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Abstract. We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-
dimensional integrals. We also consider the same differential equations over a finite field Fp. We study the polynomial
solutions of these differential equations over Fp, constructed in a previous work joint with V.Schechtman and called
the Fp-hypergeometric solutions.

The dimension of the space of Fp-hypergeometric solutions depends on the prime number p. We say that the KZ
equations have ample reduction for a prime p, if the dimension of the space of Fp-hypergeometric solutions is maximal
possible, that is, equal to the dimension of the space of solutions of the corresponding KZ equations over C. Under the
assumption of ample reduction, we prove a determinant formula for the matrix of coordinates of basis Fp-
hypergeometric solutions. The formula is analogous to the corresponding formula for the determinant of the matrix
of coordinates of basis complex hypergeometric solutions, in which binomials (z;-z;)"*" are replaced with (zi-z;)M*M-»

and the Euler gamma function I'(x) is replaced with a suitable Fp-analog I'rp(x) defined on Fp.
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1. Introduction

The KZ equations were introduced in [KZ] as the differential equations satisfied by conformal blocks on
sphere in the Wess-Zumino-Witten model of conformal field theory. The hypergeometric solutions of the KZ
equations were constructed more than 30 years ago, see [SV1, SV2]. The KZ equations and the hypergeometric
solutions are related to many subjects in algebra, representation theory, theory of integrable systems,
enumerative geometry, to name a few.

The polynomial solutions of the KZ equations over the finite field Fp with a prime number p of elements
were constructed recently in [SV3], see also [V4, V5, V6, V7]. We call these solutions the Fp-hypergeometric
solutions. The general problem is to understand relations between the hypergeometric solutions of the KZ
equations over C and the Fp-hypergeometric solutions and observe how the remarkable properties of
hypergeometric solutions are reflected in the properties of the Fp-hypergeometric solutions. This program is in
the first stages, where we consider essential examples and study the corresponding Fp-hypergeometric
solutions by direct methods.

In this paper we consider the KZ differential equations in the case, when the hypergeometric solutions over

C are one-dimensional integrals.

The dimension of the space of Fp-hypergeometric solutions depends on the prime number p. We say that
the KZ equations have ample reduction for a prime p, if the dimension of the space of Fp-hypergeometric
solutions is maximal possible, that is, equal to the dimension of the space of solutions of the corresponding KZ
equations over C. Under the assumption of ample reduction, we prove a determinant formula for the matrix of
coordinates of basis Fp-hypergeometric solutions. The formula is analogous to the corresponding formula for
the determinant of the matrix of coordinates of basis complex hypergeometric solutions, see [V1], in which
binomials (zi - z)M*M are replaced with (zi - zj)"*¥-r and the Euler gamma function I'(x) is replaced with a
suitable Fp-analog I'r,(x) defined on Fp.

In Section 2 we describe our KZ equations and their reduction modulo p. We define the hypergeometric
solutions over C and Fp-hypergeometric solutions. The ample reduction is defined in Section 2.5.

As mentioned earlier, the Fp-hypergeometric solutions are polynomials. In Section 3 we give a formula for
their coefficients.

In Section 4, we consider the particular case of our KZ equations, whose space of solutions over C is one-
dimensional, with the basis solution given by the Euler beta integral. We describe the corresponding Fp-
hypergeometric solution, which we call the Fp-beta integral.

In Section 5 we consider an arbitrary polynomial solution (not necessarily Fp-hypergeometric) of our KZ
equations over Fpand describe its leading term with respect to the lexicographical ordering of monomials, see
Theorem 5.3. It turns out that the notion of leading term and the formula for the leading term in Theorem 5.3
are useful in studying polynomial solutions of the KZ equations over Fp. The notion of leading term replaces, to
some extend, the notion of initial condition, when the differential equations are over Fp.

The module of Fp-hypergeometric solutions has a natural basis. In Section 6 we describe the leading terms
of the basis Fp-hypergeometric solutions. Section 7 contains our main result, Theorem 7.2, describing the
determinant of coordinates of the basis Fp-hypergeometric solutions, under assumption of ample reduction.

In Section 2.6 we give an example of KZ equations and a prime p, such that the space of complex solutions

is one-dimensional, the space of polynomial solutions over Fpis one-dimensional, and the KZ equations have no
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Fp-hypergeometric solutions. In Section 8 we show that if the reduction of our KZ equations is ample for a prime
p, then all polynomial solutions are Fp-hypergeometric.

The author thanks Ivan Charednik and Alexey Slinkin for useful discussions.

2. KZ equations

2.1. Description of equations. In this paper the numbers p, q are prime numbers, n is a positive integer, p >
n>2, p > q. We fix a vector (mau,..,mn) € Z"so, such that mi< q for all i = 1,..,n, and study the system of equations

for a column vector I(z) = ([1(2), ..., In(2)):

% = lzﬂf’tf i=1,..., n, mili(z)+- +mul,(2) =0
(2.1) - 957 T ,
where z = (z1,..,zn), the n x n-matrices ;have the form:
i S
- -mj m; B
=
22) 0 B,
mi -mi
B

and all other entries are zero. This joint system of differential and algebraic equations is called the system of KZ
equations in this paper.

Remark. System of equations (2.1) is the system of standard KZ differential equations with parameter g,

n
associated with the Lie algebra sl; and the subspace of singular vectors of weight >_i=1 i ~2 of the tensor
product V@ ++* @ Vinn, where Viniis the irreducible m; + 1 dimensional sl-module, up to a gauge transformation,
see this example in [V3, Section 1.1].

