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Abstract. It is known that solutions of the KZ equations can be written in the form of 

multidimensional hypergeometric integrals. In 2017 in a joint paper of the author with 

V.Schechtman the construction of hypergeometric solutions was modified, and solutions of the 

KZ equations modulo a prime number p were constructed. These solutions modulo p, called 

the p-hypergeometric solutions, are polynomials with integer coefficients. A general problem 

is to determine the number of independent p-hypergeometric solutions and understand the 

meaning of that number. 
In this paper we consider the KZ equations associated with the space of singular vectors of 

weight n−2r in the tensor power W⊗n of the vector representation of sl2. In this case the 

hypergeometric solutions of the KZ equations are given by r-dimensional hypergeometric 

integrals. We consider the module of the corresponding p-hypergeometric solutions, 

determine its rank, and show that the rank equals the dimension of the space of suitable square 

integrable differential r-forms. 
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1. Introduction 

The Knizhnik-Zamolodchikov (KZ) equations is a system of differential equations for 

conformal blocks in conformal field theory, see [KZ]. Versions of KZ equations appear in 

mathematical physics, representation theory, enumerative geometry, algebraic geometry, 

theory of special functions, see for example [EFK, MO, B]. 

It is known that solutions of the KZ equations can be written in the form of 

multidimensional hypergeometric integrals, see [SV1]. Relatively recently, the construction 

of these hypergeometric solutions was modified, and solutions of the KZ equations modulo a 

prime number p were constructed in [SV2]. These solutions modulo p, called the p-

hypergeometric solutions, are vector-valued polynomials with integer coefficients. The 

general problem is to understand how these polynomials reflect the remarkable properties 

of the KZ equations and their hypergeometric solutions. 

In this paper we address the particular problem to determine the number of independent 

p-hypergeometric solutions and understand the meaning of that number. We consider the KZ 

equations associated with the space of singular vectors of weight n − 2r in the tensor power 

W ⊗n of the vector representation of sl2. In this case the hypergeometric solutions of the KZ 

equations are given by r-dimensional hypergeometric integrals. We consider the module of 

the corresponding p-hypergeometric solutions, determine its rank, and show that the rank 

equals the dimension of the space of suitable square integrable differential r-forms. 

The KZ equations depend on a parameter q ∈ C×. In this paper we assume that q is a prime 

number less than p, and the pair (p,q) satisfies certain conditions (the pair is of type 1). 

On p-hypergeometric solutions and, more generally, on the solutions of the KZ equations 

modulo ps see [SlV, V4, V5, V6, V7, V8, VZ1, VZ2]. 

In Section 2 we define the KZ equations, recall the construction of solutions in the form of 

hypergeometric integrals and the construction of p-hypergeometric solutions. We also 
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introduce the module of p-hypergeometric solutions. The main result of the paper is Theorem 

3.5, formulated in Section 3 and proved in Section 4. Theorem 3.5 determines the rank of the 

module of p-hypergeometric solutions. 

In Section 5 we construct a suitable Cartier map, which relates the hypergeometric 

solutions and p-hypergeometric solutions. As a result of this construction, we interpret the 

rank of the module of p-hypergeometric solutions as the dimension of some vector space of 

square integrable differential r-forms on Pr, the r-th direct power of the complex projective 

line. 

Previously this result was known for r = 1, see [SlV]. 

Acknowledgements. The author thanks Alexey Slinkin for useful discussions. 

2. sl2 KZ equations 

2.1. Definition of equations. Consider the complex Lie algebra sl2 with generators e,f,h and 

relations [e,f] = h, [h,e] = 2e, [h,f] = −2f. Consider the complex vector space W with basis w1,w2 

and the sl2-action, 

. 

The sl2-module W ⊗n has a basis labeled by subsets J ⊂ {1,...,n}, 

VJ = wj1 ⊗ ··· ⊗ wjn, 

where ji = 1 if ji ∈/ J and ji = 2 if ji ∈ J. 

Consider the weight decomposition of W ⊗n into eigenspaces of h, 

]. The vectors VJ with |J| = r form a basis of W ⊗n[n−2r]. Denote Jr the 

set of all r-element subsets of {1,...,n}. 

Define the space of singular vectors of weight n − 2r, 

SingW ⊗n[n − 2r] = {w ∈ W ⊗n[n − 2r] | ew = 0}. 

This space is nonempty if and only if n > 2r. We assume that n > 2r. Then 

dimSingW ⊗n[n − 2r] = dimW ⊗n[n − 2r] − dim . 

Let w = PJ∈Jr cJVJ ∈ W ⊗n[n−2r]. Then w ∈ SingW ⊗n[n−2r], if and only if its coefficients satisfy 

the system of linear equations labeled by r − 1-element subsets K ⊂ {1,...,n}, 

(2.1) XcK∪{j} = 0. 
j/∈K 
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Define the Casimir element Ω = , and the linear operators 

on W ⊗n depending on parameters z = (z1,...,zn), 

 

where Ωmj : W ⊗n → W ⊗n is the Casimir operator acting in the mth and jth tensor factors. 

