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1. Introduction 

1.1. Markov equation 

1.1.1. The Markov equation is the Diophantine equation 

 a2 + b2 + c2 − abc = 0 a, b, c ∈ Z, (1.1) 

with initial solution (3, 3, 3). If a triple (a, b, c) is a solution, then a permutation of the 

triple is a solution. One may also change the sign of two of the three coordinates of a 

solution. The braid group B3 acts on the set of solutions, 

τ1 : (a, b, c) 7→ (−a, c, b − ac), 

(1.2) 

 τ2 : (a, b, c) →7 (b, a − bc, −c). 

The classical Markov theorem says that all nonzero solutions of the Markov equation 

can be obtained from the initial solution (3, 3, 3) by these operations, see [31], [30]. 

This group of symmetries of the equation is called the Markov group. A solution with 

positive coordinates is called a Markov triple, the positive coordinates are called the 

Markov numbers. 

The Markov equation is traditionally studied in the form 

 a2 + b2 + c2 − 3abc = 0, a, b, c ∈ Z. (1.3) 

Equations (1.1) and (1.3) are equivalent. A triple (a, b, c) ∈ Z3 is a solution of (1.3) if 

and only if (3a, 3b, 3c) is a solution of (1.1). 

The equation was introduced by A.A.Markov in [31], [30] in the analysis of minimal 

values of indefinite binary quadratic forms and was studied in hundreds of papers, 

see for example the book [1] and references therein. 

1.2. Motivation from exceptional collections and Stokes matrices 

1.2.1. Our motivation came from the works by A.Rudakov [39] on full exceptional 

collections in derived categories and by B.Dubrovin [20], [21], [22] on Frobenius 

manifolds and isomonodromic deformations. 
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In 1989 A.Rudakov studied the full exceptional collections in the derived category 

Db(P2) of the projective plane P2. These are triples (E1, E2, E3) of objects in Db(P2) 

generating Db(P2) and such that the matrix of Euler characteristics 

! 

)) has the form . Rudakov observed that the triple (a, b, c) 

is 

a solution of the Markov equation. The braid group B3 naturally acts on the set of full 

exceptional collections and the induced action on the set of matrices of Euler 

characteristics coincides with the action of the braid group on the set of solutions of 

the Markov equation. 

In the 90’s Dubrovin considered the isomonodromic deformations of the quantum 

differential equation of the projective plane P2, see [22]. This is a system of three first 

order linear ordinary differential equations with two singular points: one regular 

point at the origin and one irregular at the infinity. Dubrovin observed that the Stokes 

matrix S of a Stokes basis of the space of solutions at the infinity is of 

! 

the form, where (a, b, c) is a solution of the Markov equation. The 

braid group B3 naturally acts on the set of Stokes bases, and the induced action on the 

set of Stokes matrices coincides with the action of the braid group on the set of 

solutions of the Markov equation. 

These two observations allowed to Dubrovin to conclude that the Stokes bases of 

the isomonodromic deformations of the quantum differential equation of P2 

correspond to the full exceptional collections in the derived category Db(P2) and more 

generally to conjecture that the derived category of an algebraic variety is responsible 

for the monodromy data of its quantum differential equation, see [21], [16]. 

1.2.2. Recently in [45] V.Tarasov and the second author considered the equivariant 

quantum differential equation for P2 with respect to the torus T = (C×)3 action on P2. 

That equivariant quantum differential equation is a system of three first order linear 

ordinary differential equations depending on three equivariant parameters z = (z1, z2, 

z3). The system has two singular points: one regular point at the origin and one 

irregular at the infinity. It turns out that the Stokes matrix S of a 

a b! 

Stokes basis of the space of solutions at the infinity is of the form, 

where a, b, c are symmetric Laurent polynomials in the equivariant parameters z with 

integer coefficients. In [17] we observed that the Stokes bases correspond to T-full 

exceptional collections in the equivariant derived category ). If (E1, E2, E3) is a 

T-full exceptional collection, then the equivariant Euler characteristic ) is 
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an element of the representation ring of the torus, that is, a Laurent polynomial in the 

equivariant parameters with integer coefficients. It turns out that if a T-full 

exceptional collection (E1, E2, E3) corresponds to a Stokes basis, then the 

corresponding Stokes matrix equals the matrix (χT(Ei∗ ⊗ Ej)) of equivariant Euler 

characteristics. Moreover the three symmetric Laurent polynomials (a, b, c), 

appearing in this construction, satisfy the equation 

 , (1.4) 

where f∗(z1, z2, z3) := f(1/z1, 1/z2, 1/z3) for any Laurent polynomial, see [17, Formula 

(3.20)]. If z1 = z2 = z3 = 1, then the right-hand side of (1.4) equals zero, the equivariant 

Euler characteristics χT(Ei∗⊗Ej) become the non-equivariant Euler characteristics 

χ(Ei∗ ⊗Ej), and the triple of symmetric Laurent polynomials (a, b, c) evaluated at z1 = 

z2 = z3 = 1 becomes a solution of the Markov equation 

(1.1). 

We call equation (1.4) for symmetric Laurent polynomials with integer coefficients 

the ∗-Markov equation. 

The transition from the Markov equation to the ∗-Markov equation provides us 

with a deformation of the Markov numbers by replacing Markov numbers with 

symmetric Laurent polynomials, which recover the numbers after the evaluation at z1 

= z2 = z3 = 1. 

The goal of this paper is to observe how the properties of the Markov equation and 

its solutions are reflected in the properties of the ∗-Markov equation and its solutions. 

1.2.3. There are interesting instances of the transition from the Diophantine Markov 

equation (1.1) to an equation of the form 

a(t)2 + b(t)2 + c(t)2 − a(t)b(t)c(t) = R(t), 

where a(t), b(t), c(t) are unknown functions in some variables t and R(t) is a given 

function. Such deformations among other subjects are related to hyperbolic geometry 

and cluster algebras, see the fundamental papers [15], [25]. 

The difference between deformations of this type and the ∗-Markov equation is 

that equation (1.4) includes the ∗-operation dictated by the equivariant K-theoretic 

setting. It is an interesting problem to find relations of the ∗-Markov equation to 

hyperbolic geometry and cluster algebras. 

1.3. ∗-Markov equation and ∗-Markov group 

1.3.1. It is convenient to use the elementary symmetric functions (s1, s2, s3), 

 s1 = z1 + z2 + z3, s2 = z1z2 + z1z3 + z2z3, s3 = z1z2z3, 

change variables (a, b, c) to (a, b∗, c), and reformulate equation (1.4) in a more 

symmetric form 
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 . (1.5) 

The problem is to find Laurent polynomials ] satisfying equation 
(1.5). The equation has the initial solution 

  , (1.6) 

whose evaluation at s1 = s2 = 3, s3 = 1 is the initial solution (3,3,3) of the Markov 

equation. 

From now on we call equation (1.5) the ∗-Markov equation. 

1.3.2. The group ΓM of symmetries of the ∗-Markov equation is called the ∗-Markov 

group. It consists of permutations of variables, changes of sign of two of the three 

variables, the braid group B3 transformations 

 τ1 : (a, b, c) 7→ (−a∗, c∗, b∗ − ac), 

∗ ∗ − bc, −c∗), (1.7) τ2 : (a, b, c) 7→ (b ,

 a 

and the new transformations 

. 

We have an obvious epimorphism of the ∗-Markov group onto the Markov group. This 

fact and the Markov theorem imply that for any Markov triple of numbers there exists 

a triple of Laurent polynomials, solving the ∗-Markov equation, obtained from the 

initial solution I by transformations of the ∗-Markov group, whose evaluation at s1 = 

s2 = 3, s3 = 1 gives the Markov triple. 

It is an open question if any solution of the ∗-Markov equation can be obtained 

from the initial solution I by a transformation of the ∗-Markov group. In analogy with 

the Markov equation we may expect that all solutions lie in ΓMI. 

1.4. Solutions in the orbit of the initial solution 

1.4.1. As the first topic of this paper we study ΓMI, the set of solutions of the ∗-Markov 

equation obtained from the initial solution I by transformations of the ∗-Markov 

group. 

In the interpretation of solutions of the ∗-Markov equation as matrices of 

equivariant Euler characteristics (χT(Ei∗ ⊗ Ej)) for T-full exceptional collections, the 

set ΓMI corresponds to the set of matrices (χT(Ei∗ ⊗Ej)) for the T-full exceptional 

collections in DTb (P2) lying in the braid group orbit of the so-called Beilinson T-full 

exceptional collection, see [17], [5]. 

Several first elements of ΓMI different from I are 

 (s∗1, s21 − s2, s∗1), (1.8) 

 (s∗2, s21s2 − s1s3 − s22, (s21 − s2)∗), (1.9) 

 (s∗1, s31s2 − 2s21s3 − s1s22 + s2s3, (s12s2 − s1s3 − s22)∗), (1.10) 
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 ((s21s2 − s1s3 − s22)∗, s12s32 − s31s2s3 − s2s23 + s21s23 − s42, (s22 − s1s3)∗). (1.11) 

Evaluated at s1 = s2 = 3, s3 = 1 they represent the Markov triples (3, 6, 3), 

(3, 15, 6), (3, 39, 15), (15, 87, 6), respectively. 

Random application of generators of the ∗-Markov group to the initial solution I 

will produce the Laurent polynomial solutions of the ∗-Markov equation, but they will 

not be polynomial. We make them close to being polynomial as follows. 

We look for solutions of the ∗-Markov equation in the form ( ). We say that 

a solution (  ) is a reduced polynomial solution if each of f1, f2, f3 is a 

nonconstant polynomial in s1, s2, s3 not divisible by s3. 

For example, all triples in (1.8)–(1.11) are reduced polynomial solutions. 

Theorem 1.1. Let (a, b, c) be a Markov triple, 0 < a < b, 0 < c < b, 6 6 b. Then there exists 

a unique reduced polynomial solution  representing 

(a, b, c). 

See Theorem 6.4. 

Remark 1.2. Consider the three versions of the ∗-Markov equation, 

 , (1.12) 

  (1.13) 

  (1.14) 

These equations are equivalent: the second equation is obtained from the first by the 

change (a, b, c) → (a, b∗, c) and the third is obtained from the second by the change (a, 

b, c) → (a∗, b, c∗). The first of the equations is equation (1.4) coming from the 

equivariant derived category DTb (P2), see [17]. The second equation was obtained 

from the first equation to make the ∗-Markov equation more symmetric, see (1.5). 

This second equation is studied in this paper. The third of these equations also has 

advantages. 

Namely, the initial solution I0 for equation (1.14) is the triple of Laurent 

polynomials . The ∗-Markov group ΓM acts on solutions of equation (1.14) 

since equations (1.13) and (1.14) are equivalent. Theorem 1.1 can be reformulated as 

follows. 

Theorem 1.3. Let (a, b, c) be a Markov triple, 0 < a < b, 0 < c < b, 6 6 b. Then there exists 

a unique triple of polynomials (f1, f2, f3) solving equation (1.14) and such that (f1, f2, f3) 

∈ ΓMI0, each of f1, f2, f3 is nonconstant and not divisible by s3, and the triple (f1, f2, f3) 

represents (a, b, c). 

1.4.2. Let f(s1, s2, s3) be a polynomial. We consider two degrees of f: the homogeneous 

degree d := degf with respect to weights (1, 1, 1) and the quasihomogeneous degree q 
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:= Degf with respect to weights (1, 2, 3). For example, deg( , 

Deg( . 

Let f(s1, s2, s3) be a polynomial of homogeneous degree d not divisible by s3, then 

  (1.15) 

is a polynomial of homogeneous degree d not divisible by s3. If additionally f(s1, s2, s3) 

is a quasi-homogeneous polynomial of quasi-homogeneous degree q, then g(s1, s2, s3) 

is a quasi-homogeneous polynomial of quasi-homogeneous degree 3d − q. 

The polynomial g is denoted by µ(f). 

1.4.3. Let f(s1, s2, s3) be a quasi-homogeneous polynomial with respect to weights (1, 

2, 3). The assignment to f its bi-degree vector (d, q) could be seen as a “dequatization” 

in the following sense. Let 

 s1 = c1eα+β, s2 = c2eα+2β, s3 = c3eα+3β, 

where α, β are real parameters which tend to +∞ and c1, c2, c3 are fixed generic real 

numbers. Then 

lnf(c1eα+β, c2eα+2β, c3eα+3β) 

has leading term dα + qβ independent of the choice of c1, c2, c3. The leading term may 

be considered as a vector (d, q). 

1.4.4. We say that a polynomial P(s1, s2, s3) is a ∗-Markov polynomial if there exists a 

Markov triple (a, b, c), 0 < a < b, 0 < c < b, 6 6 b, with reduced polynomial presentation 

( such that P = f2. The polynomial s2 will also be called a ∗-Markov 

polynomial. 

We say that a polynomial Q(s1, s2, s3) is a dual ∗-Markov polynomial if Q is not 

divisible by s3 and µ(Q) is a ∗-Markov polynomial. 

For example,   are ∗-Markov polynomials, since they 

appear as the middle terms in the reduced polynomial presentations in (1.8) and 

 

Figure 1. 

(1.9) and   are the corresponding dual ∗-Markov 
polynomials. 

Theorem 1.4. Let f(s1, s2, s3) be a ∗-Markov polynomial or a dual ∗-Markov polynomial 

of bi-degree (d, q). Then f(s1, s2, s3) is a quasi-homogeneous polynomial with respect to 

weights (1, 2, 3). Moreover, |2q − 3d| = 1 if d is odd and |2q − 3d| = 2 if d is even. 

(3 , 15 , 6) 

(15 , 87 , 6) (3 , 39 , 15) 

 1 
2  ,  3 

4  ,  2 
2  

 3 
4  ,  5 

8  ,  2 
4   1 

1  ,  4 
5  ,  3 

4  

(1 , 3 , 2) 

(3 , 5 , 2) (1 , 4 , 3) 
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Theorem 1.5. Let   be the reduced polynomial presentation of a 

Markov triple (a, b, c), 0 < a < b, 0 < c < b, 6 6 b. Then each of f1, f3 is either a ∗-Markov 

polynomial or a dual ∗-Markov polynomial. If f1, f2, f3 have bi-degree vectors (d1, q1), (d2, 

q2), (d3, q3), then 

(d2, q2) = (d1, q1) + (d3, q3). 

See Theorems 6.4, 7.2, and examples (1.8)–(1.11). 

1.4.5. It is convenient to put Markov triples at the vertices of the infinite binary planar 

tree as in Figure 1 and obtain what is called the Markov tree. Similarly, we may put at 

the vertices the triples of polynomials (f1, f2, f3) such that the triples 

) are the reduced polynomial presentations of the corresponding Markov 

triples. In that way we would put in Figure 1 the triple (f1, f2, f3) shown in (1.9) instead 

of (3, 15, 6), the triple (f1, f2, f3) shown in (1.10) instead of (3, 39, 15), the triple (f1, f2, 

f3) shown in (1.11) instead of (15, 87, 6). Or we may put at the vertices the triples (d1, 

q1), (d2, q2), (d3, q3) of bi-degree vectors of the triples (f1, f2, f3), or the triples (d1, d2, 

d3) of degrees, see Figure 1, or we may even put at the vertices the triples of Newton 

polytopes of the polynomials (f1, f2, f3), see Sections 7.7 and 7.8. 

These decorated trees have interesting interrelations consisting of “quatizations” 

and “de-quantizations”, see short discussion in Section 7.5. 

A compelling problem is to study asymptotics of these decorations along the 

infinite paths going from the root of the tree to infinity, see remarks in Sections 7.8 

and 7.9. 

1.4.6. It is well known that the Markov triples of the left branch of the Markov tree are 

composed of the odd Fibonacci numbers, multiplied by 3. These triples have the form 

(3, 3ϕ2n+1, 3ϕ2n−1), where ϕ2n+1, ϕ2n−1 are odd Fibonacci numbers. We describe the 

reduced polynomial presentations ( ) of these 

Markov triples, where gn−1 = s2 if n is even, gn−1 = s1 if n is odd, and F2n+1, F2n−1 are 

polynomial in s1, s2, s3, called the odd ∗-Fibonacci polynomials. 

The first of them are 

F3(s) = s21 − s2, 

F5(s) = s21s2 − s1s3 − s22, 

F7(s) = s31s2 − 2s21s3 − s1s22 + s2s3. 

We describe the recurrence relations for the odd ∗-Fibonacci polynomials, explicit 

formulas for them, their Newton polytopes, the Binet formula, the Cassini identity, 

describe the continued fractions for F2n+3/F2n+1 and the limit of this ratio as n → ∞. 

1.4.7. It is well known that the Markov triples of the right branch of the Markov tree 

are composed of the odd Pell numbers, multiplied by 3. We describe the reduced 

polynomial presentations of these Markov triples in terms of the polynomials, which 

we call the odd ∗-Pell polynomials. We develop the properties of the odd ∗-Pell 

polynomials, which are analogous to properties of odd Pell numbers and to properties 

of the odd ∗-Fibonacci polynomials. 
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1.4.8. The q-deformations of Fibonacci and Pell numbers is an active subject related 

to several branches of combinatorics and number theory, see for example [8], [3], 

[38], [33] and references therein. It would be interesting to determine if these 

numerous q-deformations of Fibonacci and Pell numbers could be obtained by 

specifications of our ∗-deformation depending on the three parameters s1, s2, s3. 

1.5. ∗-Analogs of the Dubrovin Poisson structure. In [20] Dubrovin considered C3 

with coordinates (a, b, c), the braid group B3 action (1.2), and introduced a Poisson 

structure on C3, 

 {a, b}H = 2c − ab, {b, c}H = 2a − bc, {c, a}H = 2b − ac, 

which is braid group invariant and has the polynomial a2+b2+c2−abc as a Casimir 

element1. 