We consider system (2.1) over the field C and over the field Fp with p elements.

2.2. Solutions over C. Consider the master function

n

(2.3) D(t,21,..,2n) = Y(t = Zq) M/

a=1

and the column n-vector of hypergeometric integrals

(2.4) 1N(2) = (11(2),...,In(2)),
where
' dt
25) Ij—'/ ®(t,zq,..., Z“)tfzj" j=1,...,n

The integrals [;, j = 1,..,n, are over an element y of the first homology group of the algebraic curve with affine
equation
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ya=(t-z)m..(t - zn)™,

Starting from such y, chosen for given values {z1,...,z}, the vector I)(z) can be analytically continued as a
multivalued holomorphic function of z to the complement in C" of the union of the diagonal hyperplanes z; = z;,
16=].

The complex vector space of such integral solutions is the n-1-dimensional vector space of all solutions of

system (2.1). See these statements in the example in [V3, Section 1.1], also in [S1iV1], see also the determinant
formula (7.1) below.

2.3. Fp-Integrals. Let P(xj,...,xx) be a polynomial with coefficients in an Fp-module,

Z

P(x1,...,.xk)dx1...dXk.
[1 1,...,1k] p

We have an analog of Stokes’ Theorem:

' P
/ o (r1,...,xp)dey...deg = 0
[

for any [11,...,Ik]p.

2.4. Solutions over Fp. Polynomial solutions of system (2.1), considered over the field Fp, were constructed
in [SV3].

Fori=1,.,n, choose the least positive integers M;such that

m;

(2:6) q (mod p).
Let
(2.7) (I)P(t,z._ﬂf) = ];Il(f _ 27)1‘11:.
(Pt 2) D,(t,2)\ o
(2.8), P(t,z) = (i—zl t—zn)_gp(é)t

where P(t,z) is considered as a column n-vector of polynomials in ¢,z,..,z» and Pi(z) as column n-vectors of

polynomials in z,..,,.z» with coefficients in Fp. For a positive integer /, denote

M(z) :=
(2.9) ) /[f

Theorem 2.1 ([SV3, Theorem 1.2]). For any positive integer I, the vector of polynomials I11(z) is a solution of
KZ system (2.1).

ey

t—2z1 t— 2z,

(Q’I,(t,z} (I).P(t.z)) dt.

Ip

The solutions Il1(z) given by this construction are called the Fp-hypergeometric solutions of equations
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(2.1).

Remark. The polynomial ®,(t,z) is an Fp-analog of the master function ®(t,z). The polynomial P(t,z) is an
analog of the integrand of integral (2.4). The transformation P(t,z) = I1(z) is an analog of the integral and the
index [[]is an analog of the integration cycle.

Denotels[2] == Fylzl. ..., Z1,]. The set of all polynomial solutions of system (2.1) with coefficients in
’ G =0inFy[

Fpis a module over the ring Fp[zP] since equations (2.1) are linear and] for all ij. The

Fp[zP]-module
(2.10) M = nXci(2)I1(2) | ci(2) € Fp[27]°,

spanned by Fp-hypergeometric solutions, is called the module of Fp-hypergeometric solutions.
The range for the index / is defined by the inequalities 0 < Ip—1< 370 Mi —1 Hence I = 1,..,r, where

n

(2.11) r:=hXMy/p!
i=1

the integer part of the number_i—1 Mi/p,

Theorem 2.2. The Fp-hypergeometric solutions I)(z), | = 1,..,r, are linearly independent over Fp[z"].

Proof. The proof coincides with the proof of [V5, Theorem 3.1], see also the proof of [S1iV1, Theorem
3.2]. Other proofs see in [V6, Section 4.1] and in Section 6.3 below.

Lemma 2.3. We haver < n.
2.5. Ample reduction. We say that system (2.1) has ample reduction for a prime p if

n

(2.12) hW¥mMy/pl=n-1,
i=1
= [ty /o)

r
thatis, the rank of the module M of Fp-hypergeometric solutions takes the possible maximum

valuen - 1.

Example 2.4. On the one hand, ifq >n,p=Ilq + q -1 for somel € Zsoand mi=1,i=1,..,n. Then Mi= ((q - 1)p -
1)/q=p-1-1and

n

M; (g—1p—1 noon
5 e 2]
p pq qa pq

i=1
Hence under these assumptions system (2.1) has ample reduction.
On the one hand, if q > n, p = Iq+1 for somel € Z-oand mi=1,i=1,..,n. Then M= (p-1)/q =1 and

" M; p—1
(2] = )=
P Pq

i=1

Hence under these assumptions system (2.1) does not have ample reduction.
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In this example and in general the ampleness depends on the residue of p modulo q.

Lemma 2.5. If system (2.1) has ample reduction for a prime p, then for any | = 1,..,n — 1 and any subset I C
{1,..,n} with |I| = I, we have

(2.13) (1-1)p <XMi<Ip.

i€l
Proof. The second inequality holds since 0 < M; < p for any i. Assume that the first inequality is not true and
PeiMi6 (I-1)p for some I and I. Then
Zﬂ[i <{U-1p+ ZJU,; <(I-=Dp+(n—0p=(n—1)p,
i=1 iel

where I is the complement of /. That contradicts to the ampleness of the reduction.

