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Abstract

In this note we strengthen the results of [SV] by presenting their derived version.
Namely, we define a "derived Knizhnik - Zamolodchikov connection" and identify it with a
"derived Gauss - Manin connection".

§1. Introduction

1.0. Brief review of the paper. The main result of [SV] provided a realization of Knizhnik
- Zamolodchikov equations arising in physics as equations on horizontal sections for a Gauss
- Manin connection.

More explicitly, without going into details to be given below, the KZ connection acts on
a space of functions depending on z € B where B is a domain in C?with values in a homology
group Ho(n,M) where n is a certain Lie algebra, and M a (maybe infinite dimensional) n-
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module. In other words the KZ connection acts on the trivial vector bundle over B with a
fiber Ho(n,M), this vector bundle to be denoted Ho(n,M).
All homology spaces Hi(n,M) are A-graded

Hi(n,M) = @aenHi(n,M)xa

where A is certain lattice. For a given A only a finite number of spaces Hi(n,M)s, 0 <i <N,
are different from 0. Let us pick A.

On the other hand one has introduced in op. cit. a fibration (a smooth surjective map)
pr: Xa—— B
and a D-module Laover X3, and a finite group Zi (a product of symmetric groups) which acts

on Xaand Lx.

One has constructed an isomorphism of the bundle Ho(n,M)1 equipped with the KZ
connection with the bundle (RVpa«L1)* equipped with the GM connection.
In fact in [SV] for all 0 < i < N there were established isomorphisms
~ N-i 2 fia: Hi(n,M)a—— (R pa+La)
(1.0.1)

of vector bundles over B. However the question of identification of a connection on Hi(n,M)a
corresponding to the GM connection on (RN-pa<Lx)*» was left open for i > 0, although a
natural candidate has been given.

In the present note we establish this remaining point. To do this we start from the
remark that by its very definition in op. cit. isomorphisms (1.0.1) are induced by a map of
complexes

= (T]}H) : C’.(n, J'l[)/\ — Q)\(/\_/.B(LA)EA (102)
where C.(n,M)ais the A-homogeneous part of the Chevalley chain complex, and Q°x/B(La) is
certain complex of differential form on X3, the relative de Rham complex of La.

A naive expectation would be that:

(a) for the KZ part:

each term Ci(n,M)acomes equipped with an integrable connection, these connections
are compatible with differentials and thus induce a connection on the cohomology Hi(n,M)x;

(b)  forthe GM part:



similarly, each term QJ'x,m/za(L)L) comes equipped with an integrable Xi-equivariant

connection, these connections are compatible with differentials and thus induce a
connection on the cohomology Ripi:Ly;

(o) the map nais compatible with the connections in (a), (b), and therefore the
isomorphisms Bi1(1.0.1) identify two connections.
In reality, (a) is literally true (and easy); this is present in [SV].

Point (b) is more delicate: there is no natural connection on the complex QXVH(L:/‘).

Happily, to define a connection on the cohomology a weaker structure is sufficient:

(b9) there exists a filtered complex such that the term E1 of the corresponding spectral
sequence (recalled in Appendix) coincides with the de Rham complex of the GM connection
on R*pa<La.

This filtered complex is described below: it is a generalization of the Katz - Oda
construction for the GM connection, [KO].

Accordingly, (c) should be replaced by

(c9) the map namay be extended to a map of filtered complexes which, after passing to
E1-terms, induces a map from the de Rham complex of the KZ connection to the de Rham
complex of the GM connection.

Now we will describe some details of what was said above.

1.1. Knizhnik - Zamolodchikov connection. Let g be a complex Lie algebra equipped with
an element

leg®sg
having the following property:
1.1.1. Let M1,M2 be arbitrary g-modules. The actions of QL and g on M1 @ M2 commute.

1.1.2. Example. Let g be finite dimensional, equipped with a non-degenerate invariant
symmetric bilinear form (,). Denote

Q:XXi®x"Eg®g

1

where {xi} C g is any C-base, and {x'} is the dual base, i.e. (x;x’) = §j. This element ("the
Casimir") does not depend on a choice of a base and satisfies 1.1.1.



Let My,..,.Mnbe g-modules, n > 1. Denote M =M1 Q) ... Q Mn.

For a smooth affine complex® algebraic variety U, Q*(U) will denote the space of global
sections for its algebraic de Rham complex Q. Thus QOy= Oyis the sheaf of functions, etc.
If M is a vector space, we denote

(UM) = Q:(U) @ M.

Let n = 1 be an integer. Let My,...,Mn be g-modules; set M = M1 Q) ... @ Mn. For each i 6=
J we have an operator

.Q.ij:M——)M

acting as 2 on M; @ Mjand as identity on the other factors.

Denote
Un={z = (21,....zn) € C"| zi 6= zjfor all i 6=} (1.1.1) Thus U1=C.

The KZ connection is an operator
Viz: QO(Un;M) = O(Un) @ M —— Q1(Un;M)
given by
1 Z Q?'j (dZ,‘ — dZJ)

Vikz =dpr+ Qkz :=dpr — -

s AT (1.1.2)
where dpris the de Rham differential. Here k € C*is a complex parameter.

Thus Vkz=dprifn=1.

This connection is integrable: if we define, starting from Vkz, operators

Viz: Qi(Un;M) —— Q1 (Un;M)

for all i in the usual way then V2gz = 0 (this amounts to the classical YB equation for the

differential form Qkz).

