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1. Introduction 

Frobenius manifolds were introduced by B. Dubrovin in the study of topological field 

theories, [D1]. Frobenius manifolds is an important ingredient of the theory of integrable 

systems. 

A Frobenius algebra is a commutative algebra A with a nondegenerate bilinear form (, ) 

such that (uv,w) = (v,uw),∀u,v,w ∈ A. 

Roughly speaking, a Frobenius manifold is a manifold M with a flat metric (, ) and a 

Frobenius algebra structure on tangent spaces TxM at points x ∈ M such that the structure 

constants of multiplication are given by the third derivatives of a potential function with 

respect to flat coordinates. More precisely, let z1,...,zn be local coordinates on M in which the 

metric is constant, then 

(1.1)  

for a suitable potential function L on the manifold. Formula (1.1) is a remarkable way to pack 

all information about this family of Frobenius algebras into one function. 
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A source of families of Frobenius algebras is quantum cohomology algebras of algebraic 

varieties. Algebras of such a family depend on quantum parameters and form a Frobenius 

manifold, in which the bilinear form (, ) is the intersection form on the corresponding variety 

and the potential function is defined in terms of enumerative geometry of curves on the 

variety, see [D1]. 

Another source of families of Frobenius algebras is quantum integrable models related to 

representation theory. In this case, one starts with a tensor product of evaluation 

representations of some algebra (like the universal enveloping algebra of a current algebra, 

or a Yangian, or a quantum affine algebra), which has a large commutative subalgebra called 

the Bethe subalgebra. Then the representation itself depends on the corresponding 

evaluation parameters, while the image of the Bethe subalgebra in the representation is often 

a Frobenius algebra with respect to the corresponding Shapovalov form, see for example 

[MTV1, L]. In this note we discuss the problem, posed in [PV], if this family of Frobenius 

algebras depending on evaluation parameters has glimpses of a Frobenius structure. 

We study the simplest example of the sl2 Gaudin model on a tensor product of vector 

representations. The Bethe algebra acts in the space (C2)⊗n by operators depending on 

evaluation parameters zm, m = 1,...,n. The operators are symmetric with respect to the 

Shapovalov form and commute with the diagonal action of sl2. The Bethe algebra is generated 

by the Gaudin Hamiltonians Hm(z1,...,zn), m = 1,...,n, and the identity operator. We concentrate 

on the space Sing(C2)⊗n[n − 2k] of singular vectors of weight n−2k, which is invariant with 

respect to the Bethe algebra. This space is known to be cyclic with respect to the action of 

Gaudin Hamiltonians, and the algebra of Gaudin Hamiltonians is Frobenius, see [MTV1]. 

For k > 1, one cannot expect formula (1.1) to be literally satisfied, as the number of 

evaluation parameters in our family of algebras is smaller than the dimension of the algebra, 

but it turns out that there is an analogous formula which looks as follows. 

We have a natural spanning set of vectors {vI} ⊂ Sing(C2)⊗n[n−2k] labeled by k-element 

subsets I ⊂ {1,...,n}. The vectors {vI} are orthogonal projections of the standard tensor basis 

of (C2)⊗n[n − 2k]. We present two potential functions P and Q depending on nk variables

. We also introduce differential operators ∂I of order k, which 

involve derivatives with respect to the variables . Then the following holds. 

• The function P is a polynomial of degree 2k written as a sum, where up to a common 

constant, each term is a product of k factors of the form ( , see (4.2). It has the 
property 

(1.2) (vI,vJ) = ∂I∂JP ∀I,J. 

• The function Q is a sum of terms of the form ln( , where 

 is a term of P, see (4.6). It has the property 
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(1.3)  ∀I,J and m = 1,...,n. 

We call the functions P and Q the potentials of the first and second kind, respectively. 

Formula (1.2) describes the Shapovalov form in terms of derivatives of the potential of the 

first kind, and formula (1.3) describes the action of Gaudin Hamiltonians in terms of 

derivatives of the potential of the second kind. 

The existence of a polynomial P satisfying (1.2) is obvious, but the form of the answer 

seems to be interesting. The reason for existence of Q is not clear. It looks interesting that the 

potential of the first kind describing only the Shapovalov form is so closely related to the 

potential of the second kind which describes the action of the Gaudin Hamiltonians. 

