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Abstract. We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-

dimensional integrals. We also consider the same differential equations over a finite field Fp. We study the polynomial 

solutions of these differential equations over Fp, constructed in a previous work joint with V.Schechtman and called 

the Fp-hypergeometric solutions. 

The dimension of the space of Fp-hypergeometric solutions depends on the prime number p. We say that the KZ 

equations have ample reduction for a prime p, if the dimension of the space of Fp-hypergeometric solutions is maximal 

possible, that is, equal to the dimension of the space of solutions of the corresponding KZ equations over C. Under the 

assumption of ample reduction, we prove a determinant formula for the matrix of coordinates of basis Fp-

hypergeometric solutions. The formula is analogous to the corresponding formula for the determinant of the matrix 

of coordinates of basis complex hypergeometric solutions, in which binomials (zi −zj)Mi+Mj are replaced with (zi −zj)Mi+Mj−p 

and the Euler gamma function Γ(x) is replaced with a suitable Fp-analog ΓFp(x) defined on Fp. 

Contents 

1. Introduction 2 

2. KZ equations 3 

3. Coefficients of polynomials 6 

4. Fp-Beta integral and KZ equations for n = 2 7 

5. Leading term of a polynomial solution 10 

6. Leading term of an Fp-hypergeometric solution 12 

7. Determinant of Fp-hypergeometric solutions 14 

8. Properties of Fp-hypergeometric solutions 17 

References 19 

 

1 E-mail: anv@email.unc.edu, supported in part by NSF grant DMS-1954266 

©0000 (copyright holder) 



2 ALEXANDER VARCHENKO 

 

1. Introduction 

The KZ equations were introduced in [KZ] as the differential equations satisfied by conformal blocks on 

sphere in the Wess-Zumino-Witten model of conformal field theory. The hypergeometric solutions of the KZ 

equations were constructed more than 30 years ago, see [SV1, SV2]. The KZ equations and the hypergeometric 

solutions are related to many subjects in algebra, representation theory, theory of integrable systems, 

enumerative geometry, to name a few. 

The polynomial solutions of the KZ equations over the finite field Fp with a prime number p of elements 

were constructed recently in [SV3], see also [V4, V5, V6, V7]. We call these solutions the Fp-hypergeometric 

solutions. The general problem is to understand relations between the hypergeometric solutions of the KZ 

equations over C and the Fp-hypergeometric solutions and observe how the remarkable properties of 

hypergeometric solutions are reflected in the properties of the Fp-hypergeometric solutions. This program is in 

the first stages, where we consider essential examples and study the corresponding Fp-hypergeometric 

solutions by direct methods. 

In this paper we consider the KZ differential equations in the case, when the hypergeometric solutions over 

C are one-dimensional integrals. 

The dimension of the space of Fp-hypergeometric solutions depends on the prime number p. We say that 

the KZ equations have ample reduction for a prime p, if the dimension of the space of Fp-hypergeometric 

solutions is maximal possible, that is, equal to the dimension of the space of solutions of the corresponding KZ 

equations over C. Under the assumption of ample reduction, we prove a determinant formula for the matrix of 

coordinates of basis Fp-hypergeometric solutions. The formula is analogous to the corresponding formula for 

the determinant of the matrix of coordinates of basis complex hypergeometric solutions, see [V1], in which 

binomials (zi − zj)Mi+Mj are replaced with (zi − zj)Mi+Mj−p and the Euler gamma function Γ(x) is replaced with a 

suitable Fp-analog ΓFp(x) defined on Fp. 

In Section 2 we describe our KZ equations and their reduction modulo p. We define the hypergeometric 

solutions over C and Fp-hypergeometric solutions. The ample reduction is defined in Section 2.5. 

As mentioned earlier, the Fp-hypergeometric solutions are polynomials. In Section 3 we give a formula for 

their coefficients. 

In Section 4, we consider the particular case of our KZ equations, whose space of solutions over C is one-

dimensional, with the basis solution given by the Euler beta integral. We describe the corresponding Fp-

hypergeometric solution, which we call the Fp-beta integral. 

In Section 5 we consider an arbitrary polynomial solution (not necessarily Fp-hypergeometric) of our KZ 

equations over Fp and describe its leading term with respect to the lexicographical ordering of monomials, see 

Theorem 5.3. It turns out that the notion of leading term and the formula for the leading term in Theorem 5.3 

are useful in studying polynomial solutions of the KZ equations over Fp. The notion of leading term replaces, to 

some extend, the notion of initial condition, when the differential equations are over Fp. 