The second topic of this paper is a construction of a ∗-analog of the Dubrovin 

Poisson structure. Our Poisson structure is defined on C6, is anti-invariant with 

respect to the braid group B3 action (1.7), is invariant with respect to the involution 

(a, a∗, b, b∗, c, c∗) 7→ (a∗, a, b∗, b, c∗, c), 

has the polynomials aa∗ + bb∗ + cc∗ − abc, aa∗ + bb∗ + cc∗ 

− a∗b∗c∗, 

as Casimir elements, and is log-canonical, see Section 11. Here the word antiinvariant 

means that the Poisson structure is multiplied by −1 under the action of generators 

of the braid group. Recall also that a Poisson structure on a space with coordinates x1, 

..., xn is log-canonical if {xi, xj} = aijxixj for all i, j, where ai,j are constants. Our log-

canonical Poisson structure has ai,j = ±1, 0. 

1.5.1. The space C3 considered by Dubrovin is actually identified with the group U3 of 

unipotent upper triangular matrices (the Stokes matrices of three dimensional 

Frobenius manifolds). Standing on such an identification, M.Ugaglia generalized the 

construction of Dubrovin’s Poisson structure to all groups Un, see [46] for the explicit 

equations. Remarkably enough, the same braid invariant Poisson structure on Un was 

found independently also in [6], [7] from two completely different perspectives. Let 

B± be the groups of upper and lower triangular n×n matrices. In [6], P.Boalch proved 

that Un is the stable locus of a Poisson involution of the Poisson– Lie group B+ ∗B−, and 

that the standard Poisson structure of B+ ∗B− induces the braid invariant Poisson 

structure on Un. The construction in [7], is based on the identification of the group Un 

with the space of Gram matrices (χ(Ei, Ej))i,j for exceptional collections (E1, ..., En) in 

triangulated categories2. A.Bondal discovered a symplectic groupoid whose space of 

objects is Un: the existence of a braid invariant Poisson structure on Un is then deduced 

 
1 Recall that a function f is a Casimir element for a Poisson structure { , } if {f, g} = 0 for any g. 

2 Notice that the two identifications of Un as Stokes matrices or Gram matrices of the χ-pairing should 

coincide, at least for quantum cohomologies, according to a conjecture of Dubrovin, see 

[21], [16]. 
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from the general theory of symplectic groupoids. The quantization of the Poisson 

structure on Un is also known as Nelson–Regge algebra in 2+1 quantum gravity [35], 

[36], and as Fock–Rosly bracket in Chern–Simons theory [26]. Furthermore, 

L.Chekhov and M.Mazzocco generalized the construction of the Dubrovin Poisson 

structures to the space of bilinear forms with block-upper-triangular Gram matrix, 

they also extensively studied the related Poisson algebras, their quantization and 

affinization, see [11], [13]. See very interesting short paper [12] by L.O.Chekhov and 

V.V.Fock. 

It would be interesting to see the ∗-analogs of these considerations. 

1.6. ∗-Analogs of the Horowitz theorem. In [29], R.D.Horowitz proved the following 

result, characterizing the Markov group as a subgroup of the group of ring 

automorphisms of Z[a, b, c]. 

Theorem 1.6 [29, Theorem 2]. The group of ring automorphisms of Z[a, b, c] which 

preserve the polynomial 

H = a2 + b2 + c2 − abc 

is isomorphic to the Markov group. 

As the third topic of this paper we develop ∗-analogs of the Horowitz theorem, see 

Section 12 and Appendix A. 

1.7. Exposition of material. In Section 2 we introduce the ∗-Markov equation and 

evaluation morphism. The ∗-Markov group and its subgroups, in particular, the 

important ∗-Vi`ete subgroup, are defined in Section 3. The Markov and extended 

Markov trees are introduced in Section 4. In Section 5 we introduce the notion of a 

distinguished representative of a Markov triple and show that the ∗-Vi`ete group acts 

freely and transitively on the set of distinguished representatives. 

In Section 6 we introduce the notion of an admissible triple of Laurent polynomials 

and the notion of a reduced polynomial presentation of a Markov triple. One of the 

main theorems of the paper, Theorem 6.4 says that a Markov triple has a unique 

reduced polynomial presentation. We also introduce the notion of a ∗-Markov 

polynomial. 

In Section 7 six decorated infinite planar binary trees are defined. They are the ∗-

Markov polynomial tree, 2-vector tree, matrix tree, deviation tree, Markov tree, Euclid 

tree. We discuss the interrelations between the trees. An interesting problem is to 

study the asymptotics of the decorations along the infinite paths from the root of the 

tree to infinity. 

In Sections 8 and 9 we introduce the odd ∗-Fibonacci and odd ∗-Pell polynomials 

and discuss their properties. 

In Section 10 we construct actions of the ∗-Markov group on the spaces C6 and C5 

and a map F : C6 → C5 commuting with the actions. Using these objects we construct 

equivariant Poisson structures on C6 and C5 in Section 11. 
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In Section 12 we establish ∗-analogs of the Horowitz theorem on C6 and C5. In 

Appendix A we discuss more analogs of the Horowitz theorem. 

In Appendix B we discuss briefly the ∗-equations for P3 and associated Poisson 

structures on C12. 

The authors thank P.Etingof, M.Mazzocco, V.Ovsienko, V.Rubtsov, V.Schechtman, 

M.Shapiro, L.Takhtajan, A.Veselov, A.Zorich for useful discussions. The authors thank 

HIM and MPI in Bonn, Germany for hospitality in 2019. The authors are grateful to the 

referee for helpful remarks improving the exposition. 

2. ∗-Markov Equation 

2.1. ∗-Involution. Denote z = (z1, z2, z3), s = (s1, s2, s3). Let Z[z±1]S3 be the ring of 

symmetric Laurent polynomials in z with integer coefficients. We define an 

isomorphism ] by sending 

(z1 + z2 + z3, z1z2 + z1z3 + z2z3, z1z2z3) → (s1, s2, s3). 

Define the involution 

 (−)∗: Z[z±1]S3 → Z[z±1]S3, f 7→ f∗, 

where 

. 

This induces a ∗-involution on  

. 

Denote so := (3, 3, 1). Define the evaluation morphisms 

evs , 

Ev . 

The evaluation morphism corresponds to the evaluation of a Laurent polynomial f(z1, 

z2, z3) at z1 = z2 = z3 = 1. 

2.2. Evaluation morphism. The ∗-Markov equation is the equation 

 , (2.1) 

where ]. The solution 

  (2.2) 

is call the initial solution. 

We have 

evs . 
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Proposition 2.1. If f = (f1, f2, f3) is a solution of the ∗-Markov equation (2.1), then Evso(f) 

is a solution of the Markov equation (1.1).  

For example, the evaluation of the initial solution I gives the triple (3,3,3). 

Remark 2.2. The ∗-Markov equation (2.1) can be studied by looking for solutions (a, 

b, c) in A3, where A is a ring more general than  

For instance, if we look for solutions of the form ( ), where α, β, γ ∈ 

C, then 

 α2 + β2 + γ2 = 3, αβγ = 1. 

This curve has infinitely many algebraic points, for example 

. 

3. Groups of Symmetries 

3.1. Symmetries of Markov equation. Consider the following three groups of 

transformations of Z3: 

Type I. The group  generated by transformations 

. 

Type II. The group  generated by transformations 

. 

Type III. The group  generated by transformations 

τ1c: (a, b, c) 7→ (−a, c, b − ac), 

τ2c: (a, b, c) →7 (b, a − bc,

 −c). 

We have . 

In these notations the superscript c stays for the word classical. 

Remark 3.1. Let B3 be the braid group with three strands, and β1, β2 its standard 

generators (elementary braids) with β1β2β1 = β2β1β2. There is a group epimorphism 

. 

The center Z(B3) = h(β1β2)3i is contained in kerφ. Thus, the group 

 PSL(2, Z) 

acts on the set of solutions of (1.1). 

Proposition 3.2. The set of nonzero Markov triples is invariant under the action of each 

of the groups .  

3.2. Markov and Vi`ete groups. Define the Markov group ΓMc as the group of 

transformations of Z3 generated by , 
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 . (3.1) 

Define the Vi`ete involutions  by the formulas 

v1c : (a, b, c) 7→ (bc − a, b, c), v2c 

: (a, b, c) 7→ (a, ac − b, c), v3c : 

(a, b, c) 7→ (a, b, ab − c). 

Define the Vi`ete group  as the group generated by the Vi`ete involutions , 

 . (3.2) 

We have 

 , (3.3) 

indeed, for example,  sends 

  / 
 /  / , 

as stated. 

Theorem 3.3 [23, Theorem 1]. The group ΓVc is freely generated by , that 

is, ΓVc ∼= Z2 ∗ Z2 ∗ Z2. 

Proposition 3.4. We have the following identities: 

σ1cλck,lσ1c = λck+l,l, σ2cλck,lσ2c = λcl,k+l, 

σ1cv1cσ1c = v2c, σ2cv1cσ2c = v1c, 

σ1cv2cσ1c = v1c, σ2cv2cσ2c = v3c, 

σ1cv3cσ1c = v3c, σ2cv3cσ2c = v2c, 

 

.  

Corollary 3.5. We have . Moreover,  is a normal subgroup of ΓMc 

. 

Proof. The inclusion Γ   is clear. We have  , by 
equations (3.3). Hence Γ . We have gvicg−1 ∈ ΓVc for any  
by Proposition 3.4.  

Proposition 3.6. We have . 

Proof. Any element of ΓVc fixes the triple (2, 2, 2). The only elements of which 
fix (2, 2, 2) are the elements of . 

Extend the action of both ΓVc and  to the space C3. The point (0, 0, 0) is a fixed 

point for both actions. The Jacobian matrices at (0, 0, 0) of the Vi`ete 

transformations v1c, v2c, v3c are 

 −1 0 0  1 0 0  1 0 0  

  0 1 0 , 0 −1 0 , 0 1 0 , 

 0 0 1 0 0 1 0 0 −1 
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respectively. Hence, any element of ΓVc has diagonal Jacobian matrix at (0, 0, 0). The 

only transformation of   which can be represented by a diagonal matrix is the 

identity.  

Corollary 3.7. For any element g ∈ ΓMc , there exist unique v ∈ ΓVc and h ∈  such 

that g = vh. This implies that . 

Proof. Since Γ , any g can be expressed as a product 

. 

We can factor g as 

 , (3.4) 

by using the commutation rules described in Proposition 3.4. The decomposition in 

(3.4) is unique, by Proposition 3.6.  

3.3. Symmetries of ∗-Markov equation. Consider the following four groups of 

transformations of the space ( . 

Type I. The group G1 generated by transformations 

. 

Type II. The group G2 generated by transformations σ1 : (a, b, c) 7→ 

(b, a, c), σ2 : (a, b, c) 7→ (a, c, b). 

Type III. The group G3 generated by transformations 

 τ1 : (a, b, c) 7→ (−a∗, c∗, b∗ − ac), 

∗ ∗ − bc, −c∗). (3.5) τ2 : (a, b, c) 7→ (b ,

 a 

We have τ1τ2τ1 = τ2τ1τ2. 

Type IV. The group G4 generated by transformations 

. 

Proposition 3.8. The set of all solutions of the ∗-Markov equation (2.1) is invariant 

under the action of each of the groups G1, G2, G3, G4.  

As in the case of the Markov equation (1.1), we have the action of 

PSL(2, Z) on the set of all solutions of the ∗-Markov equation (2.1). See Remark 

3.1. 
3.4. ∗-Markov and ∗-Vi`ete groups. Define the ∗-Markov group ΓM as the group of 

transformations of (  generated by G1, G2, G3, G4, 

 ΓM := hG1, G2, G3, G4i. (3.6) 

Define the ∗-Vi`ete involutions v1, v2, v3 ∈ ΓM by the formulas 
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v1 : (a, b, c) 7→ (bc − a∗, b∗, c∗), v2 : 

(a, b, c) 7→ (a∗, ac − b∗, c∗), v3 : (a, 

b, c) 7→ (a∗, b∗, ab − c∗). 

Define the ∗-Vi`ete group ΓV as the group generated by Vi`ete involutions v1, v2, v3, 

ΓV := hv1, v2, v3i. We 

have 

 v1 = λ1,1σ1τ2, v2 = λ1,0σ2τ1, v3 = λ1,1τ1σ2. 

Proposition 3.9. We have the following identities, 

 σ1λk,lσ1 = λk+l,l, σ2λk,lσ2 = λk,k+l, 

σ1v1σ1 = v2, σ2v1σ2 = v1, 

σ1v2σ1 = v1, σ2v2σ2 = v3, 

σ1v3σ1 = v3, σ2v3σ2 = v2, 

λk,lviλk,l = vi, i = 1, 2, 3, 

λk,l µi,j λk,l = µi,j, k, l ∈ Z2, i, j ∈ Z, σ1µi,jσ1 = µ−i−j,j, 

σ2µi,jσ2 = µi,−i−j, vk µi,j vk = µ−i−j, k = 1, 2, 3. 

(3.7) 

Proof. These identities are proved by straightforward computations.  

Remark 3.10. We can take {λ1,0, λ0,1, σ1, σ2, τ1, µ0,1, µ1,0} as “minimal set” of generators 

of the ∗-Markov group, with commutation relations given by Proposition 3.9. This 

“minimal set” generates ΓM since v2, v3 can be obtained by formulas (3.7), then v1 = 

σ1v2σ1 and τ2 can be recovered by the first of formulas (3.7). 

Corollary 3.11. For any element g ∈ hG1, G2, G4i, there exist unique g1 ∈ G1, g2 ∈ G2, g4 ∈ 

G4 such that 

 g = g4g1g2. (3.8) 

Proof. Any g ∈ hG1, G2, G4i can be put in the form (3.8) by Proposition 3.9. The 

uniqueness follows from the identities 

 G4 ∩ hG1, G2i = {id}, G1 ∩ G2 = {id}.  

Corollary 3.12. We have ΓM = hΓV , G1, G2, G4i. Moreover ΓV is a normal subgroup of ΓM. 

Proof. The inclusion ΓM ⊇hG1, G2, G4, ΓV i is clear. We have G3 ⊆hG1, G2, G4, ΓV i, by 

equations (3.7). Hence ΓM = hG1, G2, G4, ΓV i. It follows that gvig−1 ∈ ΓV for any g ∈ G1, G2, 

G4, by Proposition 3.9.  Proposition 3.13. We have ΓV ∩ hG1, G2, G4i = {id}. 

Proof. Let g ∈ ΓV ∩ hG1, G2, G4i. We have g ∈ kerϕM by Proposition 3.6. The only elements 

of the form (3.8) which are in kerϕM are the elements of G4. Any element of ΓV fixes the 

triple of constant polynomials (2, 2, 2). The only element of G4 which fixes (2, 2, 2) is 

the identity.  
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Corollary 3.14. For any element g ∈ ΓM, there exist unique v ∈ ΓV and h ∈ hG1, G2, G4i 

such that g = vh. This implies that ΓM = ΓV o hG1, G2, G4i. 

Proof. Since ΓM = hΓV , G1, G2, G4i, any g can be expressed as a product 

 g = vi1ai1vi2ai2 ...vikaik, aij ∈ hG1, G2, G4i. 

We can factor g as 

  (3.9) 

by using the commutation rules described in Proposition 3.9. The decomposition in 

(3.9) is unique, by Proposition 3.13.  

Let g ∈ ΓM. Consider its restriction g|Z3 to the subset . 

Define the transformation ϕM(g): Z3 → Z3 as the composition Evso ◦ g|Z3, i.e., 

. 

Proposition 3.15. We have a group epimorphism 

 

which acts on the generators as 

 . (3.10) 

Proof. Identities (3.10) are easily checked. Let g, h ∈ ΓM. From the commutative 

diagram 

/ / OI 

 i  i  Evso  Evso 
  

/ / 

it readily follows that ϕM(hg) = ϕM(h)ϕM(g).  

Proposition 3.16. We have kerϕM = G4, so that ΓMc ∼= ΓM/G4. 

Proof. Let g ∈ kerϕM. By Corollaries 3.14 and 3.11, there exist unique elements v ∈ ΓV , 

g1 ∈ G1, g2 ∈ G2, g4 ∈ G4 such that 

g = vg4g1g2. 

We have 

ϕM(g) = ϕM(v)ϕM(g1)ϕM(g2) = id. 

By Corollary 3.7, together with , we have 

 ϕM(v) = id, ϕM(g1) = id, ϕM(g2) = id. 

This clearly implies that g1 = id and g2 = id. The element v is of the form  

with ij ∈ {1, 2, 3}, so that 
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id = . 

Since vic freely generate ΓVc (by Theorem 3.3), we necessarily have n = 0, and v = id. 

This shows that kerϕM ⊆ G4. The opposite inclusion is obvious.  

Lemma 3.17. The morphism ϕM defines isomorphisms between the group Gi and  for 

i = 1, 2, 3, and between the group ΓV and .  

Lemma 3.18. The evaluation morphism Evso is ϕM-equivariant, i.e., 

 Evso(g · a) = ϕM(g) · Evso(a), g ∈ ΓM, a .  

4. Markov Trees 

4.1. Decomposition of Mc. The set Mc of all nonzero solutions of the 

Markov equation (1.1) admits a partition in four subsets, 

 , (4.1) 

where  consists of all positive triples and  consists of all triples with negative 

entries in the i-th and j-th position. 

We have a projection , forgetting the minuses. 

Lemma 4.1. The action of the Vi`ete group  preserves each of , 

. The action of the group  preserves the sets  

and  and commutes with the projection .  

4.2. Markov tree. Solutions of the Markov equation (1.1) can be 

arranged in a graph, called the Markov tree. 

Define . Given ( , we have 

 (x, xy − z, y)  (

 (4.2) 
g 

The Markov tree T is the infinite graph obtained by iterating the operations (4.2) 

starting from the initial solution (3, 3, 3). 

y,yz − x,z ) 

( x,y,z ) 
L R 
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 h h 

O 

O 

Theorem 4.2 [31], [30], [1, Theorem 3.3]. Up to permutations in , all the elements of 
 appear exactly once in the Markov tree T .  