3 in what follows the base field C of complex numbers may be replaced by any field of characteristics 0
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In other words, Vkzis an integrable connection (i.e. it defines a structure of a Du-
module) on the trivial bundle M over U, with fiber M.

1.2. The Chevalley complex and the derived KZ. Let n C g be a Lie subalgebra.

We will be interested in Chevalley chain complexes
C.(nM):.>ANn@®M-->nQ@®M--M--0
where d(g ® x) = gx,

dging2Qx)=91Q g2x-92&Q g1x - [g1,92] K x,
etc.

Let C.(n,M) denote the trivial vector bundle over Un with a fiber C.(n,M), so it is a
complex of vector bundles.

We define the derived KZ connection as an integrable connection on C.(n,M) given by
the same formula as above,
1 Z QI] (dZ.,‘ — dZJ)

Vikz =dpr+Qkz :=dpr — —
K Z; Zj

i< (L.2.1)
where now the operators
Qij: Ci(n,M) = Aln @ M —— Ci(n,M)
are acting through the factor M.
Whence we get the corresponding de Rham complex
kz(Un, Co(n, M)) = DR(Co(n, M), Vicz)(Us), (1.2.2)

It is a double complex: the commutation of the Chevalley differential with Vkzfollows from
1.1.1.

We call it the KZ-Chevalley complex.
In fact this complex appears avant la lettre already in [SV] 7.2.3.

1.3. Derived Gauss - Manin connection. Let N = 0 be an integer. Consider the affine space
Cn*Nwith coordinates z1,...,Zn, t1,.., tn, and inside it an open subspace



Unn={zi6= zj, i 6= tq, ta 6= tp}.
We have an obvious projection
p:UnNn—— Un.
The de Rham algebra Q*(Unn) is the total complex of a bicomplex
Q+(Unn) = TotQe.(Unn)

where QPi(Unn) is the space of forms containing p differentials dtiand q differentials dzm,
the full de Rham differential being the sum

dpr=dz+ d

The relative de Rham complex is by definition
Qe(Unn/Un) = (Qo+(Unn),dt);

one has a projection
p: .Q.o(Un,N) - .Q.o(Un,N/Un)

Let L be a Du.v-module, i.e. a quasicoherent Ou,v-module equipped with an integrable
connection

V:iL-—> Quunw® L
its de Rham complex is

v 1 Vo2
DR(L):0->L—>Quw@L-—>Qunw®@L->..

By definition, the de Rham complex of the derived Gauss - Manin connection on the direct
image Rp:L, to be denoted DR(Rp:L), is the same complex DR(L) equipped with a
decreasing filtration

F‘Z”DR(L) = DR(L) D FZIDR(L) D... (1.3.1)

whereFjDR(L) is the subcomplex containing = i differentials dza.

Note that the utmost left column of FO/F1is the relative de Rham complex representing
Rp:L whose cohomology are the sheaves Rip:L. These sheaves carry the usual GM
connections Vi,



The complexesEé(DR(Rp*L)- I?) defined in the Appendix, A2.1 (the components of
the E1term of the spectral sequence for our filtered complex) are nothing else but their de
Rham complexes of Rip.L:

This isomorphism justifies the above definition.

1.3.1. Remark. For the case of a trivial connection on Ou.xthe above construction is
nothing else but the Katz - Oda definition of the usual GM connection, [KO].

1.4. Coulomb D-modules. Let V be a finite dimensional complex vector space equipped
with a symmetric bilinear form (). Let

u=(uy,...un) EVn a=(ay,.,an) E VN

and k € C~.
We associate to these data a D-module L(u,a), to be called a Coulomb * D-module, over
Unn: by definition it is the structure sheaf Ou,vequipped with a connection

1
V(u, ) = dpr + ;w(,u., @)

where

o) = X () din(zi - z)-

I<j

X(uicta)dIn(zi - ta) + (g av)dIn(ta - t).

ia a<b

1.5. On the other hand we can associate with the data (Vu,a) above a Lie algebra g =
g(a) ("a Kac-Moody algebra without Serre relations") and a collection of "contragradient
Verma" g-modules M(u1)¢,..., M(un)e.

For example if Vis one-dimensional and a1 =... = anthen g = slz.

Let

4"Loi fondamentale de I’Elictricit’e. La force r’epulsive des deux petits globes “electris’es de la m“eme’
nature d’"electricit’e, est en raison inverse du carr’e de la distance du centre de deux globes." CharlesAugustin
de Coulomb, Premier M‘emoire sur I’Electricit’e et le Magnetisme”, 1785.
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M=M(u1)* ® ... ® M(un)S
and consider the total complex of the de Rham complex (1.2.2) TotQ*(Uns,C.(n,M)).

Itis A-graded where A = PiZa'iC V', and it carries a decreasing filtration
2 TotQ: (Un, C.(n,M))
where
I TotQ* (Un, C.(n,M)) € TotQ*(Un,C-(n,M))

is the subcomplex of differential forms containing > i differentials dza.

LetA = Pia'ie A. Our main result defines a map from the A-homogeneous component of
this filtered complex to the filtered complex (DR(Rp.L(p, a), F2),

For details see Theorem 3.8 and Corollary 3.9.

Plan of the paper

In the next §2 we discuss in detail the case g = sl2. The general case is discussed in §3.
In the Appendix we recall some standard homological algebra of filtered complexes.