The module of Fp-hypergeometric solutions has a natural basis. In Section 6 we describe the leading terms 

of the basis Fp-hypergeometric solutions. Section 7 contains our main result, Theorem 7.2, describing the 

determinant of coordinates of the basis Fp-hypergeometric solutions, under assumption of ample reduction. 

In Section 2.6 we give an example of KZ equations and a prime p, such that the space of complex solutions 

is one-dimensional, the space of polynomial solutions over Fp is one-dimensional, and the KZ equations have no 
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Fp-hypergeometric solutions. In Section 8 we show that if the reduction of our KZ equations is ample for a prime 

p, then all polynomial solutions are Fp-hypergeometric. 

The author thanks Ivan Charednik and Alexey Slinkin for useful discussions. 

2. KZ equations 

2.1. Description of equations. In this paper the numbers p, q are prime numbers, n is a positive integer, p > 

n > 2, p > q. We fix a vector (m1,...,mn) ∈ Zn>0, such that mi < q for all i = 1,...,n, and study the system of equations 

for a column vector I(z) = (I1(z), ..., In(z)): 

(2.1) , 

where z = (z1,...,zn), the n × n-matrices Ωij have the form: 

(2.2) Ωij 

 

 

i ··· 
 = 

 
 

 

j ··· 

 

...i 

−mj 

... 

mi 

... 

··· 

··· 

...j 

mj 

... 

−mi 

... 

 

···  

 

, 

 

···  

 

and all other entries are zero. This joint system of differential and algebraic equations is called the system of KZ 

equations in this paper. 

Remark. System of equations (2.1) is the system of standard KZ differential equations with parameter q, 

associated with the Lie algebra sl2 and the subspace of singular vectors of weight 2 of the tensor 

product Vm1 ⊗ ··· ⊗ Vmn, where Vmi is the irreducible mi + 1 dimensional sl2-module, up to a gauge transformation, 

see this example in [V3, Section 1.1]. 

We consider system (2.1) over the field C and over the field Fp with p elements. 

2.2. Solutions over C. Consider the master function 

n 

(2.3) Φ(t,z1,...,zn) = Y(t − za)−ma/q 
a=1 

and the column n-vector of hypergeometric integrals 

(2.4) I(γ)(z) = (I1(z),...,In(z)), 

where 

(2.5)  

The integrals Ij, j = 1,...,n, are over an element γ of the first homology group of the algebraic curve with affine 

equation 
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yq = (t − z1)m1 ...(t − zn)mn . 

Starting from such γ, chosen for given values {z1,...,zn}, the vector I(γ)(z) can be analytically continued as a 

multivalued holomorphic function of z to the complement in Cn of the union of the diagonal hyperplanes zi = zj, 

i 6= j. 

The complex vector space of such integral solutions is the n−1-dimensional vector space of all solutions of 

system (2.1). See these statements in the example in [V3, Section 1.1], also in [SliV1], see also the determinant 

formula (7.1) below. 

2.3. Fp-Integrals. Let P(x1,...,xk) be a polynomial with coefficients in an Fp-module, 

P(x1,...,xk) = X cd1,...,dk xd11 ...xdkk. 
d1,...,dk 

Let ( . The coefficient cl1p−1,...,lkp−1 is called the Fp-integral over cycle [l1,...,lk]p and denoted by 

Z 

P(x1,...,xk)dx1 ...dxk. 
[l1,...,lk]p 

We have an analog of Stokes’ Theorem: 

 

for any [l1,...,lk]p. 

2.4. Solutions over Fp. Polynomial solutions of system (2.1), considered over the field Fp, were constructed 

in [SV3]. 

For i = 1,...,n, choose the least positive integers Mi such that 

(2.6)  (mod p). 

Let 

(2.7) 

(2.8), 

where P(t,z) is considered as a column n-vector of polynomials in t,z1,...,zn and Pi(z) as column n-vectors of 

polynomials in z1,...,zn with coefficients in Fp. For a positive integer l, denote 

(2.9)  

Theorem 2.1 ([SV3, Theorem 1.2]). For any positive integer l, the vector of polynomials I[l](z) is a solution of 

KZ system (2.1). 

The solutions I[l](z) given by this construction are called the Fp-hypergeometric solutions of equations 
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(2. 1). 