2.6. Example. Letn=2,p =3, q = 2, mi= mz2= 1. Then M1 = M2 = 1. The KZ equations take the form
.0y A2 e (7))
()21 Z1 — Z9 ()Zg Zo — 21 - .
1

()
The polynomial ( ~1/is a solution. At the same time r = [(M1+ M2)/p] = 0 and there are no
Fp-hypergeometric solutions.

3. Coefficients of polynomials

3.1. Coefficients of Fp-hypergeometric solutions. For [ = 1,..,r, the coordinates of the column

! I
vector 1(z) = (11[ ] ()00, 11[ ] (Z)) are homogeneous polynomials in zi,..,z» of degree

6[ = ZAIJ — lp.
(3.1) i=1
Let

In(z) = X ld[h)...,dnZ1d1... Zndn, Id[n],..,dn € Fnp.

di,...,dn

.

. . (7] c ., . .
Lemma 3.1. The coejﬁczenr[rh,----dn » is nonzero if and only if
n

> di=4

(3.2) i=1 , and di6 M; for i=1,.,n,
moreover,
o (M d d
= (1 ") (1- 1= 1)
(3 3) dy,...dy ( ) E dj ﬂ]] 3 s I'u',,
(1] (1] [t
If(Idh----a!-,‘:l" T Idl:----d-u:“) are coordinates offfh----efin, then

1 n

Z Nl.;.‘ Igj....,d-ﬂ:.', - Z A'L" I‘[;,ll ----- dn'j = U

(3.4) i=1 i=1

Proof. The first statements follow from formulas (2.7) and (2.8). Formula (3.4) follows from formulas (3.3),
(2.6).
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3.2. Coefficients and singular vectors. Consider the Lie algebra slz over the field Fp with standard
generators ¢,fh and relations [e,f] = h, [he] = 2e, [hf] = -2f.
For m € Z-0, m < p, let Vmbe the irreducible sl>-module over Fp with highest weight m, basis fivm, j = 0,..,m,

and standard slz-action.

™ 7
Consider the sIz-module@izle,f. Fori=1,..,n,let
(3.5) f(l) V= Uy @ QU @ [, ® Uy @ @ Uy, € ®3}:1V7m .
Then

h.f‘(f)v — (Z m; — Q)f(")'t' , ef(?')v =T Uy @ @ Uy, @55 @ Uy,

Denote by V [-2] the n-dimensional subspace of®i=1 mJ generated by fdv, i =1,..,n. Denote
SingV'[—2] {Z( Oy | Zc’dm? = 0} Cc V[ 2]

The n-1-dimensional subspace SingV [-2] c V [-2] is the kernel of the restriction to V [-2] of the operator

L QT
e ®‘.',‘:1 ‘Vm,- - ®j:11/7’”.1‘ .Denote

SingV [-2][z] := SingV [-2] Q¢ Fp[z].

Define an isomorphism of vector spaces

~ @
Cly...,Cp) > C; 1
(3.6) i V-2 (e, ) Z /

Then an Fp-hypergeometric solution I1(z) is identified with the polynomial

i (z) := X td[n),..,dnZ1d1...Znd» € SingV [-2][z].

di,...,dn

. L Tl
3.3. Operators Q°z. The isomorphism ¢ identifies a linear operator Q - ]FI’ appearing in system

(2.1), with a linear operator on V [- 2] which we denote by 1Q;. Namely, the linear operator 1();;is the restriction

to V [-2] of the Casimir operator on®7=1Vm; defined by the formula
1 N7 N m;m;
sl . ; i
Qijz = 5]1(1 h) e(l)f(.?) + f(?)ﬁ(..') - J "
where for x € sl2 we define the operator x() on* ®f1Viny by

XN=1® - QR1IQXxRQ1I® Q1

with x at the ith position. Notice that each Q%2 preserves SingV [-2].
4. Fp-Beta integral and KZ equations for n = 2

4.1. Solutions over C. Consider the system of KZ equations (2.1) over C for n = 2. Then the master
function is

(4.1) D(t,z1,22) = (t = z1)-m/q(t = 22)-mz/q,

and the one-dimensional space of solutions is generated by the 2-column vector

I(z1,22) zf ‘l>(t.,z)(f A F)dr

- t—2z  t—

(4.2)

To determine this integral we assume that z1,z2 are real, z1 < z, and fix a univalued branch on [z1,z2] of each of
the factors (t - z1)-m/4, (t — z2)"™2/4. Then
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(4.3)

22)_7,,_2/,.,[‘(777?,[/17 +DIT(—my/q+1) ( fWy F@y )

I(z1,29) = (29 — 21)"™/9(z, — —
(21,22) = (22 1) (1 I(—my/g—ma/q+1) —myi/q —mafq

’

where (zx - zi)~™/4is the value of the chosen branch of the function (t - z;)-™/4at t = zx.

Remark. Calculation of each coordinate of the vector I(z1,z2) is reduced to the beta integral,

Lo 0 T(o)T(3)
a—1 A l( —
o, L N T8

after change of variables. Formula (4.3) shows how the beta integral appears in hypergeometric solutions of KZ
equations.

If (-m1/q,—m2/q) = (M1,M2), where M1,M: are positive integers, then

: a, DMy + D) T(Ma + 1)  fMo - f@y
(21 20) = (20 — 2 VM1 (2, — 2,)M2
(4.5) (21,22) = (20 — 21)"" (21 — 22) T+ My +1) ( )

M, My

4.2. Factorial and gamma functions. Recall that p is an odd prime number. The p-adic factorial function is
defined on positive integers by

e Y j.
16j6x, (j,p)=1

The Morita p-adic gamma function is the unique continuous function of a p-adic integer x (with values in
Zp) such that

Ip(x) = (-1) Y j,
16j<x, (jp)=1

for positive integers x. Thus I'y(x + 1) = (-1)*(x!), for positive integers x. Define the
function

[rp:Z50—> Fp
by setting I'rss(0) = 1, I'»(1) = =1 and mapping an integer x > 1 to the image of the integer I'p(x) in Fp.
Lemma 4.1. We have I'rs(x + p) = I'rs(x) for all x.

