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Abstract 

In this note we strengthen the results of [SV] by presenting their derived version. 

Namely, we define a "derived Knizhnik - Zamolodchikov connection" and identify it with a 

"derived Gauss - Manin connection". 

§1. Introduction 

1.0. Brief review of the paper. The main result of [SV] provided a realization of Knizhnik 

- Zamolodchikov equations arising in physics as equations on horizontal sections for a Gauss 

- Manin connection. 

More explicitly, without going into details to be given below, the KZ connection acts on 

a space of functions depending on z ∈ B where B is a domain in Cn with values in a homology 

group H0(n,M) where n is a certain Lie algebra, and M a (maybe infinite dimensional) n-
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module. In other words the KZ connection acts on the trivial vector bundle over B with a 

fiber H0(n,M), this vector bundle to be denoted H0(n,M). 

All homology spaces Hi(n,M) are Λ-graded 

Hi(n,M) = ⊕λ∈ΛHi(n,M)λ 

where Λ is certain lattice. For a given λ only a finite number of spaces Hi(n,M)λ, 0 ≤ i ≤ N, 

are different from 0. Let us pick λ. 

On the other hand one has introduced in op. cit. a fibration (a smooth surjective map) 

pλ : Xλ −→ B 

and a D-module Lλ over Xλ, and a finite group Σλ (a product of symmetric groups) which acts 

on Xλ and Lλ. 

One has constructed an isomorphism of the bundle H0(n,M)λ equipped with the KZ 

connection with the bundle (RNpλ∗Lλ)Σλ equipped with the GM connection. 

In fact in [SV] for all 0 ≤ i ≤ N there were established isomorphisms 

∼ N−i Σλ βi,λ : Hi(n,M)λ −→ (R pλ∗Lλ)

 (1.0.1) 

of vector bundles over B. However the question of identification of a connection on Hi(n,M)λ 

corresponding to the GM connection on (RN−ipλ∗Lλ)Σλ was left open for i > 0, although a 

natural candidate has been given. 

In the present note we establish this remaining point. To do this we start from the 

remark that by its very definition in op. cit. isomorphisms (1.0.1) are induced by a map of 

complexes 

  (1.0.2) 

where C•(n,M)λ is the λ-homogeneous part of the Chevalley chain complex, and Ω•Xλ/B(Lλ) is 

certain complex of differential form on Xλ, the relative de Rham complex of Lλ. 

A naive expectation would be that: 

(a) for the KZ part: 

each term Ci(n,M)λ comes equipped with an integrable connection, these connections 

are compatible with differentials and thus induce a connection on the cohomology Hi(n,M)λ; 

(b) for the GM part: 
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similarly, each term ΩjXλ/B(Lλ) comes equipped with an integrable Σλ-equivariant 

connection, these connections are compatible with differentials and thus induce a 

connection on the cohomology Rjpλ∗Lλ; 

(c) the map ηλ is compatible with the connections in (a), (b), and therefore the 

isomorphisms βi,λ (1.0.1) identify two connections. 

In reality, (a) is literally true (and easy); this is present in [SV]. 

Point (b) is more delicate: there is no natural connection on the complex . 

Happily, to define a connection on the cohomology a weaker structure is sufficient: 

(b0) there exists a filtered complex such that the term E1 of the corresponding spectral 

sequence (recalled in Appendix) coincides with the de Rham complex of the GM connection 

on R•pλ∗Lλ. 

This filtered complex is described below: it is a generalization of the Katz - Oda 

construction for the GM connection, [KO]. 

Accordingly, (c) should be replaced by 

(c0) the map ηλ may be extended to a map of filtered complexes which, after passing to 

E1-terms, induces a map from the de Rham complex of the KZ connection to the de Rham 

complex of the GM connection. 

Now we will describe some details of what was said above. 

1.1. Knizhnik - Zamolodchikov connection. Let g be a complex Lie algebra equipped with 

an element 

Ω ∈ g ⊗ g 

having the following property: 

1.1.1. Let M1,M2 be arbitrary g-modules. The actions of Ω and g on M1 ⊗ M2 commute. 

1.1.2. Example. Let g be finite dimensional, equipped with a non-degenerate invariant 

symmetric bilinear form (,). Denote 

Ω = Xxi ⊗ xi ∈ g ⊗ g 
i 

where {xi} ⊂ g is any C-base, and {xi} is the dual base, i.e. (xi,xi) = δij. This element ("the 

Casimir") does not depend on a choice of a base and satisfies 1.1.1. 
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Let M1,...,Mn be g-modules, n ≥ 1. Denote M = M1 ⊗ ... ⊗ Mn. 

For a smooth affine complex3 algebraic variety U, Ω•(U) will denote the space of global 

sections for its algebraic de Rham complex . Thus Ω0U = OU is the sheaf of functions, etc. 

If M is a vector space, we denote 

Ω•(U;M) := Ω•(U) ⊗ M. 

Let n ≥ 1 be an integer. Let M1,...,Mn be g-modules; set M = M1 ⊗ ... ⊗ Mn. For each i 6= 

j we have an operator 

Ωij : M −→ M 

acting as Ω on Mi ⊗ Mj and as identity on the other factors. 

Denote 

Un = {z = (z1,...,zn) ∈ Cn| zi 6= zj for all i 6= j} (1.1.1) Thus U1 = C. 