Corollary 4.3. The group ΓMc acts transitively on the set Mc. 

Proof. Let x, y ∈ Mc. There exist  such that γ1x, γ2y are vertices of T , 
by Theorem 4.2. So, there exist  such that δ1(3, 3, 3) = γ1x and δ2(3, 3, 3) = 
γ2y. We have 

 .  

Theorem 4.4 [1, Lemma 3.1]. The triples (3, 3, 3) and (3, 6, 3) are the only vertices of 

T with repeated numbers.  

4.3. Extended Markov tree. Define the extended Markov graph as the infinite graph 

T ext, with vertex set . We connect two vertices (a, b, c), (a0, b0, c0) of T ext by an edge 

if (a, b, c) = vic(a0, b0, c0) for some i ∈ {1, 2, 3}, where vic are Vi`ete involutions. 

... 

O 

i 
u 

... 

(3 , 102 , (39 39) , 582 , 15) (15 , 1299 , (87 87) , 507 , 6) 

(3 , 39 , 15) (15 , 87 , 6) 

(3 , 15 , 6) 

(3 , 6 , 3) 

(3 , 3 , 3) 

(15 , 3 , 6) (3 , 15 , 6) 

. . 
. 

(3 , 3 , 6) 
. . . 

(6 , 15 , (3 3) , 3 , 3) (15 , 6 , 3) 

(6 , 3 , 3) (3 , 6 , 3) 

. . . (6 , 3 , (3 15) , 6 , 15) . . 
. 
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... 

Theorem 4.5. The Vi`ete group acts freely on the vertex set  of the extended Markov 
graph with one orbit, . Moreover T ext is a tree. 

The graph T ext is called the extended Markov tree. 

The proof of Theorem 4.5 requires the following lemma. Define the function 
which assigns to a triple (x, y, z) its maximal entry. It is known that 

, 

and that such a minimum is achieved at (3, 3, 3). 

Lemma 4.6. For any   there exists a unique Vi`ete 
transformation , with i ∈ {1, 2, 3}, such that . 

Proof. We have v1c(x, y, z) = (yz − x, y, z), v2c(x, y, z) = (x, xz 

− y, z), v3c(x, y, z) = (x, y, xy − 

z). 

We claim that if m(x, y, z) = x, then the transformation is , then the 
transformation is , then the transformation is . 

To prove the first case we need to show that yz −x 6 x, xz −y > x, xy −z > x. We may 

assume that z 6 y < x. Consider the function ϕ: R → R defined by 

ϕ(t) := t2 + y2 + z2 − tyz. 

We have ϕ(x) = ϕ(yz − x) = 0, so that 

ϕ(t) = (t − x)(t − (yz − x)). 

If yz − x > x, so that ϕ(t) > 0 for all t < x. Then on the one hand we have y < x, but on the 

other hand we have z2 6 y2 ⇒ 2y2 + z2 6 3y2 6 zy2 ⇒ ϕ(y) = 2y2 + z2 − y2z 6 0. 

This shows that the assumption yz − x > x is contradictory. We also have 

xz − y > 3x − y > 2x > x, xy − z 

> 3x − z > 2x > x. 

This completes the proof in the first case. The other two cases are proved similarly. 

 

Corollary 4.7. Any  can be transformed to (3, 3, 3) by an element of the 
Vi`ete group ΓcV . Consequently, .  

Proof of Theorem 4.5. It is sufficient to prove that if v(3, 3, 3) = (3, 3, 3) for some v ∈ 

ΓcV , then v = id. Any element v ∈ ΓcV is of the form 

n 
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 v = Y vick ik = 1, 2, 3. (4.3) 
k=1 

Define 

 

Define 

. 

We claim that . Indeed, the assumption viJ+1 6= viJ would imply that mJ+1 > mJ 

= M, which is impossible. Hence, we can decrease the number of factors in (4.3) by 

two. By repeating the argument, we prove that all the factors in (4.3) cancel. 

 The same argument shows that the graph T ext has no loops.  

Corollary 4.8. For any i, j the Vi`ete group ΓcV acts freely on the set Mcij with one orbit.

  

5. Distinguished Representatives 

5.1. ∗-Markov group orbit of initial solution. Let ΓMI be the orbit of the 

initial solution I of the ∗-Markov equation (2.1) under the action of the ∗-

Markov group ΓM. Any element of ΓMI is a solution of the ∗-Markov equation 

(2.1), see Proposition 3.8. 

Proposition 5.1. The evaluation morphism Evso maps the set ΓMI onto the set Mc of all 

nonzero solutions of the Markov equation (1.1). 

Proof. If a ∈ ΓMI, then Evso(a) ∈ Mc, by Proposition 2.1. We check surjectivity. Let x ∈ Mc. 

There exists γ ∈ ΓMc such that x = γ · (3, 3, 3), by Corollary 4.3. There exists ˜γ ∈ ΓM such 

that ϕM(γ˜) = γ, by Proposition 3.15. We have that Evs  x, by Lemma 

3.18.  

5.2. Initial solution and ∗-Vi`ete group. Let 

be the unique element of the Vi`ete group 

such that vp(3, 3, 3) = (a, b, c). Define the distinguished element fp ∈ ΓMI by the 

formula 

fp = vpI, 

where vp is considered as an element of the ∗-Vi`ete group ΓV . Notice that evso(fp)= (a, 

b, c). 

Lemma 5.2. For , let  be the unique element such that vp0,pp = 

p0. Then vp0,pfp = fp0, where vp0,p is considered as an element of ΓV . 

Proof. We have vp0,pfp = vp0,pvpI = vp0I.  
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Theorem 5.3. Let   be such that the triple p0 is a 

permutation of the triple p. Then fp0 is obtained from fp by the same permutation of 

coordinates of fp composed with a transformation from the group G4. 

Proof. Let ) and ). Let ω be the permutation such 

that the evaluation of ωfp0 is (a, b, c), the same as the evaluation of fp. 

The triple ωfp0 lies in the orbit ΓMI. So 

p0 
 ωf = vg4g1g2I = vg4g2I = vg˜4I, (5.1) 

where v ∈ ΓV , gj ∈ Gj, ˜g4 ∈ G4. Here we may conclude that g1 = 1, since (a, b, c) are 

positive. We may also conclude that g4g2I = g˜4I for some ˜g4 ∈ G4 since any 

permutation of coordinates of the initial solution (s1, s1/s3, s1) can be performed by a 

transformation from G4. On the other hand, we also have 

 fp = vI, (5.2) 

where v in (5.2) is the same as in (5.1). We also know that , for some 

, by Proposition 3.9. Hence . This proves the 

theorem.  

Theorem 5.4. Let . Let p0 = (a0, b0, c0) ∈ Mc be such that 

(a0, b0, c0) is obtained from (a, b, c) by a permutation and possibly also by change of sign 

of two coordinates. Let f0 ∈ ΓMI be an element, whose evaluation is p0. Then f0 is obtained 

from fp by an element of hG1, G2, G4i. 

Proof. We have f0 = gvI, where g ∈ hG1, G2, G4i and v ∈ ΓV . The evaluation of vI has to be 

a permutation of (a, b, c), 

 Evso(vI) = σ(a, b, c), σ ∈ G2. 

Hence vI = fσ(a,b,c). By Theorem 5.3, fσ(a,b,c) = µσf(a,b,c), µ ∈ G4. Hence f0 = gvI = gµσf(a,b,c), 

which proves the theorem.  

6. Reduced Polynomials Solutions and ∗-Markov Polynomials 

Any solution of the ∗-Markov equation (2.1) can be written as ( ), where 

f1, f2, f3 are Laurent polynomials. For any m1, m3 ∈ Z, the triple 

 

is also a solution. Given a solution ( ) there exist unique m1, m3 ∈ Z such that
 are polynomials and each of  is not divisible by s3. 

A solution ( ) is called a reduced polynomial solution if each of f1, 

f2, f3 is a nonconstant polynomial in s1, s2, s3 not divisible by s3. In this case we say that 

( ) is a reduced polynomial presentation of the Markov triple 

(a, b, c) := Evs  

For example, 

 ) (6.1) 
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are reduced polynomial presentations of the Markov triples (3, 6, 3) and (3, 15, 6). 

In this section we prove that any Markov triple (a, b, c), 0 < a < b, 0 < c < b, 6 6 b has 

a unique reduced polynomial presentation ( , see 

Theorem 6.4. 

6.1. Degrees of a polynomial. Let f(s1, s2, s3) be a polynomial. We consider two 

degrees of f: the homogeneous degree d := degf with respect to weights (1, 1, 1) and 

the quasi-homogeneous degree q := Degf with respect to weights (1, 2, 3). 

Lemma 6.1. Let f(s1, s2, s3) be a polynomial of homogeneous degree d not divisible by s3, 

then 

  (6.2) 

is a polynomial of homogeneous degree d not divisible by s3. If additionally the 

polynomial f(s1, s2, s3) is quasi-homogeneous of quasi-homogeneous degree q, then g(s1, 

s2, s3) is a quasi-homogeneous polynomial of quasi-homogeneous degree 3d−q. 

Proof. If  is a monomial entering the polynomial f with a nonzero coefficient, 

then  is a monomial entering g with a nonzero coefficient. Hence g 
is a polynomial. 

The homogeneous degree of  equals d−a3. Hence degg 6 d. 

Since f is not divisible by s3, there is a monomial   entering f. Hence the 

monomial  enters g and has homogeneous degree d. Hence degg = d. 

Since degf = d, there is a monomial  entering f such that a1 + a2 + a3 = d. 

Then the monomial  enters g and hence g is not divisible 

by s3. 

If additionally all monomials   have the property a1 + 2a2 + 3a3 = q, 

then the corresponding monomials  have the property 

2a1 + a2 + 3(d − (a1 + a2 + a3)) = 3d − q.  

The polynomial g will be denoted by µ(f). Clearly 

 evso(f) = evso(g), µ2(f) = f. (6.3) 

The polynomials f, g are called dual. The bi-degree vectors of dual polynomials are 

 (d, q), (d, 3d − q). (6.4) 

The linear transformation 

 Z2 → Z2, (d, q) 7→ (d, 3d − q), 

is an involution with invariant vector (2, 3) and anti-invariant vector (0, 1). It is 

convenient to assign to the polynomial f the 2 × 2 degree matrix 

 , (6.5) 

whose columns are the bi-degrees of f and µ(f). Then 
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  (6.6) 

where P is the permutation matrix. 

6.2. Transformations of triples of polynomials. Suppose that f = (f1, f2, f3) is a triple 

of polynomials f1, f2, f3 in s1, s2, s3 such that 

(1) each fj is not divisible by s3, 

(2) each fj is a quasi-homogeneous polynomial with respect to weights (1,2,3), 

(3) denote by (dj, qj) the bi-degree vector of fj, then 

(d1, q1) + (d3, q3) = (d2, q2). 

Such a triple (f1, f2, f3) is called an admissible triple. Equation 

(6.7) is equivalent to the equation 

Mf1 + Mf3 = Mf2. 

Define new triples 

(6.7) 

, (6.8) 

. (6.9) 

The transformation f 7→ Lf is called the left transformation of an admissible triple f, 

because of the new first and second terms of Lf are on the left from the surviving term 

f2. Similarly the transformation f 7→ Rf is called the right transformation, because of 

the new second and third terms of Rf are on the right from the surviving term f2. 

Theorem 6.2. Let f = (f1, f2, f3) be an admissible triple of polynomials with bi-degree 

vectors ((d1, q1), (d2, q2), (d3, q3)). Then the triples Lf and Rf are admissible. The bi-

degree vectors of Lf are 

((d1, 3d1 − q1), (d1 + d2, 3d1 − q1 + q2), (d2, q2)) 

and the bi-degree vectors of Rf are 

(6.10) 

((d2, q2), (d2 + d3, q2 + 3d3 − q3), (d3, 3d3 − q3)). (6.11) 

Proof. Clearly the polynomials  are nonconstant and 

are not divisible by s3. The homogeneous degrees of Lf are (d1, d1 + d2, d2). This follows 

from Lemma 6.1 and admissibility of the triple f. For the quasihomogeneous degrees 

we have 

Deg(µ(f1)f2) = 3d1 − q1 + q2 = 3d1 + q3 = Deg( , 

by Lemma 6.1. Hence   is a quasi-homogeneous polynomial of 

quasihomogeneous degree 3d1 − q1 + q2. The quasi-homogeneous degree of µ(f1) is 3d1 

− q1. This proves the statement for Lf. The argument for Rf is similar.  

Corollary 6.3. Let f = (f1, f2, f3) be an admissible triple of polynomials with degree 

matrices (M1, M2, M3). Then the degree matrices of Lf and Rf are 

(M1P, M1P + M2, M2), (M2, M2 + M3P, M3P), (6.12) where P is the 

permutation matrix.  
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6.3. Reduced polynomial solutions 

Theorem 6.4. (i) Let (a, b, c) be a Markov triple, 0 < a < b, 0 < c < b, 6 6 b. Then there 
exists a unique reduced polynomial solution  , such that 

 . Moreover, for that reduced polynomial solution 
 the triple f = (f1, f2, f3) is admissible. 

(ii) Let  be the reduced polynomial presentation of a Markov triple 

(a, b, c) with 0 < a < b, 0 < c < b, 6 6 b. Denote f = (f1, f2, f3). Let Lf = 

 and  be the left and 

right transformations of f. Then 

 ) (6.13) 

is the reduced polynomial presentation of the Markov triple (a, ab − c, b) and 

 ) (6.14) 

is the reduced polynomial presentation of the Markov triple (b, bc − a, c). 

Proof. First we prove the existence. The proof is by induction on the distance in the 

Markov tree from (a, b, c) to (3, 3, 3). 

Let us find the reduced polynomial presentations in ΓMI for the Markov triples 

(3, 6, 3), (3, 15, 6). We transform the initial solution as follows, 

 I = (s1, s∗2, s1) →7 (s∗1, s21 − s2, s1∗) = (s2/s3, s21 − s2, s∗1) 

7→ (s2, s21 − s2, (s3s1)∗) →7 (s∗2, s2(s21 − s2) − s3s1, (s21 − s2)∗). 

The triples 

 ) (6.15) 

are desired reduced polynomial presentations of (3, 6, 3) and (3, 15, 6). For example, 

the polynomials   are quasi-homogeneous of quasi-

homogeneous degrees (2, 4, 2) with 2 + 2 = 4 as predicted and of homogeneous 

degrees (1, 3, 2) with 1+2 = 3. These three polynomials form an admissible triple. 

Now assume that a Markov triple (a, b, c), 0 < a < b, 0 < c < b, 6 6 b, has a reduced 

polynomial presentation ( ), where (f1, f2, f3) is an admissible triple. Then 

(f1∗, f2, f3∗) = (µ(f1)/sd31, f2, f3∗) 7→ (µ(f1), f2, (sd31f3)∗) 

 7→ (µ(f1)∗, µ(f1)f2 − sd31f3, f2∗) (6.16) 

and 

(f1∗, f2, f3∗) = (f1∗, f2, µ(f3)/sd33) 7→ ((sd33f1)∗, f2, µ(f3)) 

 7→ (f2∗, µ(f3)f2 − sd33f1, µ(f3)∗) (6.17) 

are transformations by elements of ΓM. The triple ( 

presents the Markov triple (a, ab−c, b), and the triple ( 
presents the Markov triple (b, bc−a, c). These two triples satisfy the requirements of 
part (ii) of the theorem. 
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Let us prove the uniqueness. Let (  ) and (  ) be two reduced 

polynomial presentations of a Markov triple (a, b, c) with 0 < a < b, 0 < c < b, 6 6 b. By 

Theorem 5.4 ) is obtained from ( ) by a transformation of the form 

g2g1g4, where gi ∈ Gi. It is clear that a transformation g4 cannot be used because it will 

destroy the property of f1f2f3 to be not divisible by s3. We also cannot use g1 because it 

will destroy the fact that (  ) represents a positive triple (a, b, c). If the 

numbers a, b, c are all distinct, we cannot use g2. If (a, b, c) = (3, 6, 3), the presentation 

( ) is symmetric with respect to the permutation of the first and third 

coordinates. The theorem is proved.  

6.4. ∗-Markov polynomials. We say that a polynomial P(s1, s2, s3) is a ∗Markov 

polynomial if there exists a Markov triple (a, b, c), 0 < a < b, 0 < c < b, 

6 6 b, with reduced polynomial presentation ( , such that P = f2. 

In particular, this means that P is quasi-homogeneous and is not divisible by s3. The 

polynomial s2 will also be called a ∗-Markov polynomial. 

We say that a polynomial Q(s1, s2, s3) is a dual ∗-Markov polynomial if Q is not 

divisible by s3 and µ(Q) is a ∗-Markov polynomial. 

In particular this means that Q is quasi-homogeneous. 

For example,   are ∗-Markov polynomials, since they 

appear as the middle terms in the reduced polynomial presentations in (6.1) and 

 are the corresponding dual ∗-Markov polynomials. 

Corollary 6.5. Let (a, b, c) be a Markov triple with 0 < a < b, 0 < c < b, 6 6 b. 

Let  be the reduced polynomial presentation of (a, b, c). Then each 

of f1, f3 is either a ∗-Markov polynomial or a dual ∗-Markov polynomial. Moreover, if (g1, 

g2, g3) ∈ ΓMI is any presentation of (a, b, c), then 

 , (6.18) 

for some k1, k2, k3 ∈ Z, and hence each of g1, g3 is either a ∗-Markov polynomial or a dual 

∗-Markov polynomial multiplied by a power of s3, and g2 is a ∗-Markov polynomial 

multiplied by a power of s3. 

Proof. The first statement follows from Theorem 6.4 and the second statement follows 

from Theorem 5.4.  