1.6. Acknowledgements. We are grateful to B.Toen and D.Gaitsgory for useful
conversations. A. Varchenko was supported in part by NSF grant DMS-1954266.

§2.The case g =sl2

2.0. Setup. We consider the Lie algebra g = sl2 with standard generators e,fh; let n := Cf
C g (resp. n+:=Ce) be the lower (resp. upper) triangular subalgebra. We will identify n+ with
n*, with e being dual to f.

The Casimir element is

1
Q:§h®h+e®f+f®e.



2.0.1. Invariance lemma. Let M1,M2 be arbitrary g-modules. The actions of QL and g on M1
& M2 commute.

Proof: exercise for the reader.

2.1. Chevalley complex.

If M is a g-module, C.(n*,M*) = C.(n+,M*) will denote the Chevalley chain complex
00— n* @M 25 M* —0 (2.1.1)

living in degrees —1,0. Here the action of n* on the dual space M*is given by
(fa)(x) = a(ex), x € M, a € M~ (2.1.1a)
where f* € n*is defined by f*(f) = 1.
Next, C*(n,M¢) will denote the dual complex

0->M--4 n@@M--0,dx)=fQ ex (2.1.2)
living in degrees 0,1.
For m € C, M(m) will denote the Verma module with a vacuum vector v such that hv =

my,ev = 0. It is N-graded:
M(m) = @k=0M(m)«k

where M(m)k= Cftv.

Fix a natural n = 1 and an n-tuple m = (my,..,mn) € C", and consider the tensor product
M(m)=M(mi1) Q.. & M(mn)

The above grading on each M(m;) gives rise to an N-grading on M(m):
M(m) = @k=0M(m)x

where
M(m)k= Dr+.+kn=kM(M1)ia Q) ... @ M(mn)k.. For a multi-

index a = (ku,....kn) we denote



X (2.1.3)

and
fav = favi Q@ .. & fawwn € M(m)jal. The (2.1.4)

Chevalley complex acquires a grading as well:
C*(n,M(m)°) = Dr=0C*(n,M(m)°)k,

with
C*(nM(m))k: 0 == M(m)xk—— n @ M(m)k-1—— 0. (2.1.5)

COROLLARY: DERIVED KZ IS CORRECTLY DEFINED.

2.2. Logarithmic forms. Recall that k € C*is fixed.

We fix an integer N = 0 and consider the space Unn(see 1.4 above).
We are going to define certain logarithmic forms on this space. For a function u we
denote

u
dlnu = —
U

The symmetric group Xnacts on forms from Q*(Unn) by permuting variables ti,...,tn.
For a differential form w we define by Alt w the skew-symmetrization of w with respect
to the Xk-action,

Alt w(ts,...,tn) = X (=1)oW(Lo(1) o tom)-

OEXN

All forms appearing in our constructions are skew-symmetric. They are given by the

following formulas. For a = (ax,...,an) € N7, |a| := Pgi= N, we define
1
Wy = —————
(I-‘l! - an! Alt Uaq,
where
uas =  din(ti-z1) A+ Adin(ta - z1) +
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+dIn(tai+1 = z2) A - Adin(tai+az— z2) +

-+ + dIn(tai+-+an-141 = zn) A -+ A dIn(tx = zn). Similarly, for b =
(b1,...,bn), |b| =N - 1, we define

I
b bt o, Altup

where
Uy = H( d-hl(tg — Zl) A A dhl(fbl+1 — Zl) +
+ (lll'l(fh1+2 —_ 32) /\ e /\ d hl(th1+hg+1 — 2,'2) +

cee 4 d 11’1(1f;,1+...+;,n_]+2 — Z.n,) A---Ad hl(fN — Z,,))

In this formula we start from the variable t2 and have the factor —k in front of the exterior
product.

For example if N=2, a = (2,0), b = (1,0), then
wae = dIn(t1-z1) Adlin(tz- z1)
wpr = —k(dIn(t2- z1) + din(t1 - z2)).
2.3. Coulomb D-module. Define a "Coulomb interaction" closed 1-form

MMy,
Wy = E 5 dn(zs — z,) + Z 2dn(t; —t;)—

1<s<u<n 1<i<y<N
N n

-XXmsdln(ti - zs) € Q1(Unn) (2.3.1)
i=1s=1

Define a differential Vm on the graded space Q*(Unn)
1 . :
Vin = dpr + —m : Q(U,n) — QT (U,n)

Note that V2m = 0 since dprwm = 0.

We will denote by 0 (Unv) the space (*(Unn) equipped with the differential V.

This is nothing else but the complex of global sections for the de Rham complex
DR(L(m,N)) of the Coulomb D-module L(m) = L(m,N) over Unn which is by definition the

- 1
structure sheaf Ou,vequipped with a connection Vm ‘= dpr + S Wm,
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2.4. Coulomb - KZ - Chevalley complex and a canonical N-cocycle in it. Recall a Chevalley
complex C*(n,M(m)c)n.

Consider a double complex which as a bigraded vector space is a tensor product
oy = {Cmn}
where
Cﬂf\ = QP([Jn.N) ® Cq(n: *‘Mr(m)n).-’\"
Note that along g-axis it has only two nontrivial components: 0 < g < 1.
By definition it is equipped with two differentials: —

the horizontal one is a KZ - Coulomb differential

1 1
=dpr+ Wm— W
VKz,coul K K _ _ KZ

where wiz:= X QydIn(zi- z) (2.4.1)

1<i<jsn
It acts on the index p:

VKz,Coul : .Qp(Un,N) ® Cq(n,M(m)c)N - .Qp+1(Un,N) ® Cq(n,M(m)c)N

— the vertical one is the Chevalley differential dch acting on the second factor. We will
be interested in the associated total complex

C. C‘f..

m,N:= Tot~'m,N,

Recall the notations (2.1.4).

