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1. Introduction

Frobenius manifolds were introduced by B. Dubrovin in the study of topological field
theories, [D1]. Frobenius manifolds is an important ingredient of the theory of integrable
systems.

A Frobenius algebra is a commutative algebra A with a nondegenerate bilinear form (, )
such that (uvyw) = (vuw),Vu,v,w € A.

Roughly speaking, a Frobenius manifold is a manifold M with a flat metric (, ) and a
Frobenius algebra structure on tangent spaces TxM at points x € M such that the structure
constants of multiplication are given by the third derivatives of a potential function with
respect to flat coordinates. More precisely, let z1,..,zn be local coordinates on M in which the
metric is constant, then

0.0 9N oL
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for a suitable potential function L on the manifold. Formula (1.1) is a remarkable way to pack
all information about this family of Frobenius algebras into one function.

1 E-mail: emukhin@iupui.edu, supported in part by Simons Foundation grants 353831, 709444
2 E-mail: anv@email.unc.edu, supported in part by NSF grant DMS-1954266
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A source of families of Frobenius algebras is quantum cohomology algebras of algebraic
varieties. Algebras of such a family depend on quantum parameters and form a Frobenius
manifold, in which the bilinear form (, ) is the intersection form on the corresponding variety
and the potential function is defined in terms of enumerative geometry of curves on the
variety, see [D1].

Another source of families of Frobenius algebras is quantum integrable models related to
representation theory. In this case, one starts with a tensor product of evaluation
representations of some algebra (like the universal enveloping algebra of a current algebra,
or a Yangian, or a quantum affine algebra), which has a large commutative subalgebra called
the Bethe subalgebra. Then the representation itself depends on the corresponding
evaluation parameters, while the image of the Bethe subalgebra in the representation is often
a Frobenius algebra with respect to the corresponding Shapovalov form, see for example
[MTV1, L]. In this note we discuss the problem, posed in [PV], if this family of Frobenius
algebras depending on evaluation parameters has glimpses of a Frobenius structure.

We study the simplest example of the sl Gaudin model on a tensor product of vector
representations. The Bethe algebra acts in the space (C2)®" by operators depending on
evaluation parameters zm, m = 1,..,n. The operators are symmetric with respect to the
Shapovalov form and commute with the diagonal action of slz2. The Bethe algebra is generated
by the Gaudin Hamiltonians Hm(z1,...,zn), m = 1,..,n, and the identity operator. We concentrate
on the space Sing(C2)®n[n - 2k] of singular vectors of weight n-2k, which is invariant with
respect to the Bethe algebra. This space is known to be cyclic with respect to the action of
Gaudin Hamiltonians, and the algebra of Gaudin Hamiltonians is Frobenius, see [MTV1].

For k > 1, one cannot expect formula (1.1) to be literally satisfied, as the number of
evaluation parameters in our family of algebras is smaller than the dimension of the algebra,
but it turns out that there is an analogous formula which looks as follows.

We have a natural spanning set of vectors {vi} c Sing(C2)®"[n-2k] labeled by k-element
subsets I c {1,..,n}. The vectors {vi} are orthogonal projections of the standard tensor basis

of (C2)®n[n - 2k]. We present two potential functions P and Q depending on nk variables

(3 O . . . .
Z{T yi=1,...,n,5=1,....k We also introduce differential operators dr of order k, which

. N . . G .
involve derivatives with respect to the variables %", i € I Then the following holds.

e The function P is a polynomial of degree 2k written as a sum, Y\ghere up to a common
e

. Ly e
constant, each term is a product of k factors of the form (=i — = ) , see (4.2). It has the

property
(1.2) (viv)) = 010,P V]
: : L) (M (1) (1)y2
e The function Q is a sum of terms of the form In(~ zs ) (2 % ')* P, where

(.,(1) - ,(1))2, .
% “1 )" Pis aterm of P, see (4.6). It has the property
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(Hm(zgl), o2 Mpug) = —0 Dr0;Q
(1.3) OZm vIJand m = 1,..,n.

We call the functions P and Q the potentials of the first and second kind, respectively.
Formula (1.2) describes the Shapovalov form in terms of derivatives of the potential of the
first kind, and formula (1.3) describes the action of Gaudin Hamiltonians in terms of
derivatives of the potential of the second kind.