7. Decorated Planar Binary Trees 

7.1. Sets with involution and transformations. A set with involution and 

transformations is a set S with an involution τ : S → S, τ2 = idS, a subset T ⊂ 

S × S × S with a marked point  and two maps 

 L: T → T, (t1, t2, t3) 7→ (τ(t1), L2(t1, t2, t3), t2), 
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(7.1) 

R: T → T, (t1, t2, t3) →7 (t2, R2(t1, t2, t3), τ(t3)), 

where L2, R2 : T → S are some functions. 

A morphism ϕ: (S, T, t0, τ, L, R) → (S0, T0, t00, τ0, L0, R0) is a map S → S0 which commutes 

with involutions and induces a map (T, t0) → (T0, t00) commuting with transformations. 

Here are examples. 

7.1.1. Let S be the set of all polynomials in Z[s1, s2, s3] not divisible by s3 and 

T ⊂ S3 the subset of all admissible triples. Let 

 t0 = (s2, s2(s21 − s2) − s3s1, s21 − s2), (7.2) 

τ : S → S, f 7→ µ(f), (7.3) 

L: T → T, , (7.4) 

R: T → T, , (7.5) 

where µ was defined in Section 6.1. 

7.1.2. Let S = C2 and T ⊂ C2 × C2 × C2 the subset of all triples of vectors w1, 

w2, w3 such that w1 + w3 = w2. Let 

t0 = ((1, 2), (3, 4), (2, 2)), (7.6) 

τ : C2 → C2, (d, q) 7→ (d, 3d − q), (7.7) 

L: T → T, (w1, w2, w3) 7→ (τ(w1), τ(w1) + w2, w2), (7.8) 

R: T → T, (w1, w2, w3) 7→ (w2, w2 + τ(w3), τ(w3)). (7.9) 

7.1.3. Let S be the set Mat(2, C) of all 2 × 2-matrices with complex entries 

and T ⊂ Mat(2, C)3 the subset of all triples of matrices M1, M2, M3 such that M1 

+ M3 = M2. Let 

 , (7.10) 

 τ : Mat(2, C) → Mat(2, C), M 7→ MP, (7.11) 

 L: T → T, (M1, M2, M3) 7→ (M1P, M1P + M2, M2), (7.12) 

 R: T → T, (M1, M2, M3) 7→ (M2, M2 + M3P, M3P). (7.13) 

7.1.4. Let S = C and T ⊂ C3 the subset of all triples (w1, w2, w3) such that 

w1 + w3 = w2. Let  

t0 = (1, −1, −2), (7.14) 

 τ : C → C, w 7→ −w, (7.15) 

 L: T → T, (w1, w2, w3) 7→ (−w1, −w1 + w2, w2), (7.16) 
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 R: T → T, (w1, w2, w3) 7→ (w2, w2 − w3, −w3). 

7.1.5. Let S = C and T = C3. Let 

(7.17) 

t0 = (3, 15, 6), (7.18) 

τ = idC (7.19) 

 L: T → T, (a, b, c) 7→ (a, ab − c, b), (7.20) 

 R: T → T, (a, b, c) 7→ (b, bc − a, c). 

7.1.6. Let S = C and T = C3. Let 

(7.21) 

t0 = (1, 3, 2), (7.22) 

τ = idC (7.23) 

 L: T → T, (a, b, c) 7→ (a, a + b, b), (7.24) 

 R: T → T, (a, b, c) 7→ (b, b + c, c). (7.25) 

7.1.7. De-quantization. Let S be the set with involution and transformations in 

Example 7.1.1 and S0 the set with involution and transformations in Example 7.1.2. 

The map 

 ϕ: S → S0, f 7→ (deg(f), Deg(f)), 

defines a morphism of the sets with involution and transformations. 

We may think of that ϕ : S → S0 is a de-quantization of the set S with involution and 

transformations as explained in Section 1.4.3. Namely, Let s1 = c1eα+β, s2 = c2eα+2β, s3 = 

c3eα+3β, where α, β are real parameters which tend to +∞ and c1, c2, c3 are fixed generic 

real numbers. If f(s1, s2, s3) is a quasi-homogeneous polynomial of bi-degree (d, q), then 

lnf(c1eα+β, c2eα+2β, c3eα+3β) has leading term dα+qβ independent of the choice of c1, c2, 

c3, which may be considered as a vector (d, q). 

Taking the leading terms of all quasi-homogeneous polynomials in formulas of 

Example 7.1.1 we obtain the 2-vectors in formulas of Example 7.1.2. For instance, 

 

Figure 2. 

the triple of leading terms of the triple ( ) is the triple 

(α + 2β, 3α + 4β, 2α + 2β), cf. (7.2) and (7.6). 

7.1.8. Let S be the set with involution and transformations in Example 7.1.1 and 

S0 the set with involution and transformations in Example 7.1.3. The map 

 ϕ: S → S0, f 7→ Mf, 

D 1 D 3 
l 1 

l 2 

l 3 l 4 

r 1 

r 2 

r 3 r 4 

D 1 D 3 

D 2 

v 1 
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where Mf see in (6.5), defines a morphism of the sets with involution and 

transformations. 

7.1.9. Let S be the set with involution and transformations in Example 7.1.3 and S0 the 

set with involution and transformations in Example 7.1.4. The map 

, 

defines a morphism of the sets with involution and transformations. 

7.1.10. Let S be the set with involution and transformations in Example 7.1.1 and S0 

the set with involution and transformations in Example 7.1.5. The map 

 ϕ: S → S0, f 7→ evso(f), 

defines a morphism of the sets with involution and transformations. 

7.1.11. Let S be the set with involution and transformations in Example 7.1.1 and 

S0 the set with involution and transformations in Example 7.1.6. The map 

 ϕ: S → S0, f 7→ deg(f), 

defines a morphism of the sets with involution and transformations. 

7.2. Planar binary tree. Consider the oriented binary planar tree, growing from floor, 

and the domains of its complement, see Figure 2. The boundary of any domain of the 

complement has a distinguished vertex with shortest number of steps to the root 

along the tree. 

There are two initial domains, which touch the floor. In Figure 2 they are D1 and D3. 

The root of the tree is the distinguished vertex of the two initial domains. 

The boundary of the left initial domain D1 consists of the left half-floor and the 

infinite sequence of edges l1, l2, ..., see Figure 2. In the notation lk, the letter l means 

that the domain D1 is on the left from the edge, when we move from the 

 

Figure 3. 

root to this edge along the tree, and k means that it is the k-th edge counted from the 

root of the tree. 

r 1 

r 2 

r 3 

l 1 

l 2 

l 3 

r 1 

r 2 

r 3 

l 1 

l 2 

l 3 

r 1 

r 2 r 3 r 4 

r 1 

r 1 

r 1 

r 1 

r 1 
l 1 

l 1 

l 1 

l 1 

l 2 

l 2 

l 2 l 1 

l 3 

l 1 

r 2 
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The boundary of the right initial domain D3 consists of the right half-floor and the 

infinite sequence of edges r1, r2, ..., see Figure 2. 

The boundary of any other domain consists of two infinite sequences of edges r1, 

r2, ... and l1, l2, ..., see Figure 3. 

Every edge of the tree gets two labels, a label la from the left and a label rb from the 

right. We denote such an edge with labels by la|rb. The first edge of the tree has labels 

l1|r1. All other edges of the tree have labels 

 l1|rk or lk|r1 with k > 1, 

see Figure 3. 

7.3. Decorations. Let (S, T, t0, τ, L, R) be a set with involution and transformations. 

First we assign an element of the set T to every vertex of the planar binary tree 

different from the root vertex, and then assign an element of the set S to every domain 

of the complement. Thus the decoration procedure consists of two step. 

Denote by v1 the vertex of the tree surrounded by the domains D1, D2, D3 in Figure 

2. We assign to the vertex v1 the marked triple  

Let v2 be any other vertex of the tree different from the root. Let p be the path 

connecting v1 and v2 in the tree. The path is a sequence of turns pnpn−1 ...p2p1, where pj 

is the turn to the left or right on the way from v1 to v2. We assign to v2 the element t ∈ 

T obtained from t0 by the application of the sequence of transformations L and R, 

where we apply L if pj is the turn to the left and apply R if pj is the turn to the right. For 

example, the element LRt0 is assigned to the vertex v2 in Figure 4. 

This is the end of the first step of the decoration. 

At the second step we assign to the initial domains D1, D3 in Figure 2 the elements
, respectively, where  are the first and third coordinates of the initial triple (

 

 

Figure 4. 

Let C be any domain of the complement different from D1, D3. Let v be the 

distinguished vertex of the domain C, and t = (t1, t2, t3) the element of T assigned to v. 

We assign to C the element t2. 

For example we assign the element  to the domain D2 in Figure 2. 

This is the end of the decoration procedure. 

v 1 

v 2 
v 

C 2 

C 1 C 3 
r b l a 
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The decoration associated with (S, T, t0, τ, L, R) is functorial with respect to 

morphisms of sets with involution and transformations. 

Let us describe how to recover the element of T assigned to a vertex from the 

elements of S assigned to the domains of the complement. 

Theorem 7.1. Let v be a vertex surrounded by domains C1, C2, C3 as in Figure 4. Let t1, 

t2, t3 be elements of S assigned to C1, C2, C3, respectively, at the second step of the 

decoration. Let the edge entering the vertex v has labels la|rb. Then the element (τa−1(t1), 

t2, τb−1(t3)) is an element of the set T, and that element was assigned to v at the first step 

of the decoration. 

Proof. The proof is by induction on the distance from v to the root.  

7.4. Examples 

7.4.1. Let (S, T, t0, τ, L, R) be the set of Example 7.1.1. Then the domains of the 

complement to the binary tree are labeled by ∗-Markov polynomials. The resulting 

decorated tree is called the ∗-Markov polynomial tree, see Figure 5. 

 

Figure 5. 

 

Figure 6. 

The polynomials Ai(s) are given by the formulas A1(s) = 

s2, 

A 1 (  ) A 3 (  ) 

A 6 (  ) 
A 4 (  ) 

A 2 (  ) 

A 5 (  ) 

A 7 (  ) 

A 8 (  ) A 9 (  ) 
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A2(s) = s2(s21 − s2) − s1s3, 

A3(s) = s21 − s2, 

A4(s) = s31s2 − s1s22 − 2s21s3 + s2s3, 

A5(s) = s21s32 − s42 − s31s2s3 + s12s23 − s2s23, 

A6(s) = s31s22 − s1s32 − 3s21s2s3 + 2s22s3 + s1s32, 

A7(s) = s41s32 − 2s21s24 + s52 − s15s2s3 + s13s22s3 + s41s23 − 3s21s2s23 + 2s22s23 + s1s33, 

A8(s) = s41s32 − s21s42 − s51s2s3 − 2s13s22s3 + 2s1s23s3 + 2s14s23 + s12s2s23 − s22s23 − s1s33, 

A9(s) = s31s52 − s1s26 − 2s41s32s3 + s52s3 + s51s2s23 + 2s31s22s23 − s1s32s23 − s41s33 + s1s43. 

Let v be any vertex. It enters the boundary of three domains, which we denote by 

C1, C2, C3 as in Figure 4. Let f1, f2, f3 be the ∗-Markov polynomials, assigned to the 

domains C1, C2, C3, respectively at the second step of the decoration. Let the edge 

entering the vertex v have labels la|rb. Then the triple of polynomials (τa−1(f1), f2, 

τb−1(f3)) is assigned to v at the first step of decoration, and the triple of polynomials 

((τa−1(f1))∗, f2, (τb−1(f3))∗) 

is a reduced polynomial solution of the ∗-Markov equation (2.1). 

7.4.2. Let (S, T, t0, τ, L, R) be the set of Example 7.1.2. Then the domains of the 

complement to the binary tree are labeled by 2-vectors with positive integer 

coordinates. The resulting decorated tree is called the 2-vector tree, see Figure 6. 

7.4.3. Let (S, T, t0, τ, L, R) be the set of Example 7.1.3. Then the domains of the 

complement to the binary tree are labeled by 2 × 2-matrices with positive integer 

coordinates. The resulting decorated tree is called the matrix tree, see Figure 7. 

7.4.4. Let (S, T, t0, τ, L, R) be the set of Example 7.1.4. Then the domains of the 

complement to the binary tree are labeled by integers. The resulting decorated tree 

is called the deviation tree, see Figure 6. 

 

Figure 7. 
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Figure 8. 

7.4.5. Let (S, T, t0, τ, L, R) be the set of Example 7.1.5. Then the domains of the 

complement to the binary tree are labeled by Markov numbers. The resulting 

decorated tree is called the Markov tree, see the left picture in Figure 8. 

7.4.6. Let (S, T, t0, τ, L, R) be the set of Example 7.1.6. Then the domains of the 

complement to the binary tree are labeled by positive integers. The resulting 

decorated tree is called the Euclid tree, see the right picture in Figure 8. 

The decorated trees in Figures 6-8 can be obtained from the ∗-Markov polynomial 

tree in Figure 5. Namely the 2-vector tree is obtained by taking the bi-degree vectors 

of ∗-Markov polynomials; the matrix tree is obtained by taking the degree matrices of 

∗-Markov polynomials; the deviation tree is obtained by assigning to a ∗-Markov 

polynomial with bi-degree (d, q) the number 

q − (3d − q) = 2q − 3d; 

the Markov tree is obtained by applying the evaluation map evso; the Euclid tree is 

obtained by taking the homogeneous degrees of ∗-Markov polynomials. 

7.5. Do asymptotics exist? Having a decorated tree it would be interesting to study 

asymptotics of the triples assigned to vertices along the infinite paths in the tree going 

from root to infinity. In [41], [42], [43] the Markov and Euclid trees were considered. 

For any such a path the Lyapunov exponent was defined. The Lyapunov function on 

the space of paths was studied. Relations with hyperbolic dynamics were established. 

The interrelations of the triples assigned to vertices of the Markov and Euclid trees 

were analyzed in [48] to study the growth of Markov numbers ordered in the 

increasing order. More precisely, if (u, v, w) is a Euclid triple with u+w = v, then the 

triple 

 a = 2cosh u, b = 2cosh v, c = 2cosh w (7.26) 

is a solution of the modification of the Markov equation 

 a2 + b2 + c2 − abc = 4, (7.27) 

considered by Mordell [32]. This observation was used in [48] to evaluate asymptotics 

of Markov numbers in terms of asymptotics of Euclid numbers, see [42]. 
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Combining these remarks we observe a full circle of relations. We started with 

Markov triples and upgraded them to triples of ∗-Markov polynomials; taking the 

homogeneous degrees of ∗-Markov polynomials we obtained the Euclid triples; 

formulas (7.26) send us to triples solving the modified Markov equation (7.27); and 

the triples solving equation (7.27) approximate the true Markov triples. This circle of 

relations is a combination of “quantizations” and “de-quatizations”. 

7.6. Values of 2q − 3d 

Theorem 7.2. Let P be a ∗-Markov polynomial of bi-degree (d, q). Then |2q−3d| = 1 if d 

is odd and |2q − 3d| = 2 if d is even. Moreover, the only triples of integers attached to 

vertices of the deviation tree are the elements of the set 

. 

Proof. The statement is true for the triple t0 = (1, −1, −2) assigned to the first vertex of 

the deviation tree, see (7.14). It is easy to check that the set T0 is preserved by the L 

and R transformations in formulas (7.16) and (7.17). This 

proves the theorem. 

Corollary 7.3. We have 

 

 (1) as d → ∞. (7.28) 

 

7.7. Newton polygons. Let P be a ∗-Markov polynomial of bi-degree (d, q). Let NP be 

the Newton polytope of P. Recall that for each monomial  , entering P with 

nonzero coefficient, we mark the point (a1, a2, a3) ∈ R3, and the Newton polytope is 

the convex hull of marked points. 

Since P is a quasi-homogeneous polynomial of degree q, the Newton polytope is a 

two-dimensional convex polygon, lying inside the bounding polygon Nd,q, 

 Nd,q = {(a1, a2, a3) ∈ R3 | a1 + 2a2 + 3a3 = q; 0 6 a1, a2, a3 6 d}. (7.29) 

We divide all coordinates by d and obtain the normalized Newton polygon N¯
P inside 

the normalized bounding polygon N¯
d,q, 

 N¯d,q = {(a1, a2, a3) ∈ R3 | a1 + 2a2 + 3a3 = q/d; 0 6 a1, a2, a3 6 1}. (7.30) 
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 a1 (0, 0)  

Figure 9. 

It is convenient to project the polygons N¯
P and N¯

d,q along the a3-axis to R2 with 

coordinates a1, a2 and obtain the projected normalized Newton polygon N˜
P inside the 

projected normalized bounding polygon N˜
d,q. 

7.8. Limit d →∞. The Euclid tree shows the distribution of the homogeneous degrees 

of ∗-Markov polynomials. The homogeneous degree d tends to infinity along the paths 

of the planar binary tree from root to infinity. Along these paths we have q → 3d/2. In 

this limit the normalized bounding polygon N¯
d,q turns into the quadrilateral N¯

∞, 

 N¯∞ = {(a1, a2, a3) ∈ R3 | a1 + 2a2 + 3a3 = 3/2; 0 6 a1, a2, a3 6 1}, (7.31) 

and the projected normalized bounding polygon N˜
d,q turns into the projected 

quadrilateral N˜
∞, the convex quadrilateral with vertices (0, 0), (3/4, 0), (1/2, 1/2), (0, 

3/4). See the pictures of N¯
∞ and N˜

∞ in Figure 9. 

Question. Could it be that for any infinite path from root to infinity, the projected 

normalized Newton polygon N˜
P tends in an appropriate sense to a limiting shape 

inside the projected quadrilateral N˜
∞? 

We show that this is indeed so in the two examples of the left and right paths of the 

planar binary tree, which are related to the ∗-Fibonacci and ∗-Pell polynomials 

discussed in Sections 8 and 9. In the first case the limiting shape is the interval with 

vertices (0, 0), (1/2, 1/2), see Section 8.3. In the second case the limiting shape is the 

whole projected quadrilateral N˜
∞, see Section 9.3. 