Proof. The lemma follows from Wilson’s theorem, (p - 1)! = -1 (mod p).

We extend the function I'r»to the set Z by periodicity, I'rs(x + p) = [rs(x). Then we get

Pe (I k(1 - %) = (-1)*
also by Wilson’s theorem.
Lemma 4.2. Let A,B be positive integers such that A < p, B < p, p 6 A+B. Then we have an identity in Fp,
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(4.6) B—1 B B-1
B A+B-p) B p—A—1

_ (ppn _AB L a TR A+ D0 (B D)

- (A+B—p)! g, (A+B—p+1)

Proof. We have

B-1 B(B=1)---(A+B—p+1)
B(pAl)_ lv(p—A-1)

B B---(A+B—p+1)(A+ B—p)Al

() ATp—1)(p—2)--- (A+ 1) A(A+ B —p)!
e _ABU e (A D (B D)
Ip,(A+B—p+1)

(A+B—p)!

4.3. Fp-hypergeometric solutions. Consider the system of KZ equations (2.1) over Fp for n = 2. Assume that
system (2.1) has ample reduction for a prime p. Then the integers M1, M>, introduced in (2.6), satisfy the
inequalities

(4.7) 0<Mi, Mz, Mi+ M2-p+1<p.

In this case the module M of Fp-hypergeometric solutions is of rank one and generated by I11](z1,z2). The solution

I11(z1,22) is the coefficient of t-1in the Taylor expansion of the polynomial 2-vector

(1) 2y
W + f 1)

t*Zl 1‘*22

(48) P(t,z1,2) = (8= 2™ (0 = 2)™

of. (4.2)

’

Theorem 4.3. We have

(4.9) I[ll(zlaZQ) = (=) (2 —21)

My+Ma—p F]FF,(A'II + 1) F]Fp(ﬂfg + ]_) (f(l)’t’ B f(z)’l,’)
g, (My + My —p+1) \ M M,
I, (My + 1) Iy, (M2 + 1) @y fMy
F]E‘P(ﬂ'fl + AIQ —p -+ 1) ( ]'IJ'Z B ﬂ[l )

— (_1)1’\[1(21 _22)3'-11+3\[2—;u

of (4.5).

Proof. Make the transformation

(1), F@y
P(t,z1,20) + Plt+ 21,21, 2) = t"M(t + 2, — 2 Mz(f - )

(t, 21, 22) (t+ 21,21, 22) (t+21 — 22) ; +t+zl—22,
This change of variables does not change the coefficient of t»-1in the Taylor expansion by Lucas theorem, see

[Lu] and the proof of [V5, Lemma 5.2]. Hence

M- M, —1 5
i _ _ M1+Mz—p( 2 (1), 2 (2) )
(21,22) = (21 = 2) p— M Fru p—M; —1 A )

Then
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Hee Mo — Mo — My (2)y;
( Mo )1-(1)1! + ( My — 1 )f(g)QJ _ ﬂ[z( M, -1 ) (f_t n f l.)
(4.10) p— M p— M —1 p—M —1)\p—M; = My /

Now the theorem follows from Lemma 4.2. Remark. For positive integers a,b satisfying the inequalities
a<p,b<p,p-16a+b,we have the

Fp-beta integral formula
alb!
tr1—t)ldt = - —————
(4.11) /m,, (@t+b—p+1)!
which follows from Lemma 4.2.

Formula (4.4) for the beta integral is the one-dimensional case of the n-dimensional Selberg integral
formula, see [Se]. In [RV1, RV2] we develop Fp-analogs of the n-dimensional Selberg integral formulas.

5. Leading term of a polynomial solution

5.1. Lexicographical ordering. For a permutation o = (01,..,0n) € S» denote by >¢ the lexicographical
ordering of monomials

- T

d dn
211-- 2 3 dl:"':d-nezéﬂl

relative to the ordering (o41,...,01) of the integers (1,..,1). SO Zo1 >0 Zo2 >5... >6 Zon-1>0 Zonand So on.
For a nonzero polynomial

f(z) = X ady,.,dnZ1d1... Zndn
iy

d o . . . .
let fs(z) be the summand®d......dn %1 RERREH corresponding to the largest monomial entering f{z) with a nonzero

ot d . .
corresponding?1 - - - “n" the o-leading monomial.
I

i3
P.

In particular, consider elements f{z) = (f1(2),....f2(2)) € (Fp[z])"as polynomialsfin z with coefficients in
: — I .
Then for any o € Sha nonzero element f{z) has o-leading term/o(2) = @4y, 21" 2" and o-leading
coefficient®di.-.dn € £p,

5.2. Leading term of a polynomial solution. Consider the lexicographical ordering >ia of monomials
corresponding to the identity permutation id € Sh. Hence z1>id z2 >id *** >id Znand so on.

