the recursive relation (8.2), we deduce
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s

(14 sgt)Fi(s, t) —t2s1.F1(s, t) + (1 + sst!) Fa(s, t) —t2s9.Fa(s, t)

M —

= Byt —F_s3t°
——

where F-1 = 52/s3, F1 = s1. The terms marked by * have only powers t*+1, with k > 0.

The remaining terms have only powers t*+3, with k > 0. We have a linear system

(1 + s3tt  —sot? ) (}"1(3, Y\ Fit
—s1t? 1+ 53t ) \ Fa(s, f)) B (_FISRISS)‘ (8.17)
Hence
Fi(s, t) = (s183 — .9%)[5 + 51t  Fals.f) = 5283t7 + (82 — s'f)ij
(s3t +1)" — s 8014 s182tt — (st +1)° (8.18)
1 H2n+1

F‘Z'n+l(s) - YD ]:('S t)
(2n+1)! ot2ntl|,

Equation (8.15) follows from (8.16) and (8.18).

Corollary 8.9. For any n > 0, we have
(8.19)

Remark 8.10. At s = s,, the generating function F(s, t) reduces to
F(so, t) = 3= 3(t + 262 + 5t° + 13t7 +34tY +...)
0 t1—3f2+1 < C b s

the generating function of odd Fibonacci numbers multiplied by 3.

7

8.5. Binet formula for odd *Fibonacci polynomials. In this section we consider the
generating function F(s, t) as a rational function of t with coefficients depending on
the parameters s varying in a neighborhood of s..

The poles of F(s, t) are the roots of the polynomial'5§L8 + (283 — sisa)t! + 1.

We will use the roots of 53t~ + (285 — s152)t4 1,

=

s152 — 283 & (573 — 4515283)

253 (8.20)

ay(s) =

7+3v5
with®t (s0) = Z525
Introduce ao, a1, Bo, 51, v1, y2 by the formulas
t((s153 = §22)t* + 51) = A1t5 + ot
t3(-s2 + 521 — s253t4) = f1t7 + Pot3,

§23t8 + (253 - s152)t4+ 1 = yatB + yatt + 1.

Then
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Bit™ + Bot?
Yat® it + 1,

(11?55 + O:(]t

Fils, t) = ———F7F—,
1(s: 1) Yot® + it + 1

-7:2(3: t) =

Theorem 8.11. We have

B ) aray + o a1a_ + Ak+1
Fils ) == (= ; 1y h))t
k=0 f1+ '(2v204 +m) a5 (2y2a- 4

i ( Bray + Bo Bra— + By )t‘”‘”.

S\t 2may +1)  d T (2a + )

(8.21)
Proof. We prove the first formula. The proof of the second is similar.
The roots of $3t° + (253 — s152)t"+ 1 are
bn(8) := w”‘a+(s)%, bitn(s) = w”a_(s)%, n=1234

v

n=1 t—b,(

where w = e™-1/2, We have )), where

arb,(s) +ap 4
b (s) (8, 1) =
An(s) =reSl (e ) b (3)2(87 b (‘3)4 +4'7 ) n 2 n 1.

Hence

.Fl(S. t) =

-
S
=2
ﬁg
=

\
1M
& =
==
AL
—
|

—

P (s

s's} 8
Auls) aiba(8)' + g
—— tﬂ:‘,
n Z Z bn(8)™ 3 (8v2bn (8)* +4m)

m=0n=1

I
|

(]

1]
o
=
3
?_L.

B ajay(s) + ap aa-(s) +ag 4k+1
Z (a+(s)’“+1(2'yza+( )+m)  a—(s)F(2ya_(s) + ’Yl))t

Corollary 8.12. We have
apay + g a1a_ + g

Fipa(s B
1ket1(8) = CdT 2yeay +m)  d T (2ya_ +m)
Bray + Bo ~ Pa—+ B (8.22)
aft (2yeay +m) (2900 )

Fueys(s) = —

If s is in a small neighborhood of so, then |a+(s)| > |a-(s)| and
ar1a— + g Bra_ + By
Fipsa1(8) ~ —— ;o Fagys(s) ~ ——
ai+1(2’72@— +7) GE+1(272(L_ + 1)
Fipy3(s) s Bra_ + o . Fyi5(s) " + ag
*Firaa(s) o t+ag " Fiis(s) T a_(Bia- + f)

. (8.23)

(8.24)

asn— oo,

Lemma 8.13. We have
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fra+ + By arat + g
S9 = 51 - -
aax + ag a+(Brax + Bo), (8.25)

Proof. The proof is by direct verification.

8.6. 0dd *Fibonacci polynomials with negative indices. The relations
F4n+3 = s1Fan+1 — s3F4n-1,

Fan+5 = s2F4n+3 — S3F4n+1

can be reversed and written as

S92 ].
F_any3) = 5 F_any1) — = F_oan—1

51 1
F_(ants) = o F_(ans3) — o F_(ant1)-

7

This allows us to define the *-Fibonacci Laurent polynomials with negative indices.

Theorem 8.14. For any n we have F-z2n-1= (F2n+1)*
Fl=s,F 1= (Fl)* =2

For example, s3,

8.7. Cassini identity for odd =Fibonacci polynomials. The odd *-Fibonacci
numbers satisfy the following identities:

2 2 . _ _
9‘52”4.:3 — Poan+5¥2n+1 = 11‘92n+1 — Pon+3¥Poan—1 =" = 71

Indeed, we have

¢22n+3 - ¢)2n+5¢)2n+1 = ¢2n+3(3¢2n+1 - ¢2n—1) - ¢2n+5¢)2n+1
= ¢2n+1(3¢2n+3 = P2n+5) — P2n+3¢h2n-1= ¢22n+1 - ¢2n+3¢h2n-1.
Theorem 8.15. The odd *-Fibonacci polynomials satisfy the following identities:
gn+1F22543 — gnF2n+5F2n+1 = $3(gnF2%n+1 — gn-1F2n+3F2n-1)

= §3n-1(53183 + $32 — 521522).

Proof. We have

gn+1F22n43 = gnFan+sF2n+1 = gn+1F2n+3(gnF2n+1 = s3F2n-1) — gnF2n+5F2n+1
= gnF2n+1(gn+1F2n+3 = F2n+5) — $3gn+1F2n+3F2n-1

= s3(gnF22n+1 — gn-1F2n+3F2n-1)
and

~2 a v —17.3 3 2.2
goFT — g1 FaFy = s57 (s7s3 + 85 — s75),

Corollary 8.16. We have
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22 3. 3
Fanys Fonis 1 5183 — 8183 — 8

9n Gn—-1 S
(826) F2n+3 F2'n+l ’ F‘211+3F‘2n+1

Identity (8.26) evaluated at s = s, takes the form
Pan+5 o Pan+3 . 1

Pon+3 Pon+1 Pan+592n+3,

If s lies in a small neighborhood of so, then the right-hand and left-hand sides of
formula (8.26) tend to zero as n — oo, see (8.23), (8.24), (8.25).

8.8. Continued fractions for odd *Fibonacci polynomials. It is known that the
ratios of odd Fibonacci numbers have the following continued fraction presentation

o 1
¥2n+3 —3_ - n=0
P'Zri.—}—l 3 -
3—
—1 ;
where the number 3 appears n + 2 times in the right-hand side. Here we give

*-analogs.
Consider the field Q(s) of rational functions in variables s with rational coefficients.
Consider a continued fraction of the following form

bl b-n. bl
A0; — s+ vy —] = ag + ; € Q(s)
aq Ay a1 + —Zh
!J2+7Jb
az+- 4{
T In
E 7
where aq, ..., an € Z[s1, s2, s3] and each of by, ..., bnis of the form
dy _da _d:
811!!1‘(22-931, dy, ds € Z;U\ d:5 c Z
For example,
81 s1] S1 B 5%53 + 8182 + 5183
§2i —, — | = S22+ 5 =
S2 83 S9 + s S253 + S
. . . ) [a < by b_]
Our definition of a continued fraction and the notation 0> @i * - &, are
nonstandard, but convenient for our purposes.
Theorem 8.17. For n > 1 we have
Fopys _ . 83 83 —83 —83 —-‘:‘2]
— |\Yn, T y Ty y Ty T
F:zn+| On—1 Gn-—2 9 qo S1

where gn = sz2if n is odd, and gn= s1if n is even, see Section 8.1.

Proof. The formula follows from the recurrence relations for the #-Fibonacci
polynomials.

For example,
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Iy { —S3 —S2 83 53
= |91 sy | — 91— T 5o !
! _ 52 . 82
Fs go  S1 90 — 3 51735
Fy . {(} —S3 —S53 —‘?2} g 53 s 53
=92 — —— —— | = §2— s 1 3
Fs q go 51 g — — 52 53 — —* o
(Itl_; “_E

Remark 8.18. Formulas (8.24) show that the continued fraction of Theorem 8.17
converges to a an element of a quadratic extension of the field Q(s).