Remark. The polynomial Φp(t,z) is an Fp-analog of the master function Φ(t,z). The polynomial P(t,z) is an 

analog of the integrand of integral (2.4). The transformation P(t,z) → I[l](z) is an analog of the integral and the 

index [l]p is an analog of the integration cycle. 

Denote ]. The set of all polynomial solutions of system (2.1) with coefficients in 
p 

Fp is a module over the ring Fp[zp] since equations (2.1) are linear and] for all i,j. The 

Fp[zp]-module 

(2.10) M = nXcl(z)I[l](z) | cl(z) ∈ Fp[zp]o, 
l 

spanned by Fp-hypergeometric solutions, is called the module of Fp-hypergeometric solutions. 

The range for the index l is defined by the inequalities 0 1. Hence l = 1,...,r, where 
n 

(2.11) r := hXMi/pi, 
i=1 

the integer part of the number . 

Theorem 2.2. The Fp-hypergeometric solutions I[l](z), l = 1,...,r, are linearly independent over Fp[zp]. 

Proof. The proof coincides with the proof of [V5, Theorem 3.1], see also the proof of [SliV1, Theorem 

3.2]. Other proofs see in [V6, Section 4.1] and in Section 6.3 below.  

 Lemma 2.3. We have r < n.  

2.5. Ample reduction. We say that system (2.1) has ample reduction for a prime p if 
n 

(2.12) hXMi/pi = n − 1, 
i=1 

that is, the rank  of the module M of Fp-hypergeometric solutions takes the possible maximum 

value n − 1. 

Example 2.4. On the one hand, if q > n, p = lq + q − 1 for some l ∈ Z>0 and mi = 1, i = 1,...,n. Then Mi = ((q − 1)p − 

1)/q = p − l − 1 and 

. 

Hence under these assumptions system (2.1) has ample reduction. 

On the one hand, if q > n, p = lq+1 for some l ∈ Z>0 and mi = 1, i = 1,...,n. Then Mi = (p−1)/q = l and 

. 

Hence under these assumptions system (2.1) does not have ample reduction. 
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In this example and in general the ampleness depends on the residue of p modulo q. 

Lemma 2.5. If system (2.1) has ample reduction for a prime p, then for any l = 1,...,n − 1 and any subset I ⊂ 

{1,...,n} with |I| = l, we have 

(2.13) (l − 1)p < XMi < lp. 
i∈I 

Proof. The second inequality holds since 0 < Mi < p for any i. Assume that the first inequality is not true and 

P
i∈I Mi 6 (l − 1)p for some l and I. Then 

 

where I¯ is the complement of I. That contradicts to the ampleness of the reduction.  

2.6. Example. Let n = 2, p = 3, q = 2, m1 = m2 = 1. Then M1 = M2 = 1. The KZ equations take the form 

   . 

The polynomial (  is a solution. At the same time r = [(M1 + M2)/p] = 0 and there are no 

Fp-hypergeometric solutions. 

3. Coefficients of polynomials 

3.1. Coefficients of Fp-hypergeometric solutions. For l = 1,...,r, the coordinates of the column 

vector )) are homogeneous polynomials in z1,...,zn of degree 

(3.1)  

Let 

 I[l](z) = X Id[l1],...,dnz1d1 ...zndn , Id[l1],...,dn ∈ Fnp . 

d1,...,dn 

Lemma 3.1. The coefficient  is nonzero if and only if 

(3.2) , and di 6 Mi for i = 1,...,n, 

moreover, 

(3.3) . 

If  are coordinates of , then 

(3.4) . 

Proof. The first statements follow from formulas (2.7) and (2.8). Formula (3.4) follows from formulas (3.3), 

(2.6).  
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3.2. Coefficients and singular vectors. Consider the Lie algebra sl2 over the field Fp with standard 

generators e,f,h and relations [e,f] = h, [h,e] = 2e, [h,f] = −2f. 

For m ∈ Z>0, m < p, let Vm be the irreducible sl2-module over Fp with highest weight m, basis fjvm, j = 0,...,m, 

and standard sl2-action. 

Consider the sl2-module . For i = 1,...,n, let 

(3.5)  . 

Then 

 . 

Denote by V [−2] the n-dimensional subspace of  generated by f(i)v, i = 1,...,n. Denote 

. 

The n−1-dimensional subspace SingV [−2] ⊂ V [−2] is the kernel of the restriction to V [−2] of the operator 

 . Denote 

SingV [−2][z] := SingV [−2] ⊗Fp Fp[z]. 