Define elements

lo =X wa Q f()v € Cmn,N0
la|l=N
1 = Xwr Q@ (fQ finyv) € Cmnn-1,1
|b|=N-1
| := j(] + jl e Cr‘;\;,ﬁ"
C

2.5. Theorem. | is a cocycle in m, N of total degree N. In components:

12



Vkzcoullo = 0 (2.5.1)

dchlo + Vkz,coull1 = 0. (2.5.2)

Proof. We deduce Theorem 2.5 from the two main results in [SV]. The first of them is
[SV, Theorem 6.16.2] on the relation between the Lie algebra differential and the de Rham
differential. The second is [SV, Theorem 7.2.5%0] on the relation between the KZ equations
and the Gauss-Manin connection.

Since all forms waqare closed the equation (2.5.1) may be rewritten as

1 ,
— (wm — (.c);(z)jo = U
K .

This equation is the statement of [SV, Theorem 7.2.5”] applied to the sl2 case.

Equation (2.5.2) may be rewritten as
1

; (Lu‘m — w;(z) Jl + (j(?flj('] =0
and it can be split into two equations.

One of these equations follows from [SV, Theorem 7.2.5”] applied to the situation with
N - 1 of t-variables instead of the N variables ts,....tn, and the other equation follows from
[SV, Theorem 6.16.2].

More precisely, consider the splitting

1
—wmj1 = T'[ + .:PQ
K ,

where P1,P2 are defined as follows. We have

L= Z Z (=1)%up(toiys - - o s toin)) ® (f ® f(b)”)

| |[b|=N—-1c€SNn

and wm s the sum of 1-forms, wm= Paa)a, see (2.3.1). We say that a summand

(_1)0wm A Ub(ta(2).~ cey ZL'rr(J‘-‘)) ® (f & .f(b)’v)

belongs to P1if wadoes not have the variable to(1), otherwise it belongs to P2.

2.5.1. Lemma. We have

1
1 —_LU‘KZJL =0

Pl & , (2.5.1.1)
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P2+ dcnlo= 0. (2.5.1.2)

Proof of the Lemma. Equation (2.5.1.2) follows from [SV], Theorem 6.16.2. Equation
(2.5.1.1) follows from [SV], Theorem 7.2.590,

This implies (2.5.2) and achieves the proof of 2.5.

2.6. Interpretation of the cocycle | as a map n : DR(KZ) —— DR(GM). Note that the
Coulomb de Rham complex Q% (Unn)is a dg-module over the de Rham algebra Q*(Unn)
which in turn is a Q*(Un)-algebra due to the projection p : Unn—— Un.

Consider the trivial vector bundle M(m) over Un with a fiber M(m); it carries the
integrable KZ connection
1
Vkz=dz— _wkz (2.6.1) k

which makes of it a Du.-module. The space of global sections of its de Rham complex will be
DR(M(m))(Un) = Q*(Un) @c M(m).

As usual this object is N-graded.

Next we can pass to Chevalley chains and consider a complex of vector bundles

ca(n, M(m)3) = Cu(n", M(m)3),

whose dual will be
C*(n,M(m)cn) = C*(n,M(m)cn).

Both complexes carry KZ connections induced by (2.7.1); therefore we may consider their

Q

L]
de Rham complexes which are *“U»-modules.

Our main hero, the KZ - Coulomb - Chevalley complex may be rewritten in a form
Cann = DR(E*(n, M(m)y)(Us) ®as(,) QU (Un,n)
By linear algebra, to give a 0-cocycle

Z € Tot(4A* ® B)°

in the total complex of a tensor product of two complexes A* @ B*is equivalent to giving a
map of complexes

nz):A>-- B-.

14



Therefore our cocycle | gives rise to a map between two complexes
n=mn(J): DR(Co(n®, M(m)})(U,n) — 5, (Un,n)[V] (2.6.2)

Both complexes are filtered: namely,

we define

FIDR(C.(n*,M(m)*n)(Un) < DR(C.(n*,M(m)*n)(Un)
to be the subcomplex of forms of degree = i, and
FiQ (U,n) QL (Upn)

to be the subcomplex of forms containing = i differentials dza.

2.6.1. Key fact. The map n is compatible with the filtrations.

As a corollary , the induced map of E1-terms of the corresponding spectral sequences
gives rise to maps between the de Rham complexes

n': DR(H;(n*, M(m)y), Vkz) — DR(RpY~'L(m, N), Vo),
0<i<1,cfl3.
By construction these maps land in the subsheaves of anti-invariants
n': DR(H;(n*,M(m)}y ), Viz) — DR(RpY "L(m, N)*V" V),
Let us sum up our results.

2.7. Theorem. The map (2.6.2) is a morphism of filtered complexes. The induced map of
E1terms for the corresponding spectral sequences is a pair of morphisms

‘T]'i : DR(HZ(H* M(m)’f\), VKZ) — DR(R})D,_I»C(IH ;"V)XN'_, VG‘\.-])’
0<is<1l
Here niis a map from the de Rham complex oin(“*: M(m)y) equipped with the KZ

-

. N —1 N ZJ P . . .
connection to the de Rham complex ofRP* 'L(m, N)=~ equipped with the GaussManin
connection, or, which is the same, a morphism of lisse D-modules over Un:

0 (Hy(n*, M(m)y), Vkz) — (RpY ~"L(m, N)*¥~ V),
These maps are isomorphisms for generic k.