9. 0dd *-Pell Polynomials

9.1. Definition of odd #-Pell polynomials. The right boundary path of
the Markov tree corresponds to the sequence of Markov triples (3, 15, 6),
(15,87, 6),
(87, 507, 6), ..., with general term (3t2n-1, 3p2n+1, 6), where 2n+1, P2n-1 are odd Pell
numbers,

P1=1, P3=5, Ps=29, Y7=169, v

with the recurrence relation
Y2n+3 = 612n+1 — P2n-1. (9.1)
We define the odd *-Pell polynomials recursively by the formula

Pi(s) = s2, P3(s) = 52152 — 5153 — 5%,
9.2. P2n+3(S) = hnP2n+1(s) - s23P2n-1(s),

N D T N — 2 e i
wherefin = 83 — 8153 if 1 j5 odd and fin = 51 — 52 If Njs even. In other words we
have

Pan+3 = (5?1 - 52) Pan+1 — 523Pan-1,

Pan+s = (522 - SlS3)P4-n+3 - §23Pan+1.

Lemma 9.1. We have evs,(P2n+1) = 3{2n+1.
The first odd *-Pell polynomials are
Pi(s) = sz,
P3(s) = s2152 — 5153 — 522,
P5(S) = 521532 — $315253 — $2532 + 521523 — 542,
P7(S) = 541532 + $41523 — S515253 + $3152253 — 2521542 — 351252523 + 51533 + §52 + 2522532,

Po(s) = 541552 — 2521562 + S72 — 5155253 + 3542532 + 351354253 — 4512532523 — 255153253

‘ . 3 ‘ 9 =S
— 515385 + 255 + dsTsos] + sisasy — 2755 — 553

Theorem 9.2. For n > 0 the triple
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(P2 1s Pontrs By y) (93)
is the reduced polynomial presentation of the Markov triple (312n-1, 3Yzn+1, 6). Proof.
The proof is by induction on n. The statement is true for n = 1, since

(Pf, P3, hy) = (55, s2(s% — 59) — 5351, (57 — 52)%)

is the reduced polynomial presentation of the Markov triple (3, 15, 6), see (6.1).

Assume that (R;n.fl% Pontr, h:.fl) is the reduced polynomial presentation of the
Markov triple (312n-1, 3¥2n+1, 6). Put f = (fy, f2, f3) := (P2n-1, P2n+1, hn-1). Let Rf be the
triple defined in Theorem 6.4. By Theorem 6.4 the triple

Rf = (P2n+1, P2n+1p4(hn-1) - 523P2n-1, p(hn-1))

= (P2n+l, Pzn+1hn = s23P2n-1, hn)
= (P2n+l, P2n+3, hn)

is such that the triple (1)'5;.+1- Pops, h:) is the reduced polynomial presentation of
the Markov triple

(3y2n+1, 18y2n+1 = 3h2n-1, 6) = (3h2n+1, 3(632n+1 - P2n-1), 6) = (31h2n+1,
31/)2n+3, 6)
This proves the theorem.

Corollary 9.3. The odd *-Pell polynomials are *-Markov polynomials.
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9.2. Formula for odd #-Pell polynomials

Theorem 9.4. For n > 0, we have

2
P4n+1 —32 E " ? h hl)n lsjz

=0
n—1

— 5 Z(_l)i (27;71—5)}L1(hohl)n—quiéﬂ

=0

’

Punya(s) = s3> (1) (*" ) ho(hohy )" "s3

i=0 n
— 5 Z(_l) (211 e) (hnhl)nfisgﬂrl
i=0 .
Proof. The proof is by induction. First one checks that the formulas correctly

reproduce Ps, Ps. Then o Lin+1 — 83 Pin—1 equals

n—1
SZZ 27) f hD(hDhl)n i 2L7812 ’>n 11 r)(h hl)n t 21+1
.'_0
n—1 , ,
— 89 Z(_l)z(211—{1—1)ho(h(]hl)n—i—lsél-i—z
i=0
n—I1
+ S1 Z(—l)z (271_;'_2) (hghl)niiilsgﬂrg
i—0 .

We have

(Z( 1) (Qn z)h()(h()h]}n i 2?+Z 1+1 2n— l 1)}10(}”)}} )n i—1 §1+2

=0 i=0

= §9 (Z(_l)i(2n+1»1_i)hﬂ(h0h1)n 1551) ,

i=0

n—1
1 (Z(l)i+l(2n 1— L)(h[h n a 2:+1 +Z 2u i— 2 (f?(]h )n—z’—lng».'ﬁ)
i=0
—8 (Z(_l)l(?nfi)(hohl)n—isgl,-l-l) )
!

i=0

Hence, M0 Pin1 — 53Pin-1 = Pin+3. The other identity is proved similarly.
Corollary 9.5. For the ordinary Pell numbers, we have
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P o o (9.4)
angr = D (1) ()67 = D (-1 (e
i=0 i=0
Pany2 = 22 (G Z( 1) (371672, (95)
i=0
Vants = Z(_l) (Zn iz+1)€2-n—2i+1 _ i(_l)i(zﬁ—smg?%zl, (9.6)
1=0 =0
Uanta = QZ (Fr e 4 Z (G [

=0 zU

o 2n i\ p2n—2i .
BZ )6 (9.7)

Proof. Formulas (9.5), (9.7) follow from the recurrence relation for Pell numbers
l/)n+l = Zl,bn + l/)n—l, n>1.
9.3. Limiting Newton polygons of odd *Pell polynomials.

Lemma 9.6. The odd *-Pell polynomials Psn+1and Pan+3 are polynomials of bidegree (4n
+1, 6n+2) and (4n + 3, 6n + 4), respectively.
The Newton polygon Npu.. of Pan+1 contains the points

(0,1, 2n),(2n,2n+1,0), (0,3n+1,0),(3n,1, n).

Hence the limit of N pi.ias n — oo contains the points (0, 0), (1/2, 1/2), (0, 3/4), (3/4,
0). Therefore the limit of N pinais the projected quadrilateral N o
Similarly one checks that the limit of N pimsas n = oo is the projected quadrilateral

NNOO, see Section 7.8.

9.4. Generating function. Introduce the generating power series of odd *-Pell
polynomials

o0
) — ZP271+1 (8)f2n+1
n=0 . (98)
Theorem 9.7. We have
Pls. 1) = —5155t7 + (87 +82)53 — s15553)t7 + (57 — 82) 82 — 5183)t> + 50t
T SHS 4+ (s3s3—s18283+s5 —s7s3+2s3 )4+ 1 ’

(9.9)

Proof. The proof is similar to the proof of the corresponding theorem on the odd
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Fibonacci polynomials.

Corollary 9.8. For any n > 0, we have
1 82n+l
P2n+l(5) =

e | P(s, t)
(2n +1)! o2n+t|,_,

, (9.10)
where P(s, t) is given by (9.9).
Remark 9.9. At s = s,, the generating function P(s, t) reduces to

3(t—1t%)
th— 612 +1
namely the generating series of odd Pell numbers multiplied by 3.

= 3(t + 5t° 4 29¢° 4 169t + 985¢° +...)

Plso, 1) = , (9.11)

9.5. Other properties of +Pell polynomials. The *-Pell polynomials have properties
similar to the properties of *-Fibonacci polynomials discussed in Section 8. In
particular one easily obtains a Binet-type formula like in Corollary 8.12.

As examples of properties of #-Pell polynomials we formulate the continued
fraction property and an analog of the Cassini identity.

Theorem 9.10. For n > 1 we have

2 2 2 2 -
Pyyig b —55  —s5 —55 —53 7.5153}
- sy 7 9 y vty T 1y T4 9
P2n+l hon—1 hp—a hy ho 52

7

wherelin = s5— 5153 if Nis odd and 'n = 51— sz if js even, see Section 9.1.
Theorem 9.11. The odd *-Pell polynomials satisfy the following identities:
fer+lP§;p,+;1 - hn.p.ln—}—ﬁpi}n—f—l - —‘3?;(]1/-:.1—)22-,&1 - hn.—lP‘Arr-&-.'jPZra.—l)

= 53" ((s1 — s2)s3s3 — 51(55 — s153) ((s7 — s2)s2 — s183))

10. *-Markov Group Actions
In this section we study the action of the *-Markov group on C® with coordinates

(a, a*, b, b*, ¢, c*). It is convenient to denote these coordinates by (xj, ..., X6).

10.1. Space Cé with involution and polynomials. Consider C® with coordinates x =
(x1, ..., X6), involution
v:C% — C% (11, w2, 3, T4, T5, T6) > (T2, T1, Ty, T3, T, 3‘5)’
polynomials
H1= X1X2 + X3X4 + X5X6 — X1X3X5, H2 = X1X2 + X3X4 + X5X6 — X2X4X6.