Define an isomorphism of vector spaces 

(3.6) ,  

Then an Fp-hypergeometric solution I[l](z) is identified with the polynomial 

ιI[l](z) := X ιId[l1],...,dn z1d1 ...zndn ∈ SingV [−2][z]. 

d1,...,dn 

3.3. Operators Ωsl
ij2. The isomorphism ι identifies a linear operator Ω , appearing in system 

(2.1), with a linear operator on V [−2], which we denote by ιΩij. Namely, the linear operator ιΩij is the restriction 

to V [−2] of the Casimir operator on  defined by the formula 

 Id, 

where for x ∈ sl2 we define the operator x(i) on  by 

x(i) := 1 ⊗ ··· ⊗ 1 ⊗ x ⊗ 1 ⊗ ··· ⊗ 1 

with x at the ith position. Notice that each Ωsl
ij2 preserves SingV [−2]. 

4. Fp-Beta integral and KZ equations for n = 2 

4.1. Solutions over C. Consider the system of KZ equations (2.1) over C for n = 2. Then the master 

function is 

(4.1) Φ(t,z1,z2) = (t − z1)−m1/q(t − z2)−m2/q , 

and the one-dimensional space of solutions is generated by the 2-column vector 

(4.2)  

To determine this integral we assume that z1,z2 are real, z1 < z2, and fix a univalued branch on [z1,z2] of each of 

the factors (t − z1)−m1/q, (t − z2)−m2/q. Then 
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(4.3) 

, 

where (zk − zl)−ml/q is the value of the chosen branch of the function (t − zl)−ml/q at t = zk. 

Remark. Calculation of each coordinate of the vector I(z1,z2) is reduced to the beta integral, 

(4.4)  , 

after change of variables. Formula (4.3) shows how the beta integral appears in hypergeometric solutions of KZ 

equations. 

If (−m1/q,−m2/q) = (M1,M2), where M1,M2 are positive integers, then 

(4.5) . 

4.2. Factorial and gamma functions. Recall that p is an odd prime number. The p-adic factorial function is 

defined on positive integers by 

 (x!)p = Y j . 
16j6x, (j,p)=1 

The Morita p-adic gamma function is the unique continuous function of a p-adic integer x (with values in 

Zp) such that 

 Γp(x) = (−1)x Y j , 

16j<x, (j,p)=1 

for positive integers x. Thus Γp(x + 1) = (−1)x(x!)p for positive integers x. Define the 

function 

ΓFp : Z>0 → Fp 

by setting ΓFp(0) = 1, ΓFp(1) = −1 and mapping an integer x > 1 to the image of the integer Γp(x) in Fp. 

Lemma 4.1. We have ΓFp(x + p) = ΓFp(x) for all x. 

 Proof. The lemma follows from Wilson’s theorem, (p − 1)! ≡ −1 (mod p).  

We extend the function ΓFp to the set Z by periodicity, ΓFp(x + p) = ΓFp(x). Then we get 

ΓFp(x)Γ
Fp(1 − x) = (−1)x 

also by Wilson’s theorem. 

Lemma 4.2. Let A,B be positive integers such that A < p, B < p, p 6 A+B. Then we have an identity in Fp, 
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(4.6) 

. 

 

Proof. We have 

 . 

 

4.3. Fp-hypergeometric solutions. Consider the system of KZ equations (2.1) over Fp for n = 2. Assume that 

system (2.1) has ample reduction for a prime p. Then the integers M1, M2, introduced in (2.6), satisfy the 

inequalities 

(4.7) 0 < M1, M2, M1 + M2 − p + 1 < p. 

In this case the module M of Fp-hypergeometric solutions is of rank one and generated by I[1](z1,z2). The solution 

I[1](z1,z2) is the coefficient of tp−1 in the Taylor expansion of the polynomial 2-vector 

(4.8) , 

cf. (4.2) 

Theorem 4.3. We have 

(4.9) 

, 

cf. (4.5). 

Proof. Make the transformation 

. 

This change of variables does not change the coefficient of tp−1 in the Taylor expansion by Lucas theorem, see 

[Lu] and the proof of [V5, Lemma 5.2]. Hence 

. 

Then 
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(4.10) . 

Now the theorem follows from Lemma 4.2.  Remark. For positive integers a,b satisfying the inequalities 

a < p, b < p, p − 1 6 a + b, we have the 

Fp-beta integral formula 

(4.11)  , 

which follows from Lemma 4.2. 