The KZ connection is an operator 

∇KZ : Ω0(Un;M) = O(Un) ⊗ M −→ Ω1(Un;M) 

given by 

  (1.1.2) 

where dDR is the de Rham differential. Here κ ∈ C∗ is a complex parameter. 

Thus ∇KZ = dDR if n = 1. 

This connection is integrable: if we define, starting from ∇KZ, operators 

∇KZ : Ωi(Un;M) −→ Ωi+1(Un;M) 

for all i in the usual way then ∇2KZ = 0 (this amounts to the classical YB equation for the 

differential form ΩKZ). 

 
3 in what follows the base field C of complex numbers may be replaced by any field of characteristics 0 
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In other words, ∇KZ is an integrable connection (i.e. it defines a structure of a DUn-

module) on the trivial bundle M over Un with fiber M. 

1.2. The Chevalley complex and the derived KZ. Let n ⊂ g be a Lie subalgebra. 

We will be interested in Chevalley chain complexes 

C•(n,M) : ... −→ Λ2n ⊗ M −→ n ⊗ M −→ M −→ 0 

where d(g ⊗ x) = gx, 

d(g1 ∧ g2 ⊗ x) = g1 ⊗ g2x − g2 ⊗ g1x − [g1,g2] ⊗ x, 

etc. 

Let C•(n,M) denote the trivial vector bundle over Un with a fiber C•(n,M), so it is a 

complex of vector bundles. 

We define the derived KZ connection as an integrable connection on C•(n,M) given by 

the same formula as above, 

  (1.2.1) 

where now the operators 

Ωij : Cl(n,M) = Λln ⊗ M −→ Cl(n,M) 

are acting through the factor M. 

Whence we get the corresponding de Rham complex 

 . (1.2.2) 

It is a double complex: the commutation of the Chevalley differential with ∇KZ follows from 

1.1.1. 

We call it the KZ-Chevalley complex. 

In fact this complex appears avant la lettre already in [SV] 7.2.3. 

1.3. Derived Gauss - Manin connection. Let N ≥ 0 be an integer. Consider the affine space 

Cn+N with coordinates z1,...,zn,t1,...,tN, and inside it an open subspace 
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Un,N = {zi 6= zj, zi 6= ta, ta 6= tb}. 

We have an obvious projection 

p : Un,N −→ Un. 

The de Rham algebra Ω•(Un,N) is the total complex of a bicomplex 

Ω•(Un,N) = TotΩ••(Un,N) 

where Ωpq(Un,N) is the space of forms containing p differentials dti and q differentials dzm, 

the full de Rham differential being the sum 

dDR = dz + dt. 

The relative de Rham complex is by definition 

Ω•(Un,N/Un) = (Ω0•(Un,N),dt); 

one has a projection 

p : Ω•(Un,N) −→ Ω•(Un,N/Un) 

Let L be a DUn,N -module, i.e. a quasicoherent OUn,N -module equipped with an integrable 

connection 

∇ : L −→ Ω1Un,N ⊗ L; 

its de Rham complex is 

 ∇ 1 ∇ 2 

DR(L) : 0 −→ L −→ ΩUn,N ⊗ L −→ ΩUn,N ⊗ L −→ ... 

By definition, the de Rham complex of the derived Gauss - Manin connection on the direct 

image Rp∗L, to be denoted DR(Rp∗L), is the same complex DR(L) equipped with a 

decreasing filtration 

  (1.3.1) 

where  is the subcomplex containing ≥ i differentials dza. 

Note that the utmost left column of F0/F1 is the relative de Rham complex representing 

Rp∗L whose cohomology are the sheaves Rip∗L. These sheaves carry the usual GM 

connections ∇i. 
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The complexes  defined in the Appendix, A2.1 (the components of 

the E1 term of the spectral sequence for our filtered complex) are nothing else but their de 

Rham complexes of Rip∗L: 

. 

This isomorphism justifies the above definition. 

1.3.1. Remark. For the case of a trivial connection on OUn,N the above construction is 

nothing else but the Katz - Oda definition of the usual GM connection, [KO]. 

1.4. Coulomb D-modules. Let V be a finite dimensional complex vector space equipped 

with a symmetric bilinear form (,). Let 

µ = (µ1,...,µn) ∈ V n, α = (α1,...,αN) ∈ V N, 

and κ ∈ C∗. 

We associate to these data a D-module L(µ,α), to be called a Coulomb 4 D-module, over 

Un,N: by definition it is the structure sheaf OUn,N equipped with a connection 

 

where 

ω(µ,α) = X(µi,µj)dln(zi − zj)− 
i<j 

−X(µi,αa)dln(zi − ta) + X(αa,αb)dln(ta − tb). 
 i,a a<b 

1.5. On the other hand we can associate with the data (V,µ,α) above a Lie algebra g = 

g(α) ("a Kac-Moody algebra without Serre relations") and a collection of "contragradient 

Verma" g-modules M(µ1)c,...,M(µn)c. 

For example if V is one-dimensional and α1 = ... = αN then g = sl2. 

Let 

 
4 "Loi fondamentale de l’Elictricit´e. La force r´epulsive des deux petits globes ´electris´es de la mˆeme´ 

nature d’´electricit´e, est en raison inverse du carr´e de la distance du centre de deux globes." CharlesAugustin 

de Coulomb, Premier M´emoire sur l’Electricit´e et le Magn´etisme´ , 1785. 
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M = M(µ1)c ⊗ ... ⊗ M(µn)c, 

and consider the total complex of the de Rham complex (1.2.2) TotΩ•(Un,C•(n,M)). 