Lemma 5.1. Let I(z) = (I1(2),...In(2)) be a polynomial solution of system (2.1) over Fp (not necessarily an Fp-
hypergeometric solution). Leth-’iil oz, C = (Cy, ...,C“-) € F;, be the id-leading term of
I(2). Then

(5.1) i=1 l=j+1 ,
where C is considered as a column vector. Proof.

Rewrite the KZ equations as

(H(z}- 7”)31 . lz( I ﬁk.))szﬁ] =0

~J

(5.2) —y V175 kg )

j=1,.,n. Now the lemma follows from calculating the leading term of the left-hand side in (5.2) and equating it
to zero.

For j 6=l introduce the n x n-matrices
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A 1
@ M -M;
M (5.3)
Qi =
B -M;j - M;
. . , M gz
with all other entries equal to zero. For j = 1,..,n - 1, denote QJ I—J+1

Corollary 5.2. Let I(z) be a polynomial solution of system (2.1) over Fp. Then the id-leading term
C dy dy, f ]’(~ . .
S IR ")satlsﬁesthesystem of equations: n

(5.4) XMici= 0, a";C=dC, j=1.n-1, dn=0 (mod p).
j=1

C=(Ch,....Cp), (di,....d,) € F"

Theorem 5.3. Let a pair » be a solution of system

Y Mcp=0, QYC =d;C, j=1,....n—1, d,=0

(5.5)
Let the index i be such that
(5.6) Ci 6= 0 and (=0, j=1,..,i-1
Then
(5.7) di = M;, i=1,..., i— 1

di = Y M d; # M.

J=i
di = 0 j=14+1,...,n,
M;

M, # 0, C; = — Ly, j=i+1,...,n.

(5.8) I=z’Z+1 ! Z[ i1 M

Conversely, if a pair C = (Cy,...,Ch), (d,...,dn) € F?y has properties (5.6), (5.7), (5.8), then it is a solution of system (5.5).

Proof. For any j = 1,..,n - 1, we have

(5.9) QM (Cy,...,C) = (0,..,,0,
Mjua(Gr= Goa) + »++ + Ma(Cy= Co, Mi(Cpet = G, Mi(Ca = ),

where in the right-hand side 0 is repeated j - 1-times,
Assume (5.5) and (5.6). First we check that d, =M, j=1,..,i- 1. Indeed,

e = (0,...,0, - Z MiCt.}\I,CjH,...,M?-Cﬂ).
(5.10) I=j+1
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511) = (00 0 .M,-Cf,»H,...,M,C,,):M_,C.

n g
Here we used that 2imj MiCr =302 MiCls o Hence if QOM;C = diC, the dj= M;.
We also have

OMC = (0,...,0, Y Mi(Ci—C1), My(Cig1 — Ci),..., M;(Cy, — Ci))
l=i+1

= (0,....0.  CY My M(Cip1 —Cy), ... M;(Cp — Cy)) = diC.
=i

(5.12)
Hence

n n
(5.13) di=%Xmj, Mi(C- C) = XM, j=i+ 1.0

I=i I=i

The second equality in (5.13) implies ~MCi = Ci 30 Mi Hence ZLEH M /= 0. This inequality and
the first equality in (5.13) imply d; 6= M. Also the second equality in (5.13) implies that Ci+1 = -+ = Cp and,
therefore, Q¥;C = 0 for j > i. Hence dj= 0 for j =i + 1,..,n — 1. Thus we deduced (5.7) and (5.8).

The proof that (5.6), (5.7), (5.8) imply (5.5) is straightforward.

Corollary 5.4. Let a pairC = (Cro. o, Cr),y (duy - odn) €7 pe g solution of system (5.4) such that C 6= 0.
Then 2oj=1 % = 2j=1 M,

Corollary 5.5. Let I(z) = (I1(2),-..1n(2)) be a homogeneous polynomial solution of system (2.1) over Fp of degree
d, then

mn
d= Zﬂ'fj (mod p)
=

’

(5.14)
cf. Example 2.6.

Corollary 5.6. Let a pair C = (Ch,...,Cn), (d4,..,dn) € F?p be a solution of system (5.4) such that

C 6= 0. Then (di,...,dn) is uniquely determined by C. If¢ © IF;?(, then the pair cC,(dy,...,dn) is also a solution of system
(5.4). The number of equivalence classes of solutions C,(dy,...,dn) of system (5.4), modulo the equivalence relation C
-7 cC, equals n — 1 decreased by the number of indices i, 16i6 n - 2,

such that Pj=i+1 Mj= 0.

5.3. Example. Let n = 2, p =3, q = 2, mi= mz=1, M1 = M2 = 1. Then system (2.1) has a (non-Fp-
: 1
I(z) = (21— 22)? ( 1

hypergeometric) polynomial solution - ), see Example 2.6. The leading id-term of I(z)

9 1

equals ~1/in agreement with Theorem 5.3.

In this example the module of all polynomial solutions is one-dimensional and generated by I(z). This

of 1
czytzy? 2} ( )
follows from the fact that the id-leading term of any polynomial solution /(z) has the form L -1 ,

where® € Iy, a1,a2 € 12 by Theorem 5.3.
6. Leading term of an Fp-hypergeometric solution

6.1.Leading term of [I(z).Using the isomorphism ¢ defined in (3.6), we consider

Fp-hypergeometric solutions as polynomials in z with coefficients in SingV [-2].
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Recall that for I = 1,..,r, the Fp-hypergeometric solution I(z) is a homogeneous polynomial in z of degree
=3 M —1Ip

m (1(z) with respect to the lexicographical ordering >ia.
We describe the leading term Iiq (z) of I

Theorem 6.1. Given I = 1,..,,r, denote by i = i(I) the unique positive integer such that
0< > M —lp <M,
(6.1) j=i .
Then
Mz = (—DZiaM

id

r (" M —ip+1
(6.2) (Z Ip+ )
Te, (M; + 1) T, (E}Lm M; —(I—1)p+ 1)

F'p =1 J

n (7)) i .
i [0 O\ My Miy 35 Mi—lp
r — ~ 4 N : 3
S M, )RR

where fQv are introduced in (3.5).

