l")

Check for
updates

Towards Efficient Auditing for Real-Time
Systems

Ayoosh Bansal!®™ @, Anant Kandikuppa!, Chien-Ying Chen’,
Monowar Hasan?@®, Adam Bates', and Sibin Mohan®

L University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA
{ayooshb2 ,anantk3,cchen140, batesa}@illinois .edu
2 Wichita State University, Wichita, KS 67260, USA
monowar .hasan@wichita.edu
3 The George Washington University, Washington, DC 20052, USA

sibin.mohan@gwu.edu

Abstract. System auditing is a powerful tool that provides insight into
the nature of suspicious events in computing systems, allowing machine
operators to detect and subsequently investigate security incidents. While
auditing has proven invaluable to the security of traditional comput-
ers, existing audit frameworks are rarely designed with consideration for
Real-Time Systems (RTS). The transparency provided by system audit-
ing would be of tremendous benefit in a variety of security-critical RTS
domains, (e.g., autonomous vehicles); however, if audit mechanisms are
not carefully integrated into RTS, auditing can be rendered ineffectual
and violate the real-world temporal requirements of the RTS.

In this paper, we demonstrate how to adapt commodity audit frame-
works to RTS. Using Linux Audit as a case study, we first demonstrate
that the volume of audit events generated by commodity frameworks is
unsustainable within the temporal and resource constraints of real-time
(RT) applications. To address this, we present Ellipsis, a set of kernel-
based reduction techniques that leverage the periodic repetitive nature
of RT applications to aggressively reduce the costs of system-level audit-
ing. Ellipsis generates succinct descriptions of RT applications’ expected
activity while retaining a detailed record of unexpected activities, enabling
analysis of suspicious activity while meeting temporal constraints. Our
evaluation of Ellipsis, using ArduPilot (an open-source autopilot applica-
tion suite) demonstrates up to 93% reduction in audit log generation.

Keywords: Real-time systems - Auditing - Cyber-physical systems

1 Introduction

As RTS become indispensable in safety- and security-critical domains—medical
devices, autonomous vehicles, manufacturing automation, smart cities, etc.
[29,41,53,58]—the need for effective and precise auditing support is growing.
Even now, event data recorders (or black bozes) are crucial for determining
fault and liability when investigating vehicle collisions [16,17], and the need

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13556, pp. 614-634, 2022.
https://doi.org/10.1007/978-3-031-17143-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17143-7_30&domain=pdf
http://orcid.org/0000-0002-4848-6850
http://orcid.org/0000-0002-2657-0402
http://orcid.org/0000-0002-3295-0233
https://doi.org/10.1007/978-3-031-17143-7_30

Towards Efficient Auditing for Real-Time Systems 615

for diagnostic event logging frameworks (e.g., QNX [4], VxWorks [5] and Com-
posite OS [62]) is well understood. However, these high-level event loggers are
insufficient to detect and investigate sophisticated attacks. Concomitant with
its explosive growth, today’s RTS have become ripe targets for sophisticated
attackers [27]. Exploits in RTS can enable vehicle hijacks [25,36], manufacturing
disruptions [60], IoT botnets [31], subversion of life-saving medical devices [67]
and many other devastating attacks. The COVID-19 pandemic has further shed
light on the potential damage of attacks on medical infrastructure [14,61]. These
threats are not theoretical, rather active and ongoing, as evidenced recently by
malicious attempts to take control of nuclear power, water and electric systems
throughout the United States and Europe [55].

In traditional computing systems, system auditing has proven crucial to detect-
ing, investigating and responding to intrusions [20, 33,34, 52]. Unfortunately, com-
prehensive system auditing approaches are not widely used in RTS. RTS logging
takes place largely at the application layer [16,17] or performs lightweight sys-
tem layer tracing for performance profiling (e.g., log syscall occurrences, but not
arguments) [18]; in both cases, the information recorded is insufficient to trace
attacks because the causal links between different system entities cannot be iden-
tified. The likely cause of this hesitance to embrace holistic system-layer logging
is poor performance. System audit frameworks are known to impose tremendous
computational and storage overheads [51] that are incompatible with the tempo-
ral requirements of many real-time applications. Thus, while we are encouraged by
the growing recognition of the importance of embedded system auditing [8,26, 38]
and the newfound availability of Linux Audit in the Embedded Linux [3], a prac-
tical approach to RTS auditing remains an elusive goal.

Observing that performance cost of Linux Audit is ultimately dependent
on the number of log events generated, and that the performance impacts of
commodity auditing frameworks can be optimized without affecting the forensic
validity of the audit logs, e.g., through carefully reducing the number of events
that need to be logged [11,13,15,32,43,47,51,65,74], we set out to tailor Linux
Audit to RTS, carefully reducing event logging without impacting the forensic
validity of the log. We present Ellipsis, a kernel-based log reduction framework
that leverages the predictability of real-time tasksets’ execution profiles. Ellipsis
first profiles tasks to produce a template of their audit footprint. At runtime,
behaviors consistent with this template are reduced, while any deviations from
the template are audited in full, without reduction. Far from being impractical,
we demonstrate a synergistic relationship between security auditing and pre-
dictable RTS workloads — Ellipsis is able to faithfully audit suspicious activities
while incurring almost no log generation during benign typical activity.

The contributions of this work are:

— Ellipsis', an audit framework, uniquely-tailored to RT environments (Sect. 3).
— Detailed? evaluations (Sect.4) and security analysis (Sect. 5) to demonstrate
that Ellipsis retains relevant information while reducing event/log volume.

! https://bitbucket.org/sts-lab/ellipsis.
2 A technical report with supplementary material for this work is available [10].

https://bitbucket.org/sts-lab/ellipsis

616 A. Bansal et al.

Audit log
Audit log Generation Maintenance

(Synchronous) (Asynchronous)

User Syscall Syscall
Space (start exit®)

Iy . &N |Audi| :
Application : [auditd }1> Log |

Fig. 1. Architecture of linux audit framework [1].

2 Background and System Model

Linuzx Audit Framework. The Linux Audit system [64] provides a way to audit
system activities. An overview of the Linux Audit architecture is presented in
Fig. 1. When an application invokes a syscall (D), the subsequent kernel control
flow eventually traverses an audit_filter hook @). Linux Audit examines the
context of the event, compares it to pre-configured audit rules, generating a log
event if there is a match and enqueueing it in a message buffer) before returning
control to the syscall handler @) and then to the application (§). Asynchronous
from this workflow, a pair of (non-RT) audit daemons (kauditd and auditd)
transmit the message buffer to user space for storage and analysis. Because the
daemons are asynchronous, the message buffer can overflow if syscalls occur
faster than the daemon flushes to user space, resulting in event loss.

Although it is well-established that Linux Audit can incur large computa-
tional and storage overheads in traditional software [51], its impacts on RT appli-
cations were unclear. Encouragingly, upon conducting a detailed (See footnote
2) analysis we observed that Linux Audit does not introduce significant issues
of priority inversion or contention over auditing resources shared across applica-
tions (e.g., kaudit buffer). Further, except for limited outlier cases, the latency
introduced by auditing syscalls can be measured and bounded. Hence it is a good
candidate for firm and soft deadline RTS as supported by RT Linux [66]. How-
ever, audit events were lost, making auditing incomplete and ineffectual while
still costly for the RTS due to large storage space required to store the audit log.

RTS Properties. Ellipsis leverages properties unique to RT environments, as
described in Table 1. In contrast to traditional applications where determining
all possible execution paths is often undecidable, knowledge about execution
paths is an essential component of RT application development. RTS are spe-
cial purpose machines that execute well formed tasksets to fulfill predetermined
tasks. Various techniques are employed to analyze the tasksets, e.g., worst case
execution time (WCET) analysis [19,30,35,45,57,59,76]. All expected behaviors

Towards Efficient Auditing for Real-Time Systems 617

Table 1. RTS properties relevant to Ellipsis

Property Relevance to Ellipsis

Periodic tasks | Most RT tasks are periodically activated, leading to repeating behaviors.
Ellipsis templates describe the most common repetitions.

Aperiodic Second most common form of RT tasks, Aperiodic tasks also lead to
tasks repeating behaviors, but with irregular inter-arrival times.

Code coverage | High code coverage analyses are part of existing RT'S development processes,
Ellipsis’ automated template generation adds minimal cost.

Timing A requirement for safety and correct functioning of RTS, naively enabling

predictability | auditing can violate this by introducing overheads and variability.

Isolation Resources are commonly isolated in RT'S to improve timing predictability.
RTS auditing mechanisms should not violate resource isolation.

Special RTS are special purpose machines, tasks are known at development i.e.,

purpose templates can be created before system deployment.

Longevity Once deployed RTS can remain functional for years. Ellipsis’ can save

enormous log storage and transmission costs over the lifetime of the RT'S

of the system must be accounted for at design time in conjunction with the sys-
tem designers. Any deviation is an unforeseen fault or malicious activity, which
needs to be audited in full detail.

Threat Model. We consider an adversary that aims to penetrate and impact
an RTS through exfiltrating data, corrupting actuation outputs, degrading per-
formance, causing deadline violations, etc. This attacker may install modified
programs, exploit a running process or install malware on the RTS to achieve
their objectives. To observe this attacker, our system adopts an aggressive audit
configuration intended to capture all forensically-relevant events, as identified
in prior works.> We assume that the underlying OS and the audit subsystem
therein are trusted. This is a standard assumption in system auditing literature
[12,33,46,48,56]. Far from being impractical on RTS, prior works such as Trusted
Timely Computing Base provide a secure kernel that meets both the trust and
temporal requirements for hosting Fllipsis in RT Linux [21,24,69,70]. Ellipsis’
goal is to capture evidence of an attacker intrusion/activity without losing rel-
evant information and hand it off to a tamper proof system. Although audit
integrity is an important security goal, it is commonly explored orthogonally to
other audit research due to the modularity of security solutions (e.g., [12,54,75]).
Therefore, we assume that once recorded to kaudit buffer, attackers cannot
compromise the integrity of audit logs Finally, we assume that applications can
be profiled in a controlled benign environment prior to being the target of attack.

3 Specifically, our ruleset audits execve, read, readv, write, writev, sendto,
recvfrom, sendmsg, recvmsg, mmap, mprotect, link, symlink, clone, fork,
vfork, open, close, creat, openat, mknodat, mknod, dup, dup2, dup3,
bind, accept, accept4, connect, rename, setuid, setreuid, setresuid,
chmod, fchmod, pipe, pipe2, truncate, ftruncate, sendfile, unlink,
unlinkat, socketpair,splice, init._module, and finit_module.