The *-Markov group I'vacts on Cé by the formulas
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Aijr T ((71)1;1:1. (71)".‘1;2. (—1)Hi gy, (fl)”jm, (71)-j:r5. (fl)j:f;ﬁ)
o1: x> (3, Ty, T1, Ta, Ty, Tg),
gy ® > (11, To, T, Tg, T3, Ta),

(
T

—T2, —I1, Tg, 5, Ty — IT1T5, I3 —:L'zf].’g},

(10.1)
T2: X 7— (X4, X3, X2 — X3X5, X1 — X4X6, —X6, —X5), (10.2) and the elements p;jact on
Céby the identity maps.
The action of the *-Markov group on C® commutes with the involution v.

Lemma 10.1. The T'm-action preserves each of the polynomials Hi, Hz, and
v?H1= H>, v?H2 = H1.

Hence the differential forms dH1, dH2, dH1AdH: are I'u-invariant, and dH1AdHz is v anti-
invariant.
Lemma 10.2. The holomorphic volume form

dV:=dx1 A dx2 A dx3 A dxa A dxs A dxe
is Aij, 01, oz invariant and t1, T2, v anti-invariant.

Lemma 10.3. The differential 4-form

Q =x1x3dxz2 A dxa A dxs A dxe + x1xa dx2 A dx3 A\ dxs A dxe
— X1X5 dX2 A dx3 A dxa A dXe — X1X6 dx2 A dx3 A dxa A dXs + X2x3 dx1
A dxa A dxs A dxe+ x2xa dXx1 A dx3 A dxs A dXe — X2X5 dx1 A dx3 A dxa
A dxe — X2X6 dx1 A dx3 A dx4 A dxs

+ x3X5 dX1 A dx2 A dxa A\ dxe + x3Xe dx1 A dx2 A dxa A dxs
+ XaXs dx1 A dx2 A dx3 A dXe + XaXe dXx1 A dx2 A dx3 A dXs. (10.3)
is Aij, T1, T2 invariant and o1, o2, v anti-invariant.

Proof. The proof is by direct verification. For example, we have 71Q = xs(x4 — x1x5)dx1
A dxz2 A dx3 A dxe + Xe(x3 — X2X6)dx1 A dxz2 A dxa A dxs

+ Xx5(x3 — X2X6) (dx1 A\ dx2 A dxa A dxe — x1dx1 A dx2 A\ dXs A dXe)
= X6(X4 = x1x5) (—dx1 A dx2 A dx3 A dxs — x2dx1 A dxz A dxs A dxs)

+ X2X5(=X1(Xedx1 A dx2 A dxs A\ dXe — dx1 A dx3 A dxs A dXe)
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+ Xedx1 A dxz2 A dxa A dxe — dx1 A dx3 A\ dxa A dxe)

- Xx2(xa — x1x5) (Xedx1 A dx2 A dxs A dxe — dx1 A dx3 A dxs A dXe)
+ X2(Xx3 — X2Xe)dx1 A dxa A dxs A dxe —
x2x6(—Xedx1 A dxz2 A dxa A dxs

- Xx2dx1 A dxa A dxs A\ dxe+ dx1 A dx3 A dxa N dxs)
+ X1(Xxs — X1xs)dxz A dxs A dxs A dxe +
Xx1xs(xsdx1 A dxz A dx3 A dxe

+x1dx2 A dx3 A dxs A\ dxe — dx2 A dx3 A dxa N dxe)
+ X1(x3 = X2X6) (xsdx1 A dx2 A dxs A dxe + dx2 A dxa A dxs A dxe)
- x1X6(xs(—dx1 A dx2 A dx3 A dxs — x2dx1 A dx2 A dxs A dxe)

+dx2 A dxs A dxa A\ dxs — x2dx2 A dxa A dxs A dxe) = (L.

See another proof of the lemma in Corollary 10.10. That other proof also provides
reasons for the existence of such a 4-form Q.

10.2. Casimir subalgebra. Denote h1 = x1x2, hz = x3x4, h3 = X5x6, h4 = X1x3X5, h5 = X2X4Xe,
(10.4) and h = (hy, ..., hs). Then
hih2h3 - hahs=0

and
Hi=hi1+ h2+ hz— has, H2=hi+ h2+ h3 - hs.

Define the Casimir subalgebra CcC[x] to be the subalgebra generated by h;, ..., hs.

Theorem 10.4. The Casimir subalgebra is v and I'm invariant. More precisely, v: h 7—
(h1, h, hs, hs, ha), T1: h 7= (h1, hs, h2 + hih3 — ha— hs, —hs + hihs, —ha + h1h3),
T2: h 7— (hz, h1+ hzhs — ha— hs, h3, —hs + hzh3, —ha + hzh3), 61: h —>7 (hz, hy, h3,
ha, hs), 62: h 7— (hy, h3, hz, ha, hs),

and the elements Aij, pij € 'm fix elements of C point-wise.

10.3. Space C5 with polynomials. Consider C° with coordinates y=(yy, .., ys), and

involution v C5 ™ C5, (y1, Y2, 3, ¥4, ¥5) 7= (V1, V2, V3, Vs, Va).
The *-Markov group acts on C°by the formulas of Theorem 10.4. The *-Markov group
action on C°> commutes with the involution v. Denote

J=y1y2y3 - yays, Ji=y1+y2+y3-ys4, Jz=y1+y2+y3-ys,
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dW=dyi Ady2 A dys A dys A dys.
Lemma 10.5. The polynomials ], ]1, J2 are T'mu-invariant. We have
vij=] V1=, V=]

The differential form dW is 1, T2 invariant and o1, 02, v anti-invariant. The differential

form dJ AdJ1AdJ2is T1, T2, 01, 02 invariant and v anti-invariant.

Let Y = {y € C5: J(y) = 0} be the zero level hypersurface of the polynomial J. The
hypersurface Y has a well-defined holomorphic nonzero differential 4-form at its
nondegenerate points, w = dW/d]J, called the Gelfand-Leray residue form. Itis uniquely
determined by the property

dW=dJ A w. (10.5)
aJ
For example, if at some point g € Y we have y1 () /- 0, then at a neighborhood
of that point

1
w = 57 dy2 Ndys ANdys N dys = - dya A dys A dyy N dys

D Y293
with property (10.5).
Corollary 10.6. The form

1
Y2ys3 ’

restricted to Y, extends to a nonzero differential 4-form on the regular part of Y. This
form is 1, T2 invariant and o1, 02, v anti-invariant.
Consider the map F: C®— C5 defined by the formulas y1 = x1x2, y2 = x3x4, y3 = X5X6, y4

= X1x3X5, y5 = X2x4X6. (10.6) Lemma 10.7. We have the following statements:

(i) The map F commutes with the actions of the *-Markov group on Cé and C5.
(ii) The Casimir subalgebra C c C[x] is the preimage of the algebra C[y] under the
map E

(iii) The image of F lies in the hypersurface Y.

Corollary 10.8. The preimage F’w of the differential form w under the map F is 11, T2

invariant and o1, 02, v anti-invariant.
Lemma 10.9. We have Fw = Q, where Q is defined in (10.3).

Proof. The lemma easily follows by direct verification from the formula
. drs  dxy drs dzg
P (B3 o1 (s dooy
T3 Ty Is Ig

A (.‘L‘:;:E;:,d.’fl + ryxsdrs + 1‘1'1:3(1J;'5) A (Jf4l'(sfiI2 + xoxgdry + 1'21'4drﬁ). (10.7)
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Corollary 10.10. The differential form Q is t1, T2 invariant and o1, 02, v antiinvariant.

Cf. Lemma 10.3.

11. Poisson Structures on Céand C°

11.1. Nambu-Poisson manifolds
Definition 11.1 [44]. Let A be the algebra of functions of a manifold Y. The manifold
Yis a Nambu-Poisson manifold of order n if there exists a multi-linear map
{, J1 A® > 4,
a Nambu bracket of order n, satisfying the following properties.
(i) Skew-symmetry,
{fi,..., fa} = (—1)F(0){fa(1): s fem}
forallfy, .., fu€ Aand o € Sn.
(i) Leibnizrule,
{fle,fS, ...,ﬁ1+1} =f1{f2,f3, ...,f;1+1} +f2{f1,f3, ...,fn+1}, for allf1, ...,fn+1 EA.
(iii) Fundamental Identity (FI),
{fis oo v Aars sy = A s famt s 0200 g}
+ 491, {1 oo fa1s 92} g3y oo g
401 - os g1 {1y ooy famns gnd), (111)
forall fy, ..., fun-1, g1, ..., gn € A.

In particular, for n = 2 this is the standard Poisson structure.
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Remark 11.2. The brackets with properties (i-ii) were considered by Y.Nambu [34],
who was motivated by problems of quark dynamics. The notion of a Nambu- Poisson
manifold was introduced by L.Takhtajan [44] in order to formalize mathematically the
n-ary generalization of Hamiltonian mechanics proposed by Y.Nambu. The
fundamental identity was discovered by V.Filippov [24] as a generalization of the
Jacobi identity for an n-ary Lie algebra and then later and independently by Takhtajan
[44] for the Nambu-Poisson setting.
The fundamental identity is also called the Filippov identity.