Our construction is motivated by [V3, PV], where a Frobenius-like structure was 

introduced for a family of weighted hyperplane arrangements, in which every hyperplane 

independently moves parallelly to itself, see Theorem 2.1 below. It is well-known that the 

Gaudin model on SingW⊗n[n − 2k] is related to a certain family of weighted discriminantal 

hyperplane arrangements in Ck with hyperplanes depending on n parameters z1,...,zn, see [SV, 

V1, V2, TV]. These arrangements have nk+k(k−1)/2 hyperplanes and are symmetric with 

respect to permutations of coordinates in Ck. While this family of arrangements does not 

satisfy the assumptions of Theorem 2.1, we get enough insight to construct the potentials 

P and Q. 

We expect that potentials of the first and second kind exist for spaces of singular vectors in 

tensor products of slN vector representations, where the Bethe algebra is still generated by 

Gaudin Hamiltonians, see [MTV2]. 

In Section 2 we recall Frobenius-like structures related to arrangements of hyperplanes. In 

Section 3 we collect preliminary information. In Section 4 we introduce potentials and relate 

them to the Gaudin model. 

The authors thank the referee for the remark in Section 4.5. 

2. Crtitical points and arrangements of hyperplanes 

Algebras of functions on critical sets of functions produce families of Frobenius algebras as 

follows. Let Φ(t1,...,tk) be a holomorphic function on an open set D ⊂ Ck with finitely many 

critical points q ∈ D, 

 

One considers the finite-dimensional algebra of functions on the critical set, 

. 

The Grothendieck residue defines a nondegenerate bilinear form (, ) on A, 
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where Γ = . The algebra (A,(, )) is a Frobenius algebra. 

In singularity theory this algebra is called the Milnor algebra. 

This algebra of functions is especially interesting in the case when the starting function Φ 

is the master function of an arrangement of hyperplanes. On the one hand, the arrangements 

of hyperplanes lead to a simpler, more combinatorial setting. On the other hand, such 

algebras are known to be related to the algebras coming from quantum integrable systems 

and quantum cohomology, see for example [SV, V1, V2, MTV1, GRTV]. 

It turns out that the algebra of functions on the critical set of a master function of an 

arrangement has a Frobenius-like structure, which is determined by two potentials. 

Consider Ck with coordinates t1,...,tk and an arrangement C(z) of n hyperplanes in Ck 

depending on parameters z = (z1,...,zn). The hyperplanes Hi(zi) of the arrangement are defined 

by equations, = 0, where bji 
∈ C are fixed. If zi changes, the hyperplane 

Hi(zi) moves parallelly to itself. 

Fix positive numbers a = (a1,...,an) called the weights. The master function of the weighted 

arrangement (C(z),a) is the function 

. 

Denote Uz = Ck − C(z) the complement to C(z) and O(Uz) the algebra of regular functions on 

the complement Uz. Denote 

 

the algebra of functions on the critical set of the master function Φ(·,z) restricted to the 

complement Uz. Denote (, )z the Grothiendick residue form on Az. 

In the space Cn of parameters z there is a hypersurface Σ, called the discriminant, 

characterized by the property: if z ∈ Cn − Σ, then the arrangement C(z) has normal crossings 

only. We may compare the algebras Az for z ∈ Cn − Σ as follows. 

For i = 1,...,n the elements  generate Az as an algebra. We say that a 

subset {i1,...,ik} ⊂ {1,...,n} is independent if  = 0. For z ∈ Cn − Σ the 
elements di1,...,ikpi1 ···pik span Az as a vector space. 

The defining linear relations between the elements di1,...,ikpi1 ···pik are labeled by (k 

−1)element subsets {i1,...,ik−1} ⊂ {1,...,n}, 

. 



 FROBENIUS-LIKE STRUCTURE IN GAUDIN MODEL 5 

Hence the dimension dimC Az does not depend on z ∈ Cn − Σ. Consider the 

complex vector bundle 

A = ∪z∈Cn−ΣAz → Cn − Σ 

whose fiber over a point z ∈ Cn − Σ is the Frobenius algebra Az. Identifying the elements 

di1,...,ikpi1 ...pik in all fibers we trivialize the bundle. 