2.8. Corollary: integral solutions for higher KZ. Let us return to the notations of 2.1.

Consider the complex C*(n,M(m)<)n, see (2.1.3)

15



0-->M(m)n-—>n&Q M(m)n-1—— 0
which we denote here for brevity
C:0-->C0-—d (1--0,
and the dual complex
c* 00— O L 0™ 0
In this subsection we consider the analytic version of our varieties and D-modules.

For any z = (z1,....Zn) € Unwe denote by F(z) the fiber
F(z) := p~Y(z) = {(ty,...,tn) € CN| t: 6= t;;ti=6 Za} € CN,

We will deal with the analytic Coulomb D-module L2n(m) over Unn. Consider its de
Rham complex
Qany, *:= DR(Lan(m)).

For each z € Unlet )°n(z) denote the restriction of (an, * to the fiber F(z); inside it we have
the skew-symmetric part

Qem(Z)zn- C Qom(Z)

. EN,— . . . . . . .
Next, inside O0(2)™¥7 consider the finite-dimensional Aomoto subcomplex of differential
forms with logarithmic singularities along all hyperplanes ti= tjand ti = zq; let us denote this
subcomplex

A*(z) : 0 -> AN-1(z) d-2—[@ AN(z) -— 0,

the differential da(z) being the multiplication by the one-form
N

%wm(z) = %( Z 2dn(t; —t;) — ZZ msdIn(t; — zs)) € QY(F(z))

1<i<j<N i=1 s=1

cf. (2.3.1). This subcomplex will have only two nontrivial components living in degrees
N-1andN.
We denote by
Wi(z) := H((A*(z)),i=N-1,N,

16



its cohomology.

Global maps n!

The space
Co= M(m)n

admits a base {f2, |a| = N}; let us denote by {f2V} the dual base of C0*.

Similarly, the space
Cl=n® M(m)n-1

admits a base {f @ fv, |b| = N — 1}; let us denote {fV ® f*V} the dual base of C1*.
Define two maps ni: Cix — Qn-i(Unn), i = 0,1,
by no(fav) = wa,

and

nl(fv ®fbv) = Wh.

Denote
Ai:= ni(Ci+) € Qn-i(Unn).

Let z € Un. The restriction to the fiber F(z) induces maps

An-i—— AN-i(Z);

composing them with the maps niwe get maps
1(2) : €~ AVI(2)

According to [SV] these maps are isomorphisms; moreover, they induce an isomorphism of
complexes n*(z) : C**—~— A*(z)[N]

where on the left we have the Chevalley differential whereas on the right we have the
twisted de Rham differential in the de Rham complex of the fiber.

Chains of the Betti realization

For each z let Lm(z) denote the restriction of L(m) to F(z); let
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Lm(z)V = Hom(Ln(z), 0F,)

be the dual D-module. Let
Lm(Z)vhorC Lm(Z)V
be the subsheaf of horizontal sections; it isa locally constant sheaf over F(z).

Let C.(F(z),Lm(z)""°") denote the complex
0 —— C2n(F(2),Lm(z)VM") = ... = Co(F(z),Lm(z)V°") -—> 0

of finite singular chains with coefficients in Lm(z)''". We will be dealing with subspaces of
i-cycles
Zi(F(2),Lm(2)V"") < Ci(F(2),Lm(2)V"")

and with homology spaces Hi(F(z),Lm(z)""").

2.8.1. GM connection: Betty realization. When z varies, these complexes form a complex of
(infinite dimensional) vector bundles over Un, denoted by C.(F(z),Lm(z)""°"). Each term

Ci(F(z),Lm(z)V"°") carries a flat connection. Indeed, given zoand a finite singular chain
¥(20) € Ci(F(z0),Lm(z0)v""),

when can move z in a small neighbourhood V 3 zo such that nothing changes topologically; this
provides a parallel transport of y(zo) over V, i.e. a flat family of chains

{y(z) € Ci(F(z),Lm(z)""°")}zev. (2.8.1.1)

These connections are obviously compatible with boundary, i.e. we get a flat connection on
the complex C.(F(z),Lm(z)V"°"). This is the Betty incarnation of the derived GM connection.

It induces flat connections on the bundles of cycles Zi(F(z),Lm(z)'"*") and on the
homology Hi(F(z),Lm(z)v"").

We can integrate i-forms against i-chains, i.e. we have pairings

f  Ci(F(2), Ln(2)™) ® QL (z) — C

Let
{vi(z) € Zi(F(z),Lm(Z)V"°") }zev (2.8.1)
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be a flat family of cycles over a small open V c U, whose classes in Hi(F(z),Lm(z)""")
form a flat section of the GM connection.

Let i = N. For each x € C%*and z € V we get a number
Z.n%(z)(x) € G
yu(z)

it is linear with respect to x, so we’ve got an element
Z

n%(z)(e) € (C%*)*=C°= M(m)n. (2.8.2)
yu(z)

Note that if x = d*y then n°(z)(x) is a coboundary in Qany, (z), so the integral is zero since
yn(Z) is a cycle. This means that (2.8.2) belongs to the subspace of "singular vectors"

(Coker(d*))* = Kerd = Ker(e : M(m)n—— M(m)n-1).

