
Scalable Wireless Anomaly Detection with
Generative-LSTMs on RF Post-Detection Metadata

Barnes-Cook, Blake
Electrical and Computer Engineering

Virginia Polytechnic Institute
Arlington, Virginia

blakepc7@vt.edu

O’Shea, Timothy
Electrical and Computer Engineering

Virginia Polytechnic Institute
Arlington, Virginia

oshea@vt.edu

Abstract—Signal anomaly detection is commonly used to de-
tect rogue or unexpected signals. It has many applications in
interference mitigation, wireless security, optimized spectrum
allocation, and radio coordination. Our work proposes a new
method for anomaly detection on signal detection metadata
using generative adversarial network output processed by a long
short term memory recurrent neural network. We provide a
performance analysis and comparison to baseline methods, and
demonstrate that through the usage of metadata for analytics, we
can provide robust detection, while also minimizing computation
and bandwidth, and generalizing to numerous effects which
differs from many prior works that focus on A.D. based signal
processing on the raw RF sample data.

Index Terms—Signal Processing, Anomaly Detection, Wireless,
Elasticsearch, Metadata, Omnisig, Sensing, RF, Analytics, Edge
Intelligence, Wireless Security

I. INTRODUCTION

Wireless systems surround the modern world, connecting
personal computing devices with cellular and WiFi technolo-
gies, personal devices with Bluetooth, emergency responders
and infrastructure communications such as GMR, broadcast
radio and television, telemetry and communications for air
and ground vehicles, localization and timing measurement via
GNSS systems, radar systems for safety and guidance, IoT
systems for control of countless infrastructure devices, and
near endless list of other such systems which share the radio
spectrum and operate critical functions within our physical
world.

Changes and disruptions to these wireless systems often
underlie a wide range of physical-world events, disruption,
or phenomena which hold valuable information for analysis,
safety, optimization, and other applications. Today, informa-
tion sources such as social media, traffic systems, camera
systems, etc are already analysed for valuable real world event,
trend, and safety information, but are limited in their scope
of raw information available. Due to the physical broadcast
nature of wireless propagation and to the pervasiveness of
wireless systems around us, activity in the spectrum has a
rich set of information about nearby physical events and
activity which is largely untapped today. Largely this has been
due to the practicality and technical complexity in providing
such analytics across a wide range of raw spectrum data and
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today. Because each wireless system typically uses a different
protocols, physical layers and access scheme, analytics used
today are often narrowly focused on one band, technology, or
protocol.

Advances in machine learning’s ability to detect and analyse
a wide range of radio access technologies and events from
raw radio time-series data however is rapidly transforming the
feasibility, speed, and cost associated with such wide spectrum
analytics. To this end, we focus in this work anomaly and
change detection over large time periods on a variety of spec-
trum bands. Specifically, we employ a signal detection edge-
processing node, and leverage a large Elasticsearch database
to summarize long-time periods of metadata describing signal
emissions.

We focus on the task of providing robust anomaly detection
on post-signal-detection metadata in order to rapidly identify
changes, novel behaviors, or unexpected events within the
pattern of life of diverse nearby wireless systems. We employ
a generative model approach, using recurrent neural networks
to identify unrecognized patterns on the model outputs and
associated sequenced metadata. We focus on several novel
datasets with labeled anomalies from nearby wireless systems
and evaluate performance in terms of precision, recall, AUC
metrics, and attained F1 score.

II. BACKGROUND

A high level diagram is shown in figure 1 which illustrates
how a software defined radio (SDR) is used to capture raw
digital RF representing activity of a variety of wireless users
and emitters, how a wireless activity recognition software
is used to extract event summarization from these high
rate data streams, and finally how activity change detection
and anomaly detection can be conducted on these summary
streams in order to recognize events and underlying real world
phenomena.

A. Software Radio

Software radios have been widely used as general purpose
front-ends to allow capture of raw radio timeseries data,
and to move application or protocol specifics into software
implementation on a range of computing platforms. While
many SDR platforms may be used for this approach, we
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Fig. 1: High level architecture for RF anomaly and change detection.

primarily use a USRP 1 B200 mini for our work, which
constrains us to instantaneous capture of around 40 MHz ( 1.3
GBits) of digital RF data between 100 MHz and 6 GHz over
the USB3 bus.