Theorem 2.1 ([V3, PV]). There exist two functions P, Q on Cn −Σ, called the potentials of the 

first and second kind, with the following properties. For any two independent sets 

{i1,...,ik},{j1,...,jk} and any index m = 1,...,n, we have 

. 

The potentials are given by some combinatorial formulas. 

The potential P of the first kind is a polynomial of degree 2k and hence all (pi1 

···pik,pj1 ···pjk)z are constants. 

The first formula determines the Grothendieck residue bilinear form (, )z in terms of the 

potential of the first kind. The second formula determines the operators of multiplication by 

multiplicative generators {pj}, j = 1,...,n, in terms of the potential of the second kind. 

This pair of potentials is called in [V3, PV] a Frobenius-like structure associated with the 

family (C(z),a) of weighted arrangements in Ck. 

Example 2.2 ([V3]). For k = 1 consider the arrangement of n points on line defined by 

equations t + zi = 0, i = 1,...,n, with weights a1,...,an. Then 

 , 

If a1 = ··· = an, then this Frobenius-like structure is the almost dual Frobenius structure 

associated with the Weyl group W(An−1) in [D2]. 

Example 2.3 ([PV]). For the arrangement of four lines on plane given by equations t2+z1 = 0, t2 

+ z2 = 0, t1 + z3 = 0, t1 + t2 + z4 = 0 we have 
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Theorem 2.1 in particular says that  and this does not 

depend on z ∈ Cn − ∆, and . 

In this example the potentials are sums of terms corresponding to subarrangements 

consisting of three or four lines, corresponding to triangles and trapezoids. It turns out that 

this is the general case. One introduces the notion of an elementary arrangement in Ck. The 

elementary subarrangements in C2 are triangles and trapezoids. An elementary arrangement 

in Ck has at most 2k hyperplanes. The potentials are sums, over all elementary 

subarrangements, of some explicit prepotentials of the elementary subarrangements, see 

[V3, PV] 

The fact that the potentials are sums of contributions from elementary subarrangements 

indicates a phenomenon of locality of Grothendieck residue bilinear form and multiplication 

on the algebra Az. We observe a similar locality property in the Gaudin model potentials, see 

formulas (4.2) and (4.6). 

On Frobenius-like structures see also [HV, V4]. 

3. Shapovalov form 

Let n,k be positive integers. 

3.1. Space of singular vectors. Consider the complex Lie algebra sl2 with generators e,f,h and 

relations [e,f] = h, [h,e] = 2e, [h,f] = −2f. Consider the complex vector space W with basis w1,w2 

and the sl2-action, 

. 

The sl2-module W⊗n has a basis labeled by subsets I ⊂ {1,...,n}, 

VI = wi1 ⊗ ··· ⊗ win, 

where ij = 1 if ij ∈/ I and ij = 2 if ij ∈ I. 

The Shapovalov form (, ) on W⊗n is the symmetric bilinear form such that (VI,VJ) = δIJ. It has 

the properties: (hx,y) = (x,hy), (ex,y) = (x,fy) for all x,y ∈ W. 

Consider the weight decomposition of W⊗n into eigenspaces of  

2k]. The vectors VI with |I| = k form a basis of W⊗n[n − 2k]. Define the space of singular vectors 

of weight n − 2k, 

SingW⊗n[n − 2k] = {w ∈ W⊗n[n − 2k] | ew = 0}. 
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This space is nonempty if and only if n > 2k. We assume that n > 2k. 

3.2. Orthogonal projection. Let 

(3.1) π : W⊗n[n − 2k] → SingW⊗n[n − 2k] 

be the orthogonal projection with respect to the Shapovalov form. The kernel of the 

projection is the image of the operator 

f : W⊗n[n − 2(k − 1)] → W⊗n[n − 2k]. 

For a k-element subset I ⊂ {1,...,n} denote 

(3.2) vI = π(VI) ∈ SingW⊗n[n − 2k]. 