The dynamics associated with the Nambu bracket on a Nambu-Poisson manifold
of order n is specified by n - 1 Hamiltonians Hj, .., Hs-1 € A, and the time evolution of
f€ Ais given by the equation

df

= ={H, ....an'hf}'

dt (11.2)

Let ¢« be the flow associated with equation (11.2) and U: the one-parameter group
actingonAby f7-> U(f) =f ° ¢

Theorem 11.3 [44]. The flow preserves the Nambu bracket,

U{f1, ..., fn}) = {Ue(f1), ..., Ue(fn)}, (11.3)
forall fi, .., fa € A

A function f € A is called an integral of motion for the system defined by equation
(11.2) if it satisfies {H4, ..., Hn-1, f} = 0.

Theorem 11.4 [44]. Given Hy, ..., Hn-1, the Nambu bracket of n integrals of motion is
also an integral of motion.

These two theorems follow from the fundamental identity.

11.2. Examples. An example of a Nambu-Poisson manifold of order n is C" with

standard coordinates xj, ..., x»and canonical Nambu bracket given by

{fis oo fu} = det] (3—;}) (11.4)

This example was considered by Nambu [34]. Other examples of Nambu-Poisson

manifolds see in [10], [44]. See also [4], [9], [18], [28], [37].
It turns out that any Nambu-Poisson manifold of order n > 2 has presentation

(11.4) locally.
Theorem 11.5. Let Y be an m-dimensional manifold which is a Nambu-Poisson
manifold of order n, m > n > 2, with bracket {,..,, }. Let x € X be a point such that {,..., }
is nonzero at x. Then there exists local coordinates X3, ..., Xm in a neighborhood of x such
that

{fi...os fu} = det'::':'jtl (gj; )
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This statement was conjectured by L. Takhtajan [44], proved in [2], [27]. It was
discovered eventually that the theorem is a consequence of an old result in [47],
reproduced in the textbook by Schouten [40, Chap. II, Sections 4 and 6, formula (6.7)].
See on thatin [19].

11.3. Hierarchy of Nambu-Poisson structures. A Nambu-Poisson manifold
structure of order n on a manifold X induces an infinite family of subordinated
Nambu-Poisson manifold structures on X of orders n - 1 and lower, including a family
of Poisson structures, [44].

Indeed for Hj, ..., Hn-k € A define the k-bracket {,..., }uby the formula

{h1, ., R} = {H, .., Huoty 1, ., hi. (11.5)

Clearly, the bracket { ,.., }n is skew-symmetric and satisfies the Leibnitz rule. The
fundamental identity for {,..., }u follows from the fundamental identity (11.1) for the
original bracket.

For example, for n = 6 and k = 4, the fundamental identity for the bracket

{h1, hz, h3, ha}u,nz:= {H1, Hz, h1, h2, h3, ha} (11.6)

and 7 functions u1, uz, us, vi, vz, v3, va follows from the fundamental identity for n = 6
and 11 functions fi, f5, f3, f4, fs, 91, g2, 3, 94 g5, ge if

(v f2 3 fa f5, 91, 92, 93, 94 g5, gs) = (H1, Ha, us, uz, us, Hi, Hz, v1, V2, V3, va).

The family of subordinated k-brackets, obtained by this construction from a given
n-bracket, satisfy the matching conditions described in [44].

Example. Consider C3 with coordinates g, b, c and canonical Nambu bracket of order
3’

- Afi Adfa Ndfs
{fi. fo. f3} = da A db A de .

The braid group Bs acts on C3 by the formulas,
T1:(a, b, c) 7= (-a, ¢, b-ac), 1z2:
(a, b, c) 7= (b, a - bc, —c).

The polynomial H = a2 +b% +c2 -abc is braid group invariant. The subordinated
2-bracket

{h1, h2}u:={H, h1, h2}

is the braid group invariant Dubrovin Poisson structure on C?,

{a, b}u=2c - ab, {b, c}u=2a - b, {c, a}u=2b-ac. (11.7)
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11.4. Poisson structure on C¢. Let us return to the space C® with involution v, two
polynomials Hi, Hz, the holomorphic volume form dV, differential form ), considered
in Section 10.

On Cé consider the canonical Nambu bracket of order 6,
dfy Adfs N dfs Adfy N dfs A dfg
s ooos fo) = Ify A dfa Ndfs Ndfy Adfs Adf

dv
and associated brackets

{fle fZ f.‘j« f’1}H1-H2 -
s fala =

) (11.8)

dHy AN dHy A dfy N dfa Adfs Adfy
dV ,

(11.9) QA dfy A dfs

dv

(11.10)
Theorem 11.6. The Nambu bracket { ,.., }uiu: defines a Nambu-Poisson manifold
structure on Céof order 4. The structure {,..., }u,u:1S Aij, 01, 02, v invariant and t1, T2 anti-
invariant.

Proof. The theorem is a corollary of Lemmas 10.1 and 10.2.

Theorem 11.7. The bracket {, }a defines a Poisson structure on Cb The Poisson

structure {, }ais Aij, v invariant and t1, T2, 01, 02 anti-invariant.

Proof. By formula (10.7), the form Q is the wedge-product of four differentials. Hence
the bracket {, }a defines a Nambu-Poisson manifold structure on C¢ of order 2. The
invariance properties of it follow from Lemmas 10.2 and 10.3.

Lemma 11.8. The Poisson structure {, }ais log-canonical. The Poisson brackets {x;, Xj}a
are given by the following matrix,
—-x1x60

X2X6

Xx3x6 A0,

—X4x60
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0 0 —I1T3 T1T4 T1Ts 0
0 0 Tols  —XToly —Iols 0
1Ty  —ITolka 0 0 —I3Ts
—I14 Toly 0 0 T4Ts
—T1T5  Tals T3y — —T4Ts 0 0
T1Tg —Tokg —T3Tg Talg 0 0

Proof. Explicit computations give

QAdxiNdx2=0,
QAdxiAdxz=-xi1x3dV,
QA dx1Adxsa=x1xadV,
QAdxiAdxs=xixsdV,

and so on.

Lemma 11.9. For any f € C[x] and h € C, we have {f, h}a= 0. In particular, {f, Hi}a= {f,
Hz}a=0 for any f € C[x].

This statement justifies the name of the Casimir subalgebra for the subalgebra C c
C[x].

Proof. The equalities {x; hj}a=0,i=1,.., 6,j =1, .., 5, are easily checked directly. The
statement also follows from the fact that the image of Flies in Y and w is a top degree
formonY.

Lemma 11.10. The symplectic leaves of the Poisson structure {, }a are at most two-
dimensional and lie in fibers of the map E

11.5. Remarks

11.5.1. The log-canonical Poisson structure {, }a can be encoded by the quiver in
Figure 11. It would be interesting to determine if some of the x-Markov group
transformations can be obtained as a sequence of mutations in the cluster algebra of
that quiver. We were able to represent in this way only the action of the permutations
01, 02. To obtain o1 one needs to mutate the cluster variables at vertex 1, then at vertex
3, then at vertex 1 and so on as in the sequence 1313124242 (10 mutations). The
permutation o2 is obtained by the sequence of mutations 3535346464. Cf. [14], where
the braid group action was presented by mutations for the A, quivers.
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Figure 11.

11.5.2. We say that a Poisson structure on C¢ is quadratic, if the {x, x;} are
homogeneous quadratic polynomials in x.

Lemma 11.11. The Poisson structure {, }ais the unique, up to rescaling by a nonzero
constant, nonzero quadratic Poisson structure on Cé having both H1 and Hz as Casimir
elements.

Proof. Let i, 2} = g Q'?j‘r’"r‘with unknown coefficients@4 € C, Assume the
skew-symmetry of {-, -}, and that both Hi and Hz are Casimir elements. This gives a
system of linear equations for Q. A computer-assisted calculation shows that the
matrix of coefficients of that system has rank 1, and the space of solutions is spanned
by the Poisson tensor {, }o.

11.5.3. Let {x; x;} = Qij(x) be a polynomial Poisson structure on C® having
Hi, Hzas Casimir elements. Expand the coefficients Qj(x) at the origin, Qii(x) =
6 k .. . k . .

D oh=1 Qi+, Qf € Ca computer-assisted calculation shows that @%;;= 0
forall i j, k.
11.5.4. A computer-assisted calculation shows that the Poisson structure {, }ais the
unique, up to rescaling by a nonzero constant, nonzero log-canonical Poisson
structure on C% which remains to be log-canonical after the action on it by any
element of the braid group Bs.