7.8.1. Any ∗-Markov polynomial P has a monomial of the form entering 
P with a nonzero coefficient and has no monomials of the form . This easily follows 

a 3 

a 2 
(0 , 1 , 0) 

(1 , 0 , 0) 

(0 , 0 , 1) 

( 1 2 , 1 
2 , 0) 

(0 , 0 , 1 
2 ) 

( 3 2 , 0 , 0) ( 3 4 , 0 , 1 
4 ) 

(0 , 3 
4 , 0) 

a 2 

a 1 

( 1 2 , 1 
2 ) 
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by induction. Hence for any infinite path from root to infinity the point (0, 0) is a 

limiting point of the projected normalized Newton polygon N˜
P. 

7.8.2. Elementary computer experiments show that the expected limiting shape of the 

polygon N˜
P along an infinite path is a 6-gon like in Figure 10, with width 

monotonically increasing from 0, for the ∗-Fibonacci polynomials, to the maximal 

value, for the ∗-Pell polynomials, when the path changes from the leftmost to the 

rightmost. This 6-gon is symmetric with respect to the diagonal a1 = a2, and hence its 

width completely determines the 6-gon. It looks like the speed of convergence to the 

limiting shape increases if the path has many changes of direction from left to right 

and back. 

Figure 10. 

7.9. Planar binary tree decorated by 

convex sets. The study of the limiting shapes of 

Newton polygons is closely related to the 

following decorated planar binary tree. 

7.9.1. Consider R2 with coordinates a1, a2. For a 

subset A ⊂ R2 we denote by conv[A] 

the convex hull of A. We denote by µ(A) the 

subset A reflected with respect to the diagonal a1 = a2. For d ∈ R>0, we denote 

dA = {dv | v ∈ A}. 

For subsets A, B ⊂ R2 we denote by A + B the Minkowski sum, A + B = 

{a + b | a ∈ A, b ∈ B}. 

7.9.2. Define a set (S, T, t0, τ, L, R) with involution and transformations. Let S be the set 

of all pairs (A, d), where A is a convex subset of R2 and d a positive number. Define the 

involution τ by the formula 

 τ : S → S, (A, d) 7→ (µ(A), d). 

Let T ⊂ S3 be the subset of all triples ((A1, d1), (A2, d2), (A3, d3)) such that d2 = d1 + d3. 

We fix the initial triple 

  (7.32) 

where  is the point (0, 1),  is the interval with vertices (1, 0), (0, 1/2), and  is 
the triangle with vertices (1/3, 0), (2/3, 1/3), (0, 2/3). 

Define the left and right transformations by the formulas 

L: T → T, ((A1,d1),(A2,d2),(A3,d3)) 7→ ((µ(A1),d1),(L2,d1 + d2),(A2,d2)), (7.33) 

R: T → T, ((A1,d1),(A2,d2),(A3,d3)) 7→ ((A2,d2),(R2,d2 + d3),(µ(A3),d3)), 

(7.34) 

where 

a 2 

a 1 

( 1 2 , 
1 
2 ) 

(0 , 0) 

width 
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L2 = conv  , 

(7.35) 

R2 = conv. 

Cf. (7.4) and (7.5). 

Having this set with involution and transformations we may consider the 

associated decorated planar binary tree. The problem is to study the asymptotics of 

triples of convex subsets of R2 along the paths of the tree. Such asymptotics reflect the 

asymptotics of the Newton polygons of the ∗-Markov polynomials. 

Remark 7.4. The triple of convex sets in (7.32) are the projected normalized Newton 

polygons of the triple (  

The L and R transformations in (7.33) and (7.34) are just the reformulations of the 

L and R transformations of polynomials in (7.4) and (7.5) in the language of the their 

projected normalized Newton polygons. 

8. Odd ∗-Fibonacci Polynomials 

8.1. Definition of odd ∗-Fibonacci polynomials. The left boundary path of the 

Markov tree corresponds to the sequence of Markov triples (3, 15, 6), (3, 39, 15), 

(3, 102, 19), ..., with general term (3, 3ϕ2n+1, 3ϕ2n−1), where ϕ2n+1, ϕ2n−1 are odd 

Fibonacci numbers, 

 ϕ1 = 1, ϕ3 = 2, ϕ5 = 5, ϕ7 = 13, ϕ9 = 34, ..., 

with recurrence relation 

 ϕ2n+3 = 3ϕ2n+1 − ϕ2n−1. (8.1) 

We define the odd ∗-Fibonacci polynomials recursively by the formula 

  (8.2) 

F2n+3(s) = gnF2n+1(s) − s3F2n−1(s), 

where gn = s2 if n is odd, and gn = s1 if n is even. In other words we have 

F4n+3 = s1F4n+1 − s3F4n−1, 

(8.3) 

F4n+5 = s2F4n+3 − s3F4n+1. (8.4) 

Lemma 8.1. We have evso(F2n+1) = 3ϕ2n+1. 
 

The first odd ∗-Fibonacci polynomials are 

F1(s) = s1, 

F3(s) = s21 − s2, 

F5(s) = s21s2 − s1s3 − s22, 
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F7(s) = s31s2 − 2s21s3 − s1s22 + s2s3, 

F9(s) = s31s22 − 3s21s2s3 − s1s32 + s1s23 + 2s22s3, 

F11(s) = s41s22 − 4s31s2s3 − s21s32 + 3s21s23 + 3s1s22s3 − s2s23, 

F13(s) = s41s32 − 5s31s22s3 − s12s42 + 6s21s2s23 − s1s33 + 4s1s32s3 − 3s22s23. 

Theorem 8.2. For n > 1 the triple 

 ) (8.5) 

is the reduced polynomial presentation of the Markov triple (3, 3ϕ2n+1, 3ϕ2n−1). Proof. 

The proof is by induction on n. The statement is true for n = 2, since 

 

is the reduced polynomial presentation of the Markov triple (3, 15, 6), see (6.1). 

Assume that ( ) is the reduced polynomial presentation of the 

Markov triple (3, 3ϕ2n+1, 3ϕ2n−1). Put f = (f1, f2, f3) := (gn−1, F2n+1, F2n−1). Let Lf be the 

triple defined in Theorem 6.4. By Theorem 6.4 the triple 

Lf = (µ(gn−1), µ(gn−1)F2n+1 − s3F2n−1, F2n+1) 

= (gn, gnF2n+1 − s3F2n−1, F2n+1) 

= (gn, F2n+3, F2n+1) 

is such that the triple ( ) is the reduced polynomial presentation of 
the Markov triple 

(3, 9ϕ2n+1 − 3ϕ2n−1, 3ϕ2n+1) = (3, 3(3ϕ2n+1 − ϕ2n−1), 3ϕ2n+1) 

= (3, 3ϕ2n+3, 3ϕ2n+1). 

This proves the theorem.  

Corollary 8.3. The odd ∗-Fibonacci polynomials are ∗-Markov polynomials.  

Remark 8.4. There are many q-deformations of (odd) Fibonacci numbers. For 

example, S.Morier-Genoud and V.Ovsienko [33] consider the odd Fibonacci 

polynomials f2k+1(q), defined by the relations 

 f1(q) = q−1, f3(q) = 1 + q, (8.6) 

 f2n+3 = (1 + q + q2)f2n+1 − q2f2n−1. (8.7) 

As V.Ovsienko informed us, our recurrence relation (8.3) turns into relation (8.7) 

under the specification s1 = s2 = 1+q+q2, s3 = q2. Our initial conditions (8.2) turn into 

1+q+q2, (1+q+q2)(q+q2). Hence for any k the odd ∗-Fibonacci polynomials F2k+1(s) 

evaluated at s1 = s2 = 1 + q + q2, s3 = q2 equals (q + q2)f2k+1(q). 

8.2. Formula for odd ∗-Fibonacci polynomials 
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Theorem 8.5. For n > 0, we have 

, 

(8.8) 

 

Proof. The proof is by induction. The formulas correctly reproduce F1, F3. Then s1F4n+1 

− s3F4n−1 equals 

. 

We have 

 

and 

. 

Hence, s1F4n+1 − s3F4n−1 = F4n+3. The other identity is proved similarly.  Corollary 8.6. 

For the ordinary Fibonacci integers we have formulae 

 ,

 (8.10) 

(8.11) 

(8.12) 

(8.13) 

Proof. Formulae (8.10) and (8.12) follow from (8.8) and (8.9). Formulae (8.11) and 

(8.13) easily follow from the identities 
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 ϕ4n+2 = ϕ4n+3 − ϕ4n+1, ϕ4n+4 = ϕ4n+3 + ϕ4n+2.  

8.3. Newton polygons of odd ∗-Fibonacci polynomials 

Lemma 8.7. The odd ∗-Fibonacci polynomials F4n+1 and F4n+3 are of bi-degree 

(2n + 1, 3n + 1) and (2n + 2, 3n + 2), respectively.  

The Newton polygon NF4n+1 of F4n+1 is the convex hull of four points (n+1, n, 0), (1, 0, 

n), (n−1, n+1, 0), (0, 2, n−1). The projected normalized Newton polygon 

N˜
F4n+1 is the convex hull of four points 

. 

The limit of N˜
F4n+1 as n → ∞ is the interval with vertices (0, 0) and (1/2, 1/2). 

The Newton polygon NF4n+3 is the convex hull of four points (n + 2, n, 0), 

(2, 0, n), (n, n+1, 0), (0, 1, n). The projected normalized Newton polygon N˜
F4n+3 is the 

convex hull of four points 

. 

The limit of N˜
F4n+3 as n → ∞ is the interval with vertices (0, 0) and (1/2, 1/2), see 

Section 7.8. 

8.4. Generating function. Introduce the generating power series of odd ∗-Fibonacci 

polynomials, 

 . (8.14) 

Theorem 8.8. We have 

 . (8.15) 

Proof. Split the series F(s, t) as follows 

 . (8.16) 

From the recursive relation (8.2), we deduce 
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, 

where F−1 = s2/s3, F1 = s1. The terms marked by ∗ have only powers t4k+1, with k > 0. 

The remaining terms have only powers t4k+3, with k > 0. We have a linear system 

 . (8.17) 

Hence 

 . (8.18) 

Equation (8.15) follows from (8.16) and (8.18). 

Corollary 8.9. For any n > 0, we have 

 

 . (8.19) 

 

Remark 8.10. At s = so, the generating function F(s, t) reduces to 

, 

the generating function of odd Fibonacci numbers multiplied by 3. 

8.5. Binet formula for odd ∗-Fibonacci polynomials. In this section we consider the 

generating function F(s, t) as a rational function of t with coefficients depending on 

the parameters s varying in a neighborhood of so. 

The poles of F(s, t) are the roots of the polynomial  

 We will use the roots of + 1, 

  (8.20) 

with . 

Introduce α0, α1, β0, β1, γ1, γ2 by the formulas 

t((s1s3 − s22)t4 + s1) = α1t5 + α0t, 

t3(−s2 + s21 − s2s3t4) = β1t7 + β0t3, 

s23t8 + (2s3 − s1s2)t4 + 1 = γ2t8 + γ1t4 + 1. 

Then 
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. 

Theorem 8.11. We have 

, 

(8.21) 

Proof. We prove the first formula. The proof of the second is similar. 

 The roots of + 1 are 

, 

√  

where ω = eπ −1/2. We have s)), where 

An(s) = res . 

Hence 

 

. 

 

Corollary 8.12. We have 

, 

(8.22) 

If s is in a small neighborhood of so, then |a+(s)| > |a−(s)| and 

 

as n → ∞. 

Lemma 8.13. We have 
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 . (8.25) 

Proof. The proof is by direct verification.  

8.6. Odd ∗-Fibonacci polynomials with negative indices. The relations 

F4n+3 = s1F4n+1 − s3F4n−1, 

F4n+5 = s2F4n+3 − s3F4n+1 

can be reversed and written as 

, 

This allows us to define the ∗-Fibonacci Laurent polynomials with negative indices. 

Theorem 8.14. For any n we have F−2n−1 = (F2n+1)∗.  

For example, . 

8.7. Cassini identity for odd ∗-Fibonacci polynomials. The odd ∗-Fibonacci 

numbers satisfy the following identities: 

. 

Indeed, we have 

ϕ22n+3 − ϕ2n+5ϕ2n+1 = ϕ2n+3(3ϕ2n+1 − ϕ2n−1) − ϕ2n+5ϕ2n+1 

= ϕ2n+1(3ϕ2n+3 − ϕ2n+5) − ϕ2n+3ϕ2n−1 = ϕ22n+1 − ϕ2n+3ϕ2n−1. 

Theorem 8.15. The odd ∗-Fibonacci polynomials satisfy the following identities: 

gn+1F22n+3 − gnF2n+5F2n+1 = s3(gnF22n+1 − gn−1F2n+3F2n−1) 

= s3n−1(s31s3 + s32 − s21s22). 

Proof. We have 

gn+1F22n+3 − gnF2n+5F2n+1 = gn+1F2n+3(gnF2n+1 − s3F2n−1) − gnF2n+5F2n+1 

= gnF2n+1(gn+1F2n+3 − F2n+5) − s3gn+1F2n+3F2n−1 

= s3(gnF22n+1 − gn−1F2n+3F2n−1) 

and 

 .  

Corollary 8.16. We have 
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 .

 (8.26) 

 

Identity (8.26) evaluated at s = so takes the form 

. 

If s lies in a small neighborhood of so, then the right-hand and left-hand sides of 

formula (8.26) tend to zero as n → ∞, see (8.23), (8.24), (8.25). 

8.8. Continued fractions for odd ∗-Fibonacci polynomials. It is known that the 

ratios of odd Fibonacci numbers have the following continued fraction presentation 

, 

where the number 3 appears n + 2 times in the right-hand side. Here we give 

∗-analogs. 

Consider the field Q(s) of rational functions in variables s with rational coefficients. 

Consider a continued fraction of the following form 

, 

where a0, ..., an ∈ Z[s1, s2, s3] and each of b1, ..., bn is of the form 

. 

For example, 

. 

Our definition of a continued fraction and the notation   are 
nonstandard, but convenient for our purposes. 

Theorem 8.17. For n > 1 we have 

, 

where gn = s2 if n is odd, and gn = s1 if n is even, see Section 8.1. 

Proof. The formula follows from the recurrence relations for the ∗-Fibonacci 

polynomials.  

For example, 
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. 

Remark 8.18. Formulas (8.24) show that the continued fraction of Theorem 8.17 

converges to a an element of a quadratic extension of the field Q(s). 

9. Odd ∗-Pell Polynomials 

9.1. Definition of odd ∗-Pell polynomials. The right boundary path of 

the Markov tree corresponds to the sequence of Markov triples (3, 15, 6), 

(15, 87, 6), 

(87, 507, 6), ..., with general term (3ψ2n−1, 3ψ2n+1, 6), where ψ2n+1, ψ2n−1 are odd Pell 

numbers, 

 ψ1 = 1, ψ3 = 5, ψ5 = 29, ψ7 = 169, ..., 

with the recurrence relation 

 ψ2n+3 = 6ψ2n+1 − ψ2n−1. (9.1) 

We define the odd ∗-Pell polynomials recursively by the formula 

 P1(s) = s2, P3(s) = s21s2 − s1s3 − s22, 

9.2. P2n+3(s) = hnP2n+1(s) − s23P2n−1(s), 

where   is odd and  is even. In other words we 
have 

P4n+3 = (s21 − s2)P4n+1 − s23P4n−1, 

P4n+5 = (s22 − s1s3)P4n+3 − s23P4n+1. 

Lemma 9.1. We have evso(P2n+1) = 3ψ2n+1.  

The first odd ∗-Pell polynomials are 

P1(s) = s2, 

P3(s) = s21s2 − s1s3 − s22, 

P5(s) = s21s32 − s31s2s3 − s2s32 + s21s23 − s42, 

P7(s) = s41s32 + s41s23 − s51s2s3 + s31s22s3 − 2s21s42 − 3s12s2s23 + s1s33 + s52 + 2s22s32, 

P9(s) = s41s52 − 2s21s62 + s72 − s1s52s3 + 3s42s32 + 3s13s42s3 − 4s12s32s23 − 2s51s32s3 

. 

Theorem 9.2. For n > 0 the triple 
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 ) (9.3) 

is the reduced polynomial presentation of the Markov triple (3ψ2n−1, 3ψ2n+1, 6). Proof. 

The proof is by induction on n. The statement is true for n = 1, since 

 

is the reduced polynomial presentation of the Markov triple (3, 15, 6), see (6.1). 

Assume that ( ) is the reduced polynomial presentation of the 

Markov triple (3ψ2n−1, 3ψ2n+1, 6). Put f = (f1, f2, f3) := (P2n−1, P2n+1, hn−1). Let Rf be the 

triple defined in Theorem 6.4. By Theorem 6.4 the triple 

Rf = (P2n+1, P2n+1µ(hn−1) − s23P2n−1, µ(hn−1)) 

= (P2n+1, P2n+1hn − s23P2n−1, hn) 

= (P2n+1, P2n+3, hn) 

is such that the triple ( ) is the reduced polynomial presentation of 
the Markov triple 

(3ψ2n+1, 18ψ2n+1 − 3ψ2n−1, 6) = (3ψ2n+1, 3(6ψ2n+1 − ψ2n−1), 6) = (3ψ2n+1, 

3ψ2n+3, 6). 

This proves the theorem.  

Corollary 9.3. The odd ∗-Pell polynomials are ∗-Markov polynomials.  
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9.2. Formula for odd ∗-Pell polynomials 

Theorem 9.4. For n > 0, we have 

 

, 

. 

Proof. The proof is by induction. First one checks that the formulas correctly 

reproduce P1, P3. Then  equals 

. 

We have 

! 

Hence, . The other identity is proved similarly. 

Corollary 9.5. For the ordinary Pell numbers, we have 
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(9.4) 

(9.5) 

(9.6) 

 .

 (9.7) 

Proof. Formulas (9.5), (9.7) follow from the recurrence relation for Pell numbers 

 ψn+1 = 2ψn + ψn−1, n > 1.  