B. High Speed RF Event Recognition

While not the primary focus of this work, event recognition
on wideband digital RF data-streams has been a rapidly
evolving area of applied research and practice in recent
years. Recent competitions such as [1] have explored optimal
algorithmic approaches to detecting and classifying RF events
in high rate I/Q data-streams and provided open datasets to
advance research in this area. Approaches from computer
vision and other object recognition domains have been adapted
and specialized for this task and can use performant con-
volutional neural network architectures to provide fast and
accurate edge summarization of high rate datastreams into
compact metadata formats. This is an important enabler for
wireless anomaly detection as heterogeneous, fast, efficient,
and accurate wireless signal detectors have often been im-
practical previously. The latest generation has seen speedups
over 100x in recent years using DL based approaches and has
gained significant sensitivity often of over 8dB compared with
prior approaches such as naive energy detection. [2]. Enabling
efficient summarization of RF activity at scale is a powerful
enabler for intelligent behavior of spectrum access systems in
the future.

C. RF Anomaly & Change Detection

Detection of changes in spectrum activity or anomalous
signal behaviors which deviate from a normal pattern of life,
are often key events of interest. For example disappearing

1https://www.ettus.com/all-products/usrp-b200mini-i-2/

cell-tower signals, appearance of new unauthorized cellular
signals, immediate surges or dips in traffic on push-to-talk
(PTT) or ground mobile radio (GMR) networks, or activity
on new channels, are all high-level spectrum events which
hold significant real-world meaning and may warrant changes
or reactions in wireless network configurations, spectrum en-
forcement actions, or other real world reactions. Deriving these
high level detections from a post-detection metadata stream
is an appealing approach because it allows for scale and the
fusion of many sensors, limiting the bandwidth requirements,
storage requirements, and distributing computing to make use
of edge processing efficiently. A number of prior works have
looked at wireless anomaly detection as a specific short-time
task on the highly computationally complex task of processing
full-rate input baseband radio signals, such as in [3], [4],
[5]. These approaches have demonstrated promising results,
but also seem to scale in complexity per-sensor and per-
sample rate in a largely unmanageable way, requiring raw
radio sample data in order to perform baseline and out-of-
distribution detection, limiting their viability or scale for fusing
inputs and requiring significant edge-computation to deploy to
single sensors.

III. THE PROBLEM

Here, we focus on the problem of robust anomaly detection
and change detection in post detection RF emission metadata
datasets, where a single application agnostic signal detection
and classification engine is deployed to the edge which is opti-
mized for efficiency and wideband RF activity summarization
to metadata. Here, as shown in figure 1, a front-end radio or
SDR is used to obtain a wide range of radio frequency bands,
is processed by a wireless emission or activity detections, and
then an anomaly or change detection module is used to further
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TABLE I: Anomaly Datasets.

Dataset Format Training Set Testing Set

Dataset Name Anomaly Type Signal Types Sample Duration Training Samples Normal Samples Anomalous Samples

Energy Feature LTE 30 seconds 10240(3.5 days) 8(4 min) 2(1 min/1,056 anom. signals)
SNR Feature LTE 30 seconds 10240(3.5 days) 10(5 min) 2(1 min/336 anom. signals)

TimeOfDay Feature LTE 30 seconds 10240(3.5 days) 10(5 min) 2(1 min/240 anom. signals)
Bandwidth Position FM 30 seconds 10240(3.5 days) 8(4 min) 2(1 min/66 anom. signals)

Hopper Position FM + DMR 30 seconds 10240(3.5 days) 15(7.5 min) 75(32.5 min/185 anom. signals)
LowerP25 Dip P25 30 seconds 10240(3.5 days) 90(45 min) 90(45 min of reduced signals)

NoP25 Dip P25 30 seconds 10240(3.5 days) 90(45 min) 90(45 min of no signals)
NoLTE Dip LTE 30 seconds 10240(3.5 days) 90(45 min) 90(45 min of no signals)

analyse the distributions of raw detections from one or more
sensors and performs the role of identifying which emissions
are out-of-distribution, anomalous, or present large significant
changes of interest. Our focus in this work is to develop a
highly effective machine learning model for detection of out-
of-distribution activity in this post-detection signal activity
metadata and in some cases to perform change detection or
detection of changes in underlying signal anomalies which
change the temporal behavior of these signals in the post
detection signal metadata. In table I we outline a number
of real world wireless anomalies of interest which we focus
our approach on, which represent a range of changes in
signal characteristics across cellular and GMR spectrum bands
including changes such as received signal strength, signal
quality, signal activity over time, carrier presence or absence
and a range of other anomalies which such a general purpose
signal metadata anomaly detection engine should be able to
rapidly flag on a wide range of bands and locations.