The existence of a polynomial P satisfying (1.2) is obvious, but the form of the answer
seems to be interesting. The reason for existence of Q is not clear. It looks interesting that the
potential of the first kind describing only the Shapovalov form is so closely related to the
potential of the second kind which describes the action of the Gaudin Hamiltonians.

Our construction is motivated by [V3, PV], where a Frobenius-like structure was
introduced for a family of weighted hyperplane arrangements, in which every hyperplane
independently moves parallelly to itself, see Theorem 2.1 below. It is well-known that the
Gaudin model on SingiW®n[n - 2k] is related to a certain family of weighted discriminantal
hyperplane arrangements in Ckwith hyperplanes depending on n parameters z1,...,Zn, see [SV,
V1, V2, TV]. These arrangements have nk+k(k-1)/2 hyperplanes and are symmetric with
respect to permutations of coordinates in Ck. While this family of arrangements does not
satisfy the assumptions of Theorem 2.1, we get enough insight to construct the potentials
P and Q.

We expect that potentials of the first and second kind exist for spaces of singular vectors in
tensor products of sly vector representations, where the Bethe algebra is still generated by
Gaudin Hamiltonians, see [MTV2].

In Section 2 we recall Frobenius-like structures related to arrangements of hyperplanes. In
Section 3 we collect preliminary information. In Section 4 we introduce potentials and relate
them to the Gaudin model.

The authors thank the referee for the remark in Section 4.5.

2. Crtitical points and arrangements of hyperplanes
Algebras of functions on critical sets of functions produce families of Frobenius algebras as

follows. Let ®(t,...tx) be a holomorphic function on an open set D < Ckwith finitely many
critical points q € D,
0P
ot;
One considers the finite-dimensional algebra of functions on the critical set,

A= O(D)/(g—i j=1, k)

The Grothendieck residue defines a nondegenerate bilinear form (, ) on 4,

(q)=0, i=1,... k
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e L} The algebra (4,(, )) is a Frobenius algebra.
In singularity theory this algebra is called the Milnor algebra.

This algebra of functions is especially interesting in the case when the starting function @
is the master function of an arrangement of hyperplanes. On the one hand, the arrangements
of hyperplanes lead to a simpler, more combinatorial setting. On the other hand, such
algebras are known to be related to the algebras coming from quantum integrable systems
and quantum cohomology, see for example [SV, V1, V2, MTV1, GRTV].

It turns out that the algebra of functions on the critical set of a master function of an
arrangement has a Frobenius-like structure, which is determined by two potentials.

Consider Ck with coordinates ti,..,tk and an arrangement C(z) of n hyperplanes in Ck
depending on parameters z = (z1,..,Zn). The hyperplanes Hi(zi) of the arrangement are defined

k ]
by equations, filt,z) = Zj:lb?? tj+ ziz 0, where bii € C are fixed. If z: changes, the hyperplane
Hi(zi) moves parallelly to itself.

Fix positive numbers a = (as,...,an) called the weights. The master function of the weighted
arrangement (C(z),a) is the function

P(t, z) = Z a;log fi(t, z)
i=1 .

Denote Uz = Ck- C(z) the complement to C(z) and O(U:) the algebra of regular functions on

the complement Uz. Denote

a.=ow.)/ (ff

=1, ., A)

the algebra of functions on the critical set of the master function ®(-,z) restricted to the
complement Uz Denote (, )zthe Grothiendick residue form on A-.
In the space C" of parameters z there is a hypersurface X, called the discriminant,

characterized by the property: if z € C" - X, then the arrangement C(z) has normal crossings

only. We may compare the algebras A:for z € C?- X as follows.

- b= [82] = (%] € A
Fori=1,.,n the elements’” 9z fi “ generate Azas an algebra. We say that a

_ 7 \k
subset {i1,..,ix} € {1,..,n} is independent if diy..ix, = det(b])i 521 /= 0. For z € ¢~ 3 the
The defining linear relations between the elements di..upi --pic are labeled by (k

-1)element subsets {ii,..,ik-1} € {1,..,n},

Z dil ..... ir—1.mPm Piy 0 Pig_, = 0

m=1
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Hence the dimension dimcAzdoes not depend on z € cn- 3. Consider the
complex vector bundle

A =Uzecn-54z—> Ch— X

whose fiber over a point z € C" - X is the Frobenius algebra A-. Identifying the elements

di,...ipir...piin all fibers we trivialize the bundle.