11.6. Poisson structure on C5. Consider C°>with coordinates y = (yy, ..., y5), and objects

discussed in Section 10.3.
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Consider on C5 the canonical Nambu bracket of order 5,

dfy Adfa Adfs Adfs Adfs
dW

{fi, . fs} = ) (11.11)

and the associated bracket

{f j } dJ A dJl A (i.]g A dfl A dfg
1y J2rJ,.J,,Jo —

AW , (11.12)

Theorem 11.12. The bracket {, };. defines a Poisson structure on C5 with Casimir
elements ], J1, J2. The Poisson structure {, }jn21s Aij, T1, T2, v invariant and o1, o2 anti-

invariant.

Proof. The theorem follows from Lemma 10.5.

Introduce new linear coordinates on C°, (us, uz, us, u4, us):=(y1, y2, y3 J1, J2).
Lemma 11.13. The Poisson brackets {u; uj};.are given by the formulas:

{uy, u2}jjie=utuz — 2(ut + uz + u3) + us + us, {uz, uslj 2=
uzu3 — 2(u1+ uz2+ u3) + u4 + us,

{us, ut}yji2=u3u1— 2(ut + uz + u3) + us+ us,

and {ui, ua}jj.= {ui, usy = 0 for all i

Notice the similarity of these formulas with Dubrovin’s formulas (11.7). Similarly
to Dubrovin’s case the linear and quadratic parts of the Poisson structure {, };,.form
a pencil of Poisson structures, that is, any linear combination of them is a Poisson
structure too.

Remark 11.14. It would be interesting to compare the Poisson structures of this
Section 11 with numerous examples in [37].

12. *-Analog of Horowitz Theorem

In Section Zﬂe defined the *-Markov group as a group of transformations of the
set [Z['ﬂs s2: 53 1)". In this section we define a certain group of transformations of

+177,.. -

the algebra Zls1, s2, 83 |[21, -- -, 6], we show that this new group is isomorphic to
the *-Markov group, and discuss analogs of the Horowitz Theorem 1.6.

12.1. Algebra R and v-endomorphisms. Let x = (x3, ..., X6). Define an involution v on

. +
the polynomial algebraR 1= Z[s1, 52, 53 I][5'3] as follows. For an element
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. o a: - ) 1
f= E Ag xP1a82x3 a8t A, € Zlsy, s2, 55
7

aEN6
define
vf= E Ay x? :1:;'1:Jr:‘;'1:r::1'3:1:g”:1:§f5'
aENS
Z[s1, s sl ; ; o i
A S1. 52, 53 ]-algebra endomorphism ¢: R = Ris called a v-endomorphism if

e(vA=vo(),  fER
If ¢ is invertible, then ¢ is called a v-automorphism of R. The group of vautomorphisms
of R is denoted by Auty(R).
There is a one-to-one correspondence between v-endomorphisms of R and triples
of polynomials (B, @ R) € R3. Such a triple defines a v-endomorphism

x17-> B x37-Q,xs7- R, x27— vB
x4 7-v(Q, X6 7 VR.

In what follows we often define a v-endomorphism by giving a triple (P, Q, R).

12.2. Markov group of v-automorphism. Consider the following four groups of v-
automorphisms of R:

Type I. The group G2't;  of v-automorphisms generated by transformations

Aij:x1-7  (-1)x, x37— (-1)"ixs, x5 7= (—1)xs, ij €2
Type IIl. The group G2  of v-automorphisms generated by transformations,
21:X17- X3, X372 X1,X5 =7 X5, X2: X127
X1, X37- X5,X5 27 X3.
Type lll. The group Gaut3  of v-automorphisms generated by transformations
Ti:x17- -x2, X37-> X6~ X1X3, X5 7> Xa,
T2:x1—>7 Xa—X1Xs, x3—7 X2, X5 —7 —Xe.

We have T1T2T1= T2T1Ta.
Type IV. The group G2+  of v-automorphisms generated by transformations

Mi.j: T1 > S;il’l, Ty > .S;Jrjl‘g, I5 > .5;".):3 i, ] S Z
Define the *-Markov group 'ty of v-automorphisms of R as the group generated
byGTm? G%m5 Ggut‘ Gﬂ”t_
Define the Vi'ete v-involutions V1, V3, V3 € 'ty by the formulas

Vi:x17- x3x5— X2, x3—7 Xa, X5 —7 Xe,

V2:ix1-27 X X3 7— X1X5 — Xa, X5 7 Xe,
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V3:x17- Xz, X3 7> X4, Xs 7= X1X3— Xe.
We denote by 'ty the group generated by V1, V2, V3. We have V1= A1
Y1 T2 V2=A10%22T1, V3=A11T122

Theorem 12.1. We have the following identities:
21Aij21 = Ai+jj,
22MijX2 = Aii+j,

21ViZi=12, x2ViX2=11,
Y1V2X1=11, X2V2X2=V3,

21V3X1= V3, 22V3X2= 17>,
AclVihki=Vi, i=1, 2, 3, AkiMijAki= Mij, k, |

€722, jEL
Y1MijZ1 = M-i-jj, 22MijZ2 = Mi-i-j, ViMijVk= M-i-, k
=12 3.

Proof. These identities are proved by straightforward computations.

Theorem 12.2. We have an epimorphism of groups 1: T'm — 'ty defined on generators
by 1(Aij) = Aij, t(01) := 2y t(vj) == V), e(uig) == My (12.1)

Proof. Let us show that the morphism «: I'm = 'ty is well defined. First, notice that
(12.1) uniquely extends to a group morphism on each of the groups G1, Gz, G4, T'v. Any

g € I'madmits a unique decomposition g = vgsgigzwith v € I'v, g1 € G1, g2 € G2, g4 € Ga,
by Corollaries 3.11 and 3.14. We define

t(g) == t()i(g4)lg1)i(g2).
Given “g € I'm, we have to show that ((gg") = t(g)t(g"). We have
99 = 0919192091912 = vV’ 949491719232,
where in the second line we use the commutations relations of Proposition 3.9. The

map ( preserves the commutations relations among the generators Aqp X, V;,
Magp, by Theorem 12.1. So, we have

997 = (w)u(gag+°)u(g91971°)i(g292)
= ((V)(v)i(g4) (g s®)u(g) (g 1°)t(g2)t(g™2)
= (Vg4 lg)i(g)t(V)u(g ) ilg)g™2) =
Ug)ug)-

This completes the proof.
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Let P(x) €R. Defing the map P: (Z[s1, s2, Siﬂ])3 — Zs1, s2, '53[1] by the formula
P: (fi, f2y f3) = P(f1, f1) fas 13, f3, f3),
Proposition 12.3. For anyp € R, g €L, (fi, fo, f3) € (Z[s1, s2, -"‘:ail}):‘, we have
U9)P(f1, for f3) = P(g7" (1, fou fa),

Proof. This is easily checked on the generators of I'm. Proposition 12.4. The
morphism t is an isomorphism.

Proof. Consider the polynomials x1, x3, xs € R. They define the natural projec-
tions

T1: (Z[s1, s2, 53'])° = Z[s1, s, s%l]’ (R 7- i,

T3t (Z[sy1, 82, s31])° = Z[s1, so, siﬁl]' (2 f3) 7= f2,

T5: (Z[s1, 82, 53'))° = Z[s1, 50, sgtl]' (fu o f3)7- fs
Let g € kert. By Proposition 12.3, we have

1(g7 (f1, for £3)) = F1. T(g Mf, fo f3) = fo, Ts(g M (f1y foo £3)) = Fo,
Hence g-1=1id.

12.3. v-Endomorphisms of maximal rank. Let ¢: R - R be a v-endomorphism,
defined by a triple B Q, R €R,

x17— P x37- Q, xs7— R, x27-> VB x4 7-v0Q, X6 7= VR.

For any fixed p € C3, denote by Py, Qp, Ry, VPy, VQp, VR, € C[x] the specialization of B, Q,
R, vBv(Q vRatz=p.
For any fixed p € C3, we have a polynomial map ¢,: C¢ - Cé defined by

g (Pp(Q)~ vPp(q), Qp(q), vQp(q), Rp(q), VRD(Q))_
A v-endomorphism ¢ of R is said to be of maximal rank if there exist p € Cand q €
Césuch that the Jacobian matrix of ¢, at the point q is invertible.

12.4. Horowitz type theorem for »-Markov group. Define the v-Horowitz group Gror
as the group of v-automorphisms of R which preserve the polynomial

H = x1x2 + X3X4 + X5X6 — X1X3X5.

Define 'axto be the set of v-endomorphisms of R of maximal rank which preserve the
polynomial H.
We have lautM € GHor € I'max.

Theorem 12.5. We have 'ty = Guor = I'™ax. [n particular, any element of I'max js g v-

automorphism.
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Proof. 1t is sufficient to prove that 'max C [auty . The proof is an adaptation of the
original argument of [29, Theorem 2]. Let
X175 Bx37- Q x5s7—> R, x27- VP x47- vQ, X6 7— VR, (12.2) be an element of 'ax,
where B, Q, R € R. Up to an action of G2z, we can assume that the total degrees of B, Q,
R with respect to x1, x2, X3, X4, X5, Xe are in ascending order, i.e.,
degP 6 degQ 6 degR.
Set
P =Pp+ Pp-1+-++ Py,
Q =Qq+Qg-1+--+Qo, (12.3)
R =Rr+ Rr-1+ -+ + Ro,
where P, Qr, Rk are homogeneous polynomials in xi1, x2, X3, X4, X5, X6 of degree k.

