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Abstract. It is known that solutions of the KZ equations can be written in the form of
multidimensional hypergeometric integrals. In 2017 in a joint paper of the author with
V.Schechtman the construction of hypergeometric solutions was modified, and solutions of the
KZ equations modulo a prime number p were constructed. These solutions modulo p, called
the p-hypergeometric solutions, are polynomials with integer coefficients. A general problem
is to determine the number of independent p-hypergeometric solutions and understand the
meaning of that number.

In this paper we consider the KZ equations associated with the space of singular vectors of
weight n-2r in the tensor power W®n of the vector representation of sl.. In this case the
hypergeometric solutions of the KZ equations are given by r-dimensional hypergeometric
integrals. We consider the module of the corresponding p-hypergeometric solutions,
determine its rank, and show that the rank equals the dimension of the space of suitable square
integrable differential r-forms.
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1. Introduction

The Knizhnik-Zamolodchikov (KZ) equations is a system of differential equations for
conformal blocks in conformal field theory, see [KZ]. Versions of KZ equations appear in
mathematical physics, representation theory, enumerative geometry, algebraic geometry,
theory of special functions, see for example [EFK, MO, B].

It is known that solutions of the KZ equations can be written in the form of
multidimensional hypergeometric integrals, see [SV1]. Relatively recently, the construction
of these hypergeometric solutions was modified, and solutions of the KZ equations modulo a
prime number p were constructed in [SV2]. These solutions modulo p, called the p-
hypergeometric solutions, are vector-valued polynomials with integer coefficients. The
general problem is to understand how these polynomials reflect the remarkable properties
of the KZ equations and their hypergeometric solutions.

In this paper we address the particular problem to determine the number of independent
p-hypergeometric solutions and understand the meaning of that number. We consider the KZ
equations associated with the space of singular vectors of weight n — 2r in the tensor power
W ®n of the vector representation of slz. In this case the hypergeometric solutions of the KZ
equations are given by r-dimensional hypergeometric integrals. We consider the module of
the corresponding p-hypergeometric solutions, determine its rank, and show that the rank
equals the dimension of the space of suitable square integrable differential r-forms.

The KZ equations depend on a parameter q € C*. In this paper we assume that g is a prime
number less than p, and the pair (p,q) satisfies certain conditions (the pair is of type 1).

On p-hypergeometric solutions and, more generally, on the solutions of the KZ equations
modulo pssee [SIV, V4, V5,V6,V7,V8, VZ1, VZ2].

In Section 2 we define the KZ equations, recall the construction of solutions in the form of
hypergeometric integrals and the construction of p-hypergeometric solutions. We also
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introduce the module of p-hypergeometric solutions. The main result of the paper is Theorem
3.5, formulated in Section 3 and proved in Section 4. Theorem 3.5 determines the rank of the
module of p-hypergeometric solutions.

In Section 5 we construct a suitable Cartier map, which relates the hypergeometric
solutions and p-hypergeometric solutions. As a result of this construction, we interpret the
rank of the module of p-hypergeometric solutions as the dimension of some vector space of
square integrable differential r-forms on Pr, the r-th direct power of the complex projective
line.

Previously this result was known for r = 1, see [SIV].
Acknowledgements. The author thanks Alexey Slinkin for useful discussions.

2. sl2KZ equations

2.1. Definition of equations. Consider the complex Lie algebra sl with generators e,f,h and
relations [ef] = h, [h,e] = 2¢, [h,f] = -2f. Consider the complex vector space W with basis w1,w2
and the slz-action,

(01 f— (00 L (10
““oo ) 7710 ) "T\o-1)
The sl2-module W ®has a basis labeled by subsets J c {1,..,n},
Vi=win® - Q wijs,
where ji=1ifji€/Jand ji= 2 ifji€].
Consider the weight decomposition of W ®"into eigenspaces of h,
wen =30 W n— 2. The vectors Vywith |J| = r form a basis of W ®1[n-2r]. Denote J the

set of all r-element subsets of {1,..,n}.
Define the space of singular vectors of weight n - 2r,

SingW ®n[n - 2r] ={w € W®n[n - 2r] | ew = 0}.

This space is nonempty if and only if n > 2r. We assume that n > 2r. Then

W n —2r +2] = (n) — ( " )
dimSingW ®1[n - 2r] = dimW ®n[n - 2r] - dim r r—1/
Letw = P]E]rC]V] € W ®n[n-2r]. Then w € SinglW ®n[n-2r], if and only if its coefficients satisfy

the system of linear equations labeled by r - 1-element subsets K c {1,..,n},

(2.1) XCKU{j} =0.
J/eK
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1 s s ]
Define the Casimir element Q =3 @ +e®@ [+ [f@e € sl ®5[2, and the linear operators
on W ®ndepending on parameters z = (z1,...,Zn),

n
QO .
Hm(z):zi, m=1,...,n,

i—1 Zm T &g

j#Fm

where Qmj: W ®n— W ®njs the Casimir operator acting in the mth and jth tensor factors.