Theorem 2.1 ([V3, PV]). There exist two functions P, Q on C"-%, called the potentials of the
first and second kind, with the following properties. For any two independent sets
{i1,...,ik},{j1,...jk} and any index m = 1,...,n, we have
o*kp
Oy D207, 0z, )
Zip - - - U2, 0Z5) .. - OZ5

82k:+1Q
i) . . e - e e = — z
(pm. Pin pik i le jjk) 82,,,_63;.;1 . Bz,k azj, .. (l)ij ( )

(Pir *** Pirs Py *** Pin )= =

The potentials are given by some combinatorial formulas.

The potential P of the first kind is a polynomial of degree 2k and hence all (pi
“**Dik,Dj1 ***Pj)z are constants.

The first formula determines the Grothendieck residue bilinear form (, )z in terms of the
potential of the first kind. The second formula determines the operators of multiplication by
multiplicative generators {p;}, j = 1,..,n, in terms of the potential of the second kind.

This pair of potentials is called in [V3, PV] a Frobenius-like structure associated with the
family (C(z),a) of weighted arrangements in Ck.

Example 2.2 ([V3]). For k = 1 consider the arrangement of n points on line defined by
equations t + zi= 0, i = 1,..,n, with weights ax,...,an. Then

_ 1 (zi—2;)? V) (zi—2j)*
P(z) = attan qugn A0, Qz) = qu’gn a;a; In(z; — z;) =
tal Cal
(pi,pj)= = ('-);,azj (2), (Pm P Pj)= = é)z;,(az,e)zj (2). )
If a1 = --- = an, then this Frobenius-like structure is the almost dual Frobenius structure

associated with the Weyl group W(An-1) in [D2].

Example 2.3 ([PV]). For the arrangement of four lines on plane given by equations t2+z1=0, t2
+22=0,t1+23=0, t1+ t2+ z4= 0 we have
1

P = ((},IGL36L4
ap + as + ag + ay

(Z] + 23 — Z4)4 (2'2 + Z3 — 34)4
1 B T

ajasazay (21 — 22)? (21 + 23 — 24)2)
a+ag 2 21
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(ZQ + 29 — Zq)/l
4!

(Zl + 29 — Z,l)d
4!

Q = ajazasn(z) + z3 — 2z4) + agazay In(ze + 23 — z4)

-y

a102G304 (21 — 22)2 (214 23 — 24)2
————1In(z; — z9) .
as + ag 21 21

; ; (P1P3; P2pa): = s as) -
Theorem 2.1 in particular says that 2 § (a1+aztastas)(astas) gnd this does not
__ ajazaq

depend on z € Cn- A, and (Pap1p3, Papa)= = 5550

In this example the potentials are sums of terms corresponding to subarrangements
consisting of three or four lines, corresponding to triangles and trapezoids. It turns out that
this is the general case. One introduces the notion of an elementary arrangement in Ck. The
elementary subarrangements in C2are triangles and trapezoids. An elementary arrangement
in Ck has at most 2k hyperplanes. The potentials are sums, over all elementary
subarrangements, of some explicit prepotentials of the elementary subarrangements, see
[V3, PV]

The fact that the potentials are sums of contributions from elementary subarrangements
indicates a phenomenon of locality of Grothendieck residue bilinear form and multiplication
on the algebra Az. We observe a similar locality property in the Gaudin model potentials, see
formulas (4.2) and (4.6).

On Frobenius-like structures see also [HV, V4].

3. Shapovalov form

Let n,k be positive integers.
3.1. Space of singular vectors. Consider the complex Lie algebra sl with generators ¢ f,h and
relations [ef] = h, [he] = 2e, [h,f] = -2f. Consider the complex vector space W with basis wi,w>
and the slz-action,

(01 f (00 L (10
““loo )0 ST\t o ) =l -1 )
The sl2-module W®n has a basis labeled by subsets I c {1,...,n},

Vi=win @ -+ @ win,
where ij=1ifij€/Iand ij= 2 if ;€ I.

The Shapovalov form (, ) on W®nis the symmetric bilinear form such that (V;,V)) = éy. It has
the properties: (hx,y) = (x,hy), (exy) = (xfy) for all x,y € W.
V®” _ n .I,f@n [??- _

Consider the weight decomposition of W®ninto eigenspaces offt: V =2 k=0V

2k]. The vectors Viwith |I| = k form a basis of W®n[n - 2k]. Define the space of singular vectors
of weight n - 2k,

SingW®n[n - 2k] = {w € W®n[n - 2k] | ew = 0}.
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This space is nonempty if and only if n > 2k. We assume that n > 2k.