Formula (4.4) for the beta integral is the one-dimensional case of the n-dimensional Selberg integral 

formula, see [Se]. In [RV1, RV2] we develop Fp-analogs of the n-dimensional Selberg integral formulas. 

5. Leading term of a polynomial solution 

5.1. Lexicographical ordering. For a permutation σ = (σ1,...,σn) ∈ Sn denote by >σ the lexicographical 

ordering of monomials 

 , 

relative to the ordering (σ1,...,σn) of the integers (1,...,n). So zσ1 >σ zσ2 >σ ... >σ zσn−1 >σ zσn and so on. 

For a nonzero polynomial 

f(z) = X ad1,...,dnz1d1 ...zndn 

d1,...,dn 

let fσ(z) be the summand  corresponding to the largest monomial entering f(z) with a nonzero 

coefficient. We call fσ(z) the σ-leading term of f(z), the corresponding ad1,...,dn the σ-leading coefficient, the 

corresponding  the σ-leading monomial. 

In particular, consider elements f(z) = (f1(z),...,fn(z)) ∈ (Fp[z])n as polynomials in z with coefficients in . 

Then for any σ ∈ Sn a nonzero element f(z) has σ-leading term  and σ-leading 
coefficient . 

5.2. Leading term of a polynomial solution. Consider the lexicographical ordering >id of monomials 

corresponding to the identity permutation id ∈ Sn. Hence z1 >id z2 >id ··· >id zn and so on. 

Lemma 5.1. Let I(z) = (I1(z),...,In(z)) be a polynomial solution of system (2.1) over Fp (not necessarily an Fp-

hypergeometric solution). Let , ..., , be the id-leading term of 

I(z). Then 

(5.1) , 

where C is considered as a column vector. Proof. 

Rewrite the KZ equations as 

(5.2) , 

j = 1,...,n. Now the lemma follows from calculating the leading term of the left-hand side in (5.2) and equating it 

to zero.  

For j 6= l introduce the n × n-matrices 
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  ...j ...l  

   

 j ··· Ml ··· −Ml ···  

M  ... ...  (5.3)

 Ωjl =  

   

 l ··· −Mj ··· Mj ···  

  ... ...  

with all other entries equal to zero. For j = 1,...,n − 1, denote Ω  . 

Corollary 5.2. Let I(z) be a polynomial solution of system (2.1) over Fp. Then the id-leading term 

 satisfies the system of equations: n 

(5.4) XMjCj = 0, ΩMj C = dj C , j = 1,...,n − 1, dn ≡ 0 (mod p). 
j=1 

 

Theorem 5.3. Let a pair  be a solution of system 

(5.5) . 

Let the index i be such that 

(5.6) Ci 6= 0 and Cj = 0, j = 1,...,i − 1. 

Then 

(5.7) 

(5.8) 

Conversely, if a pair C = (C1,...,Cn), (d1,...,dn) ∈ Fnp has properties (5.6), (5.7), (5.8), then it is a solution of system (5.5). 

Proof. For any j = 1,...,n − 1, we have 

(5.9) ΩMj (C1,...,Cn) = (0,...,0, 

Mj+1(Cj − Cj+1) + ··· + Mn(Cj − Cn),Mj(Cj+1 − Cj),...,Mj(Cn − Cj)), 

where in the right-hand side 0 is repeated j − 1-times, 

Assume (5.5) and (5.6). First we check that dj = Mj, j = 1,...,i − 1. Indeed, 

(5.10)  
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(5.11)  

Here we used that = 0. Hence if ΩMj C = djC, the dj = Mj. 

We also have 

(5.12)  

Hence 
 n n 

(5.13) di = XMl , Mi(Cj − Ci) = Cj 
XMl , j = i + 1,...,n. 

 l=i l=i 

The second equality in (5.13) implies . Hence = 0. This inequality and 

the first equality in (5.13) imply di 6= Mi. Also the second equality in (5.13) implies that Ci+1 = ··· = Cn and, 

therefore, ΩMj C = 0 for j > i. Hence dj = 0 for j = i + 1,...,n − 1. Thus we deduced (5.7) and (5.8). 

 The proof that (5.6), (5.7), (5.8) imply (5.5) is straightforward.  

Corollary 5.4. Let a pair  be a solution of system (5.4) such that C 6= 0. 

Then  .  