It is Λ-graded where Λ = Pi Zαi ⊂ V , and it carries a decreasing filtration 

TotΩ•(Un,C•(n,M)) 

where 

TotΩ•(Un,C•(n,M)) ⊂ TotΩ•(Un,C•(n,M)) 

is the subcomplex of differential forms containing ≥ i differentials dza. 

Let λ = Pi αi ∈ Λ. Our main result defines a map from the λ-homogeneous component of 

this filtered complex to the filtered complex . 

For details see Theorem 3.8 and Corollary 3.9. 

Plan of the paper 

In the next §2 we discuss in detail the case g = sl2. The general case is discussed in §3. 

In the Appendix we recall some standard homological algebra of filtered complexes. 

1.6. Acknowledgements. We are grateful to B.Toen and D.Gaitsgory for useful 

conversations. A. Varchenko was supported in part by NSF grant DMS-1954266. 

§2. The case g = sl2 

2.0. Setup. We consider the Lie algebra g = sl2 with standard generators e,f,h; let n := Cf 

⊂ g (resp. n+ := Ce) be the lower (resp. upper) triangular subalgebra. We will identify n+ with 

n∗, with e being dual to f. 

The Casimir element is 
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2.0.1. Invariance lemma. Let M1,M2 be arbitrary g-modules. The actions of Ω and g on M1 

⊗ M2 commute. 

Proof: exercise for the reader. 

2.1. Chevalley complex. 

If M is a g-module, C•(n∗,M∗) = C•(n+,M∗) will denote the Chevalley chain complex 

 0 (2.1.1) 

living in degrees −1,0. Here the action of n∗ on the dual space M∗ is given by 

(f∗α)(x) = α(ex), x ∈ M, α ∈ M∗ 

where f∗ ∈ n∗ is defined by f∗(f) = 1. 

Next, C•(n,Mc) will denote the dual complex 

(2.1.1a) 

 0 −→ M −→d n ⊗ M −→ 0, d(x) = f ⊗ ex (2.1.2) 

living in degrees 0,1. 

For m ∈ C, M(m) will denote the Verma module with a vacuum vector v such that hv = 

mv,ev = 0. It is N-graded: 

M(m) = ⊕k≥0M(m)k 

where M(m)k = Cfkv. 

Fix a natural n ≥ 1 and an n-tuple m = (m1,...,mn) ∈ Cn, and consider the tensor product 

M(m) = M(m1) ⊗ ... ⊗ M(mn) 

The above grading on each M(mi) gives rise to an N-grading on M(m): 

M(m) = ⊕k≥0M(m)k 

where 

M(m)k = ⊕k1+...+kn=kM(m1)k1 ⊗ ... ⊗ M(mn)kn. For a multi-

index a = (k1,...,kn) we denote 

n 
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|a| = X ai, 
i=1 

and 

(2.1.3) 

fav := fa1v1 ⊗ ... ⊗ fanvn ∈ M(m)|a|. The 

Chevalley complex acquires a grading as well: 

C•(n,M(m)c) = ⊕k≥0C•(n,M(m)c)k, 

with 

(2.1.4) 

C•(n,M(m)c)k : 0 −→ M(m)k −→ n ⊗ M(m)k−1 −→ 0. 

COROLLARY: DERIVED KZ IS CORRECTLY DEFINED. 

2.2. Logarithmic forms. Recall that κ ∈ C∗ is fixed. 

We fix an integer N ≥ 0 and consider the space Un,N (see 1.4 above). 

(2.1.5) 

We are going to define certain logarithmic forms on this space. For a function u we 

denote 

 

The symmetric group ΣN acts on forms from Ω•(Un,N) by permuting variables t1,...,tN. 

For a differential form w we define by Alt w the skew-symmetrization of w with respect 

to the Σk-action, 

Alt w(t1,...,tN) = X (−1)σw(tσ(1),...,tσ(N)). 
σ∈ΣN 

All forms appearing in our constructions are skew-symmetric. They are given by the 

following formulas. For a = (a1,...,an) ∈ Nn, |a| := Pai = N, we define 

 Alt ua, 

where 

 ua = dln(t1 − z1) ∧ ··· ∧ dln(ta1 − z1) + 
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+dln(ta1+1 − z2) ∧ ··· ∧ dln(ta1+a2 − z2) + 

··· + dln(ta1+···+an−1+1 − zn) ∧ ··· ∧ dln(tk − zn). Similarly, for b = 

(b1,...,bn), |b| = N − 1, we define 

Alt ub, 

! 

where 

. 

In this formula we start from the variable t2 and have the factor −κ in front of the exterior 

product. 

For example if N = 2, a = (2,0), b = (1,0), then 

wa = dln(t1 − z1) ∧ dln(t2 − z1) 

wb = −κ(dln(t2 − z1) + dln(t1 − z2)). 
2.3. Coulomb D-module. Define a "Coulomb interaction" closed 1-form 

 
 N n 

−XXms dln(ti − zs) ∈ Ω1(Un,N) 
i=1 s=1 

Define a differential ∇m on the graded space Ω•(Un,N) 

(2.3.1) 

 

Note that ∇2m = 0 since dDRωm = 0. 

We will denote by  the space Ω•(Un,N) equipped with the differential ∇m. 