IV. REPRESENTING METADATA

Recently the Signal Metadata Format (SigMF) [6] has been
widely adopted as an open source standard for storage of
both raw RF data with annotations and metadata, as well as
for pure metadata only storage of descriptions of signals or
RF environments. We use this format to store and process
metadata acquired from sensors. These records are stored both
in pure JSON file formats and an Elasticsearch database.

A. JSON File

In this format, SigMF records are stored in groups according
to the time the sensor recorded the signals. In order to analyze
each signal in the JSON file each group needs to be read
and parsed. Due to this inability to filter, each dataset in this
format is meant to be used as standalone training scenario.
These datasets are useful for quick model validation as they
can be heavily compressed and shared. Sharing these files as
output from sensors is not feasible.

B. Elasticsearch Database

Each signal is stored separately in the Elasticsearch
database. The nature of Elasticsearch allows the querying
of data from any time period with filters corresponding to
channels. New signal data can also be sent to a particular
index, updating the dataset in real time. This allows training

and testing on live data with any combination of channels,
bandwidth filters, and sensor selection. Querying Elasticsearch
does require more throughput and computational overhead
than the JSON file based approach.

V. ANOMALY TYPES AND ASSOCIATED DATASETS

To perform testing on the models, we prepared several
different datasets containing various types of anomalies. These
datasets are derived from a base dataset of 17.5 million signals
captured over a period of 7 days. In this case, ground truth
background data is used from real world recordings, while in
each case a form of synthetic anomaly is added to this data
to ensure known ground truth. Table I describes each dataset
with the anomalous feature generated, associated anomaly
type, anomalous signal type, duration of each sample, total
amount of training samples, total benign testing samples, and
anomalous testing samples with the total amount of anomalous
signals across the samples.

A. Feature Based Anomalies

Feature based anomalies add signals to a specific time
period that have anomalous feature values compared to the
rest of the dataset. These features are anything that the sensor
can detect and note in the SigMF entry. Anomaly examples
include abnormally high signal to noise ratio, high receive
signal strength, signals occurring at a strange time of day, or
variations in the confidence of the type of signal detected.

B. Position Based Anomalies

Position based anomalies are similar to feature based
anomalies, though differ in that the only anomalous features
are changes in either signal bandwidth and frequency (i.e. they
have moved in their spectral location). This may occur for
instance if a radio changes its rate or bandwidth configuration,
or a signal appears at a new frequency or channel location,
or hops over multiple frequencies or locations. Detection is
treated somewhat different for these types of anomalies as a
2D density feature is produced in order to aggregate windows
of detections for some time interval.

C. Dip Based Anomalies

Dip based anomalies feature a reduction or complete ab-
sence in observations of certain signals during anomalous time
periods. Signal features generally remain constant (e.g. RSSI,
SNR, BW), however observation frequency or present dips
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Fig. 2: Normalization Result of Preprocessing for LSTM
GAN.

to abnormal levels indicating the disappearance, failure, or
reduction in activity from a certain radio emitter.

VI. ANOMALY DETECTION METHODS

We train and test models using the Pytorch Lightning
[7] software platform. Our Pytorch datasets are customized
for this application and models are designed to retrieve and
process specific frequency bands, sensors, and time periods
within an Elasticsearch database containing numerous sensors
across numerous bands spanning months of metadata signal
detection and classification data. Additionally, some subsets
of these records have been annotated with ”known” anomalies
of various types within the data, which correspond to a variety
of types of anomalous RF activity within these datasets.

A. Adversarial Dual Autoencoder with LSTM Based Scoring

1) Preprocessing & Features: Preprocessing begins by
computing a two dimensional density feature vector of signals
in a 400x500 shape with signal bandwidth and signal center
frequency as the axes for each channel. Bandwidth is binned
using a logarithmic bin spacing to fit max bandwidth while
maintaining resolution while frequency is linearly binned and
limited to a minimum and maximum value appropriate for the
dataset and band. Density functions are evaluated here over
30 second time windows, however other time resolutions are
possible. Density reflects the total on-time of each bin over
that window or interval. Density values are normalized with a
minimum of 0.5, and a maximum of 1.0, while bins that do
not have any signal values remain at zero. Figure 2 shows the
normalization result of a particular time segment.