9.3. Limiting Newton polygons of odd ∗-Pell polynomials. 

Lemma 9.6. The odd ∗-Pell polynomials P4n+1 and P4n+3 are polynomials of bidegree (4n 

+ 1, 6n + 2) and (4n + 3, 6n + 4), respectively.  

The Newton polygon NP4n+1 of P4n+1 contains the points 

(0, 1, 2n), (2n, 2n + 1, 0), (0, 3n + 1, 0), (3n, 1, n). 

Hence the limit of N˜
P4n+1 as n → ∞ contains the points (0, 0), (1/2, 1/2), (0, 3/4), (3/4, 

0). Therefore the limit of N˜
P4n+1 is the projected quadrilateral N˜

∞. 

Similarly one checks that the limit of N˜
P4n+3 as n → ∞ is the projected quadrilateral 

N˜
∞, see Section 7.8. 

9.4. Generating function. Introduce the generating power series of odd ∗-Pell 

polynomials 

 . (9.8) 

Theorem 9.7. We have 

 

Proof. The proof is similar to the proof of the corresponding theorem on the odd 



48 G. COTTI AND A. VARCHENKO 

 

Fibonacci polynomials. 

Corollary 9.8. For any n > 0, we have 

 

 , (9.10) 

where P(s, t) is given by (9.9). 

Remark 9.9. At s = so, the generating function P(s, t) reduces to 

 , (9.11) 

namely the generating series of odd Pell numbers multiplied by 3. 

9.5. Other properties of ∗-Pell polynomials. The ∗-Pell polynomials have properties 

similar to the properties of ∗-Fibonacci polynomials discussed in Section 8. In 

particular one easily obtains a Binet-type formula like in Corollary 8.12. 

As examples of properties of ∗-Pell polynomials we formulate the continued 

fraction property and an analog of the Cassini identity. 

Theorem 9.10. For n > 1 we have 

, 

where is odd and is even, see Section 9.1.  

Theorem 9.11. The odd ∗-Pell polynomials satisfy the following identities: 

.  

10. ∗-Markov Group Actions 

In this section we study the action of the ∗-Markov group on C6 with coordinates 

(a, a∗, b, b∗, c, c∗). It is convenient to denote these coordinates by (x1, ..., x6). 

10.1. Space C6 with involution and polynomials. Consider C6 with coordinates x = 

(x1, ..., x6), involution 

, 

polynomials 

 H1 = x1x2 + x3x4 + x5x6 − x1x3x5, H2 = x1x2 + x3x4 + x5x6 − x2x4x6. 

The ∗-Markov group ΓM acts on C6 by the formulas 
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, 

(10.1) 

τ2 : x 7→ (x4, x3, x2 − x3x5, x1 − x4x6, −x6, −x5), (10.2) and the elements µi,j act on 

C6 by the identity maps. 

The action of the ∗-Markov group on C6 commutes with the involution ν. 

Lemma 10.1. The ΓM-action preserves each of the polynomials H1, H2, and 

 ν?H1 = H2, ν?H2 = H1. 

Hence the differential forms dH1, dH2, dH1∧dH2 are ΓM-invariant, and dH1∧dH2 is ν anti-

invariant. 

Lemma 10.2. The holomorphic volume form 

dV := dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ∧ dx6 

is λi,j, σ1, σ2 invariant and τ1, τ2, ν anti-invariant. 

Lemma 10.3. The differential 4-form 

Ω = x1x3 dx2 ∧ dx4 ∧ dx5 ∧ dx6 + x1x4 dx2 ∧ dx3 ∧ dx5 ∧ dx6 

− x1x5 dx2 ∧ dx3 ∧ dx4 ∧ dx6 − x1x6 dx2 ∧ dx3 ∧ dx4 ∧ dx5 + x2x3 dx1 

∧ dx4 ∧ dx5 ∧ dx6 + x2x4 dx1 ∧ dx3 ∧ dx5 ∧ dx6 − x2x5 dx1 ∧ dx3 ∧ dx4 

∧ dx6 − x2x6 dx1 ∧ dx3 ∧ dx4 ∧ dx5 

+ x3x5 dx1 ∧ dx2 ∧ dx4 ∧ dx6 + x3x6 dx1 ∧ dx2 ∧ dx4 ∧ dx5 

 

+ x4x5 dx1 ∧ dx2 ∧ dx3 ∧ dx6 + x4x6 dx1 ∧ dx2 ∧ dx3 ∧ dx5. (10.3) 

is λi,j, τ1, τ2 invariant and σ1, σ2, ν anti-invariant. 

Proof. The proof is by direct verification. For example, we have τ1Ω = x5(x4 − x1x5)dx1 

∧ dx2 ∧ dx3 ∧ dx6 + x6(x3 − x2x6)dx1 ∧ dx2 ∧ dx4 ∧ dx5 

+ x5(x3 − x2x6)(dx1 ∧ dx2 ∧ dx4 ∧ dx6 − x1dx1 ∧ dx2 ∧ dx5 ∧ dx6) 

− x6(x4 − x1x5)(−dx1 ∧ dx2 ∧ dx3 ∧ dx5 − x2dx1 ∧ dx2 ∧ dx5 ∧ dx6) 

+ x2x5(−x1(x6dx1 ∧ dx2 ∧ dx5 ∧ dx6 − dx1 ∧ dx3 ∧ dx5 ∧ dx6) 
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+ x6dx1 ∧ dx2 ∧ dx4 ∧ dx6 − dx1 ∧ dx3 ∧ dx4 ∧ dx6) 

− x2(x4 − x1x5)(x6dx1 ∧ dx2 ∧ dx5 ∧ dx6 − dx1 ∧ dx3 ∧ dx5 ∧ dx6) 

+ x2(x3 − x2x6)dx1 ∧ dx4 ∧ dx5 ∧ dx6 − 

x2x6(−x6dx1 ∧ dx2 ∧ dx4 ∧ dx5 

− x2dx1 ∧ dx4 ∧ dx5 ∧ dx6 + dx1 ∧ dx3 ∧ dx4 ∧ dx5) 

+ x1(x4 − x1x5)dx2 ∧ dx3 ∧ dx5 ∧ dx6 + 

x1x5(x5dx1 ∧ dx2 ∧ dx3 ∧ dx6 

+ x1dx2 ∧ dx3 ∧ dx5 ∧ dx6 − dx2 ∧ dx3 ∧ dx4 ∧ dx6) 

+ x1(x3 − x2x6)(x5dx1 ∧ dx2 ∧ dx5 ∧ dx6 + dx2 ∧ dx4 ∧ dx5 ∧ dx6) 

− x1x6(x5(−dx1 ∧ dx2 ∧ dx3 ∧ dx5 − x2dx1 ∧ dx2 ∧ dx5 ∧ dx6) 

+ dx2 ∧ dx3 ∧ dx4 ∧ dx5 − x2dx2 ∧ dx4 ∧ dx5 ∧ dx6) = Ω. 

See another proof of the lemma in Corollary 10.10. That other proof also provides 

reasons for the existence of such a 4-form Ω.  

10.2. Casimir subalgebra. Denote h1 = x1x2, h2 = x3x4, h3 = x5x6, h4 = x1x3x5, h5 = x2x4x6, 

(10.4) and h = (h1, ..., h5). Then 

h1h2h3 − h4h5 = 0 

and 

 H1 = h1 + h2 + h3 − h4, H2 = h1 + h2 + h3 − h5. 

Define the Casimir subalgebra C⊂C[x] to be the subalgebra generated by h1, ..., h5. 

Theorem 10.4. The Casimir subalgebra is ν and ΓM invariant. More precisely, ν: h 7→ 

(h1, h2, h3, h5, h4), τ1 : h 7→ (h1, h3, h2 + h1h3 − h4 − h5, −h5 + h1h3, −h4 + h1h3), 

τ2 : h 7→ (h2, h1 + h2h3 − h4 − h5, h3, −h5 + h2h3, −h4 + h2h3), σ1 : h →7 (h2, h1, h3, 

h4, h5), σ2 : h 7→ (h1, h3, h2, h4, h5), 

and the elements λi,j, µi,j ∈ ΓM fix elements of C point-wise.  

10.3. Space C5 with polynomials. Consider C5 with coordinates y=(y1, ..., y5), and 

involution ν: C5 → C5, (y1, y2, y3, y4, y5) 7→ (y1, y2, y3, y5, y4). 

The ∗-Markov group acts on C5 by the formulas of Theorem 10.4. The ∗-Markov group 

action on C5 commutes with the involution ν. Denote 

 J = y1y2y3 − y4y5, J1 = y1 + y2 + y3 − y4, J2 = y1 + y2 + y3 − y5, 
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dW = dy1 ∧ dy2 ∧ dy3 ∧ dy4 ∧ dy5. 

Lemma 10.5. The polynomials J, J1, J2 are ΓM-invariant. We have 

 ν?J = J, ν?J1 = J2, ν?J2 = J1. 

The differential form dW is τ1, τ2 invariant and σ1, σ2, ν anti-invariant. The differential 

form dJ ∧dJ1 ∧dJ2 is τ1, τ2, σ1, σ2 invariant and ν anti-invariant.  

Let Y = {y ∈ C5 : J(y) = 0} be the zero level hypersurface of the polynomial J. The 

hypersurface Y has a well-defined holomorphic nonzero differential 4-form at its 

nondegenerate points, ω = dW/dJ, called the Gelfand-Leray residue form. It is uniquely 

determined by the property 

 dW = dJ ∧ ω. (10.5) 

For example, if at some point q ∈ Y we have = 0, then at a neighborhood 

of that point 

 

with property (10.5). 

Corollary 10.6. The form 

, 

restricted to Y , extends to a nonzero differential 4-form on the regular part of Y . This 

form is τ1, τ2 invariant and σ1, σ2, ν anti-invariant. 

Consider the map F : C6 → C5 defined by the formulas y1 = x1x2, y2 = x3x4, y3 = x5x6, y4 

= x1x3x5, y5 = x2x4x6. (10.6) Lemma 10.7. We have the following statements: 

(i) The map F commutes with the actions of the ∗-Markov group on C6 and C5. 

(ii) The Casimir subalgebra C ⊂ C[x] is the preimage of the algebra C[y] under the 

map F. 

(iii) The image of F lies in the hypersurface Y .  

Corollary 10.8. The preimage F?ω of the differential form ω under the map F is τ1, τ2 

invariant and σ1, σ2, ν anti-invariant.  

Lemma 10.9. We have F?ω = Ω, where Ω is defined in (10.3). 

Proof. The lemma easily follows by direct verification from the formula 
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Corollary 10.10. The differential form Ω is τ1, τ2 invariant and σ1, σ2, ν antiinvariant.

  

Cf. Lemma 10.3. 

11. Poisson Structures on C6 and C5 

11.1. Nambu–Poisson manifolds 

Definition 11.1 [44]. Let A be the algebra of functions of a manifold Y . The manifold 

Y is a Nambu–Poisson manifold of order n if there exists a multi-linear map 

{ ,..., }: A⊗n → A, 

a Nambu bracket of order n, satisfying the following properties. 

(i) Skew-symmetry, 

, 

for all f1, ..., fn ∈ A and σ ∈ Sn. 

(ii) Leibniz rule, 

{f1f2, f3, ..., fn+1} = f1{f2, f3, ..., fn+1} + f2{f1, f3, ..., fn+1}, for all f1, ..., fn+1 ∈ A. 

(iii) Fundamental Identity (FI), 

 

for all f1, ..., fn−1, g1, ..., gn ∈ A. 

In particular, for n = 2 this is the standard Poisson structure. 
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Remark 11.2. The brackets with properties (i–ii) were considered by Y.Nambu [34], 

who was motivated by problems of quark dynamics. The notion of a Nambu– Poisson 

manifold was introduced by L.Takhtajan [44] in order to formalize mathematically the 

n-ary generalization of Hamiltonian mechanics proposed by Y.Nambu. The 

fundamental identity was discovered by V.Filippov [24] as a generalization of the 

Jacobi identity for an n-ary Lie algebra and then later and independently by Takhtajan 

[44] for the Nambu–Poisson setting. 

The fundamental identity is also called the Filippov identity. 

The dynamics associated with the Nambu bracket on a Nambu–Poisson manifold 

of order n is specified by n − 1 Hamiltonians H1, ..., Hn−1 ∈ A, and the time evolution of 

f ∈ A is given by the equation 

 . (11.2) 

Let ϕt be the flow associated with equation (11.2) and Ut the one-parameter group 

acting on A by f 7→ Ut(f) = f ◦ ϕt. 

Theorem 11.3 [44]. The flow preserves the Nambu bracket, 

Ut({f1, ..., fn}) = {Ut(f1), ..., Ut(fn)}, (11.3) 

for all f1, ..., fn ∈ A.  

A function f ∈ A is called an integral of motion for the system defined by equation 

(11.2) if it satisfies {H1, ..., Hn−1, f} = 0. 

Theorem 11.4 [44]. Given H1, ..., Hn−1, the Nambu bracket of n integrals of motion is 

also an integral of motion.  

These two theorems follow from the fundamental identity. 

11.2. Examples. An example of a Nambu–Poisson manifold of order n is Cn with 

standard coordinates x1, ..., xn and canonical Nambu bracket given by 

 . (11.4) 

This example was considered by Nambu [34]. Other examples of Nambu–Poisson 

manifolds see in [10], [44]. See also [4], [9], [18], [28], [37]. 

It turns out that any Nambu–Poisson manifold of order n > 2 has presentation 

(11.4) locally. 

Theorem 11.5. Let Y be an m-dimensional manifold which is a Nambu–Poisson 

manifold of order n, m > n > 2, with bracket { ,..., }. Let x ∈ X be a point such that { ,..., } 

is nonzero at x. Then there exists local coordinates x1, ..., xm in a neighborhood of x such 

that 

. 
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This statement was conjectured by L. Takhtajan [44], proved in [2], [27]. It was 

discovered eventually that the theorem is a consequence of an old result in [47], 

reproduced in the textbook by Schouten [40, Chap. II, Sections 4 and 6, formula (6.7)]. 

See on that in [19]. 

11.3. Hierarchy of Nambu–Poisson structures. A Nambu–Poisson manifold 

structure of order n on a manifold X induces an infinite family of subordinated 

Nambu–Poisson manifold structures on X of orders n − 1 and lower, including a family 

of Poisson structures, [44]. 

Indeed for H1, ..., Hn−k ∈ A define the k-bracket { ,..., }H by the formula 

 {h1, ..., hk}H = {H1, ..., Hn−k, h1, ..., hk}. (11.5) 

Clearly, the bracket { ,..., }H is skew-symmetric and satisfies the Leibnitz rule. The 

fundamental identity for { ,..., }H follows from the fundamental identity (11.1) for the 

original bracket. 

For example, for n = 6 and k = 4, the fundamental identity for the bracket 

 {h1, h2, h3, h4}H1,H2 := {H1, H2, h1, h2, h3, h4} (11.6) 

and 7 functions u1, u2, u3, v1, v2, v3, v4 follows from the fundamental identity for n = 6 

and 11 functions f1, f2, f3, f4, f5, g1, g2, g3, g4, g5, g6 if 

(f1, f2, f3, f4, f5, g1, g2, g3, g4, g5, g6) = (H1, H2, u1, u2, u3, H1, H2, v1, v2, v3, v4). 

The family of subordinated k-brackets, obtained by this construction from a given 

n-bracket, satisfy the matching conditions described in [44]. 

Example. Consider C3 with coordinates a, b, c and canonical Nambu bracket of order 

3, 

. 

The braid group B3 acts on C3 by the formulas, 

τ1 : (a, b, c) 7→ (−a, c, b − ac), τ2 : 

(a, b, c) 7→ (b, a − bc, −c). 

The polynomial H = a2 +b2 +c2 −abc is braid group invariant. The subordinated 

2-bracket 

{h1, h2}H := {H, h1, h2} 

is the braid group invariant Dubrovin Poisson structure on C3, 

 {a, b}H = 2c − ab, {b, c}H = 2a − bc, {c, a}H = 2b − ac. (11.7) 
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11.4. Poisson structure on C6. Let us return to the space C6 with involution ν, two 

polynomials H1, H2, the holomorphic volume form dV , differential form Ω, considered 

in Section 10. 

On C6 consider the canonical Nambu bracket of order 6, 

 , (11.8) 

and associated brackets 

 ,

 (11.9) 

(11.10) 

Theorem 11.6. The Nambu bracket { ,..., }H1,H2 defines a Nambu–Poisson manifold 

structure on C6 of order 4. The structure { ,..., }H1,H2 is λi,j, σ1, σ2, ν invariant and τ1, τ2 anti-

invariant. 

Proof. The theorem is a corollary of Lemmas 10.1 and 10.2.  

Theorem 11.7. The bracket { , }Ω defines a Poisson structure on C6. The Poisson 

structure { , }Ω is λi,j, ν invariant and τ1, τ2, σ1, σ2 anti-invariant. 

Proof. By formula (10.7), the form Ω is the wedge-product of four differentials. Hence 

the bracket { , }Ω defines a Nambu–Poisson manifold structure on C6 of order 2. The 

invariance properties of it follow from Lemmas 10.2 and 10.3.  

Lemma 11.8. The Poisson structure { , }Ω is log-canonical. The Poisson brackets {xi, xj}Ω 

are given by the following matrix, 

−x1x6  

x2x6  

x3x6 . 

−x4x6  
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Proof. Explicit computations give 

Ω ∧ dx1 ∧ dx2 = 0, 

Ω ∧ dx1 ∧ dx3 = −x1x3 dV, 

Ω ∧ dx1 ∧ dx4 = x1x4 dV, 

Ω ∧ dx1 ∧ dx5 = x1x5 dV, 

0 

0 

 

 

and so on. 
  

 

Lemma 11.9. For any f ∈ C[x] and h ∈ C, we have {f, h}Ω = 0. In particular, {f, H1}Ω = {f, 

H2}Ω = 0 for any f ∈ C[x]. 