This is nothing else but the complex of global sections for the de Rham complex 

DR(L(m,N)) of the Coulomb D-module L(m) = L(m,N) over Un,N which is by definition the 

structure sheaf OUn,N equipped with a connection . 
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2.4. Coulomb - KZ - Chevalley complex and a canonical N-cocycle in it. Recall a Chevalley 

complex C•(n,M(m)c)N. 

Consider a double complex which as a bigraded vector space is a tensor product 

 

where 

 

Note that along q-axis it has only two nontrivial components: 0 ≤ q ≤ 1. 

By definition it is equipped with two differentials: — 

the horizontal one is a KZ - Coulomb differential 

 ∇KZ,Coul   KZ 

where ωKZ := X Ωijdln(zi − zj) (2.4.1) 

1≤i<j≤n 

It acts on the index p: 

∇KZ,Coul : Ωp(Un,N) ⊗ Cq(n,M(m)c)N −→ Ωp+1(Un,N) ⊗ Cq(n,M(m)c)N 

— the vertical one is the Chevalley differential dCh acting on the second factor. We will 

be interested in the associated total complex 

:= Tot . 

Recall the notations (2.1.4). 

Define elements 

 I0 := X wa ⊗ f(a)v ∈ CmN,N0 

|a|=N 

 I1 := X wb ⊗ (f ⊗ f(b)v) ∈ CmN,N−1,1 

|b|=N−1 

 I :=  

2.5. Theorem. I is a cocycle in  of total degree N. In components: 
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 ∇KZ,CoulI0 = 0 (2.5.1) 

 dChI0 + ∇KZ,CoulI1 = 0. (2.5.2) 

Proof. We deduce Theorem 2.5 from the two main results in [SV]. The first of them is 

[SV, Theorem 6.16.2] on the relation between the Lie algebra differential and the de Rham 

differential. The second is [SV, Theorem 7.2.500] on the relation between the KZ equations 

and the Gauss-Manin connection. 

Since all forms wa are closed the equation (2.5.1) may be rewritten as 

. 

This equation is the statement of [SV, Theorem 7.2.5”] applied to the sl2 case. 

Equation (2.5.2) may be rewritten as 

 

and it can be split into two equations. 

One of these equations follows from [SV, Theorem 7.2.5”] applied to the situation with 

N − 1 of t-variables instead of the N variables t1,...,tN, and the other equation follows from 

[SV, Theorem 6.16.2]. 

More precisely, consider the splitting 

, 

where P1,P2 are defined as follows. We have 

I  

and ωm is the sum of 1-forms, ωm = Pα ωα, see (2.3.1). We say that a summand 

 

belongs to P1 if ωα does not have the variable tσ(1), otherwise it belongs to P2. 

2.5.1. Lemma. We have 

 P , (2.5.1.1) 
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 P2 + dChI0 = 0. (2.5.1.2) 

Proof of the Lemma. Equation (2.5.1.2) follows from [SV], Theorem 6.16.2. Equation 

(2.5.1.1) follows from [SV], Theorem 7.2.500.  

This implies (2.5.2) and achieves the proof of 2.5.  

2.6. Interpretation of the cocycle I as a map η : DR(KZ) −→ DR(GM). Note that the 

Coulomb de Rham complex  is a dg-module over the de Rham algebra Ω•(Un,N) 

which in turn is a Ω•(Un)-algebra due to the projection p : Un,N −→ Un. 

Consider the trivial vector bundle M(m) over Un with a fiber M(m); it carries the 

integrable KZ connection 

1 

∇KZ = dz − ωKZ (2.6.1) κ 

which makes of it a DUn-module. The space of global sections of its de Rham complex will be 

DR(M(m))(Un) = Ω•(Un) ⊗C M(m). 

As usual this object is N-graded. 

Next we can pass to Chevalley chains and consider a complex of vector bundles 

C , 

whose dual will be 

C•(n,M(m)cN) = C•(n,M(m)cN). 

Both complexes carry KZ connections induced by (2.7.1); therefore we may consider their 

de Rham complexes which are -modules. 

Our main hero, the KZ - Coulomb - Chevalley complex may be rewritten in a form 

 
By linear algebra, to give a 0-cocycle 

Z ∈ Tot(A• ⊗ B•)0 

in the total complex of a tensor product of two complexes A• ⊗ B• is equivalent to giving a 

map of complexes 

η(Z) : A•∗ −→ B•. 
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Therefore our cocycle I gives rise to a map between two complexes 

 ] (2.6.2) 

Both complexes are filtered: namely, 

we define 

FiDR(C•(n∗,M(m)∗N)(Un) ⊂ DR(C•(n∗,M(m)∗N)(Un) 

to be the subcomplex of forms of degree ≥ i, and 

 

to be the subcomplex of forms containing ≥ i differentials dza. 

2.6.1. Key fact. The map η is compatible with the filtrations.  

As a corollary , the induced map of E1-terms of the corresponding spectral sequences 

gives rise to maps between the de Rham complexes 

, 

0 ≤ i ≤ 1, cf 1.3. 

By construction these maps land in the subsheaves of anti-invariants 

, 

Let us sum up our results. 

2.7. Theorem. The map (2.6.2) is a morphism of filtered complexes. The induced map of 

E1 terms for the corresponding spectral sequences is a pair of morphisms 

, 

0 ≤ i ≤ 1. 

Here ηi is a map from the de Rham complex of   equipped with the KZ 

connection to the de Rham complex of  equipped with the GaussManin 

connection, or, which is the same, a morphism of lisse D-modules over Un: 

. 