Because thousands of these density functions or equivalent-
images are required in order to train the model, the dataset
quickly becomes too large to initialize at our desired resolution
and time period. It can be seen in figure 2, each image consists
of mostly zeros post-normalization. We therefore leverage
sparse tensors to store and represent the data, and to decrease
data storage by several orders of magnitude. This allows us to
download and initialize datasets of over 7 days of raw SigMF
emission data extremely rapidly and with significant storage,
memory and bandwidth reductions vs the full density functions

and even more so the original digital signal rate by many
orders of magnitude.

2) Model Architecture : The GAN portion of this network
is based on a adversarial dual autoencoder (ADAE) approach
which is shown to be very effective in detecting anomalous
regions within brain MRIs in density distributions or images
[8]. In this model, the image is first passed through the gen-
erator and discriminator autoencoders (i.e. the ADAE). Image
features and regions that are recognized (i.e. in-distribution)
from training process are present in the output of the ADAE,
while out of distribution unexpected features are excluded
from this reconstruction. The output is then evaluated based
on the known populated indices of the input data, sorted by the
lowest value. For 10 of the lowest values, a kernel of size 3x3
is extracted from the ADAE output image centered around the
values. This is then compiled into a list to pass into a recurrent
LSTM portion of the network, which will memorize temporal
patterns of the extracted kernels or modes and map them to
index values during training. While testing, the outputs of the
LSTM are compared with the correct indices, and the MSE of
the difference is used as the index anomaly score.

The goal of this network is to identify areas of the ADAE
output that were expected to be reconstructed but were not.
Given that both the input and output are sparse, using a basic
loss function such as MSE directly on the full-dimension
2D density input and output vectors does not yield a useful
anomaly score, which motivates this index based approach.

B. Feature Based Anomaly Detection using LSTM

1) Preprocessing : Preprocessing for the feature based
anomaly model first involves determining which features
(RSSI, SNR, energy estimate, etc.) to include from the dataset.
Selected features are then averaged for all signals in the
analyzed time period for each channel (LTE, FM, etc.). If
a given channel has captured no signals in the time period
selected, all features in the associated array will have a value
of 0.

Since this data only includes a set number of features for
each time period analyzed, it does not benefit from sparse
tensors. This data also takes up significantly less space than
the LSTM GAN dataset.

2) Model Architecture : This network is composed of a
single LSTM layer that predicts the average of each feature
for a specific time period. The feature arrays of 9 previous
time windows are compiled into a list and processed by the
LSTM layer. The output is a predicted feature array that is
compared with the retrieved feature array of the current time
period. Each feature is individually evaluated using MSE to
create an anomaly score for that feature.

This model was designed to work in conjunction with the
LSTM GAN. Due to the normalization process required by the
ADAE network, some details of the data would be lost (e.g.
low intensity modes in the distribution) and anomalies such as
the absence of modes which are deemed to be regular in the
input. This would make the network effectively blind to many
feature changes, such as those represented in the dip based
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Fig. 3: Architecture for the LSTM GAN.

Fig. 4: Architecture for Feature LSTM.

anomaly datasets or when a signal which is regularly present
disappears suddenly. This network then detects changes in
features in such cases.

VII. EXPERIMENTS

Both the LSTM GAN based model and the LSTM Fea-
ture based model were trained concurrently for each dataset.
Training was performed for the results shown on 3 days of
baseline emission data prior to the anomalous time-period
and occurred for 100 epochs with a training/validation data

split of 75/25 across an 8 GPU system. Once fully trained,
the network is evaluated through the anomalous region in
30 second time intervals, recording anomaly scores for each
time period. A post-processing method was used to then
select an optimal threshold that produced the highest F1 score
performance. Precision, Recall, ROC curves, and F1 scores
were then generated using the anomaly threshold utilizing the
scikit-learn [9] library.

VIII. RESULTS

Results for anomaly detection performance of the proposed
network approach are shown in table II. For each dataset
and/or type of anomaly, the index anomaly score generated
by the LSTM GAN can be seen. The best performing feature
score sourced from the LSTM feature based model is also
shown for each dataset, along with the feature used to gen-
erate the score values. Performance is shown using Precision,
Recall, F1 Score, and the area under the ROC curve. The
anomaly threshold used to generate the results is also listed
for each score, which varies to some degree based on type of
anomaly and band.