3.2. Orthogonal projection. Let
(3.1) m: W®n[n - 2k] = SingW®n[n - 2k]

be the orthogonal projection with respect to the Shapovalov form. The kernel of the
projection is the image of the operator

f:W®n[n-2(k-1)] - W®n[n - 2k].
For a k-element subset I c {1,..,n} denote
(3.2) vi= (Vi) € SingW®n[n - 2k].

There are (2) vectors viin the (Z) - (k:)-dimensional space SinglW®n[n - 2k]. The defining
linear relations between these vectors are labeled by (k —1)-element subsets K and have the
form

X

VKU{m} = 0.
m6€K

Clearly the vector vrhas the form

vi= Vi+ bk-1X fVk+ bk-2X  fVk+ +++ + boX fVK, k-1 k-2 0
where bare suitable numbers, and P.is the sum over all (k - 1)-element subsets K such that
[INK|="
Lemma 3.1. We have

(3.3) by = (—1)**

(k—¢—1)! __FJVJ(k—f—UKn—2k+f+lﬂ
[T (n—2k+1+4) (n—k+1)!
(=0,...,k—1. ,

Proof. The property evi= 0 produces the following system of equations:

1+ br-1n + brk-2(k-1)(n - k) =0,
bw(k-)k-"-1)+b(k-)n-2k+2'+2)+b-1'(n-2k+'+1)=0

for "= 0,...,k — 2. This system implies
oy n—2k+ 147 , k—1)!
b, = by (—1) H \ by = (—1)" ( )

i=1 k—i 4 Hf:](” —2k+1+1) ,

and hence (3.3).

Clearly vrhas the form:
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vi= akVi+ ak-1Xk-1Vj + ak-2Xk-2Vj+ -+ + aoXoV},

where a-are suitable numbers, and Pis the sum over all k-element subsets J such that | N J|

Lemma 3.2. We have
(3.4) w:4_nwew 2k+1) (K m°:(_UMfW 2% + 1) (k — O)! (n — 2k + 0)
[T, (n — 2k +1+1) n—k+1)

(=0,....k.

J

Proof. Let K be a (k-1)-element subset. The condition (fVxvi) = 0 produces the following
system of equations. If |[KN I| =, where "= 0,1,...,.k - 1, then
(k-a+1+(n-2k+"+1Da=0.
This system has the solution
ar = ( l)p(n.—2k+1)(n—2k+2)...(71—2k+€)
(3.5) E(k—1)...(k—(+1)

Qp

[t is easy to see that ao = kbo. Thus
k!

[T (n—2k+1+1i)

ap = (*])k

and formula (3.4) for any " follows from formula (3.5). Example 3.3. For k = 1 we have

bo = —l.(]‘,[} = —

o s, =

%.Forkszehave

1
n

_ 1 _ 1
b = GoEy: b T

2 n—3

- _ = _ . n=3 o= n—3
o = (n—2)(n—1) ar = (n—2)(n—1) ? a2 = 57 .

Lemma 3.4. Let I,] be two k-element subsets such that |I N ]| = . Then

(3.6) vv) =(viV)=a.

The following formulas are useful:
(n—2k+1)(k—10)!
Hf;gl,l(n —2k+1+14)
_ (g W2k D (k= Ol = 2k 40— 1)!
(3.7) (n—k)!
=1,k

(_l)k—€+1

p_1 — Ay =
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3.3. Remark. One may show that the orthogonal projection 7 : W®n[n-2k] — SingiW®n[n- 2k]
has the following locality property with respect to the number n of tensor factors.
2k
Consider the orthogonal projection m2k: W®2k[0] — SingW®2k[0] and the image T2k Vi, k)
of the vector

For any k-element subset ] c {k + 1,..,n},let ("% " {1, ‘] be the vector
7T2‘“V ----- k} placed in the tensor factors of W®n" with indices {1,..,k} UJ C
{1,..,n}, and with the vectors w1 staying in other factors of W®n. Then the vector v{i,..k} €
2% (J)
SingW®n[n - 2k], defined in (3.2), equals the sumZJ(m’*‘V{L---,k}) up to a multiplicative
constant.
For example, for k = 1 we have

n—1 . 1 1
vy = Viy — Z " —Vii 7('21/{21} = §w2 & wy — 5101 & wo
2w s1 1
vay = o > (§V{1} - gV{j})-
=2 ,

The locality property of potential functions in formulas (4.2) and (4.6) is of similar flavor.