618 A. Bansal et al.

Trace Intermediate
Template
Applicati $1()
pgi::::r;on s2() S1 (args)
s1() v
% nam;l(e)ep() b | S2 (zrgs)
S2()
S1() S1 (args)
nanosleep()
Step 1
T
S1 (args)
TPL—1,A, v .))
PL 1 A $2 (args) Fig. 3. Runtime template matching as
T ” v an FSA with states as [syscalls matched
— (erge) count, {set of reachable templates}]. TPL-
El o 1 (S1, S2, S1) and TPL-2 (S1, S3, S1)
TPL-1 are shown as example. Template matches
(TPL-1, TPL-2) emit a single record, fail-
Fig. 2. Ellipsis template creation. ure leads to full log store.
3 FEllipsis

The volume of audit events is the major limiting factor for auditing RTS. High
event volume can result in event record loss, high log storage costs and large
maintenance overheads [51]. We present Ellipsis, an audit event reduction tech-
nique designed specifically for RTS. Ellipsis achieves this through templatization
of the audit event stream. Templates represent learned expected behaviors of
RT tasks, described as a sequence of syscalls with arguments and temporal pro-
file.These templates are generated in an offline profiling phase, similar to common
RTS analyses like WCET [19,44]. At runtime, the application’s syscall stream
is compared against its templates; if a contiguous sequence of syscalls matches a
template, only a single record indicating the template match is inserted into the
event stream (kaudit buffer). Significantly, while a sequence of audited syscall
events is replaced by a single record, relevant information is not lost (Sect.5).

Model. Consider a system in which the machine operator wishes to audit a single
RT task 7. An RT task here corresponds to a thread in Linux systems, identified
by a combination of process and thread ids. We can limit this discussion to a
single task, without losing generality, as Ellipsis’ template creation, activation
and runtime matching treat each task as independent. RT tasks are commonly
structured with a one time nit component and repeating loops. Let s; denote
a syscall sequence the task exhibits in a loop execution and NN the count of
different syscall execution paths 7 might take (i.e., 0 < @ < N). A template
describes these sequences (s;), identifying the syscalls and arguments. As noted
in Sect. 2, RT applications are developed to have limited code paths and bounded
loop iterations. Extensive analysis of execution paths is a standard part of the
RTS development process. Thus, for RTS, N is finite and determinable. Let
function len(s;) return the number of syscalls in the sequence s;. Further, let
p, be the probability that an iteration of 7 exhibits syscall sequence s;.

Towards Efficient Auditing for Real-Time Systems 619

Sequence Identification. The first step towards template creation is identifi-
cation of sequences and their probability of occurrences. Identification of cyclic
syscall behaviors has been addressed in the auditing literature [42,50], with past
solutions require binary analysis, code annotations, stack analysis or a combina-
tion. While any technique that yields s; and p; can be employed here, including
the prior mentioned ones, we developed a highly automated process, leverag-
ing RT task structure and Linux Audit itself. The application is run for long
periods of time and audit trace collected. We observe that RT tasks typically
end with calls to sleep or yield that translate to nanosleep and sched_yield
syscalls in Linux. Periodic behaviors can also be triggered by polling timerfds
to read events from multiple timers by using select and epoll_wait syscalls.
We leverage these syscalls to identify boundaries of task executions within the
audit log and then extract sequences of syscall invocations. Figure 2 provides an
overview of this process. We also modified Linux Audit to include the Thread ID
in log messages helping disambiguate threads belonging to a process. This first
step yields the per task syscall sequences exhibited by the application and their
properties: length, probability of occurrence, and the arguments. These syscall
sequences are then converted into intermediate templates, each entry of which
includes the syscall name along with the arguments. This first step can also
be iterated with intermediate templates loaded to reduce previously extracted
sequences, though in practice such iterations were not required.

Sequence Selection. A subset of intermediate templates are chosen to be con-
verted to final templates. This choice is based on the tradeoff between the benefit
of audit event volume reduction and the memory cost as defined later in Eq. (3)
and (5), respectively. As we discuss in detail in Sect.5 the security tradeoff is
minimal. Let’s assume n sequences are chosen to be reduced, where 0 <n < N.
As noted earlier, Ellipsis treats each task independently, the value of n is also
independent for each task.

Template Creation. For the next step, Fig.2 Step 2, these n templates are
loaded and application profiled again to collect temporal profile for each tem-
plate i.e., the expected duration and inter-arrival intervals for each template. The
intermediate templates are enriched with this temporal information, to yield the
final templates. Templates are stored in the form of text files and occupy negli-
gible disk space, e.g., ArduPilot templates used for evaluation (Sect. 4) occupied
494 bytes of space on disk total. This whole process is highly automated, given
an application binary with necessary inputs, using the template creation toolset.
(See footnote 1)

Ellipsis Activation. We extend the Linux Audit command-line auditctl util-
ity to transmit templates to kernel space. Once templates are loaded, FEllipsis
can be activated using auditctl to start reducing any matching behaviors. This
extended auditctl can also be used to activate/deactivate Ellipsis and load/un-
load templates, however, these operations are privileged, identical to deactivating
Linux Audit itself. System administrators can use this utility to easily update
templates as required, e.g., in response to application updates.

620 A. Bansal et al.

Table 2. Parameters from case study

Task name | N | I len(s;) Di f

arducopter | 5 | 100 [14,15,17,17,18] | [0.95,0.02,0.01,0.01, 0.01] 679
ap-rcin 1 | 182]]16] 1] 2
ap-spi-0 5 11599 [1,1,1,2,2] [0.645,0.182,0.170,0.001, 0.001] 0

Runtime Matching. Given the template(s) of syscall sequences, an Ellipsis
kernel module, extending from Linux Audit syscall hooks, filters syscalls that
match a template. The templates are modeled as a finite state automaton (FSA),
(Fig. 3), implemented as a collection of linked lists in kernel memory. While the
RT task is executing, all syscall sequences allowed by the automaton are stored in
a temporary task-specific buffer. If the set of events fully describes an automaton
template, Ellipsis discards the contents of the task-specific buffer and enqueues
a single record onto the kaudit buffer to denote the execution of a templatized
activity. Alternatively, Ellipsis enqueues the entire task-specific buffer to the
main kaudit buffer if (a) a syscall occurs that is not allowed by the automaton,
(b) the template is not fully described at the end of the task instance or (c¢) the
task instance does not adhere to the expected temporal behavior of the fully
described template. Thus, the behavior of each task instance is reduced to a
single record when the task behaves as expected. For any abnormal behavior,
the complete audit log is retained.

Audit FEvent Reduction. Let the task 7 be executed for I iterations and f
denote the number of audit events in init phase. The number of audit events
generated by 7 when audited by Linux Audit (E ,), when Ellipsis reduces n out
of total N sequences (E), and the reduction (E4 — Eg) are given by

Ea= 1% (3L (0 xlen(s)) + f (1)
n N
Ep = 1* (X i—y Pi + 2 imnia (pi len(si))) + f (2)
Ellipsis’ Event reduction Audit events for n sequences
2 v

Ex—Ep = I =(3;_(pi*len(si) — 30, pi)
Iterations Ellipsis events for n sequencesT (3)

As evident from Eq. (3), to maximize reduction, long sequences with large p;
values must be chosen as the n sequences for reduction. RT applications, like
control systems, autonomous systems and even video streaming, feature limited
execution paths for majority of their runtimes [39]. This property has been uti-
lized by Yoon et al. in a prior work [76]. Therefore, for RT applications the
distribution of p; is highly biased i.e., certain sequences s; have high proba-
bility of occurrence. Table2 provides example values for the parameters used,

Towards Efficient Auditing for Real-Time Systems 621

determined during the Sequence Identification step in template creation for the
evaluation application ArduPilot(Sect. 4).

Storage Size Reduction. Let B4 denote the average cost of representing a
syscall event in audit log and B g denote the average cost of representing Ellipsis’
template match record. By design, B <= B4; Bg is a constant 343 bytes, while
By averaged 527 bytes (1220 max) in our evaluation. Noting that the init events
(f) are not reduced by FEllipsis, the disk size reduction i.e., difference in sizes of
7’s audit log for Linux Audit (L) and Ellipsis (L) is:

LA — LE =1 % (BA * 22;1(1% * len(sl)) — BE * Z:‘L:lpi) (4)

From Eq. (3) and (4), Ellipsis’ benefits come from the audit events count
and log size becoming independent of sequence size (len(s;)) for the chosen n
sequences, multiplied further by repetitions of these sequences (I * p;). Ellipsis
behaves identical to Linux Audit for any sequence that is not included as a
template, i.e., i > n+ 1 in Eq. (2).

Memory Tradeoff. The tradeoff for Ellipsis’ benefits are computational over-
heads (evaluated in Sect.4.5 and Sect.4.6) and the memory cost of storing tem-
plates (M ;). Let M f;zeq be memory required per template, excluding syscalls,
while M gyscqu be the memory required for each syscall in the template. On 32
bit kernel Myizeq = 116 and Myyscau = 56 bytes, determined by sizeof data
structures. As an example, 3 templates from evaluation occupied 2 KB in mem-
ory.

M; = Myizeqd * 1+ Msyscan * Z?:l len(sz) (5)

Extended Reduction Horizon. Until now we have limited the horizon of
reduction to individual task loop instances. We can further optimize by creating
a single record that describes multiple consecutive matches of a template. This
higher performance system is henceforth referred to as Ellipsis-HP. When a
Ellipsis-HP match fails, a separate record is logged for each of the base template
matches along with complete log sequence for the current instance (i.e., the base
behavior of Ellipsis). Ellipsis-HP performs best when identical sequences occur
continuously, capturing all sequence repetitions in one entry.

es N
Eglli;sis-HP =n+Ix, (pixlen(s;) + f (6)

4 Evaluation

We evaluate Ellipsis and Ellipsis-HP using ArduPilot [9], a safety-critical firm-
deadline autopilot application. We show that our auditing systems (a) per-
form lossless auditing within the application’s temporal requirements, where
Linux Audit would lose audit events or violate application’s safety constraints
(Sect. 4.3), (b) achieve high audit log volume reduction during benign activity, (¢)
enjoy minimal computational overhead even in an artificially created worst case
scenarios (Sect. 4.5). Using a set of synthetic tasks we also show that the Ellipsis’
overhead per syscall scales independent of the size of template (Sect.4.6).

622 A. Bansal et al.

4.1 Setup

All measurements were conducted on 4GB Raspberry Pi 4 running Linux 4.19.
The RT kernel from raspberrypi/linux [2] was used with AUDIT and AUDIT-
SYSCALL kconfigs enabled. To reduce computational variability due to external
perturbations we disabled power management, directed all kernel background
tasks/interrupts to core 0 using the isolcpu kernel argument, and set CPU fre-
quency Governor to Performance. Audit rules for capturing syscall events were
configured to match against our benchmark application (i.e., background pro-
cess activity was not audited). We set the kaudit buffer size to 50K as any larger
values led to system panic and hangs.