These maps are isomorphisms for generic κ. 

2.8. Corollary: integral solutions for higher KZ. Let us return to the notations of 2.1. 

Consider the complex C•(n,M(m)c)N, see (2.1.3) 
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0 −→ M(m)N −→ n ⊗ M(m)N−1 −→ 0 

which we denote here for brevity 

 C• : 0 −→ C0 −→d C1 −→ 0, 

and the dual complex 

 

In this subsection we consider the analytic version of our varieties and D-modules. 

For any z = (z1,...,zn) ∈ Un we denote by F(z) the fiber 

 F(z) := p−1(z) = {(t1,...,tN) ∈ CN| ti 6= tj;ti =6 za} ⊂ CN. 

We will deal with the analytic Coulomb D-module Lan(m) over Un,N. Consider its de 

Rham complex 

Ωanm • := DR(Lan(m)). 

For each z ∈ Un let Ω•m(z) denote the restriction of Ωanm • to the fiber F(z); inside it we have 

the skew-symmetric part 

Ω•m(z)ΣN,− ⊂ Ω•m(z) 

Next, inside  consider the finite-dimensional Aomoto subcomplex of differential 

forms with logarithmic singularities along all hyperplanes ti = tj and ti = za; let us denote this 

subcomplex 

A•(z) : 0 −→ AN−1(z) d−A→(z) AN(z) −→ 0, 

the differential dA(z) being the multiplication by the one-form 

 

cf. (2.3.1). This subcomplex will have only two nontrivial components living in degrees 

N − 1 and N. 

We denote by 

Wi(z) := Hi(A•(z)), i = N − 1,N, 
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its cohomology. 

Global maps ηi 

The space 

C0 = M(m)N 

admits a base {fav, |a| = N}; let us denote by {fa∨} the dual base of C0∗. 

Similarly, the space 

C1 = n ⊗ M(m)N−1 

admits a base {f ⊗ fbv, |b| = N − 1}; let us denote {f∨ ⊗ fb∨} the dual base of C1∗. 

Define two maps ηi : Ci∗ −→ ΩN−i(Un,N), i = 0,1, 

by η0(fa∨) = wa, 

and 

η1(f∨ ⊗ fb∨) = wb. 

Denote 

Ai := ηi(Ci∗) ⊂ ΩN−i(Un,N). 

Let z ∈ Un. The restriction to the fiber F(z) induces maps 

AN−i −→ AN−i(z); 

composing them with the maps ηi we get maps 

ηi(z) : Ci∗ −→ AN−i(z) 

According to [SV] these maps are isomorphisms; moreover, they induce an isomorphism of 

complexes η•(z) : C∗• −∼→ A•(z)[N] 

where on the left we have the Chevalley differential whereas on the right we have the 

twisted de Rham differential in the de Rham complex of the fiber. 

Chains of the Betti realization 

For each z let Lm(z) denote the restriction of L(m) to F(z); let 



18 

Lm  

be the dual D-module. Let 

Lm(z)∨hor ⊂ Lm(z)∨ 

be the subsheaf of horizontal sections; it isa locally constant sheaf over F(z). 

Let C•(F(z),Lm(z)∨hor) denote the complex 

0 −→ C2N(F(z),Lm(z)∨hor) −→ ... −→ C0(F(z),Lm(z)∨hor) −→ 0 

of finite singular chains with coefficients in Lm(z)∨hor. We will be dealing with subspaces of 

i-cycles 

Zi(F(z),Lm(z)∨hor) ⊂ Ci(F(z),Lm(z)∨hor) 

and with homology spaces Hi(F(z),Lm(z)∨hor). 

2.8.1. GM connection: Betty realization. When z varies, these complexes form a complex of 

(infinite dimensional) vector bundles over Un, denoted by C•(F(z),Lm(z)∨hor). Each term 

Ci(F(z),Lm(z)∨hor) carries a flat connection. Indeed, given z0 and a finite singular chain 

γ(z0) ∈ Ci(F(z0),Lm(z0)∨hor), 

when can move z in a small neighbourhood V 3 z0 such that nothing changes topologically; this 

provides a parallel transport of γ(z0) over V , i.e. a flat family of chains 

 {γ(z) ∈ Ci(F(z),Lm(z)∨hor)}z∈V . (2.8.1.1) 

These connections are obviously compatible with boundary, i.e. we get a flat connection on 

the complex C•(F(z),Lm(z)∨hor). This is the Betty incarnation of the derived GM connection. 

It induces flat connections on the bundles of cycles Zi(F(z),Lm(z)∨hor) and on the 

homology Hi(F(z),Lm(z)∨hor). 

 

We can integrate i-forms against i-chains, i.e. we have pairings 

. 

Let 

 {γi(z) ∈ Zi(F(z),Lm(z)∨hor)}z∈V (2.8.1) 
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be a flat family of cycles over a small open V ⊂ Un whose classes in Hi(F(z),Lm(z)∨hor) 

form a flat section of the GM connection. 

Let i = N. For each x ∈ C0∗ and z ∈ V we get a number 

Z η0(z)(x) ∈ C; 
γN(z) 

it is linear with respect to x, so we’ve got an element 

Z 

 

η0(z)(•) ∈ (C0∗)∗ = C0 = M(m)N. (2.8.2) 
γN(z) 

Note that if x = d∗y then η0(z)(x) is a coboundary in Ωanm (z), so the integral is zero since 

γN(z) is a cycle. This means that (2.8.2) belongs to the subspace of "singular vectors" 

(Coker(d∗))∗ = Kerd = Ker(e : M(m)N −→ M(m)N−1). 