Necessarily, we must have p, g r > 1, otherwise (12.2) does not define an
endomorphism of maximal rank. Since (12.2) is an element of I'max, we have

P-vP+Q-vQ+R-VvR - PQR = X1X2 + X3X4 + X5X6 — X1X3Xs5. (12.4)

Suppose that p = g = r = 1. By comparison of the highest degree terms of the Lh.s.
and rh.s. of (12.4), we deduce that P1Q1R1 = x1x3xs. Since x1, X3, Xs are irreducible,
unique factorization implies that up to reordering of P1, Q1, R1 we have

P1=y1x1, Q1= y3x3, R1=1ysXxs, (12.5)
where1: 73: 75 € Z[s1, s2, ”’:?1] and y1y3ys = 1. Hence each of y;is of the form
g’

If we substitute (12.5) in (12.3), and expand (12.4), we deduce that Po= Qo= Ro=0
(since the rh.s. of (12.4) has no terms x1x3, X1xs, x3xs). Thus, the only possible form of
(12.2) is x1 7— (-1)isa3sx1, x3-7  (=1)i+jS3a3x3, x5—-7  (-1)jsa3sxs, x2 =7
(-1)is-3 aix2, x4 —>7 (=1)i+js3-asx4, x6 =7 (=1)js-3 asxs,
where i, j € Z2 and a3, az, a3z € Z, a1 +az +a3z = 0. All these transformations are in
(G, G S TR

Now we proceed by induction on the maximum r of the degrees of B Q, R. If we

expand (12.4) using (12.3), we obtain

PpvPp+Qq-vQq+RrVRr—PpQqRr++-+ = X1X2+X3X4+X5Xe—X1X3Xs5, (12.6) where the dots
denote lower degree terms. The term PpQqR;is of degree atleast 4. The degree of every
term of the rh.s. of (12.6) is less than 4. Hence P,QqR- must cancel with another term
of the Lh.s. This is possible if and only if r = p + q. If r = p+q, then the terms of highest
degree are R -vRrand PpQqRr, and we must have Ry - VRr— PpQqRr= 0. Thus,

VRr= Pqu. (127)
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The transformation
x17—- VP x37-v0Q, x57— PQ - VR, (12.8)

extends to a v-endomorphism of R. Such an endomorphism is the composition of
(12.2) with V3 € I'uty . The endomorphism (12.8) has the highest degree less than r,
because of (12.7). Hence, by induction hypothesis, the endomorphism (12.8) is a v-
automorphism in ['auty . This completes the proof.

12.5. Horowitz type theorem for C5. Recall the action of the *-Markov group on C5

with coordinates (yj, ..., ¥s). In particular, the *-Vi'ete involutions act on

C5by the formulas vi: (y1, .., ¥5) 7= (V1+Y2y3 = ya=Ys, Y2, V3, —Vs+Yay3, —Va+ yays),
v2: (V1,0 V5) =7 (Y1, Y2+ Y1Y3 = Ya— Y5, V3, =V5 + y1y3, —Ya+ y1y3), v2: (V1, ..., V5)
7= (Y1, Y2 Y3+ Y12 = ya=Ys, =Ys+ y1yz, —Ya+ Y1y2).

Theorem 12.6. Let : C5 = C5 be a maximal rank polynomial map preserving the
polynomials

J =y1y2y3 - y4ys, Ji=y1+y2+y3-y4, J2=y1+y2+y3-ys.
Then 1 is invertible and lies in the image of the x-Markov group.

+1
Remark 12.7. One can easily add the parametersZ[Sh 52, %3 ] and reformulate
Theorem 12.6 similarly to Theorem 12.5.

Corollary 12.8. If the map 1 satisfies the assumptions of Theorem 12.6, then it
commutes with the involution

vi V1, - Y5) 7= (V1, V2, Y3, Vs, V4).
Proof of Theorem 12.6. Let ¢ send (y3, ..., ys) to (P4, ..., Ps). Then
P1P2P3 — P4Ps = y1y2y3 — y4ys,
Ps—P1-P2-P3=ys—y1-y2-ys3, Ps—P1-P2-P3=ys-yi—-y2-ys.

Hence
Pi=ys—y1—-y2-y3+ P1+ P2+ P3,

Ps=ys—y1—-y2-ys+ P1+ P2+ Ps,

and the map i is completely determined by the three polynomials Ps, P, Ps.

First assume that ¥ is a linear map, Pi = Pio + a;, where a; € C and Pio are
homogeneous polynomials in y of degree 1. Then

Y1y2y3 = P1,0P2,0P3,0.

Hence after a permutation of P1, Pz, P3 we will have
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Pi= byi+ a; i=1,2,3 bi€C bib2bz=1.
We have
Ps=ys-y1-y2-y3+ P1+ P2+ P3
=ya+ (b1=1)y1+ (b2-1)y2+ (b3- 1)ys+ a1+ az+as,
Ps=ys—-y1-y2-y3+ P1+ P2+ P3
=ya+ (b1— 1)y1+ (b2-1)y2+ (b3- 1)y3+ a1+ az + az, Hence
(ya + (b — D)yr + (b2 — V)yz + (b3 — L)ys + a1 + a2 + as)
X (y5 + (b1 — Dyg + (b2 — D)ya + (bs — 1)ys + a1 + a2 + as)
— (b1yr + a1)(bay2 + a2)(bsys + a3) = Yays — Y1y2ys,

This means that b;= 1 for all i and hence

(ya+ai +az +a3)(ys +a1 +az +az)—(y1 +ai) (y2 +az) (y3 +as) = yays -yiyays.
This implies that a;= 0 for all i.
Equation P4Ps — P1P2P3 = y4ys — y1y2y3 can be rewritten as

(Va-y1-y2-y3+ Pi+ Pa+ P3)(ys—y1-yz2-y3+ P1+ P2+ P3) - PAP2P3

=yays-ywyays.  (12.9)

Let us write Pi= Pi1 + -+, i = 1, 2, 3, where P;1 is the top degree homogeneous

component of Pi. Denote dithe degree of P:. Since ¥ is of maximal rank, we have d;> 0.

Assume that the maximum of di, dz, d3is greater than 1. After a permutation of the

first three coordinates we may assume that d1 > d2 > ds. Then equation (12.9) implies
that d1 = d2+d3 and there are exactly two terms of degree 2d1 which have to cancel,

PPy Psy — Py = Pia(PeiPsy—Pri) =0

Let us compose i with involution v1. Then v1 = P sends (yy, ..., ys) to (P~1, " P~5), where
P~2 =Py, P~3 =P3,
P'1=P1+ P2P3- P4-Ps
=P1+ P2P3~ (ya=—y1-y2—-y3+ P1+ P2+ P3)
= (s—y1-y2-y3+ P1+ P2+ P3)
= P2P3— P1-2P2- 2P3— ya—ys+ 2y1+ 2y3+ 2y3,
Pa=~(ys-yi-y2-ys+ Pi+ P2+ P3) + PoPs,

Ps=-(ysa—yi1-y2-y3+ Pi+ P2+ P3) + P2P3,
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These formulas show that degP~1 < degP1, while degP~f = degPifor i = 2, 3, and the

theorem follows from the iteration of this procedure.

Appendix A. Horowitz Type Theorems

A.1. Classical setting. Let ay, .., an € Z be non-zero integers such that
ajdivides ao, forj=1,.., n. Consider the

polynomial in n variables xi, ..., X,

mn n

— e _ P
H := E a;z; (1.()H.I',j

Jj=1 =1

The polynomial H is quadratic with respect to each variable x;. This ensures that the
polynomial has a nontrivial group of symmetries.

Theorem A.1. Let ¢ € Snbe such that (as(1), ..., Ao(n)) = (ay, ..., an). Then the permutation
(X1, ...y Xn) 7= (Xo(1), ..., Xo(m)) preserves the polynomial H Theorem A.2. Foranyi=1, ..,

n, the transformation
ap
vt (T, o0, Tp) (:1:1. ey L1, —X; + O—H.’I.'J', Tig1s ones .'1:.,,)
i
is an involution preserving the polynomial H.

Proof. We check this for vi. Denote? = ar [ 25, Then
. . . _ . a2 o o 2
H(—zi+y, xo, ..., xp) = a1 (—z1 +y)° —ap(—x1 +y) H i+ Z.’Ll

i1 I>1

a? a2
=z’ — 2z a9 ;4 2 2+ anT1 z;— -2 2+ z?
1 il ay bl J ay J 1
i>1

i>1 i>1 i>1 I>1
= H(x1, X2, ..., Xn)’

The permutations of Theorem A.1 and the Vi'ete maps of Theorem A.2 are
automorphisms of the algebra Z[x].