. .] 1G
250K —m— Linux Audit —=— Linux Audit
Ellipsis - Ellipsi
ipsi m psis
o 200k -4 EllipsisHP g B00M o Ellipsis-HP
9 o -@-- Linux Audit Lossless
w 150 k o 600M
o N
S n
£ 100k 8’ 400 M
© -
3
Z =
50 k o’ E 200 M
/
L]
0 @ * * * 0 4 A/
100 200 300 400 101 102 103
Task Frequency (Hz) Iterations

Fig.4. (Section4.3) Number of audit Fig.5. (Section4.4) Total size on disk
events lost vs. frequencies of the primary of the audit log (Y-axis), captured for
loop in ArduPilot, for 100K iterations. different number of iterations (X-axis).

4.2 ArduPilot

ArduPilot is an open source autopilot application that can fully control various
classes of autonomous vehicles such as quadcopters, rovers, submarines and fixed
wing planes [9]. It has been installed in over a million vehicles and has been
the basis for many industrial and academic projects. We chose the quadcopter
variant of ArduPilot, called ArduCopter, as it has the most stringent temporal
requirements within the application suite. For this application the RPi4 board
was equipped with a Navio2 Autopilot hat [6] to provide real sensors and actuator
interfaces for the application. We instrumented the application for measuring the
runtime overheads introduced by auditing. Among the seven tasks spawned by
ArduPilot, we focus primarily on a task named FastLoop for evaluating temporal
overheads as it includes the stability and control tasks that need to run at a high
frequency to keep the QuadCopter stable and safe.

Among the syscalls observed in the trace of ArduPilot, we found that
only a small subset of syscalls were relevant to forensic analysis [28]: execve,
openat, read, write, close and pread64. Upon running the template gener-
ation script on the application binary, we obtained the most frequently occuring
templates for three tasks (n = 1, for each task), consisting of 14 write, 16

Towards Efficient Auditing for Real-Time Systems 623

pread64 calls and 1 read call, respectively. These templates include expected
values corresponding to the file descriptor and count arguments of the syscalls.
Templates were loaded into the kernel when evaluating FEllipsis or Ellipsis-HP.

4.3 Audit Completeness

Ezperiment. We ran the application for 100K iterations at task frequencies
100 Hz, 200 Hz, 300 Hz 400 Hz*, measuring audit events lost. The fast dynamics
of a quadcopter benefit from the lower discretization error in the ArduPilot’s
PID controllers at higher frequencies [71] leading to more stable vehicle control.

Observations. Figure 4 compares the log event loss for Linux Audit, Ellipsis and
Ellipsis-HP across multiple task frequencies. We observe that Linux Audit lost
log events at all task frequencies 100 Hz. In contrast, Ellipsis and FEllipsis-HP
did not lose audit event log at any point in the experiment.

Discussion. Because this ArduCopter task performs critical stability and con-
trol function, reducing task frequency to accomodate Linux Audit may hay con-
siderable detrimental effects. Further investigation revealed that Linux Audit
dropped log events due to kaudit buffer overflow, despite the buffer size being
50K. In contrast, Ellipsis is able provide auditing for the entire frequency range
without suffering log event loss. Better yet, throughout the experiment the max
buffer occupancy was just 2.5K for Ellipsis and 1.5K for Ellipsis-HP.(A technical
report with supplementary material for this work is available [10].)

4.4 Audit Log Size Reduction

Experiment. We ran the ArduCopter application over multiple iterations in 10
to 100K range to simulate application behavior over varying runtimes. For each
iteration count, we measure the size on disk of the recorded log.

Observations. Figureb compares the storage costs in terms of file size on disk
in bytes. The storage costs for all systems over shorter runs was found to be
comparable, as the cost of auditing the initialization phase of the application
(Ba * f) tends to dominate over the periodic loops. Over a 250s runtime (10°
iterations) the growth of log size in Ellipsis was drastically lower compared to
vanilla Linux Audit, with storage costs reducing by 740 MB, or 80%, when
using FEllipsis. Ellipsis-HP provides a more aggressive log size reduction option
by lowering storage costs by 860 MB, or 93%, compared to Linux Audit. Linuz
Audit Lossless estimates the log size had Linux Audit not lost any log events.

4 Frequency values are chosen based on application support: https: //ardupilot.org/
copter/docs/parameters- Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-
main-loop-rate.

https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html%23sched-loop-rate-scheduling-main-loop-rate
https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html%23sched-loop-rate-scheduling-main-loop-rate
https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html%23sched-loop-rate-scheduling-main-loop-rate

624 A. Bansal et al.

Discussion. The observations line up with our initial hypothesis that the bulk
of the audit logs generated during a loop iteration would exactly match the
templates. Thus, in Fllipsis by reducing all the log messages that correspond to a
template down to a single message, we see a vast reduction in storage costs while
ensuring the retention of all the audit data. Ellipsis-HP takes this idea further by
eliminating audit log generation over extended periods of time if the application
exhibits expected behaviors only. For RTS that are expected to run for months or
even years without failing, these savings are crucial for continuous and complete
security audit of the system. Motion, a soft deadline application with numerous
execution paths (N = 26) achieved similarly high reduction rations 81%-98%)
under varying configurations options and inputs.(See footnote 2)

¢+

1400 5 3B "
El ,‘:....‘000000000‘000000000000

1200 \ = 30 USSpsEEsEEEEEEEEEEEEEEEEEEE
m .
2 . ; 3 25
qE; 1000 i . (/>)‘
£ | 5 20
= 800 . g
o & ! . 2 45
5 —— & _— S
g °° N = mEE—— [
X g o 10 m Linux Audit

400 z Ellipsis

200] . ¢ Ellipsis NR

M S— : - 0 50 100 150 200 250 300
Unaudited Linux Audit Ellipsis Ellipsis-HP Ellipsis NR
Scenarios Task/Template Syscall Count

Fig. 6. (Section4.5) Comparison of run- Fig.7. (Section4.6) Avg. execution
time overheads of ArduPilot main loop. latency of getpid syscall (Y-axis) with
Task period and deadline is 2500 ps. varying task/template lengths (X-axis)

4.5 ArduPilot: Runtime Overheads

Ezperiment. This evaluation measures the execution time in microseconds (us),
for the Fast Loop task of ArduPilot, for 1000 iterations, under various auditing
setups. The small number of iterations kept the generated log volume within
kaudit buffer capacity, avoiding overflows and audit events loss in any sce-
nario. This avoids polluting the overhead data with instances of event loss. The
time measurement is based on the monotonic timer counter. This process was
repeated 100 times. To evaluate the absolute worst case for Ellipsis, the FEllipsis
NR (No Reduction) scenario modifies the ArduCopter template so that it always
fails at the last syscall. Ellipsis NR is also the worst case for Ellipsis-HP.

Observations. Figure6 shows the distribution of 100 execution time samples
for each scenario. Ellipsis, Fllipsis-HP and FEllipsis NR have nearly the same
overhead as Linux Audit. On average, Ellipsis’s overhead is 0.93 x and FEllipsis-
HP’s overhead is 0.90 x of Linux Audit. The observed maximum overheads show
a greater improvement. FEllipsis’s observed maximum overhead is 0.87x and
Ellipsis-HP’s 0.70x of Linux Audit. Ellipsis NR shows a 1.05X increase in
average overhead and 1.07x increase in maximum observed overhead.

Towards Efficient Auditing for Real-Time Systems 625

Discussion. Ellipsis adds additional code to syscall auditing hooks, which incurs
small computational overheads. When template matches fail (Ellipsis NR), this
additional overhead is visible, although the overhead is not significantly worse
the baseline Linux Audit. However, in the common case where audit events are
reduced by Fllipsis, this cost is masked by reducing the total amount of log
collection and transmission work performed by Linux Audit. This effect is fur-
ther amplified in Ellipsis-HP owing to its greater reduction potential (Sect. 4.4).
Thus, FEllipsis’s runtime overhead depends on the proportion of audit informa-
tion reduced in the target application. Thus, while reducing the runtime overhead
of auditing is not Fllipsis’ primary goal, it nonetheless enjoys a modest perfor-
mance improvement by reducing the total work performed by the underlying
audit framework.

4.6 Synthetic Tasks: Overhead Scaling

Ezxperiment. Because Ellipsis adds template matching logic in the critical exe-
cution path of syscalls, a potential concern is the overhead growth for tasks
with long syscall sequences. In this experiment we measure execution time for
tasks that execute varying counts of getpid syscalls (10, 20, 30 ... 300). getpid
is a low latency non-blocking syscall, which allows us to stress-test the audit-
ing framework. As the max template length (i.e., syscall count) observed in real
application loops was 29, we analyze workloads of roughly 10 times that amount,
i.e., 300. The execution time for each task is measured 100 times. Since the tasks
have a single execution path i.e., a fixed count of getpid syscalls, Ellipsis’ audit
events reduction always succeeds. For Ellipsis NR (No Reduction) we force tem-
plate matches to fail at the last entry (same as Sect. 4.5).

Observations. Figure7 shows the average syscall response time as the number
of syscalls in the task loop increases. The primary observation of interest is that
the time to execute a syscall is roughly constant, independent of the number of
syscalls in the task and template. The higher value at the start is due to the non
syscall part of the task that quickly becomes insignificant for tasks with higher
number of syscalls. We only show average latency as the variance is negligible
(< 1.3 ps).

Discussion. Ellipsis scales well as the overhead per syscall remains independent
of template size, even in the worst case scenario of Ellipsis NR. When log reduc-
tion succeeds the overhead is reduced. When the log reduction fails the overhead
is not significantly worse than Linux Audit.

4.7 Summary of Results

Ellipsis provides complete audit events retention while meeting temporal require-
ments of the ArduPilot application, with significantly reduced storage costs.
Ellipsis-HP further improves the reduction ratios. The temporal constraint
allows additional temporal checks, detecting anomalous latency spikes with effec-
tively no additional log size overhead during normal operation.(See footnote 2)

626 A. Bansal et al.

5 Security Analysis

The security goal of FEllipsis, indeed auditing in general, is to record all
forensically-relevant information, thereby aiding in the investigation of suspi-
cious activities. The previous section established Ellipsis’ ability to dramatically
reduce audit event generation for benign activities, freeing up auditing capacity.
We now discuss the security implications of Ellipsis.