Similarly if i = N — 1 then for each x € C1*and z € V we get a number
Zn'(z)(x) €C
yN-1(z)

which is linear with respect to x, so we’ve got an element
Zn(z)(*) € (C*)*= C1= M(m)n-1.

ynN-1(2)

Its image in
(Ker(d*))*= C1/dC° = Coker(e : M(m)n—— M(m)n-1)

depends only on the homology class

Yn-1(2) € Zi(F(z),Lm(z)V"").
2.8.1. Theorem. (a) For any local flat family of N-cycles
{yn(z) € Zn(F(Z),Lm(z)V"°)}zev, V C Up,

R

the linear map “y(z) defines a solution of the KZ equations with values in Ker(d), i.e. in the

weight component of
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Kere : M(m) —— M(m)
of weightzzzl m; — 2N for generic k any solution of the KZ equations in this space is given
by a suitable family yn(z).
(b) For any local flat family of (N — 1)-cycles

{yn-1(z) € Zn-1(F(z),Lm(Z)vhor)}zev, V € Un,

R

the linear map “y(z) defines a solution of the KZ equations with values in Coker(d), i.e. in the

weight component of M(m)/eM(m) of weight Do i —2(N = 1) por generic K any
solution of the KZ equations in this space is given by a suitable family yn-1(z). Proof. Part (a)
is proved in [SV], whereas part (b) is new and follows from Theorem 2.7

See [CV], where the dimensions of the spaces Kerd and Cokerd are calculated for
nonnegative integers mu,...,mn.

2.9. Exotic (dual) KZ equations.

Let N =1,n = 2. Let us look up more attentively at the KZ - Coulomb part of our cocycle.

So we have a 2-dimensional subspace
Mi1c M(m1) @ M(mz)

with a base {fv1 @ vz, vi Q fv2} whose elements we will write as columns.
The Casimir Q acts on this subspace by the matrix
q— (my — 2)my/2 Mo
my my(mg — 2)/2
Consider a double Coulomb - KZ complex Q**(M): as a graded space

Qee(M1) 1= Qee(U21) @ M1

where (¥ are differential forms in zt, of degree i (resp. j) with respect to z (resp. to t).

The first (horizontal) differential is a KZ connection
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1Q(dz — dz
d':VKz:dZ——M

K 21 — 29
where d; means de Rham with respect to z, whereas the second (vertical) differential

= dz + A1d2'1 + AQdZQ

doo = dt

(de Rham with respect to t)
The identity V2xz= 0 means that the KZ connection is integrable.

In coordinates:
02241 - 02142 - [A1,A2] =0,

in our case [A1,42] = 0.
Now we will descibe the relevant part of the cocycle | from Theorem 2.5.

Consider a form
t—2z) L Ddt I ,
W =1= (Ef ~ éi@dt) = (ID e Q"(M)
2.9.1. Claim. We have doowo1= 0,

(obvious), and
dowo1 = doow10 (2.9.1)

where :
w' = Jidz + Jodzy € QO(M),

with . —(t—zl)_lfb L 0
L 0 e N

2.9.2. Claim. We have
dow10=0,

in coordinates

1 QhL 1 QJ
Oyt + 0 Sy — —— F —— =0
Ka—2 Ka—2 (2.9.2)

The last differential equation is called the dual KZ equation: it is a system of two linear
differential equations on two functions (nonzero coordinates of vectors J1,J2).
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The equation does not depend on t, whereas our vectors J1,J2do. For all t the couple
U1(t2).J)2(t,2))

is a solution of (2.8.2).
§3. Kac-Moody case

3.1. Kac-Moody algebras without Serre relations. We start with the data from [SV], 6.1.
Let h be a finite-dimensional vector space equipped with a non-degenerate symmetric
bilinear form ().

We fix a finite set of non-zero covectors {a3,...ar} € h*whose elements are called simple
roots; let B = (bij) where bij= (i) (this is "the symmetrized Cartan matrix").

We denote by hi= b(ai)
where b : h*=~— h is the isomorphism induced by (,).

We define g = g(B) as a Lie algebra with generators e;f;,1 <i<r, and h and relations
[eifi] = Sijhi,
[hei] = ai(h)e; [hfi] = —ai(h)f;
[h,h0] =0, h,hO€ h
We denote by n = n- C g (resp. by n+) the Lie subalgebra generated by all elements fi (resp.

ei); it is a free Lie algebra with these generators. We have the triangular decomposition

g=n-@GhPn-

Root lattice

Let
A= XZai C h*

denote the abelian subgroup generated by ai.
We will use the notations for "positive"and "negative" submonoids:
r
Aso:=XZz0aic A, As0:= A0\ {0};

i=1
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As<0:=-A<0,A<0:= A<0\ {0}

Principal gradation

Our algebra g is A-graded:
g =@Drergr

where
gr={x € g| [h,x] = A(h)x for all h € h}

with h = gg,
n:=n-= @irer<ogr= Preronin+=

Drenrgr= Drerona

Verma modules

For u € h* M(u) will denote a g-module with one generator v = vy and relations
hvy = u(h)ey, eivu=0.

Itis (1 + A<o)-graded:
M(u) = PareurasoM ()2

where
M= {x € M(p)| hx = A(h)x}

A map
Un -— M(u), x 7- xvyu

is an isomorphism of vector spaces.