In each case recall is excellent for nearly all datasets for
the LSTM GAN, while precision is fairly low for some. This
conforms with the intended use of this network to identify
suspicious sections or RF events which are out of distribution,
while ignoring normal occurrences in the normal RF emission
distribution. The downside of this approach is the incorrect
classification of normal signals. An ensemble approach that
factors in output from both networks could be used to further
reduce false positives and improve performance.
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TABLE II: LSTM GAN and Feature LSTM Performance

Dataset LSTM GAN Feature LSTM

Precision Recall F1score AUC Threshold Feature Type Precision Recall F1score AUC Threshold
Energy(LTE) 1.0 1.0 1.0 1.0 10130.33 Confidence 1.0 1.0 1.0 1.0 0.07
SNR(LTE) 0.25 1.0 0.4 0.7 8333.17 SNR Estimate 1.0 1.0 1.0 1.0 4.47

TimeOfDay(LTE) 0.67 1.0 0.8 0.95 11699.62 Count 1.0 1.0 1.0 1.0 6.31
Bandwidth(FM) 0.33 1.0 0.5 0.75 22.24 Confidence 1.0 0.5 0.67 0.75 0.04

Hopper(FM) 0.51 1.0 0.68 0.5 3.70 RSSI 0.51 0.93 0.66 0.49 0.06
Hopper(DMR) 0.51 1.0 0.68 0.5 52.77 Confidence 0.46 0.69 0.56 0.45 0.01
LowerP25(P25) 0.87 0.82 0.86 0.86 176.25 Count 0.51 0.95 0.67 0.51 0.24

NoP25(P25) 0.87 0.85 0.86 0.85 186.14 Confidence 0.78 0.85 0.81 0.80 0.05
NoLTE(LTE) 0.51 1.0 0.67 0.50 146.44 Count 0.87 0.85 0.86 0.86 16.83

IX. FUTURE WORK

Numerous opportunities remain for future work in this area,
which has been relatively lightly explored in the past. These
include feature space and representations conveyed from the
signal detection and classification engine up front, representa-
tions of the sparse signal detection data and time-windowed
density functions thereon, network architectures for out-of-
distribution detection and temporal change detection thereon,
as well as methods for per-band calibration and detection
optimization on the metrics detected from such a system.

In this work, we observed that threshold selection per-band
and in some cases per-anomaly type could produce excellent
precision while preserving recall. However, more work is
needed to automate this process without confirmed supervised
anomaly training on new bands and without known anomaly
classes. Further, expanding the approach proposed here to
combined multiple anomaly scores to identify an individual
anomalous signal or event in each time-window or interval is
also a major focus in future work which could significantly
improve future accuracy.

Our future work also includes deployment of this anomaly
detection for streaming, real-time inference and detection on
live data – to this end, we are extending a version of this model
to subscribe to live Elasticsearch index data to provide real-
time predictions of anomalous or out-of-distribution events in
RF detection metadata feeds. Using this approach, it is also
possible to scale rapidly to numerous sensors and bands as they
are deployed in volume without unmanageable bandwidth or
computational burdens. This will allow real-time RF anomaly
and change-detection monitoring of numerous bands in mul-
tiple locations using a decentralized sensor model as well as
a distributed data and processing model.

X. CONCLUSION

Broad-spectrum monitoring of numerous wireless commu-
nications technologies is an extremely nontrivial task, es-
pecially when scalability, generality, and efficiency are key.
Using multiple software defined radios paired with a wireless
signal detectors to identify and summarize wireless activity
into signal metadata has opened up several new avenues of
monitoring and detection, allowing for extensive analysis and
processing on high level signal behaviors across a range of
technologies. By leveraging this class of post-detector signal

detection and summarization metadata in a large scale platform
such as we used in Elasticsearch and our proposed model,
it is now feasible to analyze extremely large volumes of RF
emission activity across several channels or bands from various
a range of unique locations in real-time. This provides a sig-
nificant novel benefit to traditional wireless anomaly detection
methods previously explored using raw RF timeseries data, as
it allows for significantly more scale in the number of sensors,
types of anomalies, time-scale which can be digested, and
practicality of deployment and usage for real world systems.
Overall, we believe this class of approach has demonstrated
impactful initial performance results for a relatively new task
which was previously intractable, and does so in a scalable
and efficient way which provides significant value in terms
of alerting on important events. Significant room remains for
refining the approach, as this is a relatively new deployment
model, however we believe these results represent a strong
baseline approach for this task demonstrating its value and
feasibility.
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