Stealthy FEwvasion. If a malicious process adheres to the expected behavior of
benign tasks, the associated logs will be reduced. The question, then, is whether
a malicious process can perform meaningful actions while adhering to the benign
templates. If Ellipsis exclusively matched against syscall IDs only, such a feat
may be possible; however, Ellipsis also validates syscalls’ arguments and tempo-
ral constraints, effectively validating both the control flow and data flow before
templatization. Thus making it exceedingly difficult for a process to match a tem-
plate while affecting the RTS in any meaningful way. For example, an attacker
might try to substitute a read from a regular file with a read from a sensitive
file; however, doing so would require changing the file handle argument, failing
the template match. Thus, at a minimum FEllipsis provides comparable security
to commodity audit frameworks, and may actually provide improved security by
avoiding the common problem of log event loss. A positive side effect of FEllipsis
is built in partitioning of execution flows, benefiting provenance techniques that
utilize such partitions [42,49,50].

bash

arducopter |(—‘ bash
/sys/....pwm1/duty_cycle
/sysl.../pwm0O/duty_cycle

Fig. 8. (Section 5) Attack graph created using Fllipsis audit logs.

pwm_attack

Information Loss. Another concern is whether FEllipsis templates remove
forensically-relevant information. The following is an example write as would
be recorded by Linux Audit.

type=SYSCALL msg=audit (1601405431.612391366:5893333): arch=40000028 syscall=4
per=800000 success=yes exit=7 a0=4 al=126ab0 a2=1 a3=3 items=0 ppid=1513 pid
=1526 tid=1526 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=ptsO ses=1 comm="arducopter" exe="/home/pi/ardupilot/build/navio2
/bin/arducopter" key=(null)

The record above, if reduced with Ellipsis and reconstructed using the FEllipsis
log and templates, yields:

Towards Efficient Auditing for Real-Time Systems 627

type=SYSCALL msg=audit ([1601405431.612391356, 1601405431.612391367]:@): arch
=40000028 syscall=4 per=800000 success=yes exit=7 al0=4 al=g a2=1 a3=J items
=0 ppid=1513 pid=1526 tid=1526 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0
egid=0 sgid=0 fsgid=0 tty=ptsO ses=1 comm="arducopter" exe="/home/pi/
ardupilot/build/navio2/bin/arducopter" key=(null)

@ denotes values that could not be reconstructed and [min, max] denote
where a range is known but not the exact value. Nearly all of the information in
an audit record can be completely reconstructed, including (a) all audit events
executed by a task, in order of execution, (b) forensically relevant arguments. On
the other hand, information not reconstructed is (a) accurate timestamps, (b) a
monotonically increasing audit ID, (¢) forensically irrelevant syscall arguments.
The effect of this lost information is that fine grained inter-task event ordering
and interleaving cannot be reconstructed. This loss of information is minimal
and at worst increases the size of attack graph of a malicious event. We now
demonstrate Ellipsis’s ability to retain forensically relevant information.

Demonstration: Throttle Override Attack. Autopilot applications are
responsible for the safe operation of autonomous vehicles. ArduPilot periodi-
cally updates actuation signals that control rotary speed of motors that power
rotors. The periodic updates are responsible for maintaining vehicle stability and
safety.

Attack Scenario. Let’s consider a stealthy attacker who wants to destabilize or
take control over the unmanned drones. To achieve this, the attacker first gains
control of a task on the system and attempts to override the control signals.
An actuation signal’s effect depends on the duration for which it controls the
vehicle, therefore, naively overriding an actuation signal is not a very effective
attack as the control task may soon update it to the correct value, reducing the
attack’s effect. The attacker instead leverages side channel attacks such as Sched-
uleak [23] during the reconnaissance phase of the attack to learn when the control
signals are updated. Armed with this knowledge, the attacker overrides the actu-
ation signals immediately after the original updates, effectively taking complete
control, with little computational overhead. We use the ArduPilot setup as in
described earlier (Sect.4.2). Using tools provided with Scheduleak [23], a mali-
cious task is able to override actuation signals generated by ArduPilot. This
setup is run for 250 s and audit logs collected with Ellipsis.

Results. Overriding throttle control signals involves writing to files in sysfs.
This attack behavior can be observed in audit logs as sequences of openat,
write and close syscalls. Combining templates with the obtained audit log
yields the attack graph in Fig.8. Fllipsis correctly identifies that ArduPilot
is only exhibiting benign behaviors, reducing its audit logs. Ellipsis preserves
detailed attack behaviors for the malicious syscall sequences. Ellipsis did not
lose audit events throughout the application runtime. In contrast, Linux Audit
loses audit events (Sect. 4.3), potentially losing critical forensic evidence.

Discussion. Scheduleak [23] invokes clock_gettime syscall frequently to infer
task activation times. Such syscalls are irrelevant for commonly used forensic

628 A. Bansal et al.

analysis as they don’t capture critical information flows. Despite the lack of
visibility in the reconnaissance phase of the attack, auditing can capture evi-
dence of attacker interference that creates new information flows, as shown in
Fig. 8. We have demonstrated that when a process deviates from the expected
behaviors, e.g., due to an attack, Ellipsis provides the same security as Linux
Audit. Additionally, Ellipsis all but eliminates the possibility of losing portions
of the malicious activity due to kaudit buffer overflow. However, it is impossible
to guarantee that no events will ever be lost with malicious activities creating
unbounded new events. Ellipsis improves upon Linux Audit by (a) freeing up
auditing resources which can then audit malicious behaviors, and (b) reducing
the audit records from benign activities that must be analyzed as part of forensic
provenance analysis. Stealthy attacks like this also show the role of auditing in
improving vulnerability detection and forensic analysis on RTS.

6 Discussion

System Scope and Limaitations. Ellipsis is useful for any application that
has predictable repeating patterns. When sequence sets are too large with no
high probability sequences, it may be possible that too much of system memory
would be required to achieve significant log reduction. That said, a large number
of possible sequences is not detrimental to Fllipsis as long as there exist some
high probability sequences. Ellipsis’s efficacy is also not dependent on specific
scheduling policies unless tasks share process and thread ids; if task share pro-
cess/thread ids and the scheduler can reorder them, Ellipsis cannot distinguish
between event chains, leading to unnecessary template match failures.

Auditing Hard RTS. FEllipsis, like Linux Audit and Linux itself, is unsuit-
able for hard-deadline RTS. All synchronous audit components must meet the
temporal requirements for Hard RTS with bounded WCET, including syscall
hooks and FEllipsis template matching. Additionally the kaudit buffer occu-
pancy must have a strict upper bound. In this paper Fllipsis takes a long step
forward, deriving high confidence empirical bounds (Sect.4.5) to enable Ellip-
sis” use in firm- or soft-deadline RTS, which are prolific [7]. However, the strict
bounds required for Hard RTS are a work in progress.

Unfavorable Conditions. We consider here the impact of using FEllipsis to
audit hypothetical RTS where our assumptions about RTS properties do not
hold. If the RTS may execute previously unknown syscall sequences, extra events
would exist in the audit log. The audit log recorded by FEllipsis would thus be
larger. Since safety, reliability and timing predictability are important require-
ments for RTS [7] the gaps in code coverage can only be small. Hence the
unknown syscall sequences will not have a major impact on audit events and log
size. If known syscall sequences have near uniform probability of occurrence, sim-
ply using templates for them all achieves high reduction (n = N). The tradeoff
is additional memory required to store templates which is a small cost (Eq. (5)).
Finally, if the above are combined, sequences with substantial probability of

Towards Efficient Auditing for Real-Time Systems 629

occurrence would remain untested during the RTS development. For such a sys-
tem, functional correctness, reliability, safety or timing predictability cannot be
established, making this RT'S unusable.

7 Related Work

Auditing RTS. Although auditing has been widely acknowledged as an impor-
tant aspect of securing embedded devices [8,26,38], challenges unique to auditing
RTS have received limited attention. Wang et al. present ProvThings, an audit-
ing framework for monitoring IoT smart home deployments [72], but rather than
audit low-level embedded device activity their system monitors API-layer flows
on the IoT platform’s cloud backend. Tian et al. present a block-layer auditing
framework for portable USB storage that can be used to diagnose integrity vio-
lations [68]. Their embedded device emulates a USB flash drive, but does not
consider syscall auditing of RT applications. Wu et al. present a network-layer
auditing platform that captures the temporal properties of network flows and
can thus detect temporal interference [73]. Whereas their system uses auditing
to diagnose performance problems in networks, the presented study considers
the performance problems created by auditing within real-time applications.

Forensic Reduction. Significant effort has been dedicated to improving the cost-
utility ratio for system auditing by pruning or compressing audit data that is
unlikely to be of use during investigations [11,13,15,22,32,37,43,47,63,65,74].
However these approached address the log storage overheads and not the volumi-
nous event generation that is prohibitive to RTS auditing (Sect. 4.3). KCAL [51]
and ProTracer [49] systems are among the few that, like FEllipsis, inline their
reduction methods into the kernel. Regardless of their layer of operation, these
approaches are often based on an observation that certain log semantics are not
forensically relevant (e.g., temporary file I/O [43]), but it is unclear whether
these assumptions hold for real-time cyber-physical environments, e.g., KCAL
or ProTracer would reduce multiple identical reads syscalls to a single entry.
However, a large number of extra reads can cause catastrophic deadline misses.
Forensic reduction in RTS, therefore, needs to be cognizant of the characteristics
of RTS or valuable information can be lost. Our approach to template gener-
ation in Ellipsis shares similarities with the notion of execution partitioning
of log activity [33,34,40,42,50], which decomposes long-lived applications into
autonomous units of work to reduce false dependencies in forensic investigations.
Unlike past systems, however, our approach requires no instrumentation to facil-
itate. Further, leveraging the well-formed nature of real-time tasks ensures the
correctness of our execution units i.e., templates.

8 Conclusion

Ellipsis is a novel audit event reduction system that exemplifies synergistic
application-aware co-design of security mechanisms for RTS. FEllipsis allows

630 A. Bansal et al.

RT applications to be audited while meeting the temporal requirements of the
application. The role of auditing in securing real-time applications can now be
explored and enhanced further. As showcased with Auditing in this work, other
security mechanisms from general purpose systems warrant a deeper analysis for
their use in RTS.%

Acknowledgments. The material presented in this paper is based upon work sup-
ported by the Office of Naval Research (ONR) under grant number N00014-17-1-
2889 and the National Science Foundation (NSF) under grant numbers CNS 1750024,
CNS 1932529, CNS 1955228, CNS 2055127, CNS 2145787 and CNS 2152768. Any opin-
ions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the sponsors.