4., Potentials

4.1. Potential of the first kind. Potentials of the first and second kind are function of nk
variables

For every k-element subset I = (iy,.., i) € {1,..,n} define the differential operator
ok
v =% st
(k)
ogeS) ()Z d"?crk

Recall that n > 2k. Let) be ¢ = (e} AP @) sequence of nonintersecting
unordered two-element subsets of {1,..,n}. Denote by A the set of all such sequences. The
number of elements in A is given by the formula:

O )

For every a = ({p1,q1},...{pkqk}) € A define
k

(4.1) Pa(z) = Y(2zp(i) — zq(id) 2-
i=1

Define the potential of the first kind P(z) by the formula
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1 (n —2k+1)!

(42) P(x)=c1) Pa(x), = PRI (n—2k+1+i) 2K (m—k+1)!

acA

Theorem 4.1. For any two k-element subsets I and | we have
(4.3) (vivy) = 010/P(2).

Proof. It is enough to prove this formula for I = {1,2,..,k} and
J={12,.., k+Lk+2,.,2k- "}, where "=0,1,...k. [t is easy to see that in this
case

o~
OJBJP = k! ; % BJP
83@3:&2) . .8::,5.”
S
The number 9=;"/924" .9z “ is nonzero only if @ has the following form,

a={1,91},{2,92},..{,q},{ + Lok1),{" + 2,0k+2},...{k,02k-"}},

where (q1,92,.-,q’) is an ordered subset of {2k - "+ 1,2k - "+ 2,..,n} and

(Ok+1,0k+2,...,02k-") is a permutation of (k + 1,...,2k - ).

There are (n-2k +7)(n-2k +'-1)..(n-2k +1)(k =)! such sequences a. For every such a, we
o OsPa = (—=1)F 2 i
have 921 92" .0z, . To prove the theorem it is enough to check that
1

a=cikl(-1)k 2k (k=) Y(n-2k+1+10)
i=0

This follows from formulas (3.4) and (4.2).

4.2. Gaudin model. Define the Casimir element

1
Q=§h®h+e®f+f®€ € sl ®sly

Define the linear operators on W®n depending on parameters u = (uz,...,un),

n
Hm(-u.):z¢, m=1,...,n,

U — U

J#m
where Qmj: W®n — W®nis the Casimir operator acting in the mth and jth tensor factors. The
operators Hm(u) are called the Gaudin Hamiltonians. The operators are symmetric and
commute,

(Hm(u)xy) = (x, Hn(u)y) Vxy € Wn, [Hm(u),Hj(u)] =0V m,.
The operators commute with the slz-action on W®nand hence preserve every W®n[n - 2k]

and SinglW®n[n - 2k]. The operators commute with the orthogonal projection m defined in
(3.1), tHm(u) = Hm(u)m.



FROBENIUS-LIKE STRUCTURE IN GAUDIN MODEL 11

The algebra of endomorphisms of SinglW®n[n-2k] generated by the scalar operators and

the Gaudin Hamiltonians is called the Bethe algebra of SingiW®n[n - 2k].
Introduce the reduced Casimir element and reduced Gaudin Hamiltonians,
B n an ‘
1 o 1 H,,(u) = Z 7_5' . om=1,...,n.
225i1®f1,+e®f+j®e—§ im1 Um U
’ i#m

The reduced Gaudin Hamiltonians are symmetric, commute, and generate together with
scalar operators the same Bethe algebra as the Gaudin Hamiltonians.

Lemma 4.2. Consider Q as a linear operator on W®2, Then () - P- 1, where P is the

permutation of tensor factors and 1 is the identity operator.

Hence
. —Vi + Viugy—fm)
@ 4, iftm @V = ) ————= el

. m 7
Jjer

. —Vi + Viugmy—(5t

Hm. 1 V — - 1 .

(Vi }ZE; Uy, — Uy ifm/€l

In (4.4) the vectors Vi, Viu{i-{m}, Viugm}-{7 can be replaced with vi, viug-{m}, viuim}-{j} since the

operators H m(u) commute with the orthogonal projection .
The reduced Gaudin Hamiltonians are governed by a potential function of the second kind.