Notation: duals for A-graded spaces
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In the sequel we will be dealing with various A-graded spaces V = @aeaVa with finite
dimentional components V. In that case V2* will denote the restricted dual:

* *
V¥ = @xeaVy,

Double

The Borel Lie subalgebra
b:=n@®hcg

carries a structure of a Lie bialgebra (see [D]) described in [SV], 6.14.1. This means in
particular that we have a cobracket map

b-—bAb

which gives, after the passage to duals, a Lie algebra structure on the space b*. The
projection b —— n induces an embedding n*,— b*, and the subspace n*is a Lie subalgebra
of b*.

This allows one to define its Drinfeld double g = D(b); it is a Lie algebra which as a vector
space is

gE=b@®b=nDh®h D n~

If M is a Verma module, one introduces a structure of a b*-module on M*which, together
with an obvious structure of a a b-module gives rise to a D(b)-module structure on M*, see
[SV], 6.16.

3.2. Chevalley complexes. We fix n 2 1 and an n-tuple of weights

U= (U1,..,4n) € h*n

Consider

M) =M(m) & ... ® M(un)
The A-gradations on each M(u;) gives rise to a A-gradation on their tensor product M(u).

Each M(ui)*is a g-module, whence the tensor product

M(u) = M(p1)* & ... & M(pn)*
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is a g™-module as well. In particular due to the inclusions of Lie algebras
n*Ccb*c D(b*)=¢g"

M(u)*is a n*-module.
We will be interested in Chevalley homology complexes:

Co(nM(p)?) 2o == A2n* @ M(p)* == n* @ M(u)* -— M(u)*-— 0 (3:2.1)

They are analogues of (2.1.1).
They carry a A-grading induced by gradings on n and M(u):

Ce(n%M(u)") = DaeaC(n",M(u)*)a

where we denote by C.(n*M(u)*)athe subcomplex of weight\/”'| + A |pl = 30010 Ha,

3.3. The Casimir element and KZ equation.

We have an invariant Casimir element
legRg™ (3.3.1)

defined in [SV], 7.2. Namely,
Q=X+ Qo+ XO1Erer0  Aeho

ENRXNPhRhPh @hPBn®n
where
1
Oy = §(Qh + Q)
and Q1€ na @ n*afor A < 0 (resp. € n*AQ nafor A > 0) are canonical elements.

Recall the space Unfrom 1.1.

Let Co(n", M (1)") = Ca(n”", M(12)") be the trivial vector bundle over Unwith a fiber
C.(n*,M(u)*); it is a A-graded complex of vector bundles:
Caln”, M(1)") = BaeaCa(n®, M()"),

For
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A= — 21 kioi; € A<g

with2_i—1 ki = Nihe complex C.(n*,M(u)*)rleaves in degrees [-N,0].

The invariant Casimir element allows one to define the KZ connection on each
C.(n*,M(u)*)a, see 1.2.

3.4. A Coulomb D-module and its de Rham complex. Pick

r

A = =Xkiai € A<o;
i=1

let N= Pki.
Consider the space C»N = C"+*N with coordinates z1,...,Zn,t1,...,tnand a subspace
Unn={(zt) € Con| zi 6= z;ti =6 t},zi 6= tj}
We have a projection
P = PnN: Un,N —— Un
We shall use a notation [k] = {1,..,k}.

Pick a map of sets
m: [N] == [r]
such that
| 1(0)| = ki 1 € [r].

We will denote by ~
Y= Zki X ... X Zkr

a subgroup of the symmetric group respecting all the fibers 7=1(i).
A Coulomb D-module L(u,A)

By definition L(i,A) is @ Du.v -module which is Ou.v equipped with an integrable
connection

v,u,)\ = dDR + Ew,u.)\

where wyais a closed differential 1-form
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dz; — dz; dz; — dty,
Wux = Z (4t 1 )%* Z (H-u@.-r(k))Tkar

1<i<j<n i i€[n),ke[N]
df —dt
+ E or (k)» Ot( ;) L
t — 1
1<k<I<N (3.4.1)

It gives rise to the de Rham complex
Q:c )\(UTLN) = DR(L(,U,, )\))(Un.f\’) - (SZ.(Un,N): v,u..)\)

We will be interested in the subcomplex of Zr-skew-invariants
Q;_/\(Unj\ ) - C Q'u ,\(Un‘,"\"')
3.5. Relative de Rham complexes and derived Gauss-Manin.

(a) The de Rham complex Q*(Unn) is the total complex of a bicomplex
Q-(Un,N) = TOt.Q"(Un,N)

where QPi(Unn) is the space of forms containing p differentials dtiand q differentials dzm,
the full de Rham differential being the sum

dpr=dz+ d-
The relative de Rham complex is by definition
Qe(Unn/Un) = (Q0+(Unn),ds);

one has a projection
p: .Q-(Un,N) - .Q-(Un,N/Un)

(b) Coulomb twisting
Similarly the form
WA= WAz + Wt

with
df —dt
Wyt = Z (fis () + Z Qr(k)s Or fi—f;t

i€[n],kE[N] iz 1<k<I<N

which is d-closed.

We define
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1
Q;./\(UH,N/U?'J.) = (Q.(Un.f\"/Un)-. dt + Ew.(t,)\,t)

We have an epimorphism of complexes

p: Q;T)\( Tn:]\-") — Q;_,)\(Urz.N/Un) (351)

(c) Derived Gauss - Manin connection.