Proof. The theorem follows from formula (3.3), Corollary 5.2, Theorem 5.3 and Lemma 4.2, where

" My — (1= 1)p

Lemma 4.2 is applied with 4 = MfandB - Z.f:i-ﬂ ! Remark. Let o = (01,...,0n) € Sn. The leading

2 :
termfr[r](z) Off'”(z) with respect to the lexicographical ordering >c is obtained from the right-hand side of
formula (6.2) by simultaneous reordering of variables zj,...,z» and parameters Mj,..., Mn.

U]
6.2. Indices i(]). In Theorem 6.1 we define the numbers i(]), [ = 1,..,r. The leading term I (z) of the Fp-

hypergeometric solution /l1(z) is a monomial in z,..,ziy) . Lemma 6.2. We have

(6.3) 16i(n<i(r-1)<--<i(1)<n

Corollary 6.3. If system (2.1) has ample reduction for a prime p, then
(6.4) i(D=n-1 I=1,.,n-1

6.3. Corollary of Theorem 6.1. The Fp-hypergeometric solutions /(z), I = 1,..,r, are linearly independent
over the field Fp(z) of rational functions in z with coefficients in Fp.

This follows from the fact that the leading coefficients of Il1(z), I = 1,..,r, are linear independent over the field
Fp.

6.4. Example. Let g = 3, p = 13, (my,...,ms) = (2,2,2,1,1,1). Then (M3,..,Ms) = (8,8,8,4,4,4),
"= [ZJ M; /p]: 2. We have two Fp-hypergeometric solutions Il1(z), [ = 1,2, of degrees 23 and 10,

respectively.
Consider the identity element id = (1,2,3,4,5,6) of Ssand the elements s34=(1,2,4, 3,5,6), 0 = (6,5,4,3,2,1) €
Se. Then the leading terms are
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8 T\ o (4 5 (6
B = (3 (0 DI SO0 SO o)t
4 3 : 5 3 4.
W6 = =(5) (= DrOve 1O sOv)atagats.
8
Be) = - (3) (- Prur 00)stetsisgad

((l — —)f(z)'u + f(:j)'u + f(4)?1 + f(:’)'r_.' + f(ﬁ)'u)z?zg
((1 - g)f(g)'t-‘ + @y fWy 4 fOy 4 f“")-v)z?zg.

(1= Dot fOu 4 [y 4 (Do) dzd22

—
RS
—_—
w
—
Il
AN
[N
~__~

7. Determinant of Fp-hypergeometric solutions

7.1. Determinant over C. Consider the system of KZ equations (2.1) over C. Then the space of solutions is
n - 1-dimensional.
Recall the master function ®(¢,z) introduced in (2.4). Consider the hypergeometric integrals

. Zj41 (4,
I(”(z):f O(t, z) thf: j=1....n—1
Z J

J

To determine the integrals we assume that zi,..,znare real, z1 < -+ < zs, and for every I = 1,..,n, we fix a univalued
branch of the function (¢t - z7)"/4on therays {t ER | t <z} and {t ER | t > z1}.
The integrals I0), j = 1,..,n-1, form a basis of solutions of system (2.1) due to the following theorem.
Theorem 7.1 ([V1, V2, V3]). We have

_ Zj+1 di
det” ! ( M f D(t, z )
(7.1) Ty L 2=
- F(*’In.l/q‘ﬁ» 1) .-F(*?T?,?,/Q‘F 1) H . —my/q
= . (z5 — 1)
L(—my/qg—--—mu/q+1)

1<, lsn, j#1

Below we prove an analog of this theorem for Fp-hypergeometric solutions.

7.2. Determinant over Fp. Introduce a basis of SingV' [-2],

f(.ljf(u 'f(:v'+l)‘(‘)

(7.2) T M, M4’

Expand each of the Fp-hypergeometric solutions I1(z) with respect to this basis,

n-1

(7.3) (z) =X ci(z)w;,
j=1

n T
where cj(z) are scalar homogeneous polynomials of degreezj:l M; lp_



DETERMINANT OF Fp-HYPERGEOMETRIC SOLUTIONS 15

Theorem 7.2. Assume that system (2.1) has ample reduction for a prime p. Then we have the square matrix
c(2) = (c!(2))ij=1..n-1 with nonzero determinant, given by the following formula

D, (M +1)--Tg, (M, +1)

dete(z) = : : H (71)1‘»11,- (2 — 2 ) MitM;—p
(7.4) g, (My+- -+ M, —(n—1)p+1) I<isien '
Notice that
Ip,(My +1) -+ Tr, (M, +1) _ (1) Myl My!
(75) Te, (M + -+ My — (n— Dp + 1) (M -+ My — (n— 1p)!

The theorem is proved in Sections 7.3, 7.4.