4.3. Potential of the second kind. For every a = ({p1,q1},...{pkqx}) € A define
k

(4.5) Qa(2) = In(zp1)1 = zq(1)1)Y (Zp(i) = Zq(i0)2.

i=1

Define the potential of the second kind Q(z) by the formula

(4.6) Qz) = o Z Qa(2),

acA
—1 = (n—=2k+1)
% (k— NI (n—2k+1+4) 28(k—1)!(n—Fk)!

The following theorem describes the action of the reduced Gaudin Hamiltonians on the
space SingW®n[n - 2k] in terms of derivatives of the potential of the second kind. Theorem

4.3. Let ] be two k-element subsets of {1,..,n} and m € {1,..,n}. Then
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(4.7) A 92
Proof. We prove the theorem by an explicit computation based on the simple fact that any

derivative of order 2k of any term Q«in (4.5) with respect to various variables zi() equals a

1 1
constant multiple of ln(Zz(ol) - ngl) ) (which can be zero) plus a constant.

Assume that m /€ I U Jand [I N J| =, " = 0,..,k. Under this assumption, without loss of
generality we may assume that I = {1,...,k}, J={1,.., ,k + 1,..,2k - '}, and m = n. Then

k
_ (V1 k F U 5 s VL bk, 2k—t)
(H,-t(Z§1)1 o Z,r(tl))'b'], 'UJ) _ Z 1,....0,...,kn )

i=1 in’ T
! ay +a k ag + a - ap + a
— Wy —1 — Wy 74 — Uy Lf—1
=D OISO D e R D (Y
i=1 #n Z i=i41 “n i i=1 ~n Zi0
If I = {1,...k}, ] = {1,.,k+1,.,2k- 1, m = n then

(—)18{1 k}a{'l £k+1 2A~—F}Qn(3
Dz L AT B e B ) is nonzero only if a has the following form,

a = ({pyn}{p2q2},...{pkqr}), where
i) pr1e{l..}
(ii) the sequence (p2,..,pk) is a permutation of the sequence (1, - D1y k)
(the sequence (p2,...pk) determines a partition of (2,.., k) into two subsequences: (i1 <
- < 1-1) such that all pi-6 "and (j1 < -+ < jk-") such that all p;.> ', these subsequences
are used below);
(iii) the sequence (qiy,-.,qi-1) is an ordered (" — 1)-element subset of {2k - " +
1,.,n-1}
(iv) the sequence (gji,..,gjx-) is a permutation of the sequence (k + 1,..,2k - ).
The number of such a with fixed p1 equals ('I"' - Dk = 0)! Hf;g(” —2k+1+ ‘i). For every
such «,

0 (71)k—£2k
T@{l ..... 00, ek, 2k Qa(2) = T
" ~n Zp1,
It follows from (3.4) and (4.6) that
—tok (-2
ao (D)2 |
(1)1 RO ORI (k=11 k=0 (n—2k+1+1)

(4.8) I = 2y o = 2 i
J

and (4.7) holds in this case.

Assume that m belongs to I butnotto/and |INJ| = "-1, "= 1,.,k Under this assumption,
without loss of generality we may assume that I ={1,...k}, /] = {2,..,, , k+
1,.,2k - "+ 1},and m = 1. Then

Il
=)
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n 2k—F+1
i (M (1) _ (=01, &+ V2 kis V2, ekl 2k 041) _ —Qg_1 + (g
( 1(,.,1 ey Ay )’UI.‘.UJ) — Z 7(])_ (1) — Z W
i=k+1 < Zi i=k+1 ~1 i
If 1 = {1k, ] = {2,k +1,.,2k - "+ 1}, m = 1, then

_9 9. Vs ) L - . ’ z
5000, ROkt zk"H}QQ() is nonzero only if a has the following form,

(i) que{k+1,..2k-"+1}

(ii) the sequence (pz2,..,pk) is a permutation of the sequence (2,..,k)
(the sequence (pz2,..,pk) determines a partition of (2,..,k) into two subsequences: (i1 <
- < 1-1) such that all pi-6 "and (j1 < -+ < jk-") such that all p;.> ', these subsequences

are used below);
(iii) the sequence (qiy,..,qi-1) is an ordered ('-1)-element subset of