SVZL-(DYT%N) is the total complex of a double complex
Q;:\(Un.N) = ('Q'..(Un.f\’): v,u,,\,z + v,u,/\,.',)

The complex

where

1 1
Vir:=d.+ ;wu,/\,z- Vire =d. + ;%,/\,t

We shall write the differential V.2 (resp. V,¢) horizontally (resp. vertically).
The map p (3.5.1) is nothing but the projection to the utmost left vertical component.

We can identify Qt'z-TA(U”-N)with the de Rham complex of the connection Vyzon the
complex Q*uA(Unn/Un):

Vu,?k,z! .Q-y,/l(Un,N/Un) = QOy,/\o (Un,N) - Qoy,/\(Un,N/Un) ® .Ql(Un) = .Ql,u,/l- (Un,N)

This is the derived GM connection on the complex Rp«L(,A)(Un).

3.7. Amap n and its lifting n".
In [SV] a map of complexes

0 Co(n™, M(p)* )y — Q;:;\(Un];v/a:)x"’f[N] (3.7.1)

has been defined, see op. cit. (7.2.4).

Here we consider both complexes appearing in (3.7.1) as cohomological complexes
concentrated in degrees [-N,0].

For each z € Ux consider a fiber
Uz= UnnN;z:=p-1(z) We can
compose 1 with the restriction map

Tz Qf-l--/\(U”'N/U”) — Q.r.l,/\(Un,N:z)
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to get
Ny =1z0m: Co(n_,M(p)*)y — Q:,.‘,\(Ur,qj\‘-:z)L“‘_[N]
A remarkable feature of the mappings nzis the following:
for generic values of k the maps nzare quasi-isomorphisms for all Z € Un.

Here "generic" means k € C\ (an explicitly given discrete countable subset).
Main result

We start with is a definition of a map of graded O(Ur)-modules
77 Co(n™, M(p)*)n — QL.A(Un.N)X"’_[N] (3.7.2)

which lifts n, i.e. such that

n=p-°n’
Here is a picture:

Qeur(UnN)zr-[N]
n" % ip
Co(nsM(u))r =—n  Quas(UnN/Un)sn-[N] The

definition of ™ is a modification of that of n. Namely, for a monomial
x € Ci(n*, M(p)*)a

the corresponding differential form
n() € QY (Un/Us)

contains fractions of the form dti/(ti—zp). To obtain 17(x) we replace all these fractions by
din(ti - zp). That’s it.

COMPARE WITH SECTION 2

Confer the definition of forms ugqupin 2.2 for g = sla.

The map 1~ induces a map of Q*(Unn)-modules
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7 9 (Unn) Samqiy Colw', M) — L) [N] (373

The space on the left is the underlying space of the De Rham complex for the derived KZ; it
carries the KZ differential Vkz.

3.8. Theorem. (a) The map 1~ (3.7.3) commutes with the differentials on both sides.

(b) Both sides of (3.7.3) carry natural decreasing filtrations in z direction, and the map
" respects these filtrations.

In other words, we’ve got a map of filtered complexes

n
DR(derived KZ) -— DR(derived GM)

k " k (3.8.1)
TotQk 2 (Uns Co(n®. M(11)")2) - = Tog(aim) (Una) ™ [NV

PROOF SIMILAR TO SECTION 2

3.9. Corollary. The map 1" induces maps of Du.-modules (which are isomorphisms for
generic k)

ni o (F(m*, M())x, Viz) — (RN 7p.L(1, ¥, V)

forall0<i<N.

For i = 0 such a mapping has been constructed in [SV].

INTEGRAL REPS OF SOLUTIONS

Appendix

We recall here some standard constructions from homological algebra.

A.1. Bicomplexes. A a bicomplex in an abelian category C is a collection of objects A** =
{Ar4, p,q € Z}, and arrows

dpqh : qu - Ap+1,q, dp,qh +1: qu - Ap,q+1

such that
d}_); = df = 01 dh.d"u = d’r.‘dh

One associates to it a simple complex, to be denoted
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A* =TotA**
with components
Ai= Dp+q=illpq
and a differential d : A’ —— Ai*1 with components

@’ = @7 + (—1)PdP? ;. AP — AP @ Ap’q“_
A.2. Filtered complexes. Let A* be a simple complex. Consider a decreasing filtration by
subcomplexes on it:
FOA*=A*D FlA*D ...
We associate to it a collection of complexes
E(A*,F)i: 0 —— Hi(FOA*/F1A*) ——> H*1(F1A°*/F?A°) -— .., (A4.2.1)
i =0, where a differential

Hi+p(FpAo/Fp+1Ao) - Hi+p+1(Fp+1A0/Fp+2A')

is the boundary map for the short exact sequence

0-— Fp+1Ao/Fp+2Ao - FpAo/Fp+2Ao - FpAo/Fp+1Ao -—0

(This is nothing else but the E1term of the spectral sequences for (4*,F *).)
A.3. Example. Suppose that A* = TotA** with Ar7= 0 for p < 0, and a filtration is defined
by

FiAj = @p=ip+q=iApa.

Then a p-th graded piece
FpA«/Fp+1A-={Apq, q € Z},

and the differential induced by d on it coincides with the vertical differential dv.

It follows that a complex E(A*,F *)'is identified with
0 — HI(A) — HI(A*) — ...,

with a differential induced by dh.
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