Corollary 5.5. Let I(z) = (I1(z),...,In(z)) be a homogeneous polynomial solution of system (2.1) over Fp of degree 

d, then 

(5.14) , 

cf. Example 2.6.  

Corollary 5.6. Let a pair C = (C1,...,Cn), (d1,...,dn) ∈ Fnp be a solution of system (5.4) such that 

C 6= 0. Then (d1,...,dn) is uniquely determined by C. If , then the pair cC,(d1,...,dn) is also a solution of system 

(5.4). The number of equivalence classes of solutions C,(d1,...,dn) of system (5.4), modulo the equivalence relation C 

→7 cC, equals n − 1 decreased by the number of indices i, 1 6 i 6 n − 2, 

such that Pj=i+1 Mj = 0.  

5.3. Example. Let n = 2, p = 3, q = 2, m1 = m2 = 1, M1 = M2 = 1. Then system (2.1) has a (non-Fp-

hypergeometric) polynomial solution  , see Example 2.6. The leading id-term of I(z) 

equals  in agreement with Theorem 5.3. 

In this example the module of all polynomial solutions is one-dimensional and generated by I(z). This 

follows from the fact that the id-leading term of any polynomial solution J(z) has the form , 

where , by Theorem 5.3. 

6. Leading term of an Fp-hypergeometric solution 

 6.1. Leading term of I[l](z). Using the isomorphism ι, defined in (3.6), we consider 

Fp-hypergeometric solutions as polynomials in z with coefficients in SingV [−2]. 
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Recall that for l = 1,...,r, the Fp-hypergeometric solution I[l](z) is a homogeneous polynomial in z of degree

. 

 [l] [l](z) with respect to the lexicographical ordering >id. 

We describe the leading term Iid (z) of I 

Theorem 6.1. Given l = 1,...,r, denote by i = i(l) the unique positive integer such that 

(6.1) . 

Then 

(6.2) 

 

where f(k)v are introduced in (3.5). 

Proof. The theorem follows from formula (3.3), Corollary 5.2, Theorem 5.3 and Lemma 4.2, where 

Lemma 4.2 is applied with A = Mi and .  Remark. Let σ = (σ1,...,σn) ∈ Sn. The leading 

term  ) with respect to the lexicographical ordering >σ is obtained from the right-hand side of 

formula (6.2) by simultaneous reordering of variables z1,...,zn and parameters M1,...,Mn. 
[l] 

6.2. Indices i(l). In Theorem 6.1 we define the numbers i(l), l = 1,...,r. The leading term Iid (z) of the Fp-

hypergeometric solution I[l](z) is a monomial in z1,...,zi(l) . Lemma 6.2. We have 

(6.3) 1 6 i(r) < i(r − 1) < ··· < i(1) < n. 

 

Corollary 6.3. If system (2.1) has ample reduction for a prime p, then 

(6.4) i(l) = n − l, l = 1,...,n − 1. 

 

6.3. Corollary of Theorem 6.1. The Fp-hypergeometric solutions I[l](z), l = 1,...,r, are linearly independent 

over the field Fp(z) of rational functions in z with coefficients in Fp. 

This follows from the fact that the leading coefficients of I[l](z), l = 1,...,r, are linear independent over the field 

Fp. 

6.4. Example. Let q = 3, p = 13, (m1,...,m6) = (2,2,2,1,1,1). Then (M1,...,M6) = (8,8,8,4,4,4), 

= 2. We have two Fp-hypergeometric solutions I[l](z), l = 1,2, of degrees 23 and 10, 

respectively. 

Consider the identity element id = (1,2,3,4,5,6) of S6 and the elements s3,4 = (1,2,4, 3,5,6), σ = (6,5,4,3,2,1) ∈ 

S6. Then the leading terms are 
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, 

7. Determinant of Fp-hypergeometric solutions 

7.1. Determinant over C. Consider the system of KZ equations (2.1) over C. Then the space of solutions is 

n − 1-dimensional. 

Recall the master function Φ(t,z) introduced in (2.4). Consider the hypergeometric integrals 

. 

To determine the integrals we assume that z1,...,zn are real, z1 < ··· < zn, and for every l = 1,...,n, we fix a univalued 

branch of the function (t − zl)−ml/q on the rays {t ∈ R | t < zl} and {t ∈ R | t > zl}. 

The integrals I(j), j = 1,...,n−1, form a basis of solutions of system (2.1) due to the following theorem. 