The operators Hm(z) are called the Gaudin Hamiltonians. Denote

d
am_am:

m=1,...,n.

For any nonzero number g € Cand 1 6 m,/ 6 n, we have

(2.2) [q0m — Hm(z1,...,2n),q01 = Hi(z1,...,zn)] = 0, and for any x € slzand m =
1,..,n, we have

(2.3) [Hm(z1,,Zn) X Q@1 QR @1+ +1RQ - QR 1R x] =0.

The system of differential equations

(2.4) (q0m — Hn(Z1,0yz0))] (21,0 70), m=1,..n,

on a W ®n-yalued function ]~(Zl,...,Zn) is called the KZ equations, see [KZ, EFK].
By property (2.3) the Gaudin Hamiltonians preserve every space SinglW ®n[n-2r]. Hence

the system of KZ equations can be considered with values in any particular space SingW ®1[n
- 2r].

2.2. Gauge transformation. If I'(z) satisfies the KZ equations (2.4), then the function I(z),
defined by

(2.5) I~(z) =1(2) Y (zi— zj)V/2a,
16i<j6n

satisfies the equations

mn

Qi —1/2
(qﬁm — Z%)I(ﬁl,...,zn), m=1,...,n,

Zm Zj
J=1 J

(26) j#m
which we also call the KZ equations.
The linear operator @ — 3 * 'V o W

(2.7) wi@ wi7-0, w2 @ w27- 0,

acts as follows:

wi@w27--w1 Q@ w2+ w2 @ wi, w2@ wi7-w1Q wz—- w2 @ wi
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We shall consider the KZ equations (2.6) with values in SingW ®1[n - 2r] over the field of
complex numbers, and we shall also consider the KZ equations (2.6) modulo p, where p is a
prime number.

2.3. Solutions of KZ equations over C. Denote t = (ty,... tk). Define the master function

(2.8) D(tz)=Y (ti- §)2/9YY(ti - z5)-1/q.
16i6j6r s=1i=1

For any function F(tz,...,tr), denote Sym[F(ty,..,tr)] = PresF (toy,..otor) . For J = {j1,....jr} € Jrdefine

the weight function

1
Wj(tz) = Sym. t [H ti— 2 }
=1 it T
For example,
1 1 1 1 1
Wigy = ; Wiy =
B = O —ita— 2 ta— it — 2.

The function

(2.9) W(tz) =X wit2)V
JEr
is called the W ®n[n - 2r]-weight vector-function.

Consider the W ®n[n - 2r]-valued function
Z
(2.10) [W(z1,...,zn) = d(t,z)W(tz)dt1 A - Adtr,
¥(2)

where y(z) in {z}xCtis a horizontal family of r-dimensional cycles of the twisted homology
defined by the multivalued function ®(¢,z), see [CF, SV1, DJMM, V1, V3]. The cycles y(z) are r-
dimensional analogs of Pochhammer double loops.

Theorem 2.1. The function 10)(z) takes values in SingW ®n[n - 2r] and satisfies the KZ
equations (2.6).

This theorem and its generalizations can be found, for example, in [CF, DJMM, SV1].

The solutions in Theorem 2.1 are called the hypergeometric solutions of the KZ equations.

Theorem 2.2 ([V1, Theorem 12.5.5]). If q € C*is generic, then all solutions of the KZ equations
(2.6) have this form.
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For special values of the parameter q the space of the hypergeometric solutions of the kKZ
equations may span only a proper subspace of the space of all solutions, see in [FSV1, FSV2]
the discussion of the relations of this subspace of solutions and conformal blocks in

conformal field theory.

f(.i;l.

_ . d1
2.4. p-integrals. Let p be a positive integer. Let Jlte ) = 2oa gy Canali -t be a

f(t1,...,.tx) over the cycle {l1,...Ir}pand is denoted by Z
flts,..., t)dt1 ...dtr.
{l1,....[i}p
2.5. KZ equations modulo p. Let p and q be prime numbers, p > q. We consider the system of

KZ equations (2.6) with parameter g modulo p. Namely, we look for W ®n[n-2r|valued
polynomials in z3,...,Zn with integer coefficients, which satisfy system (2.6) modulo p and with

values in the subspace SingWW ®n[n - 2r] modulo p. More precisely, let I(z1,..,zn) = P]E]r

I)(z1,...,zn) Vywith [j(z3,...,Zn) € Z[z1,...,Zn]. We request that
e for any m = 1,..,n, the rational function (qdm — Hm(z))I(z) can be written as a ratio of
two polynomials with integer coefficients such that the denominator is nonzero
modulo p, while the numerator is zero modulo p;
e the coefficients Ij(z1,..,zn) of the polynomial I(z) satisfy equations (2.1) modulo p.

