Novel Use of EXLO for Cryo-Manipulation of FIB Specimens

Lucille A. Giannuzzi¹, Michael Colletta², Yue Yu², Lena F. Kourkoutis^{2,3}, Andrew D. Iams⁴, Kyle Beggs⁵, and Alain J. Kassab⁵

The use of cryogenic focused ion beam (cryo-FIB) specimen preparation for cryogenic transmission electron microscopy (cryo-TEM) is growing in both life sciences and physical sciences applications [1-11]. Manipulating cryo-FIB specimens with *in situ* lift out (cryo-INLO) has become the norm despite its cumbersome and lengthy procedures and often poor reproducibility [11].

Conversely, it is well known that ambient *ex situ* lift out (EXLO) is fast and reproducible capable of successful manipulation of > 20 specimens per hour [12]. Thus, we present a natural evolution and combination of conventional EXLO methods applied to cryo-FIB specimens for the development of cryo-EXLO equipment, procedures, and methods. We present a novel use of cryo-EXLO to manipulate specimens prepared using cryo-FIB milling methods. including a polymer specimen and a plunge-frozen yeast specimen. As will be shown, both the polymer specimen and plunge-frozen yeast specimen were cryo-EXLO manipulated in minutes, improving time to results over cryo-INLO methods. In addition, cryo-TEM results show that both specimens were cryo-EXLO manipulated with minimal ice contamination and the vitreous phase was retained in the yeast specimen. Thermal heat transfer modeling of the cryo-FIB processes is consistent with, and corroborate, our cryo-EXLO experimental methods and results [13].

References:

- [1] M Marko et al., J. Microscopy **222** (2006) p. 42.
- [2] LS Ladinsky in Cryo-EM part A: sample preparation and data collection. Methods in Enzymology ed. (2010) G Jensen San Diego Academic Press p. 211.
- [3] N Antoniou et al., ISTFA (2012) p. 399.
- [4] A Rigort et al., Proc. Nat. Acad. Sci. 109 (2012) p. 4449.
- [5] S Rubino et al., J. Struc. Biol. 180 (2012) p. 572.
- [6] C Hsieh, J. Struc. Biol. 185 (2014) p. 32.
- [8] M Schaffer et al., Microsc. Microanal. 24 (2018) p. 820.
- [7] MJ Zachman et al., Microsc. Microanal. 23 (2017) p. 2312.
- [9] MJ Zachman et al., Nature 560 (2018) p. 345.
- [10] S Klumpe, et al. eLife (2021)10:e70506.
- [11] CD Parmenter and ZA Nizamudeen, J. Microscopy **281** (2021) p. 157.
- [12] LA Giannuzzi et al., Micros. Microanal. **21** (2015) p. 1034.
- [13] This work was funded by DOE BER SBIR award DE-SC0020511. Additional support was provided by NSF (DMR-1654596, DMR-1429155, DMR-1719875).

^{1.} EXpressLO LLC, Lehigh Acres, FL, USA.

² Applied and Engineering Physics, Cornell University, Ithaca, NY, USA

³ Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY USA

^{4.} Materials Science & Engineering, The Pennsylvania State University, University Park, PA, USA

⁵ Mechanical & Aerospace Engineering, University of Central Florida, Orlando, FL, USA

^{*} Corresponding author: Lucille.Giannuzzi@EXpressLO.com