The operators Hm(z) are called the Gaudin Hamiltonians. Denote 

 

For any nonzero number q ∈ C× and 1 6 m,l 6 n, we have 

(2.2) [q∂m − Hm(z1,...,zn),q∂l − Hl(z1,...,zn)] = 0, and for any x ∈ sl2 and m = 

1,...,n, we have 

(2.3) [Hm(z1,...,zn),x ⊗ 1 ⊗ ··· ⊗ 1 + ··· + 1 ⊗ ··· ⊗ 1 ⊗ x] = 0. 

The system of differential equations 

(2.4) (q∂m − Hm(z1,...,zn))I˜(z1,...,zn), m = 1,...,n, 

on a W ⊗n-valued function I˜(z1,...,zn) is called the KZ equations, see [KZ, EFK]. 

By property (2.3) the Gaudin Hamiltonians preserve every space SingW ⊗n[n−2r]. Hence 

the system of KZ equations can be considered with values in any particular space SingW ⊗n[n 

− 2r]. 

2.2. Gauge transformation. If I˜(z) satisfies the KZ equations (2.4), then the function I(z), 

defined by 

(2.5) I˜(z) = I(z) Y (zi − zj)1/2q , 
16i<j6n 

satisfies the equations 

(2.6)  

which we also call the KZ equations. 

The linear operator Ω  acts as follows: 

(2.7) w1 ⊗ w1 7→ 0, w2 ⊗ w2 7→ 0, 

 w1 ⊗ w2 7→ −w1 ⊗ w2 + w2 ⊗ w1, w2 ⊗ w1 7→ w1 ⊗ w2 − w2 ⊗ w1. 
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We shall consider the KZ equations (2.6) with values in SingW ⊗n[n − 2r] over the field of 

complex numbers, and we shall also consider the KZ equations (2.6) modulo p, where p is a 

prime number. 

2.3. Solutions of KZ equations over C. Denote t = (t1,...,tk). Define the master function 
 n r 

(2.8) Φ(t,z) = Y (ti − tj)2/q YY(ti − zs)−1/q. 

 16i6j6r s=1 i=1 

For any function F(t1,...,tr), denote Symt[F(t1,...,tr)] = Pσ∈SrF(tσ1,...,tσr) . For J = {j1,...,jr} ∈ Jr define 

the weight function 

r 

WJ(t,z) = Sym. 
=1 

For example, 

 . 

The function 

(2.9) W(t,z) = X WJ(t,z)VJ 
J∈Jr 

is called the W ⊗n[n − 2r]-weight vector-function. 

Consider the W ⊗n[n − 2r]-valued function 

Z 

(2.10) I(γ)(z1,...,zn) = Φ(t,z)W(t,z)dt1 ∧ ··· ∧ dtr, 
γ(z) 

where γ(z) in {z}×Crt is a horizontal family of r-dimensional cycles of the twisted homology 

defined by the multivalued function Φ(t,z), see [CF, SV1, DJMM, V1, V3]. The cycles γ(z) are r-

dimensional analogs of Pochhammer double loops. 

Theorem 2.1. The function I(γ)(z) takes values in SingW ⊗n[n − 2r] and satisfies the KZ 

equations (2.6). 

This theorem and its generalizations can be found, for example, in [CF, DJMM, SV1]. 

The solutions in Theorem 2.1 are called the hypergeometric solutions of the KZ equations. 

Theorem 2.2 ([V1, Theorem 12.5.5]). If q ∈ C× is generic, then all solutions of the KZ equations 

(2.6) have this form. 
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For special values of the parameter q the space of the hypergeometric solutions of the KZ 

equations may span only a proper subspace of the space of all solutions, see in [FSV1, FSV2] 

the discussion of the relations of this subspace of solutions and conformal blocks in 

conformal field theory. 

2.4. p-integrals. Let p be a positive integer. Let be a 

polynomial. Let l = (l1,..., lr) ∈ Zr>0. The coefficient cl1p−1,...,lrp−1 will be called the p-integral of 
f(t1,...,tk) over the cycle {l1,...,lr}p and is denoted by Z 

f(t1,...,tk)dt1 ...dtr . 
{l1,...,lr}p 

2.5. KZ equations modulo p. Let p and q be prime numbers, p > q. We consider the system of 

KZ equations (2.6) with parameter q modulo p. Namely, we look for W ⊗n[n−2r]valued 

polynomials in z1,...,zn with integer coefficients, which satisfy system (2.6) modulo p and with 

values in the subspace SingW ⊗n[n − 2r] modulo p. More precisely, let I(z1,...,zn) = P
J∈Jr 

IJ(z1,...,zn)VJ with IJ(z1,...,zn) ∈ Z[z1,...,zn]. We request that 

• for any m = 1,...,n, the rational function (q∂m − Hm(z))I(z) can be written as a ratio of 

two polynomials with integer coefficients such that the denominator is nonzero 

modulo p, while the numerator is zero modulo p; 

• the coefficients IJ(z1,...,zn) of the polynomial I(z) satisfy equations (2.1) modulo p. 