A construction of such solutions was presented in [SV2]. Let
M, c be the least positive integers such that

1 2
M=——, c= -
(2.11) q 4  (mod p).
Let t = (t1,..,tr), z = (21,...,2n). Define the master polynomial,
(2.12) Dp(t2) = Y (ti- t)° YV (ti- z)M.
16i<j6r i=1s=1

Recall the weight vector-function W(t,z) in (2.9). The function ®p(t,z)W(t,z) isa W ®1[n-

2r]-valued polynomial in t,z. Let (flv -5 1) € ZL4 Denote
Z

(2.13) [04-1)(Z) = D, (t2)W(t,2)dt ...dtr.
{I1,...,Ir}p

This is a W ®n[n - 2r]-valued polynomial in z.

Theorem 2.3 ([SV2]). For any positive integers (I1,..,1r), the polynomial 1Uv-1)(z) is a solution
of the KZ equations modulo p with values in SingW ®"[n - 2r] modulo p.
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We call the polynomials [U+-1)(z) the p-hypergeometric solutions.

In this paper we determine the number of independent p-hypergeometric solutions under
the assumption that (p,q) is a pair of type 1.
Remark. The symmetric group S» acts on the polynomials in z1,..,z» with values in W ®n by
permuting the tensor factors and the variables simultaneously, o(p(z1,...,Zn)v1 & =+ & vn) =

(p(Zo(1)erZom))Vo-11) & *+* & Vo-1(n), O € Sn.

It is clear that for any positive integers (/4,..,Ir), the polynomial /(h--1)(z) is symmetric with
respect to the Sr-action.

2.6. Module of p-hypergeometric solutions. DenoteZ[?"] = Z[1, . . ., Zh). Let

(2.14) M =n X fi...(z) (1,17 (2) | fir-.1(Z) € Z[zp]o0,

L., Ir

be the Z[zP]-module generated by the p-hypergeometric solutions [(+-1)(z) of Theorem 2.3.
Every element of M is a solution of the KZ equations modulo p with values in SinglW ®"[n- 2r]

%5 — ) (

modulo p. Indeed the KZ equations (2.6) are linear and 9= mod p) for all i,j.

We say that two elements [,I° € M are equivalent and write I ~ 9, if I - [?is divisible by p.
Then the set M/(~) of equivalence classes is an Fp[zP]-module.

2.7.More general choice of the numbers M and c. For s = 1,..,n fix a positive integer Mssuch
that

1
M, = —— (mod p)
q .

Fix a positive integer 0 such that
;2
C = —

1.
; (moc p).

Define the master polynomial,

®p(t,z;M,c~ 0) =Y (ti— ) YY(ti = Zs)Ms
16i<j6r i=1s=1
Recall the weight vector-function W(t z) in (2.9). The function ®p(t,z;M,c”~ O)W(t,z) isa W ®n[n

- 2r]-valued polynomial in ¢,z with integer coefficients. Let! = (h,....l;) € ZZ,,
Denote
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Ih,..10(z;M,c~ o) = Op(t,z;M,c~ o)W(tz)dt1..dtr.
{l1,....[:}p

This is a W ®n[n — 2r]-valued polynomial in z with integer coefficients.

Theorem 2.4 ([SV2]). For any positive integers (l,..,Ir), the polynomial 1t+-1)(z;M,c™ °) is a
solution of the KZ equations modulo p with values in SingW ®n[n — 2r] modulo p.

Theorem 2.5. For any positive integers (l1,...Ir), the polynomial I(.-19(z;M,c™ °) belongs to the

module M of p-hypergeometric solutions.

For [ = 1 this statement follows from [SIV, Theorem 3.1].

Proof. Let M,c be defined in (2.11). Then c%= ¢ + dop, Ms= M + dsp, s = 1,..,n, where d.,...,dn are
nonnegative integers. Then we have modulo p,

D, (t,z; M, ') = (¢, z) H (7 — ¢y H H(tf — z)%  (mod p)
1<i<j<r i=1 s=1 ,

This formula implies the theorem.

3. Pairs (p,q) of type 1

3.1. Numbers M and c. Let p,q be prime numbers, p > q. Let k be the minimal positive integer
such that q|(kp — 1). We have 1 6 k< q.

We say that the pair (p,q) is of type 1 or type 2 if
(3.1) 16k6q/2 or q/2 <k<g,

respectively.
The pairs (p,2) are all of type 1.
The pairs (p,3) are of type 1 if p =3m + 1 and of type 2 if p =3m + 2.

Let p = mg+s, s € {1,..,q—1}. Then the minimal positive integer k such that q|(kp-1) belongs
to {1,..,q — 1} and is determined by the property ks = 1 (mod q). Hence half of the values of s
gives pairs (p,q) of type 1 and half of the values of s gives pairs (p,q) of type
2.

In the rest of the paper we always assume that (p,q) is of type 1.
Lemma 3.1. The integer q — 2k is the least positive integer m such that q|(mp + 2).