7.3. Preliminary remarks.

Lemma 7.3. The function detc(z) is a nonzero homogeneous polynomial of degree
n
n(n—1)
(n—1) Z]\-Ij b
(7.6) J=1

with id-leading term
(n=1)(M1—p)+32_7_s M; y('ﬂ.—Q)(i\l'g —p)+2 g M My 1 —p+M,
<2

(7.7) detiac(z) = const#1 s fnol ,
where
,1)71(71*1)/2+Z;l:11(?t*j);\fj FIFP(A{] + 1) S FF:J(A{’L + 1)
(78) COHSt:( F]]:‘p(ﬂfl ++-ﬂ-{n — (Tl— 1)p+1)l
Proof. If detc(z) is nonzero, then it is of degree
n—1 n
e(2)) =2 (DM~ )
deg(det =1 j=1 ,

which gives (7.6). By Theorem 6.1 we have
T (Moo + )T, (S My — (= Dp 1)

(7.9)

]Fp j=n—I i

(Z;—-”_[-i,-l f(.ﬂfp f(n—i).b‘) o M1, Mo

My Sy My —Ip
“1 2 "Bl RFnl

2_7;1‘1= n—I+1 ]"[.' A'I”-—l

I.["](z) = (—1)ZiaM;

id

P

r (Z M —l'p—i—l)l

( e [P0 I)U) =1 n—

Expanding vectors \ 2i=n-141M; My )07 "1, with respect to the basis wi,...,Wn-1, we obtain a
square (n — 1) x (n - 1)-matrix C(id) = (C(id)}) of coefficients of the expansion. The matrix is triangular with
respect to the main anti-diagonal. The anti-diagonal entries are

FIF}, (ﬂ-f”,J + 1) F]Fp (Z;.:'H,fi+l AIJ - (I - 1)[) + 1)

C(id)}y = (~1)=5= Mt ;
PF]’ (Zj:ﬂ.—i AIT - ip + 1)
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Hence
FWJ,(Ml +1)--- I‘]FH(M,1 +1)

FIF';,(A'[I + -+ ﬂlrn, - (’H- - l)p + 1) .

det C(id) = (—1)" (= D/2ET (=) M

These formulas imply the lemma.
7.4. Differential equations for detc(z).

Lemma 7.4. The polynomial detc(z) satisfies the system of scalar differential equations
0 M; + M; _
y:z_;fy, i=1,...,n.

0z 2 — 2

(7.10) - G

Proof. The operators Q";defined in (5.3) preserve SingV/ [-2] and

M _ ar. A
(711) Tr|Sing[7Q]QU - “']’z + _?“rj.

The polynomial detc(z), as the determinant of solutions, satisfies the system of equations (7.12)

0 det ez Tr g f

(((,7(()=2Mdetc(z). i=1,...,n.
dZi i Zi — Zj

This proves the lemma. Lemma

7.5. The polynomial

yo(z) =Y (zi - zj)M+M-p
16i<jén
is a solution of system (7.12).

Lemma 7.6. For any i 6= j, the polynomial detc(z) is divisible by (zi— zj)Mi+M-p,
Proof. We will prove that detc(z) is divisible by (z-1— zn)Mr-1+Mr-p, The divisibility by (zi - zj)M#M-r for other i
6=j is proved by reordering variables.

Introduce new variables uj,..., un by the equaions: un=z1+ -+ + zy,
(7.13) Zj+1 = Zj= U1U2 .. Uj, j=L.,n-1

The variables z1,...,znare polynomials in us,..., un. Hence if I(z) is a polynomial solution of system (2.1), then I(z(u))
is a polynomial solution of the transformed differential KZ equations, which take the form:

- (Zm o I, i=1 1 oL
(7.14) du; Ui+ Reg"‘(u)) P T el Quy,
where Regi(u) is an operator-valued function of u regular at the point u1 = -+ = un = 0. See this statement in [V7,

Proposition 2.2.3]. In particular, we have
oI v,
(7.15) Q1 ( nl )
Hence the polynomial detc(z(u)) a solution of the system of differential equations;
Ay 2ymi(Mi+ M)
(7.16) i (

cf. formulas (7.11), (7.12). In particular, we have
o1 (M,,_1 + M,

[717) 0?},7,_] Up—1 + Regn—l )I
Hence the polynomial detc(z(u)) is divisible by a monomial“ﬁ.q, where d is a nonnegative solution of the
congruence

Un—1 + Reg

Oy _
Oy,

(u))y, i=1,...,n—1

U; + TrReg" ,

s
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d = Mn-1+ Mn (mod p).

My_ 1+ M, —p
The number Mn-1+M,—p is the smallest nonnegative solution. Hence detc(z(u)) is divisible bytn—1 ' , that

is,
dete(z(u)) = Fluy,... ,up)uleptinr

7

where F(us,...,un) is a polynomial. Thus
5 — e - —— My 1+M,—p
Z3 =] ~n Zn—1 Zn “n—1 1
dete(z) = F(zg —Z,— ..., Atz ) | ——mm

22— 21 " Zn—1— Zn-2 Zn—1 — &n-2

Hence detc(z) is divisible (zn — zn-1)M-1*Mr-p, The lemma is proved.

Proof of Theorem 7.2. The theorem follows from Lemmas 7.6 and 7.3.

7.5. Remark on the initial value problem.

Corollary 7.7. Assume that system (2.1) has ample reduction for a prime p. For

n—1
distinct coordinates and w € SingV [-2], there exist a unique vector (e1,.0 6a1) € Fo™" such that
n-1
_X
(7.18) w = alll(x).
I=1

F2)° ={z € F" |z - . . . .
e ‘ r | “hasdistinctcoordinates}. We have an isomorphism of the two trivial bundles

SingV[—2] x (F})° — (F2)° anqg Fot x (Fp)° — (Fp)°

i

Denote

which sends (w,x) to ((c1,...,cn-1),X).
8. Properties of Fp-hypergeometric solutions
In this section we add more properties of Fp-hypergeometric solutions.