There are  vectors vI in the -dimensional space SingW⊗n[n − 2k]. The defining 

linear relations between these vectors are labeled by (k −1)-element subsets K and have the 

form 

X 

vK∪{m} = 0. 
m6∈K 

Clearly the vector vI has the form 

vI = VI + bk−1X fVK + bk−2X fVK + ··· + b0X fVK, k−1 k−2 0 

where b` are suitable numbers, and P` is the sum over all (k − 1)-element subsets K such that 

|I ∩ K| = `. 

Lemma 3.1. We have 

 , 

Proof. The property evI = 0 produces the following system of equations: 

1 + bk−1n + bk−2(k − 1)(n − k) = 0, 

b`+1(k − `)(k − ` − 1) + b`(k − `)(n − 2k + 2` + 2) + b`−1`(n − 2k + ` + 1) = 0 

for ` = 0,...,k − 2. This system implies 

 , 

and hence (3.3).  

Clearly vI has the form: 
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vI = akVI + ak−1Xk−1VJ + ak−2Xk−2VJ + ··· + a0X0VJ, 

where a` are suitable numbers, and P` is the sum over all k-element subsets J such that |I ∩ J| 

= `. 

Lemma 3.2. We have 

 , 

Proof. Let K be a (k−1)-element subset. The condition (fVK,vI) = 0 produces the following 

system of equations. If |K ∩ I| = `, where ` = 0,1,...,k − 1, then 

(k − `)a`+1 + (n − 2k + ` + 1)a` = 0. 

This system has the solution 

(3.5)  . 

It is easy to see that a0 = kb0. Thus 

 , 

and formula (3.4) for any ` follows from formula (3.5).  Example 3.3. For k = 1 we have 

 . For k = 2 we have 

 . 

Lemma 3.4. Let I,J be two k-element subsets such that |I ∩ J| = `. Then 

(3.6) (vI,vJ) = (vI,VJ) = a` . 

 
The following formulas are useful: 

(3.7)  

` = 1,...,k. 
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3.3. Remark. One may show that the orthogonal projection π : W⊗n[n−2k] → SingW⊗n[n− 2k] 

has the following locality property with respect to the number n of tensor factors. 

Consider the orthogonal projection π2k : W⊗2k[0] → SingW⊗2k[0] and the image 

of the vector 

. 

For any k-element subset J ⊂ {k + 1,...,n}, let ( ] be the vector 

 placed in the tensor factors of W⊗n with indices {1,...,k} ∪ J ⊂ 

{1,...,n}, and with the vectors w1 staying in other factors of W⊗n. Then the vector v{1,...,k} ∈ 

SingW⊗n[n − 2k], defined in (3.2), equals the sum   up to a multiplicative 
constant. 

For example, for k = 1 we have 

, 

The locality property of potential functions in formulas (4.2) and (4.6) is of similar flavor. 

4. Potentials 

4.1. Potential of the first kind. Potentials of the first and second kind are function of nk 

variables 

. 

For every k-element subset I = (i1,...,ik) ⊂ {1,...,n} define the differential operator 

. 

Recall that n > 2k. Let) be a sequence of nonintersecting 

unordered two-element subsets of {1,...,n}. Denote by A the set of all such sequences. The 

number of elements in A is given by the formula: 

 . 

For every α = ({p1,q1},...,{pk,qk}) ∈ A define 
k 

(4.1) Pα(z) = Y(zp(ii) − zq(ii))2. 

i=1 

Define the potential of the first kind P(z) by the formula 
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 . 

Theorem 4.1. For any two k-element subsets I and J we have 

(4.3) (vI,vJ) = ∂I∂JP(z). 

Proof. It is enough to prove this formula for I = {1,2,...,k} and 

J = {1,2,...,`,k + 1,k + 2,...,2k − `}, where ` = 0,1,...,k. It is easy to see that in this 

case 

 

The number  is nonzero only if α has the following form, 

α = ({1,q1},{2,q2},...,{`,q`},{` + 1,σk+1),{` + 2,σk+2},...,{k,σ2k−`}}, 

where (q1,q2,...,q`) is an ordered subset of {2k − ` + 1,2k − ` + 2,...,n} and 

(σk+1,σk+2,...,σ2k−`) is a permutation of (k + 1,...,2k − `). 
There are (n−2k +`)(n−2k +`−1)...(n−2k +1)(k −`)! such sequences α. For every such α, we 

have . To prove the theorem it is enough to check that 
`−1 

a` = c1 k!(−1)k−` 2k (k − `)! Y(n − 2k + 1 + i). 
i=0 

This follows from formulas (3.4) and (4.2).  