Proof. We have q|(kp — 1). Hence q|(qp - 2(kp — 1)), and qp - 2(kp - 1) = (q - 2k)p + 2.
We also have 06 g - 2k 6 q - 2.
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Lemma 3.2. The integers

kp—1 — 2k 2
Mokl (¢ —2k)p +
(3.2) q q
are the least positive integers satisfying the congruences (2.11). The integer c is odd and
(3.3) 2M +c=p.

Example. If g = 2, then M = %; C=

not depend on p.

1. The case q = 2 is the only case in which ¢ does

Lemma 3.3. For positive integers (Ii,..,Ir) the polynomial I(h--1)(z) equals zero, if L,...,Ir are not
pairwise distinct.

Proof. The integer c is odd. Hence the polynomial ®,(t,z)W(tz) is skew-symmetric with
respect to permutations of ti,..., tr.
In what follows we always assume
(3.4) n=qg + 2r -1 for some positive integer g.
Lemma 3.4. Let q,k,g be fixed. Let p be large enough so that
Mf—g:kp_l kp—l—gq}

—g=

(3.5) q q
Letl1 > -+ > I-> 1. Then the inequality

0

(3.6) kg+r-1>h
kg+r—1
is necessary for I(h--11(z) to be nonzero. Hence there are at most( g ) tuples (I1 > -+ > Ir> 1)

Proof. For i = 1,..,r we have

(3.7) degti ®p(t,z)W(tz) = nM+(r-1)c-1
kp—1 (¢ —2kp+2

q

= (g9q+2r—1) +(r—1) 1

kp—1—gq

= (kg+r—1)p—1+
q

This proves the lemma.

3.2. Main Theorem. For a polynomial F in some variables with integer coefficients, denote
by [F]pthe polynomial F whose integer coefficients are projected to Fp. Let

f(z) =X ady,..dnZ1d: ... Zndn
iy,
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.....

combination of basis vectors {V; |] € ]} with integer coefficients. Denote by [f{(z)], the
polynomial

dy,...,dn
where each [ad.,..d]p is the linear combination ad,,...d»whose integer coefficients are projected
to Fp.

Denote by W ®n[n - 2r], the vector space over Fp of linear combinations of symbols {V}|] €
Jr} with coefficients in Fp. Define the subspace SingW ®n[n-2r], ¢ W ®n[n-2r]pas the subspace

of all vectors P]E]rC]V]WhOSG coefficients satisfy equations (2.1).

Theorem 3.5. Let (p,q) be of type 1. Let inequality (3.5) hold. Then for any (I4,...Ir) such that kg

X Ut firr(Z) [T (2)]p=0

kg+r=1>11>-->1>1

for some fu,..i(z) € Fp[z], then all fu..1-(z) are equal to zero.

The theorem is proved in Section 4.5.

Corollary 3.6. Let (p,q) be of type 1. Let inequality (3.5) hold. Then the Fp[zP]-module
kg+r—1
M/(~) is free ofrank( J+r )

4. Leading term and leading index

4.11. Leading term of a polynomial. Denote by the lexicographical ordering of monomials
o 1

2 ... 2 , where dy,..,dn € Z>0. Thus 21 >~ 22 > '+ > Zn—1 > Zn and so on. For example,
22,252 5 52, .5

“1 A< <1 ~244,

For a nonzero polynomial

f(z) =X ady,..dnZ1d1 ... Zndn
iy,



ON THE NUMBER OF p-HYPERGEOMETRIC SOLUTIONS 11

. dy ”’-n . . .
consider the summand %d:....d.*1" ---*n" corresponding to the lexicographically largest

od

.y . . . . .
monomial®1 - - - %" entering f{z) with a nonzero coefficient aas,.,a.. We call this summand the

. . . . . d ~dn
leading term of f{z), the corresponding ad,..d. - the leading coefficient, and?1 --- 21" - the
leading monomial.

For example, let [U+--1)(Z) be one of the p-hypergeometric solutions of Theorem 2.3. Then

[{w...10(2)]p = X [ad,...dn]p Z1d1...Zndn,
dy,...,dn

with [aadi...di]p € SingW ®n[n-2r]p. If [I(-1)(z)]p is nonzero, then it has the leading term,
monomial, and coefficient. The leading coefficient is a nonzero vector of SingW ®n[n - 2r]p.

4.2. Leading index of a vector of W ®[n-2r],. We order {V;|] € ]/}, the basis vectors of W
®n[n-2r]p, lexicographically with the largest of them being Vii2..; = w2 @--Qwz &
w1Q--@wiand the smallest of them being Vin-r+1,n-r+2,..n} = W1@ - Qw1@w2&Q---Qwo.

Every nonzero vector w € W ®n[n - 2r]pis a linear combination of the basis vectors. Let

.....

index {my,..,m} the leading index of w.

4.3. Index {mj,..,mr}. Given integers ([1,..,Ir), consider the system of inequalities for integers
ma,...,Mr,

(4.1) (mi-1)M 6 nM + (r - i)c - lip < miM, i=1,..,r
Clearly, these inequalities uniquely determine the integers ma,... mr.