Similarly if i = N − 1 then for each x ∈ C1∗ and z ∈ V we get a number 

Z η1(z)(x) ∈ C; 
γN−1(z) 

which is linear with respect to x, so we’ve got an element 

Z η1(z)(•) ∈ (C1∗)∗ = C1 = M(m)N−1. 
γN−1(z) 

Its image in 

(Ker(d∗))∗ = C1/dC0 = Coker(e : M(m)N −→ M(m)N−1) 

depends only on the homology class 

 

γN−1(z) ∈ Zi(F(z),Lm(z)∨hor). 

2.8.1. Theorem. (a) For any local flat family of N-cycles 

{γN(z) ∈ ZN(F(z),Lm(z)∨hor)}z∈V , V ⊂ Un, 

the linear map Rγ(z) defines a solution of the KZ equations with values in Ker(d), i.e. in the 

weight component of 
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Kere : M(m) −→ M(m) 

of weight . For generic κ any solution of the KZ equations in this space is given 

by a suitable family γN(z). 

(b) For any local flat family of (N − 1)-cycles 

{γN−1(z) ∈ ZN−1(F(z),Lm(z)∨hor)}z∈V , V ⊂ Un, 

the linear map Rγ(z) defines a solution of the KZ equations with values in Coker(d), i.e. in the 

weight component of M(m)/eM(m) of weight  . For generic κ any 

solution of the KZ equations in this space is given by a suitable family γN−1(z). Proof. Part (a) 

is proved in [SV], whereas part (b) is new and follows from Theorem 2.7  

See [CV], where the dimensions of the spaces Kerd and Cokerd are calculated for 

nonnegative integers m1,...,mn. 

2.9. Exotic (dual) KZ equations. 

Let N = 1,n = 2. Let us look up more attentively at the KZ - Coulomb part of our cocycle. 

So we have a 2-dimensional subspace 

M1 ⊂ M(m1) ⊗ M(m2) 

with a base {fv1 ⊗ v2, v1 ⊗ fv2} whose elements we will write as columns. 

The Casimir Ω acts on this subspace by the matrix 

 

Consider a double Coulomb - KZ complex Ω••(M): as a graded space 

Ω••(M1) := Ω••(U2,1) ⊗ M1 

where Ωij are differential forms in z,t, of degree i (resp. j) with respect to z (resp. to t). 

The first (horizontal) differential is a KZ connection 
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where dz means de Rham with respect to z, whereas the second (vertical) differential 

d00 = dt 

(de Rham with respect to t) 

The identity ∇2KZ = 0 means that the KZ connection is integrable. 

In coordinates: 

∂z2A1 − ∂z1A2 − [A1,A2] = 0, 

in our case [A1,A2] = 0. 

Now we will descibe the relevant part of the cocycle I from Theorem 2.5. 

Consider a form 

 

2.9.1. Claim. We have d00ω01 = 0, 

(obvious), and 

 d0ω01 = d00ω10 (2.9.1) 

where 

with 

. 

2.9.2. Claim. We have 

d0ω10 = 0, 

in coordinates 

 . (2.9.2) 

The last differential equation is called the dual KZ equation: it is a system of two linear 

differential equations on two functions (nonzero coordinates of vectors J1,J2). 
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The equation does not depend on t, whereas our vectors J1,J2 do. For all t the couple 

(J1(t,z),J2(t,z)) 

is a solution of (2.8.2). 

§3. Kac-Moody case 

3.1. Kac-Moody algebras without Serre relations. We start with the data from [SV], 6.1. 

Let h be a finite-dimensional vector space equipped with a non-degenerate symmetric 

bilinear form (,). 

We fix a finite set of non-zero covectors {α1,...,αr} ⊂ h∗ whose elements are called simple 

roots; let B = (bij) where bij = (αi,αj) (this is "the symmetrized Cartan matrix"). 

We denote by hi = b(αi) 

where b : h∗ −∼→ h is the isomorphism induced by (,). 

We define g = g(B) as a Lie algebra with generators ei,fi,1 ≤ i ≤ r, and h and relations 

[ei,fj] = δijhi, 

[h,ei] = αi(h)ei, [h,fi] = −αi(h)fi, 

[h,h0] = 0, h,h0 ∈ h 

We denote by n = n− ⊂ g (resp. by n+) the Lie subalgebra generated by all elements fi (resp. 

ei); it is a free Lie algebra with these generators. We have the triangular decomposition 

g = n− ⊕ h ⊕ n+ 

Root lattice 

Let 

Λ = XZαi ⊂ h∗ 
i 

denote the abelian subgroup generated by αi. 

We will use the notations for "positive"and "negative" submonoids: 
r 

Λ≥0 := XZ≥0αi ⊂ Λ, Λ>0 := Λ≥0 \ {0}; 
i=1 
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Λ≤0 := −Λ≤0,Λ<0 := Λ≤0 \ {0} 

Principal gradation 

Our algebra g is Λ-graded: 

g = ⊕λ∈Λ gλ 

where 

gλ = {x ∈ g| [h,x] = λ(h)x for all h ∈ h} 

with h = g0, 

n := n− = ⊕λ∈Λ<0 gλ = ⊕λ∈Λ<0 nλ n+ = 

⊕λ∈Λ>0 gλ = ⊕λ∈Λ>0 nλ 

Verma modules 

For µ ∈ h∗ M(µ) will denote a g-module with one generator v = vµ and relations 

hvµ = µ(h)eµ, eivµ = 0. 