Theorem 7.1 ([V1, V2, V3]). We have 

(7.1) 

. 

Below we prove an analog of this theorem for Fp-hypergeometric solutions. 

7.2. Determinant over Fp. Introduce a basis of SingV [−2], 

(7.2) . 

Expand each of the Fp-hypergeometric solutions I[l](z) with respect to this basis, 

n−1 

(7.3) I[l](z) = X clj(z)wj, 
j=1 

where clj(z) are scalar homogeneous polynomials of degree . 
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Theorem 7.2. Assume that system (2.1) has ample reduction for a prime p. Then we have the square matrix 

c(z) = (clj(z))l,j=1,...,n−1 with nonzero determinant, given by the following formula 

(7.4) . 

Notice that 

(7.5)  . 

The theorem is proved in Sections 7.3, 7.4. 

7.3. Preliminary remarks. 

Lemma 7.3. The function detc(z) is a nonzero homogeneous polynomial of degree 

(7.6)  

with id-leading term 

(7.7) detidc(z) = const  , 

where 

(7.8) const = (  , 

Proof. If detc(z) is nonzero, then it is of degree 

deg(det , 

which gives (7.6). By Theorem 6.1 we have 

(7.9)

 l 

, 

Expanding vectors 1, with respect to the basis w1,...,wn−1, we obtain a 

square (n − 1) × (n − 1)-matrix C(id) = (C(id)lj) of coefficients of the expansion. The matrix is triangular with 

respect to the main anti-diagonal. The anti-diagonal entries are 

 . 
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Hence 

 . 

These formulas imply the lemma. 

7.4. Differential equations for detc(z). 

Lemma 7.4. The polynomial detc(z) satisfies the system of scalar differential equations 

 

(7.10)  

Proof. The operators ΩMij defined in (5.3) preserve SingV [−2] and 

(7.11) Tr . 

The polynomial detc(z), as the determinant of solutions, satisfies the system of equations (7.12)

  
This proves the lemma. Lemma 

7.5. The polynomial 

y0(z) = Y (zi − zj)Mi+Mj−p 

16i<j6n 

 

is a solution of system (7.12).   

Lemma 7.6. For any i 6= j, the polynomial detc(z) is divisible by (zi − zj)Mi+Mj−p. 

Proof. We will prove that detc(z) is divisible by (zn−1 − zn)Mn−1+Mn−p. The divisibility by (zi − zj)Mi+Mj−p for other i 

6= j is proved by reordering variables. 

Introduce new variables u1,...,un by the equaions: un = z1 + ··· + zn, 

(7.13) zj+1 − zj = u1u2 ...uj, j = 1,...,n − 1. 

The variables z1,...,zn are polynomials in u1,...,un. Hence if I(z) is a polynomial solution of system (2.1), then I(z(u)) 

is a polynomial solution of the transformed differential KZ equations, which take the form: 

(7.14) + Reg , , 

where Regi(u) is an operator-valued function of u regular at the point u1 = ··· = un = 0. See this statement in [V7, 

Proposition 2.2.3]. In particular, we have 

(7.15) + Reg  

Hence the polynomial detc(z(u)) a solution of the system of differential equations; 

(7.16) + TrReg , , 

cf. formulas (7.11), (7.12). In particular, we have 

(7.17) + Reg  

Hence the polynomial detc(z(u)) is divisible by a monomial  , where d is a nonnegative solution of the 

congruence 
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d ≡ Mn−1 + Mn (mod p). 

The number Mn−1+Mn−p is the smallest nonnegative solution. Hence detc(z(u)) is divisible by , that 

is, 

, 

where F(u1,...,un) is a polynomial. Thus 

. 

Hence detc(z) is divisible (zn − zn−1)Mn−1+Mn−p. The lemma is proved.  

Proof of Theorem 7.2. The theorem follows from Lemmas 7.6 and 7.3.  

7.5. Remark on the initial value problem. 

Corollary 7.7. Assume that system (2.1) has ample reduction for a prime p. For  with 

distinct coordinates and w ∈ SingV [−2], there exist a unique vector  such that 
n−1 

(7.18) w = X clI[l](x). 
l=1 

Denote ( hasdistinctcoordinates}. We have an isomorphism of the two trivial bundles 

  and , 

which sends (w,x) to ((c1,...,cn−1),x). 

8. Properties of Fp-hypergeometric solutions 

In this section we add more properties of Fp-hypergeometric solutions. 