Lemma 4.1. Let inequality (3.5) hold. Let kg+r-1> 11> +-- > 1r>1. Then mi+2 6 mi+-1fori=1,..,r

-1,and 16 mi, mr<n.

Proof. Fori=1,.,r-1wehave (mi- 1) M6 nM + (r-i)c-lip=nM + (r - i - 1)c + c=lis1p+(li+1
-l)p 6 nM +(r-i-1)c+c-lis1ip—p = nM +(r-i-1)c-lix1ip-2M < (mi+1 — 2)M. Hence mi+-1 > mi+ 1.
This implies that mi+ 2 6 mis1.

The inequality 1 6 m1 follows from the inequality lip 6 nM +(r-1)c, which is true since

kp—1—
hp<(kg+r—1lp<(kg+r—1)p+ ST TI (r—1)c,
q

see (3.7). We also have M + 2c=p 6 Irp 6 (n — mr+ 1)M. Hence mr< n.

Lemma 4.2. Let (14,...,Ir) and (13, -, 1) be two distinct tuples of integers such that kg+r-
1>h>->h>landg+r—120>-- >0 21 Lot {m,...mr} andimi....,m}
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_ m; — )M <nM+(r—i)c—lLp=nM+(r—i)c—1Up+
Proof. Let Ii> ;9 for some i. Then ( / '

(l°=1)p 6 nM +(r-i)c-1%p—p = nM +(r-i)c-lip-2M -c < nM +(r-i)c-lip-2M <
(m, —2)M Hencem: > m; + L.

4.4, Special summand. We have

[T e- = I (X ()

1<i<j<r I<i<jsr aijjtaji=c
z : >, aij Siaa [
— zll J#1 %1 . tr d#T NI | | (71)”4_)1 "
(aij)€A i<j !

7

where A = {(aij)1sijeric=j | aij €z aij+ aji= c forevery i 6=j}. Hence

(4.2) [1 l")(Z)]p[/{ }fl)p(f,z)W(t,z)dtl...dt,.}p -
=) (H ( ))[]{h ’(t,2) Hf 78 H i — z)Mdty . dt,],

(aj)eA i<j NIV ULl o

This sum contains the special summand

[

[ W(t,z) Hr(’ T — 2z Mdty .y,

Dyl b roiey 1
corresponding to the collection (aj) such thatajj=cfori<jandaj=0fori>j.For16u6
nM, denote
(4.3) z(u) :=zs, if (s-1)M<u6sM.
Thus z(1) = z(2) =+ =z(M) = z1, z(M + 1) = z2and so on.

Lemma 4.3. The vector-polynomial S(z) is nonzero. The leading monomial of S(z) equals
r nM+(r-i)c-Ip

(4.4) Zh,. =Y Y z(u).

Denote by Cn,..i-the leading coefficient of S(z). Then the leading index of the vector Cn,.,i-equals
{m,...mr} determined by inequalities (4 1). Moreover, the leading monomial of any other

.....

term of [1Uv-1)(Z)]p.

Proof. We rewrite zi-Irusing the integers mu,...,mr,

r
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(4.5) zt,.. i = Y21M 2 mMi-1 Z m(n-mis 1) M+ (r-i)c-lip.
i=1
il dn

Let? = Z1 ---%;" for some dji,...,dn. Then

(4.6) dni = (n-mi+1)M+ (r-i)(c+M)-lp, i=1,..,r;
d = rM, j=1,..mi-1;
d = (r-iMm, j=mi+ 1. mi1-1, i=1,.,r-1;
d = 0 j=mr+1,.,n

It is clear that z/»-Iis the lexicographically maximal monomial which can be produced by

S(z). Let Cu...i-be the coefficient of zn,..I-in S(z). Then Cn,....-= Pjej-cjVywith c; Fp. It is clear that

M-—1
47 Cim " 1 (n m +]) ’U’—O—(! f}( —l;ip
A1) s H( (n—m;+ )M+ (r—i)c—1ILip

which is nonzero due to (3.3) and (4.1). Thus S(z) is nonzero, its leading term equals
Ch,..:z"vIr, and the leading index of Ch,.i-is {ma,..,mr}. It remains to prove that the leading
monomial of any other nonzero summand in (4.2) is lexicographically smaller than

Zlh,.., I

Let S7(z) be any other summand in (4.2),

§(2) = (H(fl)fw ({;))[/{h Ht *H = )Mty L dt],

i<j UL s=1

Itis clear that the lexicographically maximal monomial which can be produced by §7(z) equals

r nM-lip+Pje=i aij

(4.8) Zh. =Y Y z(u).