8.1. Uniqueness property. Given [ = 1,..,r, the Fp-hypergeometric solution /l1(z) has degree Zj:l M; —lp
and id-leading term

Te, (M) + 1) T, (Zj;,,.mH M, —(I—1)p+ 1)
O, (i M; — o +1)

. n .l)'r n
X f(i(i))'“ - Zj:i(lHl fv My, Ms Miy1 25—y My —1p
My — Y M; )70 7 0-r TO

(7])1\11-[,)+1

(8.1)

where the number i() is defined in Theorem 6.1.
Theorem 8.1. If1(z) is a homogeneous polynomial solution of system (2.1) with id-leading term (8.1), then I(z)
= [(z).

Proof. By Theorem 5.3 the id-leading term of the difference I(z) - I1(z) has the form
(8.2) (0,..,0,Chy.. o, )2yt ooz

for some k, where Cx6= 0 and

n

(8.3) a;= M;(mod p), j=1.,k-1, ax= XM; (mod p), ax6= My,
j=k
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k n
X _X
(8.4) a=Xm;- Ip,
J=1 =1
Mi M2 Mi(n-1Pnj=it) Mj -Ip ai ak-1ak
(8.5) z1 22 . Zi(D-1 Zi(]) >id Z1...Zk-1 Zk.

The inequality k > i(I) is impossible due to (8.3), (6.1). The inequality k < i(I) is impossible due to (8.3),
(8.5).

8.2. L-admissible solutions and filtration on space of all polynomial solutions. Let L = (L1,..., L») € Z">o.

Let I(z) be a polynomial in z with coefficients infs. We say that I(2) is L-admissible if
ab, +II .
T_,—-H(’z):()' 7=1....n.

(8.6) 0z,

Denote by My the Fp[zP]-module of all L-admissible polynomial solutions of (2.1).

For example, M(o...0) consists of polynomial solutions I(z) = (11(2), ..., In(2)) lying in (Fp[zP])", in other words,

it consists of all I(z), such that

Qs _
Z — I(z)=0, i=1,..., n, myly(z) +---+mpl,(z) =0

Zi — &5

The modules M, form a filtration on the module of all polynomial solutions of system (2.1). Namely, if
L=(Ly,...,Ly), L' = (L}, ..., L:a) and L;6 LY for all j, then M, € Myo.

Theorem 8.2. Let L = (M1 + 1,..,Mn+ 1). Then ML coincides with the module M of Fphypergeometric solutions of
system (2.1).

Proof. Any Fp-hypergeometric solution I1(z) lies in M. by construction. We show that any element I(z) € M,
is a linear combination of the Fp-hypergeometric solutions with coefficients in Fp[z?]. Since system (2.1) is

homogeneous, it is enough to assume that /(z) is a homogeneous polynomial.

dq

Assume that I(z) is a homogeneous polynomial. Let (0:-- > 0,Ci o, )z o 23" be the id-leading term
of I(z), where 1 6 i < n, Ci6= 0. Divide each d;by p with remainder,

di=qip +1j, 06ri<p, j=1,.,n

Then rj6 Mj,j = 1,..,n, since I(z) € My, and (r4,..,7») has the form (My,...,Mi-1,150,..,0), ri 6= M;, by Theorem 5.3.
We have

o= i:;‘.fj - ljU
=i

for some positive integer I, by Corollary 5.4.
Consider the Fp-hypergeometric solution Ill(z). By Theorem 5.3 the id-leading term of Ill(z) is

~1 v\ My Mi 1 _r;
(U,...,U,C:_i,...3(;“_),41 B | ¢

where
(8.7) (0,...,0,Cy,. .., Cp) = c(0,...,0,C, ..., CY)
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for some® € F5. Both I(z) andc#i"

leading monomial of the difference (2) —cz{"" ... 35{"1)1:1](3) is lexicographically smaller than the leading

. -sz‘pfm(z) belong to M. and have the same leading term. Hence the

. dn of T(= . . . .
monomial?i - -- " Of [("). Notice that the difference is also a homogeneous polynomial.
Iterating this procedure, which decreases the leading monomial, we present I(z) as a linear combination of
the Fp-hypergeometric solutions with coefficients in Fp[z?].

8.3. Ample reduction.

Theorem 8.3. Assume that system (2.1) has ample reduction for a prime p. Then any polynomial solution 1(z)
of system (2.1) belongs to the module of Fp-hypergeometric solutions.

Proof. System (2.1) is homogeneous. Hence it is enough to prove the theorem assuming that I(z) is a
homogeneous polynomial solution.

»n

v _dy
Letlia(z) = €z ... 23" pe the id-leading term of I(z). By Corollary 5.2 the id-leading term has the form
described in Theorem 5.3. The ampleness of the reduction implies there exists an Fp-hypergeometric solution

I1(z), whose id-leading lid1(z) has the property
La(z) = ez ...z I (2),

id
@7

where ¢ € Fpand ay,....an € pZ-0. The difference!(z) — ¢21" ..  zgn IU (3) is a homogeneous polynomial solution
of system (2.1) with id-leading term >ig-smaller than the id-leading term of I(z). Iteration of this procedure
implies the theorem.
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