We say that an endomorphism of algebras ¢: Z[x] = Z[x] defined by

x;j 7 Pj(x), Pi€e Z]x], j=1,.,n
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is of maximal rank if there exists a point g € C"such that the Jacobian matrix of ¢ at g
is invertible.

The following is a stronger version of the original Horowitz Theorem.

Theorem A.3. Any endomorphism of maximal rank preserving the polynomial H is an
automorphism. The group of all automorphisms of Z|x| preserving H is generated by the
Vi‘ete transformations, by the permutation of variables preserving the n-tuple (ay, ...,
an), and by multiplication by -1 of an even number of variables.

Proof. The argument is the same of the proof of Theorem 12.5.

A.2. »Setting. Let m, n be two positive integers. Let aq, .., anbe symmetric Laurent
polynomials in zj, ..., zm with integer coefficients and such that

axy=aj and ajdivides ao forj=1,..n,

in the algebra Z[z*1]°~ of symmetric Laurent polynomials.

Consider the polynomial in 2n variables xi, x2..., X2n-1, X2n,
n T

H .= E AjT25-1T25 — Ao H T25-1

j=1 Jj=1 .

The algebra Z[z¢1]°=[x] admits an involution

V: X2j-1 7 X2, Xx2j =7 X2j-1, j=1,..,n

The notions of a v-endomorphism and a v-automorphism given in Section 12.1
obviously extend to the algebra Z[z*1]%[x].

The polynomial H has a nontrivial group of symmetries.

Theorem A.4. Let o € Sy be such that (as(1y, ..., s(m) = (ay, .., an). Then the permutation
X =7 (X20(1)-1, X20(1) .-, X20(n)-1, X20(n)) preserves the polynomial H. Theorem A.5.
For any i =1, .., n, the transformation videfined by
Tyt T2, XTa b2 X1, ..., T2i-3 B T2, T2i-2 b7 T3,
ap agp
Toj—1 W+ —I9; + — H-‘I.‘Qj-lq To; W —Xoj_1 + — H.’I.'gj.
Qg 3 Qg =
Jj#i J#i
T2iv1 B> T2i42, X242 -7 241, ---5 T2p-1 P Tap,  Top FF Tan-

is an involution preserving the polynomial H.

Proof. The proof is by straightforward calculation, the same as for n = 3.
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The permutations of Theorem A.4 and the Vi'ete maps of Theorem A.5 are
vautomorphisms of the algebra Z[z*1]%=[x].

Given P € Z[z#1]5[x] and p € Cmdenotes by P, € C[x] the specialization of Patz = p.

Let ¢: Z[z:1]"[x] - Z[z*1]°[x] be a v-endomorphism defined by xz;-1 -7
Pi(x), x27-VvPi(x), j=1.,n
For any p € Cmthere is a map ¢p: C2"— C2"defined by

x -7 (Pl,p(X), VPl,p(X), vy Pn,p(X), VPn,p(X)).
The v-endomorphism ¢: Z[z*1]>~[x] — Z[z*1]°=[x] is said to be of maximal rank if
there exist a point p € C"and a point g € C2such that the Jacobian matrix of ¢ at q is

invertible.

Theorem A.6. Any v-endomorphism of maximal rank preserving H is a v-
automorphism. The group of all v-automorphisms of Z[z1]°~[x] preserving H is
generated by the Vi'ete transformations of Theorem A.5, by the permutation of variables
preserving (ay, ..., an), by multiplication by -1 of an even number of variables, and by

: L m -
multiplication of variables by powers of ™ *~— H;i=l “a,

Proof. The proof is the same as for n = 3.

Appendix B. *-Equations for P3 and Poisson Structures

B.1. »Equations for P3. As we wrote in the Introduction, a T-full exceptional

collection (E1, E2, E3) in Dr? (P2) has the matrix (yr(E* ® Ej)) of equivariant Euler
1 a b
01 ¢

characteristics of the form (U 0 1), where (a, b, ¢) are symmetric Lau-
rent polynomials in the equivariant parameters zi, z;, z3 satisfying the *-Markov
equation
aa® +bb* + et —ab*c =3 — M
12223 (B.1)
Similar objects and equations are available for any projective space P". For exam-
@1 a b c@

ple, for P3 the matrix of equivariant Euler characteristics has the form
a0
0 1
where (a, b, ¢, d e f) are symmetric Laurent polynomials in the equivariant
parameters z1, Z2, z3, z4 satisfying the system of equations

d
1 e;
0

S O -
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aa* + bb* + ec® +dd* + ee* + ff* —a*bd* — a*ce® — b cf* —dTef* +a*cd” f*
2973724 212324 212224 Z1%223
=4+ ==+ ——+—+—— (B2
1 23 23 %4

— 2aa® — 2bb* — 2cc® — 2dd* — 2ee* - 2f f*
+ab*d + a*bd* + ac’e + a*ce® + b efF + bt f +de* f +def”
—ab*ef* —a*be* f —bc*d e — b ede” + aa® f f* + bb*ee” + cc*dd”

2,2 2.2 2.2 2.2 2.2 2,2
S 1oy SR L B B 1 S ey S U B.:
__6+722 2,2 22,2 2;3"',,2,,2 2,27 (B.3)
IRy FUAy RREY O RURy AR ZRA
aa* + bb* + ec* + dd* + ee* + ff* —ab*d — ac*e — be* f — de* f + actdf
3 3 3 :
z z 2 z
=4+ — 2 2 —, (B4)

222374 212324 Z122%4 212223

see [17, Formulas (3.24)-(3.26)]. One may study this system of equations similarly to
our study of the *-Markov equation.

In this appendix we briefly discuss the analogs for the system of equations (B.2)-
(B.4) of the Poisson structure on Cé constructed in Section 11. It will be a family of
Poisson structures on C12.

B.2. Poisson structures on C12, Consider the affine space C12 with coordinates x = (x3,

.., X12), the involution v: C12 — C12, x2j-17- x2j, x2j 7= x2j-1,j =1, .., 6,
and polynomials

H1(x) = X1X2 + X3X4 + X5X6 + X7X8 + X9X10 + X11X12
— X2X3X8 — X2X5X10 — X4X5X12 — X8X9X12 + X2X5X8X12,
H2(x) = —2x1x2 — 2X3X4 — 2X5X6 — 2X7X8 — 2X9X10 — 2X11X12
+ X3X8X2 + X5X10X2 + X1X4X7 + X1X6X9 + X3X6X11
+ X7X10X11 + X4X5X12 + X8X9X12 — X3X10X11X2 + X1X11X12X2
+ X5X6X7X8 — X3X6X8X9 — X4X5X7X10
+ X3X4X9X10 — X1X4X9X12,
H3(x) = X1X2 + X3X4 + X5X6 + X7X8 + X9X10 + X11X12

— X1X4X7 — X1X6X9 — X3X6X11 — X7X10X11 + X1X6X7X11.

We have v’H1 = H3, v’H2 = H2, v’H3 = H1.
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Consider the braid group B4 with standard generators 11, 72, 73. The group B4

acts on C12,

T = Xy Ty T = Ty — T1T7, TiT = T

TTIQ = —;1’1' Tz*.’I,"_) = T4 — -1'23’38, T‘;T‘g = :EQ'

TI T3 = —Tax3 + 7, T, x3 =Ty TyT3 = Ty — T3T1y
TiTy = —x1Ty + Ty T;;’ﬂ‘fl = T3 TaXy = Tg — T4T12
Tik.l?s = —ToT;5 + Ty T;Qf; =5, T?.I,'s =Ty

T{ T = —X126 + T1o, TS X = g, TR Tg = T4

Ti X7 = I3 TyLT = —Tg Ty I7 = Tg — T7I1,
Ti Ty = Ty, Ty Ty = 7, TRL8 = T10 — LgL12,
T Tg = Ty, Ty Tg = —TgTg + Ty, Ty Tg = x7
T{ T10 = T T3T10 = —T7T10 +T12,  T3T10 = Ty
T T = T11, I = T, 3T = —Ti2
T T12 = T1g, TS T12 = T1g, TiT12 = —Tq),

Theorem B.1. The space V of all quadratic Poisson structures on C12which have Hi, H,
Hs as Casimir elements, is a 3-dimensional vector space consisting of logcanonical
structures. For suitable coordinates b = (b1, bz, b3) on V, the Poisson structures have the

form:

{x1, x2} =0,
{x7,x8} =0,

{x1, x11} = b2x1x11,

{x2, x11} = -b2x2x11,

{x3, X9} = —(b1 - b2 + b3)x3x9,
{X4, X0} = (b1 — b2 + b3)xax9,
{xs, x7} = (b1 - b3)xsx7,