i=1 u=1

Assume that Pj6 1a1 < (r = 1)c. Let s be the least index such that the maximal power of zs
nM— I'HH—Z]?‘IUU (

d1v1d1ngH

denote by b) dividing IL.-

n—1; p—f-z_”;, aij
| 3(“‘) is strictly smaller than b + (r - 1)M. This implies that "z i-Iris

lexicographically smaller than z/v-Ir,

) is strictly smaller than the maximal power of zs (which we

"n‘.f—O—r 1)e—I1p . i .
(“). Then the maximal power of zs dividing

Thus, a summand S~(Z) must have Pj6:1 aij= (r = 1)c in order to have a monomial as large

lexicographically as z/v-I.. This means that aij= c and aj1 = 0 for j 6= 1.
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Now take any summand S~(z) in (4.2) with Pj6:1 aij= (r —1)c. In a similar way we show that

S~(Z) must have Pj6:2 azj= (r-2)c in order to have a monomial as large lexicographically as

zhIr Repeating this reasoning we conclude that the special summand S(z) is the only
summand in (4.2) which may have the monomial z/»-/rwith a nonzero coefficient; and no
summands in (4.2) may have a monomial larger than z/»-I. Lemma 4.3 is proved.

.....
.....

.....

summands have different leading indices due to the previous remark and Lemma 4.2. This
implies that such a sum is not zero if it has nonzero summands. Theorem 3.5 is proved.

Example. Let ¢ =2, n =5, r = 2. Then Theorem 3.5 says that for any odd prime p there is just
one p-hypergeometric solution [[(21)(z3,...,zs)]p. This polynomial is homogeneous of degree 2p
- 4 and takes values in SingW ®5[1],. The leading term of [I2V(z,..,z5)]p is
C21z1p-222(p-1)/223(p-3)/2 Where the leading coefficient C21 € W ®s5[1]p has the leading index
{mi,mz} = {1,3}.

Notice that the space Singl# ®5[1] has dimension 5.

4.6. Leading terms and eigenvectors. Let I(z) € SinglW ®[n-2r]p, ®Fp[z] be a polynomial
solution of the KZ equations (2.6) with a positive integer parameter g (not necessarily a p-
hypergeometric solution). LetCz" ... 20" e its leading term, C € SinglW ®1[n - 2r]p.

Then we have modulo p,

n

(4‘9) X -Q_j,‘C = deC, i: 1,...,]’1 -

‘=j+1

1, dn=0,

see [V7, Lemma 5.1]. Thus the leading coefficient C is an eigenvector of the linear operators
Q; = ?f:'l:i+1 Qi j=1,...,

An eigenbasis of the operators Q._j,j =1,.,n - 1, on SingW ®1[n - 2r]pis formed by the so-
called iterated singular vectors, for example see [V2]. Such an iterated vector is determined
by its leading index.

If p is large enough with respect to n, then the vectors of that eigenbasis are separated by
eigenvalues.
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Let [[Uv-1)(Z)], be one of the p-hypergeometric solutions of Theorem 3.5. Let

1 sldn . . .
Chpeln?1' -+ 23" be its leading term, where djare defined in (4.6). Let {m;,...,m} be the
leading index of Cu,..i~. If p is large enough with respect to n, then Cu,..i-is the iterated singular

vector with leading index {mj,..,m:}. It is the eigenvector of the operators .Q_j,j =1,..,n-1,

with eigenvalues defined by formula (4.9).

5. Solutions and a Cartier map
In this section we discuss how the two objects:

e the set of indices (I4,..,Ir) with kg+r-1> 11> -+ > [r> 1, appearing in Theorem

3.5,
kg+r—1
e and the number of such indices ( J+r ), appearing in Corollary 3.6, are related to the

integrand ®(t,z) W(¢t,z)dt1 A -+ A dtrof the integral representation of complex hypergeometric
solutions of the KZ equations, appearing in Theorems 2.1 and 2.2.

Recall that the complex hypergeometric solutions with values in SingWW ®n[n - 2r] are given
by the formulas:

I0(2) =R,y d(LW(L2)dtL A - A dtr,
q)(t,Z) = Q16i<j6r(ti - tj)Z/q Qri=1 Qns=1(ti - Zs)—l/q,

r 1
W(tz) = P irccciron Wi,...i(t,2) Vis,...ir, Wi..i(t,2) = Sym" " HF] timzij
see Section 2.3, while the corresponding p-hypergeometric solutions are given by the

formulas:

®p(t,z) = Quesigjer(ti — tj)c Qri=1 Qns=1(ti — zs)M,W(t,z) = Pjej- Wj(t,2) V), see Section 2.5.

5.1. Square integrability criterion. Let M be a complex manifold of complex dimension r. If
fis a meromorphic function on M and S is an irreducible subvariety of M, then the order of f
along S, ords(f), is the coefficient of the exceptional divisor of the blow up of § at the divisor
of f. This notion generalizes to the setting where f has only finitely many determinations,
which means that fbecomes univalued on a finite (possibly ramified) cover of M. Then fhas
at a generic point of the exceptional divisor a fractional order.