{2k-"+2,..,n}; (iv) the sequence (gjs,..,qj-) is a permutation of the sequence

(F+ 1.0, 2k-"+1).
‘ (-2 .
The number of such a with fixed p1 equals (k —DHE = TTicg(n — 2k + 1+ ). For every
such «,
o ) ) (71)k—€2k
@d{],....kr}d{z...,ﬁ,k'—&—l....,2k—o’f‘+'l}czn(3) = W
It follows from (3.4) and (4.6) that
g -2
—ap_1 + ag (—1)k-t2* :
RN OO (k=11 k=0 |(n—2k+1+1)
Zl — 2'(” Zq] - z]_ i=0 ’

and (4.7) holds in this case.
Assume that m belongstoINnJand |INJ| =, "= 1,.., k. Under this assumption, without loss
of generality we may assume that I = {1,..,k}, /] = {1,.., ,k+1,..,2k-"}, and m = 1. Then

mn
—ay + ap_q

n
7 () (1), - (=01, & + V2 kis V1, bkt 1, 2k—1) N
(Fr(21", o Do) = ) NORRRO) = 2. OO
i=kA41 1 Zi i=2k—f4+1 ~1 Z

If I = {1,...k}, ] = {1,.,k+1,.,2k- 1}, m = 1, then
oo KO0t ot 12k} Qo (2
o = ({Lah {p2. @2}, {pw, ‘Ik})) is nonzero only if a has the following form,
() qre{2k-"+1,.,n}
(ii) the sequence (p2,..,pk) is a permutation of the sequence (2,...,k)

(the sequence (pz2,..,pk) determines a partition of (2,..,k) into two subsequences: (i1 <
-+ < 1-1) such that all pi-6 "and (j1 < -+ < jk-") such that all p;.> ', these subsequences

are used below);
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—~

(iii) the sequence (gi,...,qi-1) is an ordered ('-1)-element subset off2k—0+1,..., q1,

)
(iv) the sequence (gj,..,gjx-) is a permutation of the sequence (k + 1,..,2k - ).
2 :
The number of such a with fixed g1 equals (k — DR =0 Tisg(n =2k + 1+ ). For every
such a, we have

o . (_1)k:f£2k
Wa{l ..... k}a{l ..... f._k+1.....2k4}@a(3) = m
2 ~“q1 ~1 .

It follows from (3.4) and (4.6) that

—Lok —2
—ata, _ (~1)2 |

o - ek -DE=0]|(n—2k+144)
217 T Aq Zqg — & i—0

£

’

and (4.7) holds in this case. Theorem 4.3 is proved.

4.4. Example. For k = 1, we have
1 71 1 1 1 1
QU )= T el - o) (0 oy

1<i<j<n

and Theorem 4.3 takes the following form.

Theorem 4.4. Let ijm € {1,..,n}. Then

_ 9*Q
(H,,,(zgl)., IR ( (1 ,z))

Vi) T S M A () 4.
(4‘9) d‘“;‘ de dzm

Compare these formulas with formulas of Example 2.2.
4.5. A relation between P and Q.

Theorem 4.5. Let I,] be two k-element subsets of {1,..,n}. Then

1 1 n . o
— 0;0;,P(2) = — .19 59 ¢
(4 10) el Y ( ) Co mz_l m 821(71) I JQ(Z)

Proof. The theorem fq}llows from formulas (4.1) and (4.5) for functions P«(z) and Q«(z) and
)In(z —y) = 1.

a 0 0
the identity (Vo= T Yoy
Corollary 4.6. The operatorzg;.:l U (ur, - Un) pestricted to SingW®n[n-2k] is the scalar
operator of multiplication by —k(n - k + 1).

Proof. Equation (4.10) can be written as

n

1 1 _
Z(or00) = (S A, 2P

C Co

m=1

Notice that cz2/c1=-k(n - k + 1). This implies the corollary.
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Remark. Corollary 4.6 also follows from the representation theory. Indeed,

n

S tmHup(ur, o un) = > (= 1/2) = C/2=)  Cp/2—n(n—1)/4

m=1 1<m<j<n m=1 )

C=h2/2 +ef +fe
is the Casimir element acting on the tensor product of representations and

Cm= (hm)Z/Z + emfm +fm€m

is the Casimir element acting on the m-th tensor factor of the tensor product. On the subspace
SingWW®n[n - 2k] of singular vectors of weight n — 2k, the operator C acts as the scalar operator
of multiplication by (n - 2k)(n - 2k + 2)/4, and each Cm acts as the scalar operator of

multiplication by -3/4, so that Zﬁa:lumHm(“h---s‘“'w-) acts as the scalar operator of
multiplication by

(n-2k)(n-2k+2)/4-3n/4-n(n-1)/4=-k(n-k+1).
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