References

1. System auditing (2018). https://access.redhat.com/documentation/en-us/red/-
hat/_enterprise/_linux/6/html/security /_guide/chap-system/_auditing

2. Raspberry Pi Linux 4.19 Preempt RT (2019). https://github.com/raspberrypi/
linux/tree/rpi-4.19.y-rt

3. Embedded linux (2020). https://elinux.org/Main/_Page

4. The instrumented microkernel (2020). http://www.qnx.com/developers/docs/6.4.
1/neutrino/sys/_arch/trace.html

5. Tracealyzer for vxworks (2020). http://percepio.com/docs/VxWorks/manual/

6. Navio2 board (2021). https://navio2.emlid.com/

7. Akesson, B., et al.: An empirical survey-based study into industry practice in real-
time systems. In: IEEE Real-Time Systems Symposium. IEEE (2020)

8. Anderson, M.: Securing embedded linux (2020). https://elinux.org/images/5/54/
Manderson4.pdf

9. ArduPilot Development Team and Community: Ardupilot (2020). http://
ardupilot.org/

10. Bansal, A., et al.: Ellipsis: Towards efficient system auditing for real-time systems
(2022). https://doi.org/10.48550/ARXIV.2208.02699

11. Bates, A., et al.: Take only what you need: leveraging mandatory access control
policy to reduce provenance storage costs. In: 7th Workshop on the Theory and
Practice of Provenance, TaPP 2015 (2015)

12. Bates, A., et al.: Trustworthy whole-system provenance for the linux kernel. In:
Proceedings of 24th USENIX Security Symposium (2015)

13. Bates, A., et al.: Taming the costs of trustworthy provenance through policy reduc-
tion. ACM Trans. Internet Technol. 17(4), 34:1-34:21 (2017)

14. Begg, R.: Step up cyber hygiene: Secure access to medical devices (2020).
http://www.machinedesign.com/medical-design/article /21128232 /step-up-cyber-
hygiene-secure-access-to-medical-devices

15. Ben, Y., et al.: T-tracker: compressing system audit log by taint tracking. In:
2018 TEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS), pp. 1-9 (2018)

5 A technical report with further evaluations, template examples, security demonstra-
tions and expanded RTS properties survey is available [10].

https://access.redhat.com/documentation/en-us/red/_hat/_enterprise/_linux/6/html/security/_guide/chap-system/_auditing
https://access.redhat.com/documentation/en-us/red/_hat/_enterprise/_linux/6/html/security/_guide/chap-system/_auditing
https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
https://elinux.org/Main/_Page
http://www.qnx.com/developers/docs/6.4.1/neutrino/sys/_arch/trace.html
http://www.qnx.com/developers/docs/6.4.1/neutrino/sys/_arch/trace.html
http://percepio.com/docs/VxWorks/manual/
https://navio2.emlid.com/
https://elinux.org/images/5/54/Manderson4.pdf
https://elinux.org/images/5/54/Manderson4.pdf
http://ardupilot.org/
http://ardupilot.org/
https://doi.org/10.48550/ARXIV.2208.02699
http://www.machinedesign.com/medical-design/article/21128232/step-up-cyber-hygiene-secure-access-to-medical-devices
http://www.machinedesign.com/medical-design/article/21128232/step-up-cyber-hygiene-secure-access-to-medical-devices

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Towards Efficient Auditing for Real-Time Systems 631

Bohm, K., et al.: New developments on EDR, (event data recorder) for automated
vehicles. Open Eng. 10(1), 140-146 (2020)

Bose, U.: The black box solution to autonomous liability. Wash, UL Rev (2014)
Brandenburg, B., Anderson, J.: Feather-trace: a lightweight event tracing toolkit.
In: Proceedings of the Third International Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications, pp. 19-28 (2007)

Burguiere, C., Rochange, C.: History-based schemes and implicit path enumer-
ation. In: 6th International Workshop on Worst-Case Execution Time Analysis
(WCET 2006). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik (2006)

Carbon Black: Global incident response threat report (2018). http://www.
carbonblack.com/global-incident-response-threat-report /november-2018/.
Accessed 20 Apr 2019

Casimiro, A., et al.: How to build a timely computing base using real-time linux.
In: 2000 IEEE International Workshop on Factory Communication Systems. Pro-
ceedings (Cat. No. 00TH8531), pp. 127-134. IEEE (2000)

Chen, C., et al.: Distributed provenance compression. In: Proceedings of the 2017
ACM International Conference on Management of Data, pp. 203—218 (2017)
Chen, C.Y., et al.: Schedule-based side-channel attack in fixed-priority real-time
systems. Technical report (2015)

Correia, M., Verissimo, P., Neves, N.F.: The design of a COTS real-time distributed
security kernel. In: Bondavalli, A., Thevenod-Fosse, P. (eds.) EDCC 2002. LNCS,
vol. 2485, pp. 234-252. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-36080-8_21

Crane, C.: Automotive cyber security: A crash course on protecting cars against
hackers (2020). https://www.thesslstore.com/blog/automotive-cyber-security-a-
crash-course-on-protecting-cars-against-hackers/

Day, R., Slonosky, M.: Securing connected embedded devices using built-
in rtos security (2020). http://mil-embedded.com/articles/securing-connected-
embedded-devices-using-built-in-rtos-security /

Department of Homeland Security: Cyber physical systems security (2020). www.
dhs.gov/science-and-technology /cpssec

Gehani, A., Tariq, D.: SPADE: support for provenance auditing in distributed
environments. In: Proceedings of the 13th International Middleware Conference,
Middleware 2012 (2012)

Gurgen, L., et al.: Self-aware cyber-physical systems and applications in smart
buildings and cities. In: 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1149-1154. IEEE (2013)

Gustafsson, J., Ermedahl, A.: Experiences from applying wcet analysis in indus-
trial settings. In: 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, pp. 382-392. IEEE (2007)

Hahad, M.: Iot proliferation and widespread 5G: a perfect botnet storm (2020).
http://www.scmagazine.com/home/opinion/executive-insight /iot-proliferation-
and-widespread-5g-a-perfect-botnet-storm/

Hassan, W.U., et al.: Towards scalable cluster auditing through grammatical infer-
ence over provenance graphs. In: Proceedings of the 25th ISOC Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, CA, USA (2018)
Hassan, W.U., et al.: NoDoze: combatting threat alert fatigue with automated
provenance triage. In: 26th ISOC Network and Distributed System Security Sym-
posium, NDSS 2019 (2019)

http://www.carbonblack.com/global-incident-response-threat-report/november-2018/
http://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://doi.org/10.1007/3-540-36080-8_21
https://doi.org/10.1007/3-540-36080-8_21
https://www.thesslstore.com/blog/automotive-cyber-security-a-crash-course-on-protecting-cars-against-hackers/
https://www.thesslstore.com/blog/automotive-cyber-security-a-crash-course-on-protecting-cars-against-hackers/
http://mil-embedded.com/articles/securing-connected-embedded-devices-using-built-in-rtos-security/
http://mil-embedded.com/articles/securing-connected-embedded-devices-using-built-in-rtos-security/
www.dhs.gov/science-and-technology/cpssec
www.dhs.gov/science-and-technology/cpssec
http://www.scmagazine.com/home/opinion/executive-insight/iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/
http://www.scmagazine.com/home/opinion/executive-insight/iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/

632

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

A. Bansal et al.

Hassan, W.U., et al.: Omegal.og: high-fidelity attack investigation via transparent
multi-layer log analysis. In: 27th ISOC Network and Distributed System Security
Symposium, NDSS 2020 (2020)

Hatton, L.: Safer language subsets: an overview and a case history, misra c. Inf.
Softw. Technol. 46(7), 465-472 (2004)

Hayes, J.: Hackers under the hood (2020). https://eandt.theiet.org/content/
articles/2020,/03/hackers-under-the-hood/

Hossain, M.N., et al.: Dependence-preserving data compaction for scalable forensic
analysis. In: Proceedings of the 27th USENIX Conference on Security Symposium,
SEC 2018, pp. 1723-1740. USENIX Association, Berkeley (2018)

Kohei, K.: Recent security features and issues in embedded systems (2020). https://
elinux.org/Images/e/e2/ELC2008/ KaiGai.pdf

Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, pp. 372-381 (2005)
Kwon, Y., et al.: MCI: modeling-based causality inference in audit logging for
attack investigation. In: Proceedings of the 25th Network and Distributed System
Security Symposium (NDSS 2018) (2018)

Lee, L., et al.: Challenges and research directions in medical cyber-physical systems.
Proc. IEEE 100(1), 75-90 (2011)

Lee, K.H., et al.: High accuracy attack provenance via binary-based execution
partition. In: Proceedings of NDSS 2013 (2013)

Lee, K.H., et al.: LogGC: garbage collecting audit log. In: Proceedings of the 2013
ACM SIGSAC conference on Computer and Communications Security, CCS 2013,
pp. 1005-1016. ACM, New York (2013)

Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. In: Proceedings of the ACM SIGPLAN 1995 Workshop on Lan-
guages, Compilers, & Tools for Real-Time Systems, pp. 88-98 (1995)

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46-61 (1973)

Liu, Y., et al.: Towards a timely causality analysis for enterprise security. In: NDSS
(2018)

Ma, S., et al.: Accurate, low cost and instrumentation-free security audit logging
for windows. In: Proceedings of the 31st Annual Computer Security Applications
Conference, ACSAC 2015, pp. 401-410. ACM, New York (2015)

Ma, S., et al.: Protracer: towards practical provenance tracing by alternating
between logging and tainting. In: NDSS (2016)

Ma, S., et al.: ProTracer: towards practical provenance tracing by alternating
between logging and tainting. In: Proceedings of NDSS 2016 (2016)

Ma, S., et al.: MPI: multiple perspective attack investigation with semantic aware
execution partitioning. In: 26th USENIX Security Symposium (2017)

Ma, S., et al.: Kernel-supported cost-effective audit logging for causality tracking.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 2018), pp. 241-254.
USENIX Association, Boston (2018)

Milajerdi, S.M., et al.: Holmes: real-time apt detection through correlation of sus-
picious information flows. In: 2019 2019 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, Los Alamitos (2019)

Monostori, L., et al.: Cyber-physical systems in manufacturing. Cirp Ann. 65(2),
621-641 (2016)

Paccagnella, R., et al.: Custos: practical tamper-evident auditing of operating sys-
tems using trusted execution. In: 27th ISOC Network and Distributed System
Security Symposium, NDSS 2020 (2020)

https://eandt.theiet.org/content/articles/2020/03/hackers-under-the-hood/
https://eandt.theiet.org/content/articles/2020/03/hackers-under-the-hood/
https://elinux.org/Images/e/e2/ELC2008/_KaiGai.pdf
https://elinux.org/Images/e/e2/ELC2008/_KaiGai.pdf