Let w be a multivalued meromorphic r-form on M with only finitely many determinations
and let S be an irreducible subvariety of M. Write w at some point s of S as fwo where wo is d-
form on M that is nonzero at s and fis multivalued meromorphic at s. The logarithmic order
of w along S is codim(S) + ords;s(f). This only depends on w and S.
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Suppose that D ¢ M is a hypersurface which is arrangement-like in the sense that D can be
covered by analytic coordinate charts of M on which D is given by a product of linear forms
in the coordinates, see [STV]. It is clear that D then comes with a natural partition into
connected, locally closed submanifolds, its strata.

We say that a stratum S is decomposable if at a generic point s € S the germ Ds of the
hyperplane arrangement can be decomposed into the disjoint sum A1 U Az of two germs of
hyperplane arrangements and, after a suitable linear coordinate change, defining equations
for A1 and A2 have no common variables. We say that a stratum S is dense if it is of
codimension 1 or if it is not decomposable, see [V1, STV]. We have the following trivial
observation.

Proposition 5.1 ([LV]). Suppose M is compact and w is a meromorphic multivalued rform on
M with only finitely many determinations and whose polar set is contained in an arrangement-
like hypersurface D. Then the following properties are equivalent:

(i) the form w is square integrable in the sense that R

Mw A w” converges;
(ii) the form w has positive logarithmic order along any dense stratum of D;
(iii) if M — M is a proper surjective map with M~ a complex manifold of the same dimension

as M and such that w becomes a univalued d-form on M, then the latter form is regular.

5.2. Square integrable differential r-forms. Let t = (t3,..,t-) be coordinates on Cc (P1)rand
z = (z1,..,zn) distinct parameters. Consider a differential r-form

w = P(t)d(t, 2)kdt
= pP)-J[I]¢t =) ] -t dtyA---Adt,
(5.1) i=1 s=1 1<i<j<n

on C"c (P1)r. Here k, 0 < k < g, is a positive integer; dt = dt1 A --- A dtr; and P(t) is a polynomial
int.

Letn = qg + 2r - 1 where g is some positive integer, cf. (3.4). Theorem 5.2.

The form w is square integrable on (P1)"if and only if
(5.2) degiP6 kg -1 forall i=1,.,r

Proof. Denote by D the support of the divisor of w. The support D lies in the union of
hypersurfaces defined by ti = zs, ti= o0, and ti = tjfor i <j. This union is clearly arrangement-
like. Its dense strata of codimension [ are:

(i) diagonals in (P1)"defined by letting [ > 2 coordinates to coalesce;
(ii) loci in (P1)"defined by setting [ > 1 coordinates equal to oo; (iii) loci in

(P1)rdefined by setting [ > 1 coordinates equal to some zs.
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Let S be defined by the equations ti= -+ = tufor some 1 6 i1 < --- <16 r. Then the logarithmic
s l )

order of w along® 18 = —1+ (5) - 2k/q > 0.

Let S be defined by the equations ti= -+ = ti= zsfor some 1 6 i1 < - < i16 r. Then the

, l o . ! .

logarithmic order w along® 18 = [~ k/q+(3) 2k/q =1(1—k/q)+ (;) -2k/q > 0.

Let S be defined by the equation tii = o for some i1. In the coordinates us,...,ur, ui= 1/tifor i
=1,..,r, we have

w = (—I)T(P(l/ul,....1/?;.,.,3)-Hu?eg' ) HHl—zu )R
(53) 1=1 i=1 s=1

r

Y (uj— ui)2k/q * Yu-rdegiP+nk/q-(r-1)2k/q-2 * dui A -+ A dur
16i<j6n i=1
Hence the logarithmic order of w along S equals
1+nk/q-(r-1)2k/q-2-deguP=(n-2(r-1))k/q-1-deguP=kg-1-

deg P + k/q.

Hence the logarithmic order along S is positive if and only if deg:: P 6 kg - 1.

Let S be defined by the equations tii=--- = ti= o for some 1 6 i1 < - <16 T.

It follows from (5.3) that the logarithmic order along S is positive if the logarithmic order is
positive along every hyperplpane defined by the equation t;= oo forj = 1,..,I. The theorem is
proved.

5.3. Schur polynomials. A sequence of integers a = (a1> az> -+ > ar> 0) is called a partition.

For a partition a the polynomial ma(t) = Sym+ 1" -- -t is called a symmetric monomial
function. The polynomial

det (¢, $r ))z‘_jzl,...,-r

S(ay,an) () =
' ngz‘q’sr( O tj)

is called a Schur polynomial. It is known that

(5.4) Sa(t) = X Kab mby,...b(t),
b6a

where Kq,» are nonnegative integers, Ko« = 1. The inequality b 6 a means ZJ 10) \ZJ 1 %for
alli=1,..,r. The numbers K are called the Kostka numbers. For a positive integer d, denote

A(d) ={(ay,..,ar) | d>a1>az>-->ar>0, ai € Z}.
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d+r
Let V(d) be the free Z-module with basis {ma(t)|a € A(d)}. The module V(d) has rank( r )
The set {sq(t)|a € A(d)} of Schur polynomials is a basis of V(d) by formula (5.4).
Let us return to Theorem 5.2. Let W be the vector space of all differential r-forms w =
P(t)®(t,z)kdt such that P(t) is a polynomial in t3,..,tr symmetric with respect to permutations
of t1,..,tr, and w is square integrable on (P1)".