It is (µ + Λ≤0)-graded: 

M(µ) = ⊕λ∈µ+Λ≤0M(µ)λ 

where 

M(µ)λ = {x ∈ M(µ)| hx = λ(h)x} 

A map 

Un −→ M(µ), x 7→ xvµ 

is an isomorphism of vector spaces. 

Notation: duals for Λ-graded spaces 
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In the sequel we will be dealing with various Λ-graded spaces V = ⊕λ∈ΛVλ with finite 

dimentional components Vλ. In that case Vλ∗ will denote the restricted dual: 

. 

Double 

The Borel Lie subalgebra 

b := n ⊕ h ⊂ g 

carries a structure of a Lie bialgebra (see [D]) described in [SV], 6.14.1. This means in 

particular that we have a cobracket map 

b −→ b ∧ b 

which gives, after the passage to duals, a Lie algebra structure on the space b∗. The 

projection b −→ n induces an embedding n∗ ,→ b∗, and the subspace n∗ is a Lie subalgebra 

of b∗. 

This allows one to define its Drinfeld double g˜ = D(b); it is a Lie algebra which as a vector 

space is 

g˜ = b ⊕ b∗ = n ⊕ h ⊕ h∗ ⊕ n∗. 

If M is a Verma module, one introduces a structure of a b∗-module on M∗ which, together 

with an obvious structure of a a b-module gives rise to a D(b)-module structure on M∗, see 

[SV], 6.16. 

3.2. Chevalley complexes. We fix n ≥ 1 and an n-tuple of weights 

µ = (µ1,...,µn) ∈ h∗n 

Consider 

M(µ) = M(µ1) ⊗ ... ⊗ M(µn) 

The Λ-gradations on each M(µi) gives rise to a Λ-gradation on their tensor product M(µ). 

Each M(µi)∗ is a g˜-module, whence the tensor product 

M(µ)∗ = M(µ1)∗ ⊗ ... ⊗ M(µn)∗ 
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is a g˜-module as well. In particular due to the inclusions of Lie algebras 

n∗ ⊂ b∗ ⊂ D(b∗) = g˜ 

M(µ)∗ is a n∗-module. 

We will be interested in Chevalley homology complexes: 

 C•(n∗,M(µ)∗) : ... −→ Λ2n∗ ⊗ M(µ)∗ −→ n∗ ⊗ M(µ)∗ −→ M(µ)∗ −→ 0 (3.2.1) 

They are analogues of (2.1.1). 

They carry a Λ-grading induced by gradings on n and M(µ): 

C•(n∗,M(µ)∗) = ⊕λ∈ΛC•(n∗,M(µ)∗)λ 

where we denote by C•(n∗,M(µ)∗)λ the subcomplex of weight . 

3.3. The Casimir element and KZ equation. 

We have an invariant Casimir element 

 Ω ∈ g˜⊗ˆg˜∗ (3.3.1) 

defined in [SV], 7.2. Namely, 

Ω := X Ωλ + Ω0 + X Ωλ ∈ λ∈Λ<0 λ∈Λ>0 

∈ n ⊗ n∗ ⊕ h ⊗ h∗ ⊕ h∗ ⊗ h ⊕ n∗ ⊗ n 

where 

 

and Ωλ ∈ nλ ⊗ n∗λ for λ < 0 (resp. ∈ n∗λ ⊗ nλ for λ > 0) are canonical elements. 

Recall the space Un from 1.1. 

Let C  be the trivial vector bundle over Un with a fiber 

C•(n∗,M(µ)∗); it is a Λ-graded complex of vector bundles: 

 

For 
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with the complex C•(n∗,M(µ)∗)λ leaves in degrees [−N,0]. 

The invariant Casimir element allows one to define the KZ connection on each 

C•(n∗,M(µ)∗)λ, see 1.2. 

3.4. A Coulomb D-module and its de Rham complex. Pick 
r 

λ = −Xkiαi ∈ Λ≤0; 
i=1 

let N = Pki. 

Consider the space Cn,N = Cn+N with coordinates z1,...,zn,t1,...,tN and a subspace 

Un,N = {(z,t) ∈ Cn,N| zi 6= zj,ti =6 tj,zi 6= tj} 

We have a projection 

p = pn,N : Un,N −→ Un 

We shall use a notation [k] = {1,...,k}. 

Pick a map of sets 

π : [N] −→ [r] 

such that 

|π−1(i)| = ki, i ∈ [r]. 

We will denote by ∼ 

Σπ = Σk1 × ... × Σkr 

a subgroup of the symmetric group respecting all the fibers π−1(i). 

A Coulomb D-module L(µ,λ) 

By definition L(µ,λ) is a DUn,N -module which is OUn,N equipped with an integrable 

connection 

 

where ωµ,λ is a closed differential 1-form 
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  (3.4.1) 

It gives rise to the de Rham complex 

 

We will be interested in the subcomplex of Σπ-skew-invariants 

 
3.5. Relative de Rham complexes and derived Gauss-Manin. 

(a) The de Rham complex Ω•(Un,N) is the total complex of a bicomplex 

Ω•(Un,N) = TotΩ••(Un,N) 

where Ωpq(Un,N) is the space of forms containing p differentials dti and q differentials dzm, 

the full de Rham differential being the sum 

dDR = dz + dt. 