A construction of such solutions was presented in [SV2]. Let 

M, c be the least positive integers such that 

(2.11)  (mod p). 

Let t = (t1,...,tr), z = (z1,...,zn). Define the master polynomial, 
 r n 

(2.12) Φp(t,z) = Y (ti − tj)c YY(ti − zs)M. 
 16i<j6r i=1 s=1 

Recall the weight vector-function W(t,z) in (2.9). The function Φp(t,z)W(t,z) is a W ⊗n[n− 

2r]-valued polynomial in t,z. Let ( . Denote 

Z 

(2.13) I(l1,...,lr)(z) = Φp(t,z)W(t,z)dt1 ...dtr . 
{l1,...,lr}p 

This is a W ⊗n[n − 2r]-valued polynomial in z. 

Theorem 2.3 ([SV2]). For any positive integers (l1,...,lr), the polynomial I(l1,...,lr)(z) is a solution 

of the KZ equations modulo p with values in SingW ⊗n[n − 2r] modulo p. 
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We call the polynomials I(l1,...,lr)(z) the p-hypergeometric solutions. 

In this paper we determine the number of independent p-hypergeometric solutions under 

the assumption that (p,q) is a pair of type 1. 

Remark. The symmetric group Sn acts on the polynomials in z1,...,zn with values in W ⊗n by 

permuting the tensor factors and the variables simultaneously, σ(p(z1,...,zn)v1 ⊗ ··· ⊗ vn) = 

(p(zσ(1),...,zσ(n))vσ−1(1) ⊗ ··· ⊗ vσ−1(n), σ ∈ Sn . 

It is clear that for any positive integers (l1,...,lr), the polynomial I(l1,...,lr)(z) is symmetric with 

respect to the Sn-action. 

2.6. Module of p-hypergeometric solutions. Denote ]. Let 

(2.14) M = n X fl1,...,lr(z)I(l1,...,lr)(z) | fl1,...,lr(z) ∈ Z[zp]o, 

l1,...,lr 

be the Z[zp]-module generated by the p-hypergeometric solutions I(l1,...,lr)(z) of Theorem 2.3. 

Every element of M is a solution of the KZ equations modulo p with values in SingW ⊗n[n− 2r] 

modulo p. Indeed the KZ equations (2.6) are linear and ) for all i,j. 

We say that two elements I,I0 ∈ M are equivalent and write I ∼ I0, if I − I0 is divisible by p. 

Then the set M/(∼) of equivalence classes is an Fp[zp]-module. 

2.7. More general choice of the numbers M and c. For s = 1,...,n fix a positive integer Ms such 

that 

. 

Fix a positive integer c0 such that 

. 

Define the master polynomial, 
 r n 

 Φp(t,z;M,c~ 0) = Y (ti − tj)c0 YY(ti − zs)Ms. 

 16i<j6r i=1 s=1 

Recall the weight vector-function W(t,z) in (2.9). The function Φp(t,z;M,c~ 0)W(t,z) is a W ⊗n[n 

− 2r]-valued polynomial in t,z with integer coefficients. Let . 

Denote 
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Z 

 I(l1,...,lr)(z;M,c~ 0) = Φp(t,z;M,c~ 0)W(t,z)dt1 ...dtr . 
{l1,...,lr}p 

This is a W ⊗n[n − 2r]-valued polynomial in z with integer coefficients. 

Theorem 2.4 ([SV2]). For any positive integers (l1,...,lr), the polynomial I(l1,...,lr)(z;M,c~ 0) is a 

solution of the KZ equations modulo p with values in SingW ⊗n[n − 2r] modulo p. 

Theorem 2.5. For any positive integers (l1,...,lr), the polynomial I(l1,...,lr)(z;M,c~ 0) belongs to the 

module M of p-hypergeometric solutions. 

For l = 1 this statement follows from [SlV, Theorem 3.1]. 

Proof. Let M,c be defined in (2.11). Then c0 = c + d0p, Ms = M + dsp, s = 1,...,n, where d0,...,dn are 

nonnegative integers. Then we have modulo p, 

. 

This formula implies the theorem.  

3. Pairs (p,q) of type 1 

3.1. Numbers M and c. Let p,q be prime numbers, p > q. Let k be the minimal positive integer 

such that q|(kp − 1). We have 1 6 k < q. 

We say that the pair (p,q) is of type 1 or type 2 if 

(3.1) 1 6 k 6 q/2 or q/2 < k < q, 

respectively. 

The pairs (p,2) are all of type 1. 

The pairs (p,3) are of type 1 if p = 3m + 1 and of type 2 if p = 3m + 2. 

Let p = mq+s, s ∈ {1,...,q−1}. Then the minimal positive integer k such that q|(kp−1) belongs 

to {1,...,q − 1} and is determined by the property ks ≡ 1 (mod q). Hence half of the values of s 

gives pairs (p,q) of type 1 and half of the values of s gives pairs (p,q) of type 

2. 