Corollary 5.3. The set {sa(t)®(t,z)*dt|a € A(kg - 1)} of differential r-forms on (P1)"is a basis of
kg+r—1
W. The vector space W has dimension ( 'It ) Notice that this binomial coefficient equals the

rank of the module M/(~) in Corollary
3.6.

We introduce the following Fp[z]-variant of the vector space W. Let Wp|z] be the free Fp|[z]-
module with basis B of formal algebraic differential r-forms

wa = Sa(t)P(t,z)kdt, a€A(kg - 1).

Let B = {w?|a € A(kg - 1)} be the collection of Fp[z]-linear functions on Wp[z] such that
hw? wpi = dapforall a,b € A(kg - 1).

5.4. Cartier map. Assume that (p,q) is of type 1. Hence q|(kp - 1), 0 < k 6 q/2.

We define a map which sends every differential form ®(¢,z) Wj(t,z)dt, ] € Jr, to Wp|z], that is,
to a linear combination of differential r-forms wq, a € A(kg -1), with coefficients in Fp[z]. We
call this map the Cartier map. We have

O(t, )W, (t, z)dt = %ﬂ{](t’ 2)dt
= ®(t, 2)"P lggﬁ( =)@ 2kp)/qHH Yko=V/ayy (1 2 \dt
ng?:i(; ft)fp t.)’)p KEQ(IL (2+ e ]jl H Ap Y "H (t Z)dt
) ng.,-(i(: ’(Zf):i ;)P léggr(ti o 11 }i[l(ti — ) Wittt
D(t, z)kr

T Moo 6ty A2

where ¢, M, ®p(t,z) are defined in (3.2) and (2.12).
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Since (p,q) is of type 1, the integer c is odd. Hence the polynomial ®,(t,z)W)(t,z) is skew-
symmetric with respect to permutations of ts,..,.tr. We expand ®,(t,z) Wj(t,z) with respect to

the t-variables as follows:
Q,(t, 2)Wy(t, z) =

p— ay,...,ar o (ar+r—1)p, (aa+r—2)p r,,,
S S (S ) + 3

(ai,....,ar)€A(kg—1) oES,
. . _ /
=t Y Y @s et [ @)+
(a1,...,ar)EA(kg—1) 1<i<j<r
. d dr .
where Po denotes the sum of the monomials 1" - - -+ I7" such that at least one of ds,...,dris not
(a1,0mar A _
of the form Ip - 1 for some positive integer [; the coefficients ‘s 1 (~’) are suitable

polynomials in z.
Returning to ®(¢t,z) Wj(t,z)dt we write
D(t, 2)W;(t, z)dt =
(ai,...,ar) fP e

(armanyedtig—1) C1 ()8 (arnan) s ) [icicjor a2, 2) P(ty ..t )P dt
b2 ®(t, 2) rdt .

Hl..<\1<j\<_r(t’l_tj)p
tr— f;v

Notice that @7 = 1 (mod p

). We define the Cartier map C by the formula

(5.5) C:®(tz2)Wi(tz)dt 7- X [cuar,...an(2)]p S(ar,...an (t1,...,tr) P (t,2)kd,
(as,.a)€A(kg-1)
cf. [AH].
Recall the collection {w(@-a) |(axy,...,ar) € A(kg—-1)} of linear functions on Wy[z]. We have
(w0 C(D(t, 2)W,(t, 2)dt)) = [c5 ") (2)],,

Theorem 5.4. For any p-hypergeometric solution [[(a1+raz+r-1..a+1)(Z)]p, kg = 1 > a1 > az> -+ > ar
>0 we have
(56) [I(a1+ra2+r—1 ..... ar+1)(Z)]p = [C](m ..... ar)(Z)]pV]
J€lr
Proof. The proof follows from the definition ofI atroatrlesart(2) in (2.13). U

Formula (5.6) can be reformulates as follows. For any integers (I4,...Ir), kg +r=1>1 >« >

Ir> 1, the p-hypergeometric solution [I(h-1)(z)]pis given by the formula
(57) {[("1;---:51-)(2)]p — <LU('!'_T‘ log—r+1, ..., 1—1) C(q)(t Z)Ii (t, Z)df)>
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Notice that ®(t,z)W(tz)dt is the integrand of the integral representation of complex
hypergeometric solutions of the KZ equations, see (2.10), while [I(-1)(Z)]pis a solution of the
KZ equations over Fp.

Formula (5.7) for r = 1 and two prime numbers (p > g) not necessarily of type 1 is the
subject of [SIV, Theorem 6.2].
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