This statement justifies the name of the Casimir subalgebra for the subalgebra C ⊂ 

C[x]. 

Proof. The equalities {xi, hj}Ω = 0, i = 1, ..., 6, j = 1, ..., 5, are easily checked directly. The 

statement also follows from the fact that the image of F lies in Y and ω is a top degree 

form on Y .  

Lemma 11.10. The symplectic leaves of the Poisson structure { , }Ω are at most two-

dimensional and lie in fibers of the map F.  

11.5. Remarks 

11.5.1. The log-canonical Poisson structure { , }Ω can be encoded by the quiver in 

Figure 11. It would be interesting to determine if some of the ∗-Markov group 

transformations can be obtained as a sequence of mutations in the cluster algebra of 

that quiver. We were able to represent in this way only the action of the permutations 

σ1, σ2. To obtain σ1 one needs to mutate the cluster variables at vertex 1, then at vertex 

3, then at vertex 1 and so on as in the sequence 1313124242 (10 mutations). The 

permutation σ2 is obtained by the sequence of mutations 3535346464. Cf. [14], where 

the braid group action was presented by mutations for the An quivers. 
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Figure 11. 

11.5.2. We say that a Poisson structure on C6 is quadratic, if the {xi, xj} are 

homogeneous quadratic polynomials in x. 

Lemma 11.11. The Poisson structure { , }Ω is the unique, up to rescaling by a nonzero 

constant, nonzero quadratic Poisson structure on C6 having both H1 and H2 as Casimir 

elements. 

Proof. Let   with unknown coefficients  . Assume the 

skew-symmetry of {·, ·}, and that both H1 and H2 are Casimir elements. This gives a 

system of linear equations for Qklij. A computer-assisted calculation shows that the 

matrix of coefficients of that system has rank 1, and the space of solutions is spanned 

by the Poisson tensor { , }Ω.  

11.5.3. Let {xi, xj} = Qi,j(x) be a polynomial Poisson structure on C6 having 

H1, H2 as Casimir elements. Expand the coefficients Qij(x) at the origin, Qij(x) = 

. A computer-assisted calculation shows that Qki,j = 0 

for all i, j, k. 

11.5.4. A computer-assisted calculation shows that the Poisson structure { , }Ω is the 

unique, up to rescaling by a nonzero constant, nonzero log-canonical Poisson 

structure on C6, which remains to be log-canonical after the action on it by any 

element of the braid group B3. 

11.6. Poisson structure on C5. Consider C5 with coordinates y = (y1, ..., y5), and objects 

discussed in Section 10.3. 

1 

2 

3 

4 

5 

6 
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Consider on C5 the canonical Nambu bracket of order 5, 

 , (11.11) 

and the associated bracket 

 . (11.12) 

Theorem 11.12. The bracket { , }J,J1,J2 defines a Poisson structure on C5 with Casimir 

elements J, J1, J2. The Poisson structure { , }J,J1,J2 is λi,j, τ1, τ2, ν invariant and σ1, σ2 anti-

invariant. 

Proof. The theorem follows from Lemma 10.5.  

Introduce new linear coordinates on C5, (u1, u2, u3, u4, u5):=(y1, y2, y3, J1, J2). 

Lemma 11.13. The Poisson brackets {ui, uj}J,J1,J2 are given by the formulas: 

{u1, u2}J,J1,J2 = u1u2 − 2(u1 + u2 + u3) + u4 + u5, {u2, u3}J,J1,J2 = 

u2u3 − 2(u1 + u2 + u3) + u4 + u5, 

{u3, u1}J,J1,J2 = u3u1 − 2(u1 + u2 + u3) + u4 + u5, 

and {ui, u4}J,J1,J2 = {ui, u5}J,J1,J2 = 0 for all i.  

Notice the similarity of these formulas with Dubrovin’s formulas (11.7). Similarly 

to Dubrovin’s case the linear and quadratic parts of the Poisson structure { , }J,J1,J2 form 

a pencil of Poisson structures, that is, any linear combination of them is a Poisson 

structure too. 

Remark 11.14. It would be interesting to compare the Poisson structures of this 

Section 11 with numerous examples in [37]. 

12. ∗-Analog of Horowitz Theorem 

In Section 2 we defined the ∗-Markov group as a group of transformations of the 

set ( . In this section we define a certain group of transformations of 

the algebra ], we show that this new group is isomorphic to 
the ∗-Markov group, and discuss analogs of the Horowitz Theorem 1.6. 
12.1. Algebra R and ν-endomorphisms. Let x = (x1, ..., x6). Define an involution ν on 

the polynomial algebra ] as follows. For an element 
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, 
a∈N6 

define 

. 
a∈N6 

A ]-algebra endomorphism ϕ: R → R is called a ν-endomorphism if 

 ϕ(νf) = νϕ(f), f ∈ R. 

If ϕ is invertible, then ϕ is called a ν-automorphism of R. The group of νautomorphisms 

of R is denoted by Autν(R). 

There is a one-to-one correspondence between ν-endomorphisms of R and triples 

of polynomials (P, Q, R) ∈ R3. Such a triple defines a ν-endomorphism 

x1 7→ P, x3 7→ Q, x5 7→ R, x2 7→ νP,

 x4 7→ νQ, x6 7→ νR. 

In what follows we often define a ν-endomorphism by giving a triple (P, Q, R). 

12.2. Markov group of ν-automorphism. Consider the following four groups of ν-

automorphisms of R: 

 Type I. The group Gaut1 of ν-automorphisms generated by transformations 

 Λi,j : x1 →7 (−1)ix1, x3 7→ (−1)i+jx3, x5 7→ (−1)jx5, i, j ∈ Z2. 

 Type II. The group Gaut2 of ν-automorphisms generated by transformations, 

Σ1 : x1 7→ x3, x3 7→ x1, x5 →7 x5, Σ2 : x1 →7

 x1, x3 7→ x5, x5 →7 x3. 

 Type III. The group Gaut3 of ν-automorphisms generated by transformations 

 T1 : x1 7→ −x2, x3 7→ x6 − x1x3, x5 7→ x4, 

 T2 : x1 →7 x4 − x1x5, x3 →7 x2, x5 →7 −x6. 

We have T1T2T1 = T2T1T2. 

 Type IV. The group Gaut4 of ν-automorphisms generated by transformations 

M . 

Define the ∗-Markov group ΓautM of ν-automorphisms of R as the group generated 

by . 

Define the Vi`ete ν-involutions V1, V2, V3 ∈ ΓautM by the formulas 

 V1 : x1 7→ x3x5 − x2, x3 →7 x4, x5 →7 x6, 

 V2 : x1 →7 x2, x3 7→ x1x5 − x4, x5 7→ x6, 
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 V3 : x1 7→ x2, x3 7→ x4, x5 7→ x1x3 − x6. 

We denote by ΓautV the group generated by V1, V2, V3. We have V1 = Λ1,1 

Σ1 T2, V2 = Λ1,0 Σ2 T1, V3 = Λ1,1 T1 Σ2. 

Theorem 12.1. We have the following identities: 

Σ1Λi,jΣ1 = Λi+j,j, 

Σ2Λi,jΣ2 = Λi,i+j, 

Σ1V1Σ1 = V2, Σ2V1Σ2 = V1, 

Σ1V2Σ1 = V1, Σ2V2Σ2 = V3, 

Σ1V3Σ1 = V3, Σ2V3Σ2 = V2, 

Λk,lViΛk,l = Vi, i = 1, 2, 3, Λk,lMi,jΛk,l = Mi,j, k, l 

∈ Z2, i, j ∈ Z, 

Σ1Mi,jΣ1 = M−i−j,j, Σ2Mi,jΣ2 = Mi,−i−j, VkMi,jVk = M−i,−j, k 

= 1, 2, 3. 

Proof. These identities are proved by straightforward computations.  

Theorem 12.2. We have an epimorphism of groups ι: ΓM → ΓautM defined on generators 

by ι(λi,j) := Λi,j, ι(σi) := Σi, ι(vj) := Vj, ι(µi,j) := Mi,j. (12.1) 

Proof. Let us show that the morphism ι: ΓM → ΓautM is well defined. First, notice that 

(12.1) uniquely extends to a group morphism on each of the groups G1, G2, G4, ΓV . Any 

g ∈ ΓM admits a unique decomposition g = vg4g1g2 with v ∈ ΓV , g1 ∈ G1, g2 ∈ G2, g4 ∈ G4, 

by Corollaries 3.11 and 3.14. We define 

ι(g) := ι(v)ι(g4)ι(g1)ι(g2). 

Given ˜g ∈ ΓM, we have to show that ι(gg˜) = ι(g)ι(g˜). We have 

, 

where in the second line we use the commutations relations of Proposition 3.9. The 

map ι preserves the commutations relations among the generators Λα,β, Σi, Vj, 

Mα,β, by Theorem 12.1. So, we have 

ι(gg˜) = ι(vv˜0)ι(g4g˜40 )ι(g1g˜10 )ι(g2g˜2) 

= ι(v)ι(v˜0)ι(g4)ι(g˜40 )ι(g1)ι(g˜10 )ι(g2)ι(g˜2) 

= ι(v)ι(g4)ι(g1)ι(g2)ι(v˜)ι(g˜4)ι(g˜1)ι(g˜2) = 

ι(g)ι(g˜). 

This completes the proof.  
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Let P(x) ∈ R. Define the map ] by the formula 

. 

Proposition 12.3. For any , we have 

. 

Proof. This is easily checked on the generators of ΓM.  Proposition 12.4. The 

morphism ι is an isomorphism. 

Proof. Consider the polynomials x1, x3, x5 ∈ R. They define the natural projec- 

tions 

, (f1, f2, f3) 7→ f1, 

, (f1, f2, f3) 7→ f2, 

, (f1, f2, f3) 7→ f3. 

Let g ∈ kerι. By Proposition 12.3, we have 

. 

Hence g−1 = id.  

12.3. ν-Endomorphisms of maximal rank. Let ϕ: R → R be a ν-endomorphism, 

defined by a triple P, Q, R ∈ R, 

 x1 7→ P, x3 7→ Q, x5 7→ R, x2 7→ νP, x4 7→ νQ, x6 7→ νR. 

For any fixed p ∈ C3, denote by Pp, Qp, Rp, νPp, νQp, νRp ∈ C[x] the specialization of P, Q, 

R, νP, νQ, νR at z = p. 

For any fixed p ∈ C3, we have a polynomial map ϕp: C6 → C6 defined by 

q . 

A ν-endomorphism ϕ of R is said to be of maximal rank if there exist p ∈ C3 and q ∈ 

C6 such that the Jacobian matrix of ϕp at the point q is invertible. 

12.4. Horowitz type theorem for ∗-Markov group. Define the ν-Horowitz group GHor 

as the group of ν-automorphisms of R which preserve the polynomial 

H = x1x2 + x3x4 + x5x6 − x1x3x5. 

Define Γmax to be the set of ν-endomorphisms of R of maximal rank which preserve the 

polynomial H. 

We have ΓautM ⊆ GHor ⊆ Γmax. 

Theorem 12.5. We have ΓautM = GHor = Γmax. In particular, any element of Γmax is a ν-

automorphism. 
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Proof. It is sufficient to prove that Γmax ⊆ ΓautM . The proof is an adaptation of the 

original argument of [29, Theorem 2]. Let 

x1 7→ P, x3 7→ Q, x5 7→ R, x2 7→ νP, x4 7→ νQ, x6 7→ νR, (12.2) be an element of Γmax, 

where P, Q, R ∈ R. Up to an action of Gaut2 , we can assume that the total degrees of P, Q, 

R with respect to x1, x2, x3, x4, x5, x6 are in ascending order, i.e., 

degP 6 degQ 6 degR. 

Set 

P = Pp + Pp−1 + ··· + P0, 

Q = Qq + Qq−1 + ··· + Q0, (12.3) 

R = Rr + Rr−1 + ··· + R0, 

where Pk, Qk, Rk are homogeneous polynomials in x1, x2, x3, x4, x5, x6 of degree k. 

Necessarily, we must have p, q, r > 1, otherwise (12.2) does not define an 

endomorphism of maximal rank. Since (12.2) is an element of Γmax, we have 

 P · νP + Q · νQ + R · νR − PQR = x1x2 + x3x4 + x5x6 − x1x3x5. (12.4) 

Suppose that p = q = r = 1. By comparison of the highest degree terms of the l.h.s. 

and r.h.s. of (12.4), we deduce that P1Q1R1 = x1x3x5. Since x1, x3, x5 are irreducible, 

unique factorization implies that up to reordering of P1, Q1, R1 we have 

 P1 = γ1x1, Q1 = γ3x3, R1 = γ5x5, (12.5) 

where ] and γ1γ3γ5 = 1. Hence each of γj is of the form 

. 

If we substitute (12.5) in (12.3), and expand (12.4), we deduce that P0 = Q0 = R0 = 0 

(since the r.h.s. of (12.4) has no terms x1x3, x1x5, x3x5). Thus, the only possible form of 

(12.2) is x1 7→ (−1)isa33x1, x3 →7 (−1)i+js3a3x3, x5 →7 (−1)jsa35x5, x2 →7

 (−1)is−3 a1x2, x4 →7 (−1)i+js3−a3x4, x6 →7 (−1)js−3 a5x6, 

where i, j ∈ Z2 and a1, a2, a3 ∈ Z, a1 +a2 +a3 = 0. All these transformations are in

. 
Now we proceed by induction on the maximum r of the degrees of P, Q, R. If we 

expand (12.4) using (12.3), we obtain 

Pp·νPp+Qq·νQq+Rr·νRr−PpQqRr+··· = x1x2+x3x4+x5x6−x1x3x5, (12.6) where the dots 

denote lower degree terms. The term PpQqRr is of degree at least 4. The degree of every 

term of the r.h.s. of (12.6) is less than 4. Hence PpQqRr must cancel with another term 

of the l.h.s. This is possible if and only if r = p + q. If r = p+q, then the terms of highest 

degree are Rr ·νRr and PpQqRr, and we must have Rr · νRr − PpQqRr = 0. Thus, 

 νRr = PpQq. (12.7) 
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The transformation 

 x1 7→ νP, x3 7→ νQ, x5 7→ PQ − νR, (12.8) 

extends to a ν-endomorphism of R. Such an endomorphism is the composition of 

(12.2) with V3 ∈ ΓautM . The endomorphism (12.8) has the highest degree less than r, 

because of (12.7). Hence, by induction hypothesis, the endomorphism (12.8) is a ν-

automorphism in ΓautM . This completes the proof.  

12.5. Horowitz type theorem for C5. Recall the action of the ∗-Markov group on C5 

with coordinates (y1, ..., y5). In particular, the ∗-Vi`ete involutions act on 

C5 by the formulas v1 : (y1, ..., y5) 7→ (y1 + y2y3 − y4 − y5, y2, y3, −y5 + y2y3, −y4 + y2y3), 

v2 : (y1, ..., y5) →7 (y1, y2 + y1y3 − y4 − y5, y3, −y5 + y1y3, −y4 + y1y3), v2 : (y1, ..., y5) 

7→ (y1, y2, y3 + y1y2 − y4 − y5, −y5 + y1y2, −y4 + y1y2). 

Theorem 12.6. Let ψ: C5 → C5 be a maximal rank polynomial map preserving the 

polynomials 

 J = y1y2y3 − y4y5, J1 = y1 + y2 + y3 − y4, J2 = y1 + y2 + y3 − y5. 

Then ψ is invertible and lies in the image of the ∗-Markov group. 

Remark 12.7. One can easily add the parameters ] and reformulate 

Theorem 12.6 similarly to Theorem 12.5. 

Corollary 12.8. If the map ψ satisfies the assumptions of Theorem 12.6, then it 

commutes with the involution 

ν: (y1, ..., y5) 7→ (y1, y2, y3, y5, y4). 

Proof of Theorem 12.6. Let ψ send (y1, ..., y5) to (P1, ..., P5). Then 

P1P2P3 − P4P5 = y1y2y3 − y4y5, 

P4 − P1 − P2 − P3 = y4 − y1 − y2 − y3, P5 − P1 − P2 − P3 = y5 − y1 − y2 − y3. 

Hence 

P4 = y4 − y1 − y2 − y3 + P1 + P2 + P3, 

P5 = y5 − y1 − y2 − y3 + P1 + P2 + P3, 

and the map ψ is completely determined by the three polynomials P1, P2, P3. 

First assume that ψ is a linear map, Pi = Pi,0 + ai, where ai ∈ C and Pi,0 are 

homogeneous polynomials in y of degree 1. Then 

y1y2y3 = P1,0P2,0P3,0. 

Hence after a permutation of P1, P2, P3 we will have 
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 Pi = biyi + ai, i = 1, 2, 3, bi ∈ C, b1b2b3 = 1. 

We have 

P4 = y4 − y1 − y2 − y3 + P1 + P2 + P3 

= y4 + (b1 − 1)y1 + (b2 − 1)y2 + (b3 − 1)y3 + a1 + a2 + a3, 

P5 = y5 − y1 − y2 − y3 + P1 + P2 + P3 

= y4 + (b1 − 1)y1 + (b2 − 1)y2 + (b3 − 1)y3 + a1 + a2 + a3, Hence 

. 

This means that bi = 1 for all i and hence 

(y4 +a1 +a2 +a3)(y5 +a1 +a2 +a3)−(y1 +a1)(y2 +a2)(y3 +a3) = y4y5 −y1y2y3. 

This implies that ai = 0 for all i. 

Equation P4P5 − P1P2P3 = y4y5 − y1y2y3 can be rewritten as 

(y4 − y1 − y2 − y3 + P1 + P2 + P3)(y5 − y1 − y2 − y3 + P1 + P2 + P3) − P1P2P3 

 = y4y5 − y1y2y3. (12.9) 

Let us write Pi = Pi,1 + ···, i = 1, 2, 3, where Pi,1 is the top degree homogeneous 

component of Pi. Denote di the degree of Pi. Since ψ is of maximal rank, we have di > 0. 