4.2. Gaudin model. Define the Casimir element 

 . 

Define the linear operators on W⊗n depending on parameters u = (u1,...,un), 

 

where Ωmj : W⊗n → W⊗n is the Casimir operator acting in the mth and jth tensor factors. The 

operators Hm(u) are called the Gaudin Hamiltonians. The operators are symmetric and 

commute, 

 (Hm(u)x,y) = (x,Hm(u)y) ∀x,y ∈ W⊗n, [Hm(u),Hj(u)] = 0 ∀ m,j. 

The operators commute with the sl2-action on W⊗n and hence preserve every W⊗n[n − 2k] 

and SingW⊗n[n − 2k]. The operators commute with the orthogonal projection π defined in 

(3.1), πHm(u) = Hm(u)π. 
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The algebra of endomorphisms of SingW⊗n[n−2k] generated by the scalar operators and 

the Gaudin Hamiltonians is called the Bethe algebra of SingW⊗n[n − 2k]. 

Introduce the reduced Casimir element and reduced Gaudin Hamiltonians, 

 ,  

The reduced Gaudin Hamiltonians are symmetric, commute, and generate together with 

scalar operators the same Bethe algebra as the Gaudin Hamiltonians. 

Lemma 4.2. Consider Ω¯ as a linear operator on W⊗2. Then Ω =¯ P − 1, where P is the 

permutation of tensor factors and 1 is the identity operator.  

Hence 

(4. 4), if m ∈ I, 

if m /∈ I. 

In (4.4) the vectors VI,VI∪{j}−{m},VI∪{m}−{j} can be replaced with vI, vI∪{j}−{m}, vI∪{m}−{j} since the 

operators H¯
m(u) commute with the orthogonal projection π. 

The reduced Gaudin Hamiltonians are governed by a potential function of the second kind. 

4.3. Potential of the second kind. For every α = ({p1,q1},...,{pk,qk}) ∈ A define 
k 

(4.5) Qα(z) = ln(zp(1)1 − zq(1)1 )Y(zp(ii) − zq(ii))2. 
i=1 

Define the potential of the second kind Q(z) by the formula 

(4.6) 

. 

The following theorem describes the action of the reduced Gaudin Hamiltonians on the 

space SingW⊗n[n − 2k] in terms of derivatives of the potential of the second kind. Theorem 

4.3. Let I,J be two k-element subsets of {1,...,n} and m ∈ {1,...,n}. Then 
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(4.7) . 

Proof. We prove the theorem by an explicit computation based on the simple fact that any 

derivative of order 2k of any term Qα in (4.5) with respect to various variables zi(j) equals a 

constant multiple of ln(  ) (which can be zero) plus a constant. 

Assume that m /∈ I ∪ J and |I ∩ J| = `, ` = 0,...,k. Under this assumption, without loss of 

generality we may assume that I = {1,...,k}, J = {1,...,`,k + 1,...,2k − `}, and m = n. Then 

 . 

If I = {1,...,k}, J = {1,...,`,k + 1,...,2k − `}, m = n, then 

) is nonzero only if α has the following form, 

α = ({p1,n},{p2,q2},...,{pk,qk}), where 

(i) p1 ∈ {1,...,`}; 

(ii) the sequence (p2,...,pk) is a permutation of the sequence (1  

(the sequence (p2,...,pk) determines a partition of (2,...,k) into two subsequences: (i1 < 

··· < i`−1) such that all pir 6 ` and (j1 < ··· < jk−`) such that all pjr > `, these subsequences 

are used below); 

(iii) the sequence (qi1,...,qi`−1) is an ordered (` − 1)-element subset of {2k − ` + 

1,..., n − 1}; 

(iv) the sequence (qj1,...,qjk−`) is a permutation of the sequence (k + 1,...,2k − `). 

The number of such α with fixed p1 equals ( ). For every 

such α, 

. 