The relative de Rham complex is by definition 

Ω•(Un,N/Un) = (Ω0•(Un,N),dt); 

one has a projection 

p : Ω•(Un,N) −→ Ω•(Un,N/Un) 

(b) Coulomb twisting 

Similarly the form 

ωµ,λ = ωµ,λ,z + ωµ,λ,t 

with 

 

which is dt-closed. 

We define 
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We have an epimorphism of complexes 

 ) (3.5.1) 

(c) Derived Gauss - Manin connection. 

The complex  is the total complex of a double complex 

 

where 

. 

We shall write the differential ∇µ,z (resp. ∇µ,t) horizontally (resp. vertically). 

The map p (3.5.1) is nothing but the projection to the utmost left vertical component. 

We can identify  with the de Rham complex of the connection ∇µ,λ,z on the 

complex Ω•µ,λ(Un,N/Un): 

∇µ,λ,z : Ω•µ,λ(Un,N/Un) = Ω0µ,λ• (Un,N) −→ Ω•µ,λ(Un,N/Un) ⊗ Ω1(Un) = Ω1µ,λ• (Un,N) 

This is the derived GM connection on the complex Rp∗L(µ,λ)(Un). 

3.7. A map η and its lifting η˜. 

In [SV] a map of complexes 

 ] (3.7.1) 

has been defined, see op. cit. (7.2.4). 

Here we consider both complexes appearing in (3.7.1) as cohomological complexes 

concentrated in degrees [−N,0]. 

For each z ∈ Un consider a fiber 

Uz = Un,N;z := p−1(z) We can 

compose η with the restriction map 
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to get 

 

A remarkable feature of the mappings ηz is the following: 

for generic values of κ the maps ηz are quasi-isomorphisms for all z ∈ Un. 

Here "generic" means κ ∈ C\ (an explicitly given discrete countable subset). 

Main result 

We start with is a definition of a map of graded O(Un)-modules 

 ] (3.7.2) 

which lifts η, i.e. such that 

η = p ◦ η.˜ 

Here is a picture: 

Ω•µ,λ(Un,N)Σπ,−[N] 

 η˜ % ↓ p 

C•(n∗,M(µ)∗)λ −→η Ωµ,λ•(Un,N/Un)Σπ,−[N] The 

definition of η˜ is a modification of that of η. Namely, for a monomial 

 

the corresponding differential form 

 

contains fractions of the form dti/(ti −zp). To obtain η˜(x) we replace all these fractions by 

dln(ti − zp). That’s it. 

COMPARE WITH SECTION 2 

Confer the definition of forms ua,ub in 2.2 for g = sl2. 

The map η˜ induces a map of Ω•(Un,N)-modules 
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 ] (3.7.3) 

The space on the left is the underlying space of the De Rham complex for the derived KZ; it 

carries the KZ differential ∇KZ. 

3.8. Theorem. (a) The map η˜ (3.7.3) commutes with the differentials on both sides. 

(b) Both sides of (3.7.3) carry natural decreasing filtrations in z direction, and the map 

η˜ respects these filtrations. 

In other words, we’ve got a map of filtered complexes 

η˜ 
 DR(derived KZ) −→ DR(derived GM) 

 k k (3.8.1) 

TotΩ  Tot(Ω  

PROOF SIMILAR TO SECTION 2 

3.9. Corollary. The map η˜ induces maps of DUn-modules (which are isomorphisms for 

generic κ) 

 

for all 0 ≤ i ≤ N. 

For i = 0 such a mapping has been constructed in [SV]. 

INTEGRAL REPS OF SOLUTIONS 

Appendix 

We recall here some standard constructions from homological algebra. 

A.1. Bicomplexes. A a bicomplex in an abelian category C is a collection of objects A•• = 

{Apq, p,q ∈ Z}, and arrows 

dpqh : Apq −→ Ap+1,q, dp,qh +1 : Apq −→ Ap,q+1 

such that 

 

One associates to it a simple complex, to be denoted 
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A• = TotA•• 

with components 

Ai = ⊕p+q=iApq 

and a differential d : Ai −→ Ai+1 with components 

. 

A.2. Filtered complexes. Let A• be a simple complex. Consider a decreasing filtration by 

subcomplexes on it: 

F0A• = A• ⊃ F1A• ⊃ .... 

We associate to it a collection of complexes 

 E(A•,F)i : 0 −→ Hi(F0A•/F1A•) −→ Hi+1(F1A•/F2A•) −→ ..., (A.2.1) 

i ≥ 0, where a differential 

Hi+p(FpA•/Fp+1A•) −→ Hi+p+1(Fp+1A•/Fp+2A•) 

is the boundary map for the short exact sequence 

0 −→ Fp+1A•/Fp+2A• −→ FpA•/Fp+2A• −→ FpA•/Fp+1A• −→ 0 

(This is nothing else but the E1 term of the spectral sequences for (A•,F •).) 

A.3. Example. Suppose that A• = TotA•• with Apq = 0 for p < 0, and a filtration is defined 

by 

FiAj = ⊕p≥i,p+q=jApq. 

Then a p-th graded piece 

FpA•/Fp+1A• = {Apq, q ∈ Z}, 

and the differential induced by d on it coincides with the vertical differential dv. 

It follows that a complex E(A•,F •)i is identified with 

 

with a differential induced by dh. 
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