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Towards Efficient Auditing for Real-Time Systems 633

Perlroth, N., Sanger, D.E.: Cyberattacks Put Russian Fingers on the Switch
at Power Plants, U.S. Says (2018). https://www.nytimes.com/2018/03/15/us/
politics/russia-cyberattacks.html

Pohly, D., et al.: Hi-Fi: collecting high-fidelity whole-system provenance. In: Pro-
ceedings of the 2012 Annual Computer Security Applications Conference, ACSAC
2012, Orlando, FL, USA (2012)

Puschner, P., Burns, A.: Writing temporally predictable code. In: Proceedings of
the Seventh IEEE International Workshop on Object-Oriented Real-Time Depend-
able Systems, (WORDS 2002), pp. 85-91. IEEE (2002)

Rajkumar, R.; et al.: Cyber-physical systems: the next computing revolution. In:
Design Automation Conference, pp. 731-736. IEEE (2010)

Sandell, D., Ermedahl, A., Gustafsson, J., Lisper, B.: Static timing analysis of
real-time operating system code. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004.
LNCS, vol. 4313, pp. 146-160. Springer, Heidelberg (2006). https://doi.org/10.
1007/11925040-10

Shepherd, D.: Industry 4.0: the development of unique cybersecurity
(2020). https://manufacturingdigital.com/technology/industry-40-development-
unique-cybersecurity

Slabodkin, G.: Coronavirus chaos ripe for hackers to exploit medical device vulner-
abilities (2020). https://www.medtechdive.com/news/coronavirus-chaos-ripe-for-
hackers-to-exploit-medical-device-vulnerabilitie /575717 /

Song, J., Parmer, G.: C’'mon: a predictable monitoring infrastructure for system-
level latent fault detection and recovery. In: 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 247-258. IEEE (2015)

Sundaram, V., et al.: Prius: Generic hybrid trace compression for wireless sensor
networks. In: Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, pp. 183-196 (2012)

SUSE LINUXAG: Linux Audit-Subsystem Design Documentation for Linux Ker-
nel 2.6, v0.1 (2004). http://uniforumchicago.org/slides/HardeningLinux/LAuS-
Design.pdf

Tang, Y., et al.: Nodemerge: template based efficient data reduction for big-data
causality analysis. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2018, pp. 1324-1337. ACM, New York
(2018)

The Linux Foundation: Real-Time Linux (2018). https://wiki.linuxfoundation.org/
realtime/start

The MITRE Corporation: Medical device cybersecurity (2018). https://www.
mitre.org/sites/default /files/2021-11/prs-18-1550-Medical- Device- Cybersecurity-
Playbook.pdf

Tian, D.J., et al.: Provusb: block-level provenance-based data protection for usb
storage devices. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, New York (2016)

Verissimo, P., Casimiro, A.: The timely computing base model and architecture.
IEEE Trans. Comput. 51(8), 916-930 (2002)

Verissimo, P., et al.: The timely computing base: timely actions in the presence
of uncertain timeliness. In: Proceeding International Conference on Dependable
Systems and Networks, DSN 2000, pp. 533-542. IEEE (2000)

Wang, L.: PID Control System Design and Automatic Tuning Using MAT-
LAB/Simulink. John Wiley & Sons, Hoboken (2020)

https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://doi.org/10.1007/11925040_10
https://doi.org/10.1007/11925040_10
https://manufacturingdigital.com/technology/industry-40-development-unique-cybersecurity
https://manufacturingdigital.com/technology/industry-40-development-unique-cybersecurity
https://www.medtechdive.com/news/coronavirus-chaos-ripe-for-hackers-to-exploit-medical-device-vulnerabilitie/575717/
https://www.medtechdive.com/news/coronavirus-chaos-ripe-for-hackers-to-exploit-medical-device-vulnerabilitie/575717/
http://uniforumchicago.org/slides/HardeningLinux/LAuS-Design.pdf
http://uniforumchicago.org/slides/HardeningLinux/LAuS-Design.pdf
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://www.mitre.org/sites/default/files/2021-11/prs-18-1550-Medical-Device-Cybersecurity-Playbook.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-18-1550-Medical-Device-Cybersecurity-Playbook.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-18-1550-Medical-Device-Cybersecurity-Playbook.pdf

634

72.

73.

74.

75.

76.

A. Bansal et al.

Wang, Q., et al.: Fear and logging in the internet of things. In: Proceedings of
the 25th ISOC Network and Distributed System Security Symposium, NDSS 2018
(2017)

Wu, Y., et al.: Zeno: diagnosing performance problems with temporal provenance.
In: 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pp. 395-420. USENIX Association, Boston (2019)

Xu, Z., et al.: High fidelity data reduction for big data security dependency anal-
yses. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp. 504-516. ACM, New York (2016)
Yagemann, C., et al.: Validating the integrity of audit logs against execution repar-
titioning attacks. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2021 (2021)

Yoon, M.K., et al.: Learning execution contexts from system call distribution for
anomaly detection in smart embedded system. In: Proceedings of the Second Inter-
national Conference on Internet-of-Things Design and Implementation (2017)

	 Preface
	 Organization
	 Contents – Part III
	Formal Analysis
	A Formal Analysis of the FIDO2 Protocols
	1 Introduction
	2 Overview of FIDO2
	2.1 Architecture of FIDO2
	2.2 The CTAP2
	2.3 The WebAuthn Protocol

	3 Formal Verification of FIDO2
	3.1 Assumptions and Threat Model
	3.2 Security Goals

	4 Formal Models
	4.1 ProVerif Models of FIDO2
	4.2 Verifying Leak Resilience Goals of FIDO2

	5 Security Analysis
	5.1 Results
	5.2 Attacks
	5.3 Recommendations

	6 Related Work
	7 Conclusion
	References

	A Composable Security Treatment of ECVRF and Batch Verifications
	1 Introduction
	2 Preliminaries
	3 UC Security of Verifiable Random Functions
	4 The ECVRF Standard
	5 ECVRFbc: Batch Verification for ECVRF
	5.1 Making the Scheme Batch-Compatible
	5.2 Batch-Verification

	6 Security Analysis of ECVRFbc and Batch Verifications
	6.1 Security Analysis of ECVRFbc
	6.2 Security Analysis of ECVRFbc with Batch Verifications

	7 Performance Evaluation
	A Brief Overview of Concepts Used in the Security Argument
	References

	Efficient Proofs of Knowledge for Threshold Relations
	1 Introduction
	1.1 Our Contribution

	2 Technical Overview of ch3GGHK21
	3 Our Techniques
	3.1 1-out-of-2 Equivocal Commitment Schemes
	3.2 ord: A -Protocol to Prove Parameters Ordering
	3.3 Efficient (k,)-PTR

	A -Protocols
	A.1 Stackable -protocols

	References

	A Tale of Two Models: Formal Verification of KEMTLS via Tamarin
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background on Symbolic Analysis
	3 Model #1: High-Resolution Protocol Specification
	3.1 Cremers et al.'s Tamarin TLS 1.3 Model
	3.2 Representing KEMTLS in the Model
	3.3 Security Properties
	3.4 Results
	3.5 Limitations

	4 Model #2: Multi-stage Key Exchange Model
	4.1 Reductionist Security Model for TLS 1.3 and KEMTLS
	4.2 Formalizing the Reductionist Security Model in Tamarin
	4.3 Comparison of Pen-and-Paper and Tamarin Models
	4.4 Results
	4.5 Limitations

	5 Comparison of Models
	6 Conclusion
	A Errors Identified in the Stated Properties of KEMTLS(-PDK)
	B Performance
	References

	Web Security
	Browser-Based CPU Fingerprinting
	1 Introduction
	2 Background
	3 Methodology
	3.1 Benchmarks
	3.2 Data Set
	3.3 Classification
	3.4 Classification Evaluation

	4 Evaluation
	4.1 Classification
	4.2 Efficiency
	4.3 Noise Resilience

	5 Discussion
	5.1 Use for Microarchitectural Properties
	5.2 Limitations
	5.3 Mitigations

	6 Conclusion
	References

	Polymorphic Protocols at the Example of Mitigating Web Bots
	1 Introduction
	2 Related Work
	3 Polymorphic Protocols
	3.1 Basic Approach
	3.2 Formal Model
	3.3 Transforming Protocols
	3.4 Using Polymorphic Protocols

	4 Evaluation
	4.1 Implementation
	4.2 Performance Evaluation
	4.3 Security Discussion
	4.4 Limitations

	5 Conclusion
	A Generating a Custom Protocol
	References

	Unlinkable Delegation of WebAuthn Credentials
	1 Introduction
	1.1 WebAuthn Properties, Delegation Challenges, and Naïve approaches
	1.2 Contribution and Organisation

	2 Delegating WebAuthn Account Credentials
	2.1 From Account Recovery to Delegation
	2.2 Two Approaches for Delegation
	2.3 Setup Phase (common for Remote and Direct Delegation)
	2.4 Remote Delegation
	2.5 Direct Delegation

	3 Proxy Signature with Unlinkable Warrants
	3.1 Modelling PSUW
	3.2 Our Generic PSUW Construction

	4 Achieving Delegation in WebAuthn
	4.1 Cryptographic Implementation
	4.2 Approach for Integration with WebAuthn and Our Code

	5 Related Work
	6 Conclusion
	References

	Large Scale Analysis of DoH Deployment on the Internet
	1 Introduction
	2 Related Work
	3 Background on DoH and Its Security Impact
	4 Methodology
	4.1 Creation of the Well-known DoH Resolvers Lists
	4.2 Scan of Port 443/TCP on the Internet
	4.3 DoH Service Discovery
	4.4 DoH Resolver Verification
	4.5 IP Address Enrichment
	4.6 Verification of SNI Usage
	4.7 Estimation of the Number of Organisations
	4.8 Methodology Limitations

	5 Results
	5.1 Results of Creating Well-Known DoH Resolvers Lists
	5.2 Results of DoH Scans
	5.3 Comparison Between the Well-Known and DoH Scan Lists
	5.4 Results of the SNI Verification
	5.5 Capabilities of the DoH Resolvers Found
	5.6 DNS Server Identification
	5.7 Who Operates the DoH Resolvers
	5.8 TLS Certificate Analysis
	5.9 Threat Intelligence Results

	6 Discussions on the Results
	7 Conclusion
	8 Appendix
	8.1 Ethical Considerations
	8.2 Nmap Configuration

	References

	Equivocal URLs: Understanding the Fragmented Space of URL Parser Implementations
	1 Introduction
	2 Related Work
	2.1 Exploiting Human Misinterpretation of URLs
	2.2 Exploiting Machines' Inconsistent URL Parsing