It follows from (3.4) and (4.6) that 

(4.8) 
, 

and (4.7) holds in this case. 

Assume that m belongs to I but not to J and |I ∩ J| = ` − 1, ` = 1,...,k. Under this assumption, 

without loss of generality we may assume that I = {1,...,k}, J = {2,...,`,k+ 

1,...,2k − ` + 1}, and m = 1. Then 
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. 

If I = {1,...,k}, J = {2,...,`,k + 1,...,2k − ` + 1}, m = 1, then 

) is nonzero only if α has the following form, 

), where 

(i) q1 ∈ {k + 1,...,2k − ` + 1}; 

(ii) the sequence (p2,...,pk) is a permutation of the sequence (2,...,k) 

(the sequence (p2,...,pk) determines a partition of (2,...,k) into two subsequences: (i1 < 

··· < i`−1) such that all pir 6 ` and (j1 < ··· < jk−`) such that all pjr > `, these subsequences 

are used below); 

(iii) the sequence (qi1,...,qi`−1) is an ordered (`−1)-element subset of 

{2k−`+2,...,n}; (iv) the sequence (qj1,...,qjk−`) is a permutation of the sequence 

( 2k − ` + 1). 

The number of such α with fixed p1 equals ( ). For every 

such α, 

 . 

It follows from (3.4) and (4.6) that 

, 

and (4.7) holds in this case. 

Assume that m belongs to I ∩ J and |I ∩ J| = `, ` = 1,...,k. Under this assumption, without loss 

of generality we may assume that I = {1,...,k}, J = {1,...,`,k+1,...,2k−`}, and m = 1. Then 

 . 

If I = {1,...,k}, J = {1,...,`,k + 1,...,2k − `}, m = 1, then 

) is nonzero only if α has the following form, 

(i) q1 ∈ {2k − ` + 1,...,n}; 

(ii) the sequence (p2,...,pk) is a permutation of the sequence (2,...,k) 

(the sequence (p2,...,pk) determines a partition of (2,...,k) into two subsequences: (i1 < 

··· < i`−1) such that all pir 6 ` and (j1 < ··· < jk−`) such that all pjr > `, these subsequences 

are used below); 
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(iii) the sequence (qi1,...,qi`−1) is an ordered (`−1)-element subset of , 

...,n}; 

(iv) the sequence (qj1,...,qjk−`) is a permutation of the sequence (k + 1,...,2k − `). 

The number of such α with fixed q1 equals ( ). For every 

such α, we have 

. 

It follows from (3.4) and (4.6) that 

, 

and (4.7) holds in this case. Theorem 4.3 is proved.  

4.4. Example. For k = 1, we have 

, 

and Theorem 4.3 takes the following form. 

Theorem 4.4. Let i,j,m ∈ {1,...,n}. Then 

(4.9) . 

Compare these formulas with formulas of Example 2.2. 

4.5. A relation between P and Q. 

Theorem 4.5. Let I,J be two k-element subsets of {1,...,n}. Then 

(4.10) . 

Proof. The theorem follows from formulas (4.1) and (4.5) for functions Pα(z) and Qα(z) and 

the identity (   

Corollary 4.6. The operator  restricted to SingW⊗n[n−2k] is the scalar 

operator of multiplication by −k(n − k + 1). 

Proof. Equation (4.10) can be written as 

. 

Notice that c2/c1 = −k(n − k + 1). This implies the corollary.  
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Remark. Corollary 4.6 also follows from the representation theory. Indeed, 

, 

where 

C = h2/2 + ef + fe 

is the Casimir element acting on the tensor product of representations and 

Cm = (hm)2/2 + emfm + fmem 

is the Casimir element acting on the m-th tensor factor of the tensor product. On the subspace 

SingW⊗n[n − 2k] of singular vectors of weight n − 2k, the operator C acts as the scalar operator 

of multiplication by (n − 2k)(n − 2k + 2)/4, and each Cm acts as the scalar operator of 

multiplication by −3/4, so that  ) acts as the scalar operator of 

multiplication by 

(n − 2k)(n − 2k + 2)/4 − 3n/4 − n(n − 1)/4 = −k(n − k + 1). 
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