In the rest of the paper we always assume that (p,q) is of type 1. 

Lemma 3.1. The integer q − 2k is the least positive integer m such that q|(mp + 2). 

Proof. We have q|(kp − 1). Hence q|(qp − 2(kp − 1)), and qp − 2(kp − 1) = (q − 2k)p + 2. 

We also have 0 6 q − 2k 6 q − 2.  
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Lemma 3.2. The integers 

(3.2)  

are the least positive integers satisfying the congruences (2.11). The integer c is odd and 

(3.3) 2M + c = p. 

 

Example. If q = 2, then = 1. The case q = 2 is the only case in which c does 
not depend on p. 

Lemma 3.3. For positive integers (l1,...,lr) the polynomial I(l1,...,lr)(z) equals zero, if l1,...,lr are not 

pairwise distinct. 

Proof. The integer c is odd. Hence the polynomial Φp(t,z)W(t,z) is skew-symmetric with 

respect to permutations of t1,...,tr.  

In what follows we always assume 

(3.4) n = qg + 2r − 1 for some positive integer g. 

Lemma 3.4. Let q,k,g be fixed. Let p be large enough so that 

(3.5) . 

Let l1 > ··· > lr > 1. Then the inequality 

(3.6) kg + r − 1 > l1 

is necessary for I(l1,...,lr)(z) to be nonzero. Hence there are at most  tuples (l1 > ··· > lr > 1) 

such that I(l1,...,lr)(z) is nonzero. 

Proof. For i = 1,...,r we have 

(3.7) degti Φp(t,z)W(t,z) = nM + (r − 1)c − 1 

 

This proves the lemma.  

3.2. Main Theorem. For a polynomial F in some variables with integer coefficients, denote 

by [F]p the polynomial F whose integer coefficients are projected to Fp. Let 

f(z) = X ad1,...,dnz1d1 ...zndn 

d1,...,dn 
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be a W ⊗n[n − 2r]-valued polynomial in z with integer coefficients. Here each ad1,...,dn is a linear 

combination of basis vectors {VJ |J ∈ Jr} with integer coefficients. Denote by [f(z)]p the 

polynomial 

[f(z)]p = X [ad1,...,dn]p z1d1 ...zndn , 

d1,...,dn 

where each [ad1,...,dn]p is the linear combination ad1,...,dn whose integer coefficients are projected 

to Fp. 

Denote by W ⊗n[n − 2r]p the vector space over Fp of linear combinations of symbols {VJ |J ∈ 

Jr} with coefficients in Fp. Define the subspace SingW ⊗n[n−2r]p ⊂ W ⊗n[n−2r]p as the subspace 

of all vectors PJ∈Jr cJVJ whose coefficients satisfy equations (2.1). 

Theorem 3.5. Let (p,q) be of type 1. Let inequality (3.5) hold. Then for any (l1,...,lr) such that kg 

+ r − 1 > l1 > ··· > lr > 1, the polynomial [I(l1,...,lr)(z)]p is nonzero. The polynomials 

{[I(l1,...,lr)(z)]p | kg + r − 1 > l1 > ··· > lr > 1} 

are linear independent over Fp[z], that is, if 

X (l1,...,lr) fl1,...,lr(z)[I (z)]p = 0 
kg+r−1>l1>···>lr>1 

for some fl1,...,lr(z) ∈ Fp[z], then all fl1,...,lr(z) are equal to zero. 

The theorem is proved in Section 4.5. 

Corollary 3.6. Let (p,q) be of type 1. Let inequality (3.5) hold. Then the Fp[zp]-module 

M/(∼) is free of rank  with a basis [I(l1,...,lr)(z)]p, where kg + r − 1 > l1 > ··· > lr > 1.  

4. Leading term and leading index 

4.1. Leading term of a polynomial. Denote by  the lexicographical ordering of monomials

, where d1,...,dn ∈ Z>0 . Thus  and so on. For example,

. 
For a nonzero polynomial 

f(z) = X ad1,...,dnz1d1 ...zndn 

d1,...,dn 
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consider the summand   corresponding to the lexicographically largest 

monomial  entering f(z) with a nonzero coefficient ad1,...,dn. We call this summand the 

leading term of f(z), the corresponding ad1,...,dn – the leading coefficient, and   – the 
leading monomial. 

For example, let I(l1,...,lr)(z) be one of the p-hypergeometric solutions of Theorem 2.3. Then 

[I(l1,...,lr)(z)]p = X [ad1,...,dn]p z1d1 ...zndn , 

d1,...,dn 

with [ad1,...,dn]p ∈ SingW ⊗n[n−2r]p. If [I(l1,...,lr)(z)]p is nonzero, then it has the leading term, 

monomial, and coefficient. The leading coefficient is a nonzero vector of SingW ⊗n[n − 2r]p. 