	3 Methodology
	3.1 ``Ground Truth'' Reference Parsers
	3.2 Test Input Enumeration

	4 Results
	4.1 Disagreement with Reference Parsers
	4.2 Disagreement Among All Parsers

	5 A Taxonomy of URL Parsing Pitfalls
	5.1 Seven Pitfalls of URL Parsing Causing Hostname Equivocation

	6 Misdirection Attacks with Equivocal URLs
	6.1 Responsible Disclosure
	6.2 Equivocal URLs vs Google Safe Browsing
	6.3 Misdirecting VirusTotal

	7 Backwards Compatibility Constraints on Strict URL Parsing
	8 Discussion
	8.1 Mitigation
	8.2 Limitations and Future Work

	9 Conclusion
	Appendix A: Tested Parser Details
	References

	Exploring the Characteristics and Security Risks of Emerging Emoji Domain Names
	1 Introduction
	2 Background
	3 Data Sources of Emoji Domains
	3.1 Collecting Large-Scale Datasets
	3.2 Identifying Emoji Domains

	4 Characteristics of Emoji Domain Ecosystem
	4.1 Growing Trend of DNS Statistics
	4.2 Registration Distribution and Usage Strategies
	4.3 Infrastructure Analysis

	5 Security Threats of Emoji Domain Applications
	5.1 Visual Phishing Threat of Emoji Domains
	5.2 Parsing Error of Emoji Domains
	5.3 Trans-coding Issue of Emoji Domains

	6 Discussion
	7 Related Works
	8 Conclusion
	References

	Hardware Security
	CPU Port Contention Without SMT
	1 Introduction
	2 Background
	2.1 CPU Port Contention
	2.2 WebAssembly
	2.3 Browser Fingerprinting

	3 Threat Model
	4 Port Contention Without SMT
	4.1 Main Idea
	4.2 Native Environment
	4.3 Web Browsers

	5 Fingerprinting CPU Generations
	5.1 Core Idea
	5.2 Framework
	5.3 Evaluation

	6 Discussion
	6.1 Practical Use of CPU-Generation Fingerprinting
	6.2 Limitations
	6.3 Virtualization and Emulation
	6.4 Mitigation

	7 Related Work
	7.1 SMT Side-Channel Attacks
	7.2 Side-Channel Attacks in Browsers
	7.3 Browser Fingerprinting

	8 Conclusion
	A Training Set
	References

	Protocols for a Two-Tiered Trusted Computing Base
	1 Introduction
	2 Background
	3 Design of the TCB
	3.1 Main Functionalities
	3.2 Auxiliary Functionalities
	3.3 Description of the Architecture

	4 Adversarial Model
	5 Protocols
	5.1 Protocol 1: MTCB A/B Update
	5.2 Protocol 2: Secure Boot
	5.3 Protocol 3: Remote Attestation
	5.4 Protocol 4: ETCB Recovery

	6 Modelling and Verification of Security Properties
	7 Conclusion
	A Security Properties
	References

	Using Memristor Arrays as Physical Unclonable Functions
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Background
	2.1 Self-directed Channel Memristors
	2.2 Physical Unclonable Functions

	3 Memristance-Based PUFs
	3.1 Measurement Circuit Design
	3.2 Classification of Memristor Cells Based on Their Frequency Distribution
	3.3 Classification of Memristance-Based PUFs Using Convolutional Neural Networks

	4 Applications of Memristance-Based PUFs
	4.1 Authentication Protocol
	4.2 Evaluation of the Proposed Protocol

	5 Conclusion
	Appendix 1 Self-directed Channel Memristors
	Appendix 2 Measurement Circuit Design
	References

	Multiparty Computation
	SecureBiNN: 3-Party Secure Computation for Binarized Neural Network Inference
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 Correlated Randomness
	2.3 Two-party Secret Sharing
	2.4 Three-party Secret Sharing

	3 The SecureBiNN Framework
	3.1 Highlights
	3.2 Parameters Encoding
	3.3 Fully Connected Layer and Convolutional Layer
	3.4 Secure 3-Input and Gate
	3.5 Three-party Oblivious Transfer
	3.6 Secure Activation Function
	3.7 Batch Normalization
	3.8 Maxpooling

	4 Experiment Results and Analysis
	4.1 Experimental Evaluation on MNIST
	4.2 Experimental Evaluation on CIFAR-10
	4.3 Experimental Evaluation on Real-World Medical Datasets

	5 Conclusion and Future Work
	A Related Work
	References

	Mixed-Technique Multi-Party Computations Composed of Two-Party Computations
	1 Introduction
	2 Conversion Between 2PC and Homomorphic Encryption
	2.1 Malicious Security
	2.2 Solution Overview

	3 Technical Details
	3.1 ZK Protocols
	3.2 Composition of ZK Protocols
	3.3 Security Analysis

	4 Application to Private Set Disjointness
	4.1 PSD Protocol Overview
	4.2 Malicious Security for PSD
	4.3 Complexity Analysis
	4.4 Implementation

	5 Related Work
	A Supporting Larger Plaintext Spaces
	B d2 Parties
	C Proof of Theorem 1
	References

	PEA: Practical Private Epistasis Analysis Using MPC
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Genomic Primer
	2.2 Genome-Wide Association Studies (GWAS) and Epistasis
	2.3 Feature Selection with Relief, Relief-F and TuRF
	2.4 Multifactor Dimensionality Reduction (MDR) for Epistasis Analysis

	3 Private Tuned Relief-F Feature Selection
	4 Private Multifactor Dimensionality Reduction
	4.1 Secure Arithmetic Greater Than (AGT)
	4.2 Secure Arithmetic Swap (ASWAP)
	4.3 Communication of PMDR

	5 Implementation
	6 Evaluation
	6.1 Performance of PReliefF and PTuRF
	6.2 Performance of PMDR
	6.3 Total Performance

	A Secure Multi-Party Computation
	B Three Halves Make a Whole Garbling Implementation
	References

	ML Techniques
	Hide and Seek: On the Stealthiness of Attacks Against Deep Learning Systems
	1 Introduction
	2 Preliminaries: Deep Learning, Attacks, and Datasets
	2.1 Deep Learning and Adversarial Machine Learning
	2.2 DNN Attacks Evaluated in This Study
	2.3 The Datasets

	3 The Numerical Analysis
	3.1 Metrics and Basic Statistics
	3.2 Numerical Analysis of Attack Stealthiness

	4 The User Study
	4.1 Research Design
	4.2 The User-Perceived Attack Stealthiness
	4.3 Correlation: Numerical Metrics vs. User Perceived Stealthiness

	5 The Stealthiness Assumption Revisited
	6 Conclusion
	References

	Precise Extraction of Deep Learning Models via Side-Channel Attacks on Edge/Endpoint Devices
	1 Introduction
	2 Background
	3 Related Work
	3.1 Model Extraction Attack
	3.2 Side-channel Attack

	4 Analysis of the Effects of Model Information
	4.1 Training and Evaluation
	4.2 Analysis settings
	4.3 Effect of Image Dimension (ID)
	4.4 Effect of Model Architecture (MA)

	5 Experiments
	5.1 Experimental Setups for MEA with SCA
	5.2 SCA Results
	5.3 MEA with Model Information from SCA

	6 Discussion and Limitations
	7 Conclusion
	A Appendix
	A.1 Model Architectures
	A.2 Ablation Study
	A.3 SCA Algorithms and DCG Generation Result

	References

	Real-Time Adversarial Perturbations Against Deep Reinforcement Learning Policies: Attacks and Defenses
	1 Introduction
	2 Background and Related Work
	2.1 Deep Reinforcement Learning
	2.2 Adversarial Examples

	3 State- and Observation-Agnostic Perturbations
	3.1 Adversary Model
	3.2 Attack Design

	4 Attack Evaluation
	4.1 Experimental Setup
	4.2 Attack Performance
	4.3 Attack Performance in Continuous Control

	5 Detection and Mitigation of Adversarial Perturbations
	5.1 Effectiveness of Existing Defenses
	5.2 Action Distribution Divergence Detector ()

	6 Conclusion
	A UAP-S and OSFW in Uncontrolled Environments
	B Computation of UAP in Continuous Control
	C Additional Experimental Results
	References

	FLMJR: Improving Robustness of Federated Learning via Model Stability
	1 Introduction
	2 Related Works
	2.1 Model Poisoning Attacks Towards FL
	2.2 Robust Aggregations of FL

	3 Motivation
	4 Method
	4.1 Model-Output Jacobian and Stability Analysis
	4.2 Minimize Model-Output Jacobian for Model Stability
	4.3 Algorithm

	5 Experiment
	5.1 Experimental Setup
	5.2 Evaluation for Fidelity
	5.3 Evaluation for Robustness
	5.4 Comprehensive Evaluation of FLMJR

	6 Conclusion
	A Impact of Hyperparameter
	B Empirical Validation of the Generalization Ability of FLMJR
	References

	MaleficNet: Hiding Malware into Deep Neural Networks Using Spread-Spectrum Channel Coding
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Stegomalware
	2.3 Spread-Spectrum Channel Coding
	2.4 Error Correcting Codes

	3 Threat Model
	3.1 Threat Scenario Overview

	4 MaleficNet
	5 Experimental Setup
	5.1 Datasets
	5.2 DNN Architectures
	5.3 Payloads

	6 Evaluation
	6.1 Stealthiness
	6.2 MaleficNet Model Performance
	6.3 Robustness

	7 Possible Defenses
	8 Related Work
	9 Ethical Discussion
	10 Conclusions
	A Additional Experiments
	B Implementation Details
	References

	Long-Short History of Gradients Is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning
	1 Introduction
	2 Related Work
	2.1 Distributed ML with Malicious Clients
	2.2 FL Under Untargeted Attacks
	2.3 FL Under Targeted Attacks

	3 Model
	3.1 FL Preliminaries
	3.2 Client Types
	3.3 Threat Model

	4 MUD-HoG Design
	4.1 Sequential Strategy
	4.2 Detection of Malicious Clients
	4.3 Detection of Unreliable Clients

	5 Performance Evaluation
	5.1 Experiment Setup
	5.2 Experimental Results
	5.3 Discussions and Limitations

	6 Conclusion
	A Additional Experimental Results
	A.1 Performance Improvement over Rounds
	A.2 Confusion Matrix

	References

	MLFM: Machine Learning Meets Formal Method for Faster Identification of Security Breaches in Network Functions Virtualization (NFV)
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Overview
	3.2 Iterative Teacher (FM)-Learner (ML) Interaction
	3.3 MLFM Algorithm and Use Cases

	4 Implementation
	5 Experiments
	5.1 Datasets and Experimental Settings
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