Assume that the maximum of d1, d2, d3 is greater than 1. After a permutation of the 

first three coordinates we may assume that d1 > d2 > d3. Then equation (12.9) implies 

that d1 = d2+d3 and there are exactly two terms of degree 2d1 which have to cancel, 

. 

Let us compose ψ with involution v1. Then v1◦ψ sends (y1, ..., y5) to (P˜
1, ..., P˜

5), where 

P˜
2 = P2, P˜

3 = P3, 

P˜1 = P1 + P2P3 − P4 − P5 

= P1 + P2P3 − (y4 − y1 − y2 − y3 + P1 + P2 + P3) 

− (y5 − y1 − y2 − y3 + P1 + P2 + P3) 

= P2P3 − P1 − 2P2 − 2P3 − y4 − y5 + 2y1 + 2y3 + 2y3, 

P˜
4 = −(y5 − y1 − y2 − y3 + P1 + P2 + P3) + P2P3, 

P˜
5 = −(y4 − y1 − y2 − y3 + P1 + P2 + P3) + P2P3, 
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These formulas show that degP˜
1 < degP1, while degP˜

i = degPi for i = 2, 3, and the 

theorem follows from the iteration of this procedure.  

Appendix A. Horowitz Type Theorems 

A.1. Classical setting. Let a0, ..., an ∈ Z be non-zero integers such that 

aj divides a0, for j = 1, ..., n. Consider the 

polynomial in n variables x1, ..., xn, 

. 

The polynomial H is quadratic with respect to each variable xj. This ensures that the 

polynomial has a nontrivial group of symmetries. 

Theorem A.1. Let σ ∈ Sn be such that (aσ(1), ..., aσ(n)) = (a1, ..., an). Then the permutation 

(x1, ..., xn) 7→ (xσ(1), ..., xσ(n)) preserves the polynomial H.  Theorem A.2. For any i = 1, ..., 

n, the transformation 

 

is an involution preserving the polynomial H. 

Proof. We check this for v1. Denote . Then 

 

= H(x1, x2, ..., xn).  

The permutations of Theorem A.1 and the Vi`ete maps of Theorem A.2 are 

automorphisms of the algebra Z[x]. 

We say that an endomorphism of algebras ϕ: Z[x] → Z[x] defined by 

 xj 7→ Pj(x), Pj ∈ Z[x], j = 1, ..., n, 
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is of maximal rank if there exists a point q ∈ Cn such that the Jacobian matrix of ϕ at q 

is invertible. 

The following is a stronger version of the original Horowitz Theorem. 

Theorem A.3. Any endomorphism of maximal rank preserving the polynomial H is an 

automorphism. The group of all automorphisms of Z[x] preserving H is generated by the 

Vi`ete transformations, by the permutation of variables preserving the n-tuple (a1, ..., 

an), and by multiplication by −1 of an even number of variables. 

Proof. The argument is the same of the proof of Theorem 12.5.  

A.2. ∗-Setting. Let m, n be two positive integers. Let a0, ..., an be symmetric Laurent 

polynomials in z1, ..., zm with integer coefficients and such that 

 a∗j = aj, and aj divides a0 for j = 1, ..., n, 

in the algebra Z[z±1]Sm of symmetric Laurent polynomials. 

Consider the polynomial in 2n variables x1, x2 ..., x2n−1, x2n, 

. 

The algebra Z[z±1]Sm[x] admits an involution 

 ν: x2j−1 7→ x2j, x2j →7 x2j−1, j = 1, ..., n. 

The notions of a ν-endomorphism and a ν-automorphism given in Section 12.1 

obviously extend to the algebra Z[z±1]Sm[x]. 

The polynomial H has a nontrivial group of symmetries. 

Theorem A.4. Let σ ∈ Sn be such that (aσ(1), ..., aσ(n)) = (a1, ..., an). Then the permutation 

x →7 (x2σ(1)−1, x2σ(1) ..., x2σ(n)−1, x2σ(n)) preserves the polynomial H.  Theorem A.5. 

For any i = 1, ..., n, the transformation vi defined by 

, 

is an involution preserving the polynomial H. 

Proof. The proof is by straightforward calculation, the same as for n = 3.  
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The permutations of Theorem A.4 and the Vi`ete maps of Theorem A.5 are 

νautomorphisms of the algebra Z[z±1]Sm[x]. 

Given P ∈ Z[z±1]Sm[x] and p ∈ Cm denotes by Pp ∈ C[x] the specialization of P at z = p. 

Let ϕ: Z[z±1]Sm[x] → Z[z±1]Sm[x] be a ν-endomorphism defined by x2j−1 →7

 Pj(x), x2j 7→ νPj(x), j = 1, ..., n. 

For any p ∈ Cm there is a map ϕp: C2n → C2n defined by 

 x →7 (P1,p(x), νP1,p(x), ..., Pn,p(x), νPn,p(x)). 

The ν-endomorphism ϕ: Z[z±1]Sm[x] → Z[z±1]Sm[x] is said to be of maximal rank if 

there exist a point p ∈ Cm and a point q ∈ C2n such that the Jacobian matrix of ϕp at q is 

invertible. 

Theorem A.6. Any ν-endomorphism of maximal rank preserving H is a ν-

automorphism. The group of all ν-automorphisms of Z[z±1]Sm[x] preserving H is 

generated by the Vi`ete transformations of Theorem A.5, by the permutation of variables 

preserving (a1, ..., an), by multiplication by −1 of an even number of variables, and by 

multiplication of variables by powers of . 

Proof. The proof is the same as for n = 3.  

Appendix B. ∗-Equations for P3 and Poisson Structures 

B.1. ∗-Equations for P3. As we wrote in the Introduction, a T-full exceptional 

collection (E1, E2, E3) in DTb (P2) has the matrix (χT(Ei∗ ⊗ Ej)) of equivariant Euler 

characteristics of the form , where (a, b, c) are symmetric Lau- 

rent polynomials in the equivariant parameters z1, z2, z3 satisfying the ∗-Markov 

equation 

 . (B.1) 

Similar objects and equations are available for any projective space Pn. For exam- 
1 

ple, for P3 the matrix of equivariant Euler characteristics has the form 0 
0 
0 

a 
1 
0 
0 

b 
d 
1 
0 

c  

e , 

f  

1 

where (a, b, c, d, e, f) are symmetric Laurent polynomials in the equivariant 

parameters z1, z2, z3, z4 satisfying the system of equations 
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see [17, Formulas (3.24)–(3.26)]. One may study this system of equations similarly to 

our study of the ∗-Markov equation. 

In this appendix we briefly discuss the analogs for the system of equations (B.2)– 

(B.4) of the Poisson structure on C6 constructed in Section 11. It will be a family of 

Poisson structures on C12. 

B.2. Poisson structures on C12. Consider the affine space C12 with coordinates x = (x1, 

..., x12), the involution ν: C12 → C12, x2j−1 7→ x2j, x2j 7→ x2j−1, j = 1, ..., 6, 

and polynomials 

H1(x) = x1x2 + x3x4 + x5x6 + x7x8 + x9x10 + x11x12 

− x2x3x8 − x2x5x10 − x4x5x12 − x8x9x12 + x2x5x8x12, 

H2(x) = −2x1x2 − 2x3x4 − 2x5x6 − 2x7x8 − 2x9x10 − 2x11x12 

+ x3x8x2 + x5x10x2 + x1x4x7 + x1x6x9 + x3x6x11 

+ x7x10x11 + x4x5x12 + x8x9x12 − x3x10x11x2 + x1x11x12x2 

+ x5x6x7x8 − x3x6x8x9 − x4x5x7x10 

+ x3x4x9x10 − x1x4x9x12, 

H3(x) = x1x2 + x3x4 + x5x6 + x7x8 + x9x10 + x11x12 

− x1x4x7 − x1x6x9 − x3x6x11 − x7x10x11 + x1x6x7x11. 

We have ν?H1 = H3, ν?H2 = H2, ν?H3 = H1. 
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Consider the braid group B4 with standard generators τ1, τ2, τ3. The group B4 

acts on C12,   

, , , 

, , , 

, , , 

, , , 

, , , 

, , , 

, , , 

, , , 

, , , 

, , , 

, , , 

, , . 

Theorem B.1. The space V of all quadratic Poisson structures on C12 which have H1, H2, 

H3 as Casimir elements, is a 3-dimensional vector space consisting of logcanonical 

structures. For suitable coordinates b = (b1, b2, b3) on V , the Poisson structures have the 

form: 

 {x1, x2} = 0, {x3, x4} = 0, {x5, x6} = 0, 

 {x7, x8} = 0, {x9, x10} = 0, {x11, x12} = 0, 

{x1, x11} = b2x1x11, {x1, x12} = −b2x1x12, 

{x2, x11} = −b2x2x11, {x2, x12} = b2x2x12, 

{x3, x9} = −(b1 − b2 + b3)x3x9, {x3, x10} = (b1 − b2 + b3)x3x10, 

{x4, x9} = (b1 − b2 + b3)x4x9, {x4, x10} = −(b1 − b2 + b3)x4x10, 

{x5, x7} = (b1 − b3)x5x7, {x5, x8} = −(b1 − b3)x5x8, 

{x6, x7} = −(b1 − b3)x6x7, {x6, x8} = (b1 − b3)x6x8, 

{x1, x3} = −b3x1x3, {x1, x4} = b3x1x4, 

{x2, x3} = b3x2x3, {x2, x4} = −b3x2x4, 

{x1, x5} = −(b3 − b2)x1x5, {x1, x5} = (b3 − b2)x1x6, 

{x2, x5} = (b3 − b2)x2x5, {x2, x6} = −(b3 − b2)x2x6, 

{x1, x7} = −b3x1x7, {x1, x8} = b3x1x8, 

{x2, x7} = b3x2x7, {x2, x8} = −b3x2x8, 

{x1, x9} = −(b3 − b2)x1x9, {x1, x10} = (b3 − b2)x1x10, 

{x2, x9} = (b3 − b2)x2x9, {x2, x10} = −(b3 − b2)x2x10, 
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{x3, x5} = −(b1 − b2)x3x5, {x3, x6} = (b1 − b2)x3x6, 

{x4, x5} = (b1 − b2)x4x5, {x4, x6} = −(b1 − b2)x4x6, 

{x3, x7} = −b3x3x7, {x3, x8} = b3x3x8, 

{x4, x7} = b3x4x7, {x4, x8} = −b3x4x8, 

{x3, x11} = −(b1 − b2)x3x11, {x3, x12} = (b1 − b2)x3x12, 

{x4, x11} = (b1 − b2)x4x11, {x4, x12} = −(b1 − b2)x4x12, 

{x5, x7} = (b1 − b3)x5x7, {x5, x8} = −(b1 − b3)x5x8, 

{x6, x7} = −(b1 − b3)x6x7, {x6, x8} = (b1 − b3)x6x8, 

{x5, x9} = −(b3 − b2)x5x9, {x5, x10} = (b3 − b2)x5x10, 

{x6, x9} = (b3 − b2)x6x9, {x6, x10} = −(b3 − b2)x6x10, 

{x5, x11} = −(b1 − b2)x5x11, {x5, x12} = (b1 − b2)x5x12, 

{x6, x11} = (b1 − b2)x6x11, {x6, x12} = −(b1 − b2)x6x12, 

{x7, x9} = −b1x7x9, {x7, x10} = b1x7x10, 

{x8, x9} = b1x8x9, {x8, x10} = −b1x8x10, 

{x7, x11} = −b1x7x11, {x7, x12} = b1x7x12, 

{x8, x11} = b1x8x11, {x8, x12} = −b1x8x12, 

{x9, x11} = −b1x9x11, {x9, x12} = b1x9x12, 

{x10, x11} = b1x10x11, {x10, x12} = −b1x10x12. 

Each of these Poisson structures is ν-invariant. If (b1, b2, b3) 6= (0, 0, 0), then the Poisson 

structure is of rank 2. 

The Poisson structure with parameters b is denoted by { , }b. 

Proof. A computer-assisted calculation shows that the only requirements on a 

quadratic bracket { , } to be skew-symmetric and have H1, H2, H3 as Casimir elements 

uniquely determines the Poisson structures above.  

Another computer-assisted calculation shows that if a polynomial Poisson 

structure { , } on C12 has H1, H2, H3 as Casimir elements, then its Taylor expansion at the 

origin, has to start with at least quadratic terms. 

B.3. Braid group B4 action. Given a Poisson bracket { , } on C12 define the Poisson 

bracket { , }τi by 

 {f, g}τi := τi?{f ◦ τi−1, g ◦ τi−1}, i = 1, 2, 3. 
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These formulas define a braid group B4 action on the space of Poisson structures on 

C12. 

Theorem B.2. The three-parameter family of Poisson structures { , }b is invariant with 

respect to the braid group B4-action on the space of all Poisson structures. The induced 

braid group B4 action ρ on the space of parameters V is a vector representation defined 

by the formulas, 

τ1 : (b1, b2, b3) 7→ (b1 − b2,−b2, −b3), τ2 : (b1, b2, b3) 7→ 

(−b1, −b1 + b2 − b3,−b3), τ3 : (b1, b2, b3) →7 (−b1, −b2, −b2 

+ b3). 

The representation ρ factors through a representation of the symmetric group S4, ρ(τi2) 

= id, i = 1, 2, 3. The representation ρ: S4 → GL(V ) is irreducible and is isomorphic to the 

standard three-dimensional representation tensored with the sgn representation.

  

By Theorem B.2, there is no B4-invariant or B4-anti-invariant quadratic Poisson 

structure on C12 having H1, H2, H3 as Casimir elements. 

Remark B.3. A computer-asssisted calculation shows that if a log-canonical Poisson 

structure { , } on C12 remains to be log-canonical after the action on it by any element 

of the braid group B4, then { , } is one of the Poisson structures { , }b in Theorem B.1. 

B.4. Coefficients of { , }b and elements of weight lattice. Consider C4 with standard 

Euclidean quadratic form (, ). Denote (1, −1, 0, 0), (0, 1, −1, 0), (0, 0, 1, −1) ∈ C4 by v1, 

v2, v3. We identify the space of parameters V with the subspace

, by sending a point of V with coordinates 

(b1, b2, b3) to the point b1v1 +b2v2 +b3v3. The vectors v1, v2, v3 generate the root lattice 

in V . 

For i = 1, 2, 3, the linear map ρ(τi) : V → V permutes the i-th and i + 1-st coordinates 

of vectors of V and multiplies the vectors by −1. 

The weight lattice in V is the lattice of the elements t = (t1, t2, t3, t4) ∈ C4 such that 

P4i=1 ti = 0 and (t, vi) ∈ Z, i = 1, 2, 3. The weight lattice has a basis w1 = (3, −1, −1, −1)/4, 

w2 = (2, 2, −2, −2)/4, w3 = (1, 1, 1, −3)/4 with the property (wi, vj) = δij for all i, j. 

There are exactly 8 vectors of the weight lattice of square length 12/16, 

 ± w1, ±w1 ∓ w2, ±w2 ∓ w3, ±w3, (B.5) 

and there are exactly 6 vectors of the weight lattice of square length 1, 
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 ± w2, ±w1 ∓ w2 ± w3, ±w1 ∓ w3. (B.6) 

All other vectors of the root lattice are longer. These two groups of vectors form two 

S4-orbits. 

The scalar products of these 14 vectors with the vector b1v1 + b2v2 + b3v3 give us the 

linear functions in b1, b2, b3, 

± b1, ±b1 ∓ b2, ±b2 ∓ b3, ±b3, ±b2, ±b1 ∓ b2 ± b3, ±b1 ∓ b3. (B.7) 

These are exactly the linear functions appearing as coefficients of the Poisson 

structure { , }b of Theorem B.1. 

B.5. Casimir subalgebra. Denote by C the subalgebra of C[x] generated by the 

following 20 monomials: 

m1 = x1x2, m2 = x3x4, m3 = x5x6, m4 = x7x8, 

m5 = x9x10, m6 = x11x12, m7 = x2x3x8, m8 = x2x5x10, 

m9 = x4x5x12, m10 = x8x9x12, m11 = x1x4x7, m12 = x1x6x9, 

m13 = x3x6x11, m14 = x7x10x11, m15 = x2x5x8x12, m16 = x2x3x10x11, 

m17 = x3x6x8x9, m18 = x4x5x7x10, m19 = x1x4x9x12, m20 = x1x6x7x11. 

It is easy to see that the polynomials H1, H2, H3 are elements of the subalgebra C. 

Theorem B.4. For every b each element of the subalgebra C is a Casimir element of the 

Poisson structure { , }b. The subalgebra C is ν-invariant and the braid group B4 action 

invariant. 

Proof. The theorem is proved by direct verification. For example, easy calculations 

lead to formulas like τ1?m2 = −m11 + m1m2 + m4 − m7, 

τ3?m18 = m17 − m10m2 − m13m4 + m2m4m6, 

which proves the braid group invariance of C.  

B.6. Symplectic leaves. Since { , }b is of rank 2, the symplectic leaves of { , }b are two-

dimensional. In logarithmic coordinates logxi, i = 1, ..., 12, they are two-dimensional 

affine subspaces. More precisely, we have the following statement. 

Theorem B.5. Given (b1, b2, b3) 6= (0, 0, 0), then the function 

Cb(x) = (b1 − b2)logx1 + (b2 − b3)logx3 + b3 logx5 

is a Casimir element of { , }b; the C-span of Cb and the functions logmi, i = 1, ..., 20, is 10-

dimensional, while the C-span of the functions logmi, i = 1, ..., 20, is 9-dimensional.

  

Hence the symplectic leaves of { , }b are the surfaces on which the functions of this 

10-dimensional C-span are constant. In particular, the leaves do depend on b. 
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We may also conclude that  is a Casimir element of { , }b functionally 

independent of the Casimir elements mi, i = 1, ..., 20. 
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