4.2. Leading index of a vector of W ⊗n[n−2r]p. We order {VJ |J ∈ Jr}, the basis vectors of W 
⊗n[n−2r]p, lexicographically with the largest of them being V{1,2,...,r} = w2 ⊗···⊗w2 ⊗ 

w1⊗···⊗w1 and the smallest of them being V{n−r+1,n−r+2,...,n} = w1⊗···⊗w1⊗w2⊗···⊗w2. 

Every nonzero vector w ∈ W ⊗n[n − 2r]p is a linear combination of the basis vectors. Let 

V{m1,...,mr} be the largest of the basis vectors entering w with a nonzero coefficient. We call the 

index {m1,...,mr} the leading index of w. 

4.3. Index {m1,...,mr}. Given integers (l1,...,lr), consider the system of inequalities for integers 

m1,...,mr, 

(4.1) (mi − 1)M 6 nM + (r − i)c − lip < miM, i = 1,...,r. 

Clearly, these inequalities uniquely determine the integers m1,...,mr. 

Lemma 4.1. Let inequality (3.5) hold. Let kg+r−1 > l1 > ··· > lr > 1. Then mi+2 6 mi+1 for i = 1,...,r 

− 1, and 1 6 m1, mr < n. 

Proof. For i = 1,...,r − 1 we have (mi − 1)M 6 nM + (r − i)c − lip = nM + (r − i − 1)c + c−li+1p+(li+1 

−li)p 6 nM +(r−i−1)c+c−li+1p−p = nM +(r−i−1)c−li+1p−2M < (mi+1 − 2)M. Hence mi+1 > mi + 1. 

This implies that mi + 2 6 mi+1. 

The inequality 1 6 m1 follows from the inequality l1p 6 nM +(r−1)c, which is true since 

 

see (3.7). We also have M + 2c = p 6 lrp 6 (n − mr + 1)M. Hence mr < n.  

Lemma 4.2. Let (l1,...,lr) and  be two distinct tuples of integers such that kg+r− 

1 > l1 > ··· > lr > 1 and . Let {m1,...,mr} and  

be the corresponding sets defined by (4.1). Then . 
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Proof. Let li > li0 for some i. Then (  

(li0 −li)p 6 nM +(r−i)c−li0p−p = nM +(r−i)c−lip−2M −c < nM +(r−i)c−lip−2M < 

. Hence   

4.4. Special summand. We have 

, 

where A = {(aij)16i,j6r,i6=j | aij 
∈ Z>0, aij + aji = c forevery i 6= j}. Hence 

. 

This sum contains the special summand 

 

corresponding to the collection (aij) such that aij = c for i < j and aij = 0 for i > j. For 1 6 u 6 

nM, denote 

(4.3) z(u) := zs , if (s − 1)M < u 6 sM. 

Thus z(1) = z(2) = ··· = z(M) = z1, z(M + 1) = z2 and so on. 

Lemma 4.3. The vector-polynomial S(z) is nonzero. The leading monomial of S(z) equals 
 r nM+(r−i)c−lip 

(4.4) zl1,...,lr := Y Y z(u). 

 i=1 u=1 

Denote by Cl1,...,lr the leading coefficient of S(z). Then the leading index of the vector Cl1,...,lr equals 

{m1,...,mr} determined by inequalities (4.1). Moreover, the leading monomial of any other 

nonzero summand in (4.2) is lexicographically smaller than zl1,...,lr. Thus Cl1,...,lrzl1,...,lr is the leading 

term of [I(l1,...,lr)(z)]p. 

Proof. We rewrite zl1,...,lr using the integers m1,...,mr, 
r 
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(4.5) zl1,...,lr = Y
z

1M ···zmMi−1 
z

m(ni−mi+1)M+(r−i)c−lip. 
i=1 

Let  for some d1,...,dn. Then 

(4.6) dmi = (n − mi + 1)M + (r − i)(c + M) − lip, i = 1,...,r; 

 dj = rM, j = 1,...,m1 − 1; 

 dj = (r − i)M, j = mi + 1,...,mi+1 − 1, i = 1,...,r − 1; 

 dj = 0 j = mr + 1,...,n. 

It is clear that zl1,...,lr is the lexicographically maximal monomial which can be produced by 

S(z). Let Cl1,...,lr be the coefficient of zl1,...,lr in S(z). Then Cl1,...,lr = PJ∈Jr cJVJ with cJ 
∈ Fp. It is clear that 

{m1,...,mr} is the leading index of Cl1,...,lr, if c{m1,...,mr} is nonzero, but 

 , 

which is nonzero due to (3.3) and (4.1). Thus S(z) is nonzero, its leading term equals 

Cl1,...,lrzl1,...,lr, and the leading index of Cl1,...,lr is {m1,...,mr}. It remains to prove that the leading 

monomial of any other nonzero summand in (4.2) is lexicographically smaller than 

zl1,...,lr. 

Let S˜(z) be any other summand in (4.2), 

. 