{xe, X7} = —=(b1 - b3)xex7,
{x1, X3} = —b3x1xs,

{x2, x3} = b3xzxs,

{x1, x5} = —=(b3 - b2)x1x5,
{x2, x5} = (b3 — bz)x2xs,

{x1, x7} = —=b3x1x7,

{x2, X7} = b3xzx,

{x1, xo} = =(b3 — b2)x1x9,

{x2, x9} = (b3 — bz)x2x9,

{x3, x4} =0, {xs, x6} =0,

{x9, x10} = 0, {x11, x12} =0,
{x1, x12} = —=b2x1x12,

{x2, x12} = b2x2x12,
{x3, x10} = (b1 - b2 + b3)x3x10,
{xa, x10} = =(b1 - b2 + b3)x4x10,
{xs, x8} = =(b1 - b3)xsxs,
{x6, xs} = (b1 — b3)XeXs,
{x1, x4} = b3x1xs,
{X2, X4} = —b3X2Xa,
{x1, x5} = (b3 — b2)x1Xs,
{x2, X6} = —=(b3 — b2)x2xs,
{x1, x8} = b3x1xs,
{x2, x8} = —b3x2xs,
{x1, x10} = (b3 - b2)x1x10,

{x2, x10} = =(b3 - b2)x2x10,
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{x3, x5} = =(b1— b2)x3x5,
{x4, x5} = (b1 — b2)Xaxs,
{x3, X7} = —b3x3x7,

{x4, X7} = b3xaxs,
{x3, x11} = (b1 - b2)x3x11,
{x4, x11} = (b1 - b2)x4x11,
{xs, x7} = (b1 — b3)xsX7,
{xe, x7} = =(b1 - b3)xex7,
{xs, X9} = —=(b3 - b2)xsX9,
{x6, X9} = (b3 — b2)XeXo,
{xs5, x11} = =(b1 - b2)x5x11,
{x6, x11} = (b1 - b2)xe6x11,
{x7, X9} = —b1x7X9,
{xs, X9} = b1XsXo,
{x7, x11} = -b1x7x11,
{x8, x11} = b1xsx11,
{x9, x11} = —-b1x9x11,

{x10, x11} = b1x1ox11,
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{x3, x6} = (b1 — b2)x3Xs,
{x4, x6} = —(b1— b2)x4Xs,
{x3, X8} = b3X3Xs,

{xa, x8} = —b3x4xs,

{x3, x12} = (b1 - b2)x3x12,
{x4, x12} = —=(b1 - b2)x4x12,
{xs, x8} = —=(b1— b3)xsXs,

{xe, x8} = (b1 — b3)XeXs,
{xs, x10} = (b3 - b2)x5x10,
{xs6, x10} = —=(b3 - b2)xsex10,
{xs, x12} = (b1 - b2)x5x12,
{x6, x12} = —=(b1 - b2)xex12,
{x7, x10} = b1x7x10,

{x8, x10} = —b1x8x10,
{x7, x12} = b1x7x12,
{x8, x12} = -b1x8x12,
{x9, x12} = b1xox12,

{x10, x12} = =b1x10x12.

Each of these Poisson structures is v-invariant. If (b1, bz, b3) 6= (0, 0, 0), then the Poisson
structure is of rank 2.

The Poisson structure with parameters b is denoted by {, }».

Proof. A computer-assisted calculation shows that the only requirements on a
quadratic bracket {, } to be skew-symmetric and have Hi, Hz, Hz as Casimir elements
uniquely determines the Poisson structures above.

Another computer-assisted calculation shows that if a polynomial Poisson
structure {, } on C'2has Hj, H2, H3 as Casimir elements, then its Taylor expansion at the
origin, has to start with at least quadratic terms.

B.3. Braid group B4 action. Given a Poisson bracket {, } on C!2 define the Poisson
bracket {, }*by

{fgyi=t’{fetlg -t} i=1,2, 3.
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These formulas define a braid group B4 action on the space of Poisson structures on
ctz,

Theorem B.2. The three-parameter family of Poisson structures {, }» is invariant with
respect to the braid group Ba-action on the space of all Poisson structures. The induced
braid group Bsaction p on the space of parameters V is a vector representation defined
by the formulas,

T1: (b1, b2, b3) 7— (b1— bz,—b2, -b3), 12: (b1, bz, b3) 7—
(=b1, =b1+ b2— b3,~b3), 13: (b1, bz, b3) =7 (=b1, b2, —b2
+ b3).

The representation p factors through a representation of the symmetric group S4, p(t:%)
=id, i =1, 2, 3. The representation p: Ss— GL(V) is irreducible and is isomorphic to the
standard three-dimensional representation tensored with the sgn representation.

By Theorem B.2, there is no Bs-invariant or B4-anti-invariant quadratic Poisson
structure on C'2having Hi, H2, H3 as Casimir elements.

Remark B.3. A computer-asssisted calculation shows that if a log-canonical Poisson
structure {, } on C!2remains to be log-canonical after the action on it by any element
of the braid group B4, then {, } is one of the Poisson structures {, }»in Theorem B.1.

B.4. Coefficients of {, }» and elements of weight lattice. Consider C* with standard
Euclidean quadratic form (, ). Denote (1, -1, 0, 0), (0, 1, -1, 0), (0, 0, 1, -1) € C*by vy,
vz, v3. We identify the space of parameters V with the subspace
{t e Ch: Z::l ti = “}, by sending a point of V with coordinates
(b1, bz, b3) to the point b1vi +bzv2 +b3vs. The vectors vi, v, v3 generate the root lattice
inV.

Fori=1, 2, 3, the linear map p(t:) : V— Vpermutes the i-th and i + 1-st coordinates
of vectors of VVand multiplies the vectors by -1.

The weight lattice in V is the lattice of the elements t = (ty, t2, t3, t4) € C*such that

P4i=1 ti=0and (¢, vi) €Z,i=1, 2, 3. The weight lattice has a basis wi1= (3, -1, -1, -1) /4,
w2=(2,2,-2,-2)/4,ws=(1, 1, 1, -3)/4 with the property (w;, v;) = d;for all i, j.
There are exactly 8 vectors of the weight lattice of square length 12/16,

+wy, w1 F wy, w2 F ws, w3, (B.5)

and there are exactly 6 vectors of the weight lattice of square length 1,
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*wy, w1+ w2t ws, twi+ ws. (B.6)

All other vectors of the root lattice are longer. These two groups of vectors form two
Ss-orbits.

The scalar products of these 14 vectors with the vector bivi + bz2vz + b3vs give us the
linear functions in b1, b2, b3,

* by, #b1+ bz, b2+ b3, b3,  ihy, b1+ b2+ b3, +b1+ bs. (B.7)

These are exactly the linear functions appearing as coefficients of the Poisson
structure {, }» of Theorem B.1.

B.5. Casimir subalgebra. Denote by C the subalgebra of C[x] generated by the
following 20 monomials:

mi1=Xx1x2, m2 = X3Xx4, ms3 = X5Xe, m4 = X7X8,

ms = X9X10, me = X11X12, m7 = X2X3Xs, ms = X2X5X10,

M9 = X4X5X12, mM10 = X8X9X12, mi1 = X1X4X7, mi2 = X1X6X9,
mi3 = X3X6X11, m14 = X7X10X11, M15 = X2X5X8X12, mi16 = X2X3X10X11,
m17 = X3X6X8X9, mM18 = X4X5X7X10, M19 = X1X4X9X12, m20 = X1X6X7X11.

It is easy to see that the polynomials Hi, H2, Hs are elements of the subalgebra C.

Theorem B.4. For every b each element of the subalgebra C is a Casimir element of the
Poisson structure {, }». The subalgebra C is v-invariant and the braid group B4 action
invariant.

Proof. The theorem is proved by direct verification. For example, easy calculations
lead to formulas like T17m2 = -m11+ mimz + m4- my,

T3?M18 = mM17 — m10mz2 — mi3ma4 + ma2ms4me,

which proves the braid group invariance of C.

B.6. Symplectic leaves. Since {, }»is of rank 2, the symplectic leaves of {, }»are two-
dimensional. In logarithmic coordinates logx;, i = 1, .., 12, they are two-dimensional
affine subspaces. More precisely, we have the following statement.

Theorem B.5. Given (b1, bz, b3) 6= (0, 0, 0), then the function
Cb(x) = (b1 - b2)logx1 + (b2 - b3)logxs + b3 logxs
is a Casimir element of {, }»; the C-span of C» and the functions logm; i = 1, ..,, 20, is 10-

dimensional, while the C-span of the functions logm;, i = 1, .., 20, is 9-dimensional.

Hence the symplectic leaves of {, }»are the surfaces on which the functions of this
10-dimensional C-span are constant. In particular, the leaves do depend on b.
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by —ba ba—bs by L. i
We may also conclude that*1  “¥3" "¥5 isa Casimir element of {, }» functionally

independent of the Casimir elements m;, i = 1, ..., 20.
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