8.1. Uniqueness property. Given l = 1,...,r, the Fp-hypergeometric solution I[l](z) has degree  

and id-leading term 

(8.1) 

, 

where the number i(l) is defined in Theorem 6.1. 

Theorem 8.1. If I(z) is a homogeneous polynomial solution of system (2.1) with id-leading term (8.1), then I(z) 

= I[l](z). 

Proof. By Theorem 5.3 the id-leading term of the difference I(z) − I[l](z) has the form 

(8.2)  , 

for some k, where Ck 6= 0 and 
n 

(8.3) aj ≡ Mj (mod p), j = 1,...,k − 1, ak 
≡ XMj (mod p), ak 6≡ Mk , 

j=k 
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 k n 

(8.4) Xaj = XMj − lp, 
 j=1 j=1 

 M1 M2 Mi(l)−1 Pnj=i(l) Mj −lp a1 ak−1 ak 

(8.5) z1 z2 ...zi(l)−1 zi(l) >id z1 ...zk−1 zk . 

The inequality k > i(l) is impossible due to (8.3), (6.1). The inequality k < i(l) is impossible due to (8.3), 

(8. 5).  

8.2. L-admissible solutions and filtration on space of all polynomial solutions. Let L = (L1,..., Ln) ∈ Zn>0. 

Let I(z) be a polynomial in z with coefficients in . We say that I(z) is L-admissible if 

(8.6)  

Denote by ML the Fp[zp]-module of all L-admissible polynomial solutions of (2.1). 

For example, M(0,...,0) consists of polynomial solutions I(z) = (I1(z), ..., In(z)) lying in (Fp[zp])n, in other words, 

it consists of all I(z), such that 

. 

In particular, if system (2.1) has constant solutions then they lie in M(0,...,0) . 

The modules ML form a filtration on the module of all polynomial solutions of system (2.1). Namely, if

) and Lj 6 L0j for all j, then ML ⊂ ML0. 

Theorem 8.2. Let L = (M1 + 1,...,Mn + 1). Then ML coincides with the module M of Fphypergeometric solutions of 

system (2.1). 

Proof. Any Fp-hypergeometric solution I[l](z) lies in ML by construction. We show that any element I(z) ∈ ML 

is a linear combination of the Fp-hypergeometric solutions with coefficients in Fp[zp]. Since system (2.1) is 

homogeneous, it is enough to assume that I(z) is a homogeneous polynomial. 

Assume that I(z) is a homogeneous polynomial. Let (0  be the id-leading term 

of I(z), where 1 6 i < n, Ci 6= 0. Divide each dj by p with remainder, 

 dj = qjp + rj , 0 6 rj < p, j = 1,...,n. 

Then rj 6 Mj, j = 1,...,n, since I(z) ∈ ML, and (r1,...,rn) has the form (M1,...,Mi−1,ri,0,...,0), ri 6= Mi, by Theorem 5.3. 

We have 

 

for some positive integer l, by Corollary 5.4. 

Consider the Fp-hypergeometric solution I[l](z). By Theorem 5.3 the id-leading term of I[l](z) is 

 , 

where 

(8.7) . 
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for some  . Both I(z) and  ) belong to ML and have the same leading term. Hence the 

leading monomial of the difference  ) is lexicographically smaller than the leading 

monomial ). Notice that the difference is also a homogeneous polynomial. 

Iterating this procedure, which decreases the leading monomial, we present I(z) as a linear combination of 

the Fp-hypergeometric solutions with coefficients in Fp[zp].  

8.3. Ample reduction. 

Theorem 8.3. Assume that system (2.1) has ample reduction for a prime p. Then any polynomial solution I(z) 

of system (2.1) belongs to the module of Fp-hypergeometric solutions. 

Proof. System (2.1) is homogeneous. Hence it is enough to prove the theorem assuming that I(z) is a 

homogeneous polynomial solution. 

Let  be the id-leading term of I(z). By Corollary 5.2 the id-leading term has the form 

described in Theorem 5.3. The ampleness of the reduction implies there exists an Fp-hypergeometric solution 

I[l](z), whose id-leading Iid[l](z) has the property 

, 

where c ∈ Fp and a1,...,an ∈ pZ>0. The difference ) is a homogeneous polynomial solution 

of system (2.1) with id-leading term >id-smaller than the id-leading term of I(z). Iteration of this procedure 

implies the theorem.  
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