It is clear that the lexicographically maximal monomial which can be produced by S˜(z) equals 
 r nM−lip+Pj6=i aij 

(4.8) z˜l1,...,lr := Y Y z(u). 

 i=1 u=1 

Assume that Pj6=1 a1j < (r − 1)c. Let s be the least index such that the maximal power of zs 

dividing  ) is strictly smaller than the maximal power of zs (which we 

denote by b) dividing ). Then the maximal power of zs dividing 

) is strictly smaller than b + (r − 1)M. This implies that ˜z l1,...,lr is 

lexicographically smaller than zl1,...,lr. 

Thus, a summand S˜(z) must have Pj6=1 aij = (r − 1)c in order to have a monomial as large 

lexicographically as zl1,...,lr. This means that a1j = c and aj1 = 0 for j 6= 1. 
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Now take any summand S˜(z) in (4.2) with Pj6=1 a1j = (r −1)c. In a similar way we show that 

S˜(z) must have Pj6=2 a2j = (r−2)c in order to have a monomial as large lexicographically as 

zl1,...,lr. Repeating this reasoning we conclude that the special summand S(z) is the only 

summand in (4.2) which may have the monomial zl1,...,lr with a nonzero coefficient; and no 

summands in (4.2) may have a monomial larger than zl1,...,lr. Lemma 4.3 is proved.  

4.5. Proof of Theorem 3.5. Let [I(l1,...,lr)(z)]p be one of the vector-polynomials of Theorem 3.5. 

Then [I(l1,...,lr)(z)]p has the leading term Cl1,...,lrzl1,...,lr described in Lemma 4.3. Also the leading 

index {m1,...,mr} of Cl1,...,lr is determined by l1,...,lr in (4.1). Let fl1,...,lr(z) ∈ Fp[z]. Then the leading 

term of the vector-polynomial fl1,...,lr(z)[I(l1,...,lr)(z)]p equals the product of leading terms of 

fl1,...,lr(z) and [I(l1,...,lr)(z)]p. Moreover, the leading index of the leading coefficient of 

fl1,...,lr(z)[I(l1,...,lr)(z)]p equals the leading index {m1,...,mr} of the leading coefficient of [I(l1,...,lr)(z)]p. 

Consider a sum Pkg+r−1>l1>···>lr>1 fl1,...,lr(z)[I(l1,...,lr)(z)]p as in Theorem 3.5. Then all nonzero 

summands have different leading indices due to the previous remark and Lemma 4.2. This 

implies that such a sum is not zero if it has nonzero summands. Theorem 3.5 is proved. 

Example. Let q = 2, n = 5, r = 2. Then Theorem 3.5 says that for any odd prime p there is just 

one p-hypergeometric solution [I(2,1)(z1,...,z5)]p. This polynomial is homogeneous of degree 2p 

− 4 and takes values in SingW ⊗5[1]p. The leading term of [I(2,1)(z1,...,z5)]p is 

C2,1z1p−2z2(p−1)/2z3(p−3)/2 where the leading coefficient C2,1 ∈ W ⊗5[1]p has the leading index 

{m1,m2} = {1,3}. 

Notice that the space SingW ⊗5[1] has dimension 5. 

4.6. Leading terms and eigenvectors. Let I(z) ∈ SingW ⊗n[n−2r]p ⊗Fp[z] be a polynomial 

solution of the KZ equations (2.6) with a positive integer parameter q (not necessarily a p-

hypergeometric solution). Let  be its leading term, C ∈ SingW ⊗n[n − 2r]p. 

Then we have modulo p, 
n 

  

(4.9) X Ω¯
j,` C ≡ qdjC, 

j = 1,...,n − 1, dn ≡ 0, 

`=j+1 

see [V7, Lemma 5.1]. Thus the leading coefficient C is an eigenvector of the linear operators 

1, with prescribed eigenvalues. 

An eigenbasis of the operators Ω¯
j, j = 1,...,n − 1, on SingW ⊗n[n − 2r]p is formed by the so-

called iterated singular vectors, for example see [V2]. Such an iterated vector is determined 

by its leading index. 

If p is large enough with respect to n, then the vectors of that eigenbasis are separated by 

eigenvalues. 
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Let [I(l1,...,lr)(z)]p be one of the p-hypergeometric solutions of Theorem 3.5. Let 

 be its leading term, where dj are defined in (4.6). Let {m1,...,mr} be the 

leading index of Cl1,...,lr. If p is large enough with respect to n, then Cl1,...,lr is the iterated singular 

vector with leading index {m1,...,mr}. It is the eigenvector of the operators Ω¯
j, j = 1,...,n − 1, 

with eigenvalues defined by formula (4.9). 

5. Solutions and a Cartier map 

In this section we discuss how the two objects: 

• the set of indices (l1,...,lr) with kg+r−1 > l1 > ··· > lr > 1, appearing in Theorem 

3.5, 

• and the number of such indices , appearing in Corollary 3.6, are related to the 

integrand Φ(t,z)W(t,z)dt1 ∧ ··· ∧ dtr of the integral representation of complex hypergeometric 

solutions of the KZ equations, appearing in Theorems 2.1 and 2.2. 