	Cyber-Physical Systems Security
	Perspectives from a Comprehensive Evaluation of Reconstruction-based Anomaly Detection in Industrial Control Systems
	1 Introduction
	2 Background and Related Work
	2.1 Industrial Control Systems: Threats and Defenses
	2.2 ML Model Architectures for ICS Anomaly Detection
	2.3 Traditional Anomaly Detection Metrics
	2.4 Publicly Available ICS Datasets
	2.5 Prior Work in ICS Anomaly Detection

	3 Reconstruction-based ICS Anomaly Detection Process
	4 Comparing ML Model Architectures and Datasets for ICS Anomaly Detection
	4.1 Experiment Setup
	4.2 Optimization Results

	5 Tuning and Evaluating with Range-based Metrics
	5.1 Issues with the Point-F1 Score
	5.2 Range-based Performance Metrics
	5.3 Using Range-based Metrics to Tune Detection Hyperparameters
	5.4 Using Range-based Metrics to Select Model Hyperparameters

	6 Conclusion
	A Key Findings in the Optimization Process
	References

	A Novel High-Performance Implementation of CRYSTALS-Kyber with AI Accelerator
	1 Introduction
	2 Preliminary
	2.1 Notation and Definition
	2.2 Description of CRYSTALS-Kyber
	2.3 Number Theoretic Transform
	2.4 Fast Modular Reduction
	2.5 AI Accelerator and Tensor Core

	3 Design
	3.1 Analysis of Tensor Core Dedicated Workload
	3.2 Transformation from Cryptographic Workload to Tensor Core Dedicated Operation
	3.3 The Multiple Precision Representation

	4 Implementation Details
	4.1 Overview
	4.2 The Basic-NTT and Split-NTT
	4.3 Pre-computed Table of Twiddle Factors
	4.4 Point-Wise Multiplication and Modular Reduction

	5 Performance Evaluation and Discussion
	5.1 Results of NTT/INTT
	5.2 Results of Kyber
	5.3 Discussion

	6 Conclusion and Future Work
	References

	From Click to Sink: Utilizing AIS for Command and Control in Maritime Cyber Attacks
	1 Introduction
	2 Background and Related Work
	2.1 Autonomous Passenger Ship
	2.2 ATT&CK Framework
	2.3 Maritime Kill Chains, Threats and Attacks

	3 AIS as a Covert Channel
	3.1 Context View
	3.2 Tactics and Techniques
	3.3 Proof of Concept
	3.4 Evaluation of the Covert Channel

	4 Adversary Emulation Against an Auto-remote Vessel
	4.1 Target Environment
	4.2 Cyber Kill Chains

	5 Conclusion
	References

	Efficient Hash-Based Redactable Signature for Smart Grid Applications
	1 Introduction
	1.1 The Motivation
	1.2 Contributions
	1.3 Organization

	2 Related Work
	3 Preliminaries
	3.1 Collapsing Hash Functions
	3.2 PRG
	3.3 SPHINCS+ Framework

	4 Definition of RS Schemes
	4.1 Syntax
	4.2 Correctness
	4.3 Security Model

	5 Our Proposed HRSS
	5.1 Our Design
	5.2 Correctness
	5.3 Security Analysis

	6 Performance Analysis
	7 Discussion
	8 Conclusions
	References

	Can Industrial Intrusion Detection Be SIMPLE?
	1 Introduction
	2 Intrusion Detection in Industrial Control Systems
	3 The State of Industrial Intrusion Detection Research
	4 SIMPLE Industrial Intrusion Detection
	4.1 Sufficient, Independent, Meaningful, Portable, Local and Efficient
	4.2 Designing SIMPLE IIDSs

	5 Industrial Intrusion Detection Can Indeed Be SIMPLE
	5.1 Evaluation Setup
	5.2 Sufficiency: SIMPLE IIDSs on Par with Complex Approaches
	5.3 Portability: SIMPLE IIDSs Work Effortlessly in New Settings
	5.4 Discussion: Industrial Intrusion Detection Can Be SIMPLE

	6 Conclusion
	References

	For Your Voice Only: Exploiting Side Channels in Voice Messaging for Environment Detection
	1 Introduction
	2 Related Work
	3 System and Adversary Model
	4 ForYourVoiceOnly Attack
	5 Experimental Setting
	5.1 Data Collection
	5.2 Feature Extraction
	5.3 Machine Learning Models

	6 Experimental Results
	6.1 Location Inference
	6.2 Position Inference
	6.3 Extracted Words from Voice Messages

	7 Conclusion
	References

	Towards Efficient Auditing for Real-Time Systems
	1 Introduction
	2 Background and System Model
	3 Ellipsis
	4 Evaluation
	4.1 Setup
	4.2 ArduPilot
	4.3 Audit Completeness
	4.4 Audit Log Size Reduction
	4.5 ArduPilot: Runtime Overheads
	4.6 Synthetic Tasks: Overhead Scaling
	4.7 Summary of Results

	5 Security Analysis
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Network and Software Security
	Towards a Systematic and Automatic Use of State Machine Inference to Uncover Security Flaws and Fingerprint TLS Stacks
	1 Introduction
	2 TLS in a Nutshell
	3 Background on Model Learning
	4 Description and Implementation of Our Platform
	4.1 TLS Stacks
	4.2 Inference Tools
	4.3 Assumptions

	5 Optimizations
	6 Studied Scenarios and Vulnerabilities
	6.1 Client Scenarios
	6.2 Server Scenarios
	6.3 Vulnerability Confirmation

	7 Analysis of the Resulting State Machines
	7.1 Authentication Bypasses
	7.2 Loops in the Automata
	7.3 Unsolicited Client Authentication

	8 TLS Stack Fingerprinting
	8.1 Application to TLS 1.3 Servers
	8.2 Advantages and Limitations of the Approach

	9 Related Work
	10 Conclusion
	A Platform Architecture
	B List of the Studied Vulnerabilities
	B.1 Unexpected Loops
	B.2 Authentication Bypasses
	B.3 Bleichenbacher Padding Oracles

	References

	.26em plus .1em minus .1emPanoptiCANs - Adversary-Resilient Architectures for Controller Area Networks
	1 Introduction and Motivation
	2 Background and Related Works
	2.1 CAN Basics
	2.2 Related Works

	3 Design Details
	3.1 Engineering Goals
	3.2 PanoptiCAN: Topology and Procedures
	3.3 PanoptiCAN-DC: A More Efficient, Decentralized Design

	4 Adversary Model and Evaluation Scenarios
	4.1 Adversary Model
	4.2 Attack Response Capabilities
	4.3 Expected Response to DoS Attacks

	5 Experiments and Results
	5.1 Recorded In-Vehicle Traffic
	5.2 Response to DoS Attacks in the Experiments

	6 Conclusion
	References

	Detecting Cross-language Memory Management Issues in Rust
	1 Introduction
	2 Background
	2.1 The Rust Programming Language
	2.2 Foreign Function Interface (FFI) and Memory Management

	3 Security and Memory Management Issues via FFI
	3.1 Memory Corruption
	3.2 Exception Safety
	3.3 Mixing Memory Management Mechanisms
	3.4 Our Methodology

	4 System Design
	4.1 User Interface
	4.2 Entry Point and Foreign Function Collection
	4.3 Static Analysis and Bug Detection

	5 Abstract Interpretation
	5.1 LLVM IR, Abstract Values and Abstract Domain
	5.2 Transfer Functions

	6 Algorithms
	6.1 Fixed-Point Algorithm
	6.2 Analyzing Function Calls
	6.3 Bug Detection and False Positive Suppression

	7 Implementation
	8 Evaluation
	8.1 Effectiveness and Performance of FFIChecker
	8.2 Understanding False Positives and False Negatives

	9 Discussion
	10 Related Work
	10.1 Static Analysis for Rust
	10.2 Cross-language Bug Detection and Prevention

	11 Conclusion
	A Fixed-Point Algorithm
	B Context-Sensitive Interprocedural Analysis

	References

	Reach Me if You Can: On Native Vulnerability Reachability in Android Apps
	1 Introduction
	2 Background and Related Work
	3 DroidReach
	3.1 Problem Statement and Reachability Challenges
	3.2 Architecture of DroidReach
	3.3 Static Analysis of the Java Layer
	3.4 Analysis of Interactions Between Java and Native Layer
	3.5 Static Analysis of the Native Layer
	3.6 Reachability Analysis

	4 Experimental Evaluation
	4.1 Microbenchmarks
	4.2 Real-World Dataset
	4.3 Case Studies

	5 Limitations
	6 Conclusions
	References

	Extensible Virtual Call Integrity
	1 Introduction
	2 Overview
	2.1 C++ Dynamic Dispatch
	2.2 C++ Dynamic Dispatch Defenses
	2.3 Problem Statement

	3 Extensible VCFI Enforcement
	3.1 VCFI Based on Bloom Filters
	3.2 System Design

	4 Evaluation
	4.1 Evaluating VCFI Defenses
	4.2 Evaluation on SPEC Benchmarks
	4.3 Evaluating Firefox

	5 Related Work
	6 Conclusion
	A VCFI Test Programs
	B Invalid Virtual Call Detected in xalanc
	References

	Posters
	Is Your Password Sexist? a Gamification-Based Analysis of the Cultural Context of Leaked Passwords
	1 Introduction
	2 System Design
	3 Preliminary Results
	4 Conclusion
	References

	A Fast, Practical and Simple Shortest Path Protocol for Multiparty Computation
	1 Introduction
	1.1 Related Work
	1.2 Notation and Security

	2 Privacy Preserving Single Source SPP
	3 Computational Experiments
	References

	Audio Spoofing Detection Using Constant-Q Spectral Sketches and Parallel-Attention SE-ResNet
	1 Introduction
	2 Proposed Method
	3 Experimental Results
	4 Conclusion
	References

	MixCT: Mixing Confidential Transactions from Homomorphic Commitment
	1 Introduction
	2 MixCT Design
	3 Security Goals
	4 Implementation and Evaluation
	5 Conclusion
	References

	Multi-Freq-LDPy: Multiple Frequency Estimation Under Local Differential Privacy in Python
	1 Introduction
	2 Presentation and Use Case Demo of Multi-Freq-LDPy
	2.1 Main Modules (Tasks Covered)
	2.2 Worked Example: Longitudinal Frequency Estimation
	2.3 Worked Example: Multidimensional Frequency Estimation

	3 Conclusion
	References

	The Devil Is in the GAN: Backdoor Attacks and Defenses in Deep Generative Models
	1 Introduction
	2 Backdoor Attacks Against Deep Generative Models
	2.1 Attacks with Adversarial Loss Functions

	3 Conclusions
	References

	Author Index