Recall that the complex hypergeometric solutions with values in SingW ⊗n[n − 2r] are given 

by the formulas: 

I(γ)(z) = Rγ(z) Φ(t,z)W(t,z)dt1 ∧ ··· ∧ dtr , 

Φ(t,z) = Q16i<j6r(ti − tj)2/q Qri=1 Qns=1(ti − zs)−1/q, 

 W(t,z) = P16i1<···<ir6n Wi1,...,ir(t,z)Vi1,...,ir , Wi1,...,ir(t,z) = Sym  , 

see Section 2.3, while the corresponding p-hypergeometric solutions are given by the 

formulas: 

I(l1,...,lr))(z) = R{l1,...,lr}p Φp(t,z)W(t,z)dt1 ...dtr , 

Φp(t,z) = Q16i<j6r(ti − tj)c Qri=1 Qns=1(ti − zs)M,W(t,z) = PJ∈Jr WJ(t,z)VJ, see Section 2.5. 

5.1. Square integrability criterion. Let M be a complex manifold of complex dimension r. If 

f is a meromorphic function on M and S is an irreducible subvariety of M, then the order of f 

along S, ordS(f), is the coefficient of the exceptional divisor of the blow up of S at the divisor 

of f. This notion generalizes to the setting where f has only finitely many determinations, 

which means that f becomes univalued on a finite (possibly ramified) cover of M. Then f has 

at a generic point of the exceptional divisor a fractional order. 

Let ω be a multivalued meromorphic r-form on M with only finitely many determinations 

and let S be an irreducible subvariety of M. Write ω at some point s of S as fω0 where ω0 is d-

form on M that is nonzero at s and f is multivalued meromorphic at s. The logarithmic order 

of ω along S is codim(S) + ordS;s(f). This only depends on ω and S. 
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Suppose that D ⊂ M is a hypersurface which is arrangement-like in the sense that D can be 

covered by analytic coordinate charts of M on which D is given by a product of linear forms 

in the coordinates, see [STV]. It is clear that D then comes with a natural partition into 

connected, locally closed submanifolds, its strata. 

We say that a stratum S is decomposable if at a generic point s ∈ S the germ Ds of the 

hyperplane arrangement can be decomposed into the disjoint sum A1 ∪ A2 of two germs of 

hyperplane arrangements and, after a suitable linear coordinate change, defining equations 

for A1 and A2 have no common variables. We say that a stratum S is dense if it is of 

codimension 1 or if it is not decomposable, see [V1, STV]. We have the following trivial 

observation. 

Proposition 5.1 ([LV]). Suppose M is compact and ω is a meromorphic multivalued rform on 

M with only finitely many determinations and whose polar set is contained in an arrangement-

like hypersurface D. Then the following properties are equivalent: 

(i) the form ω is square integrable in the sense that RM ω ∧ ω¯ converges; 

(ii) the form ω has positive logarithmic order along any dense stratum of D; 

(iii) if M˜ → M is a proper surjective map with M˜ a complex manifold of the same dimension 

as M and such that ω becomes a univalued d-form on M˜ , then the latter form is regular. 

5.2. Square integrable differential r-forms. Let t = (t1,...,tr) be coordinates on Cr ⊂ (P1)r and 

z = (z1,...,zn) distinct parameters. Consider a differential r-form 

(5.1)  

on Cr ⊂ (P1)r. Here k, 0 < k < q, is a positive integer; dt = dt1 ∧ ··· ∧ dtr; and P(t) is a polynomial 

in t. 

Let n = qg + 2r − 1 where g is some positive integer, cf. (3.4). Theorem 5.2. 

The form ω is square integrable on (P1)r if and only if 

(5.2) degti P 6 kg − 1 forall i = 1,...,r. 

Proof. Denote by D the support of the divisor of ω. The support D lies in the union of 

hypersurfaces defined by ti = zs, ti = ∞, and ti = tj for i < j. This union is clearly arrangement-

like. Its dense strata of codimension l are: 

(i) diagonals in (P1)r defined by letting l > 2 coordinates to coalesce; 

(ii) loci in (P1)r defined by setting l > 1 coordinates equal to ∞; (iii) loci in 

(P1)r defined by setting l > 1 coordinates equal to some zs. 
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Let S be defined by the equations ti1 = ··· = til for some 1 6 i1 < ··· < il 6 r. Then the logarithmic 

order of ω along  

Let S be defined by the equations ti1 = ··· = til = zs for some 1 6 i1 < ··· < il 6 r. Then the 

logarithmic order ω along  

Let S be defined by the equation ti1 = ∞ for some i1. In the coordinates u1,...,ur, ui = 1/ti for i 

= 1,...,r, we have 

(5.3)  
r 

 · Y (uj − ui)2k/q · Yu−r degti P+nk/q−(r−1)2k/q−2 · du1 ∧ ··· ∧ dur 

 16i<j6n i=1 

Hence the logarithmic order of ω along S equals 

1 + nk/q − (r − 1)2k/q − 2 − degti1 P = (n − 2(r − 1))k/q − 1 − degti1 P = kg − 1 − 

degti1 P + k/q. 

Hence the logarithmic order along S is positive if and only if degti1 P 6 kg − 1. 

Let S be defined by the equations ti1 = ··· = til = ∞ for some 1 6 i1 < ··· < il 6 r. 

It follows from (5.3) that the logarithmic order along S is positive if the logarithmic order is 

positive along every hyperplpane defined by the equation tij = ∞ for j = 1,...,l. The theorem is 

proved.  

5.3. Schur polynomials. A sequence of integers a = (a1 > a2 > ··· > ar > 0) is called a partition. 

For a partition a the polynomial ma(t) = Sym   is called a symmetric monomial 

function. The polynomial 

 

is called a Schur polynomial. It is known that 

(5.4) sa(t) = X Ka,b mb1,...,br(t), 
b6a 

where Ka,b are nonnegative integers, Ka,a = 1. The inequality b 6 a means for 

all i = 1,...,r. The numbers Ka,b are called the Kostka numbers. For a positive integer d, denote 

A(d) = {(a1,...,ar) | d > a1 > a2 > ··· > ar > 0, ai ∈ Z}. 
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Let V(d) be the free Z-module with basis {ma(t)|a ∈ A(d)}. The module V(d) has rank . 
The set {sa(t)|a ∈ A(d)} of Schur polynomials is a basis of V(d) by formula (5.4). 

Let us return to Theorem 5.2. Let W be the vector space of all differential r-forms ω = 

P(t)Φ(t,z)kdt such that P(t) is a polynomial in t1,...,tr symmetric with respect to permutations 

of t1,...,tr, and ω is square integrable on (P1)r. 

Corollary 5.3. The set {sa(t)Φ(t,z)kdt|a ∈ A(kg − 1)} of differential r-forms on (P1)r is a basis of 

W. The vector space W has dimension .  Notice that this binomial coefficient equals the 

rank of the module M/(∼) in Corollary 

3.6. 

We introduce the following Fp[z]-variant of the vector space W. Let Wp[z] be the free Fp[z]-

module with basis B of formal algebraic differential r-forms 

 ωa = sa(t)Φ(t,z)kdt, a ∈ A(kg − 1). 

Let B∗ = {ωa |a ∈ A(kg − 1)} be the collection of Fp[z]-linear functions on Wp[z] such that 

hωa,ωbi = δa,b for all a,b ∈ A(kg − 1). 

5.4. Cartier map. Assume that (p,q) is of type 1. Hence q|(kp − 1), 0 < k 6 q/2. 

We define a map which sends every differential form Φ(t,z)WJ(t,z)dt, J ∈ Jr, to Wp[z], that is, 

to a linear combination of differential r-forms ωa, a ∈ A(kg −1), with coefficients in Fp[z]. We 

call this map the Cartier map. We have 

 

where c,M, Φp(t,z) are defined in (3.2) and (2.12). 
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Since (p,q) is of type 1, the integer c is odd. Hence the polynomial Φp(t,z)WJ(t,z) is skew-

symmetric with respect to permutations of t1,...,tr. We expand Φp(t,z)WJ(t,z) with respect to 

the t-variables as follows: 

 

where P0 denotes the sum of the monomials  such that at least one of d1,...,dr is not 

of the form lp − 1 for some positive integer l; the coefficients  ) are suitable 

polynomials in z. 

Returning to Φ(t,z)WJ(t,z)dt we write 

 

Notice that ). We define the Cartier map C by the formula 

(5.5) C : Φ(t,z)WJ(t,z)dt 7→ X [c(Ja1,...,ar)(z)]p s(a1,...,ar)(t1,...,tr)Φ(t,z)kdt, 

(a1,...,ar)∈A(kg−1) 

cf. [AH]. 

Recall the collection {ω(a1,...,ar) |(a1,...,ar) ∈ A(kg−1)} of linear functions on Wp[z]. We have 

. 

Theorem 5.4. For any p-hypergeometric solution [I(a1+r,a2+r−1,...,ar+1)(z)]p, kg − 1 > a1 > a2 > ··· > ar 

> 0 we have 

(5.6) [I(a1+r,a2+r−1,...,ar+1)(z)]p = X [cJ(a1,...,ar)(z)]pVJ . 

J∈Jr 

Proof. The proof follows from the definition of  

Formula (5.6) can be reformulates as follows. For any integers (l1,...,lr), kg + r − 1 > l1 > ··· > 

lr > 1, the p-hypergeometric solution [I(l1,...,lr)(z)]p is given by the formula 

(5.7) . 
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Notice that Φ(t,z)W(t,z)dt is the integrand of the integral representation of complex 

hypergeometric solutions of the KZ equations, see (2.10), while [I(l1,...,lr)(z)]p is a solution of the 

KZ equations over Fp. 

Formula (5.7) for r = 1 and two prime numbers (p > q) not necessarily of type 1 is the 

subject of [SlV, Theorem 6.2]. 
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