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Abstract

Process intensification aims to combine multiple tasks within multi-functional units to dras-

tically improve various economic, energy and sustainability metrics of a chemical process.

Limited work exists to systematically identify the synergistic domains where intensifica-

tion outperforms its nonintensified counterparts. In this work, we computationally derive

the synergistic domains of reactive separation system. We propose a data-driven approach

for multi-parametric programming to approximate the critical regions of nonconvex and

nonlinear models. Specifically, we first postulate general models for both intensified and

nonintensified systems. We use these models to generate data to train a ReLU-type neural

network (NN). The trained ReLU-NN model is formulated as a multi-parametric mixed-

integer linear program (mp-MILP), and the critical regions of this mp-MILP define the

synergistic feasible domains of intensification. We have derived these synergistic domains

of vapor-liquid equilibrium (VLE)-based reactive separation for several industrial applica-

tions. These synergistic domains enable quick screening of physical properties that favors

intensification.

Keywords: Process Intensification, Multi-parametric Programming, Adaptive Constrained

Sampling, Synergy, ReLu Neural Networks

1. Introduction

Process intensification (PI) is a design approach that significantly reduces cost, energy

consumption, waste emission, processing volume, and hazards in chemical process [1, 2, 3, 4].

Synergy is one of fundamental principles of process intensification by combining physico-
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chemical phenomena in situ [5, 6]. Synergistic effect is a phenomenon that interaction or

cooperation of multiple functions in one system to produce a combined effect greater than

the sum of their separate effects executed sequentially [5, 7]. Utilizing these synergistic ef-

fects has led to many process intensification alternatives such as membrane reactor to shift

reaction equilibrium with selective removal of products [8, 9], divided-wall columns with

thermal coupling [10], hybrid separation using various driving force [11], mass, work and

heat integration [12, 13, 14]. Many other examples appear in the literature of reactive dis-

tillation [15, 16, 17]. Among them, production of methyl acetate (MeOAc) from methanol

(MeOH) and acidic acid (HOAc) is a well-known example for utilizing synergistic effects

among interactive physicochemical phenomena to reduce a production process consisting of

10 equipment into a single reactive extractive distillation column [18, 19].

Due to system trade-offs and thermodynamic bottlenecks, combining physicochemical

phenomena in a single equipment may not enhance the system overall performance. For

instance, as shown in Li et al. [20] and Lopez-Arenas et al.[21], combing reaction with mem-

brane separation or with vapor-liquid phase equilibrium in situ does not necessarily yield a

better system performance than systems that decouple reaction and separation phenomena.

Hence, understanding whether combining system components enhances or weakens the in-

dividual components is important. Lopez-Arenas et al. points that process intensification is

not preferred at minimum driving force [21]. Tian and Pisticoporous identified the envelope

of combined reaction and separation system using attainable region [22]. However, lim-

ited work exists in systematic interpretation of synergistic conditions to answer the critical

question: when intensified systems are favored more than nonintensified systems for certain

multi-component systems.

In fact, whether synergistic effects exist depends on defining parameters of the noninten-

sified or intensified systems. For instance, in the case of reactive distillation, when chemical

components in the system varies, thermodynamic property parameters for reaction kinetics

and phase equilibrium vary. These parameter variations make reactive distillation config-

uration a less competitive option compared with partial intensification or vice versa [23].

This feature suggests that for given fixed system structure, as system parameters change,

the system components’ synergistic effects enhances or weakens. Multi-parametric pro-

gramming can study parameter’s influence on the system performance [24]. The key idea

of multi-parametric programming is to identify a mathematical program’s explicit opti-

mal solutions as functions of parameters along with the regions of parametric space where

these explicit solutions remain optimal [25]. These regions are generally referred as critical

2



regions (CR). Parametric programming has wide applications including uncertainty analy-

sis [26], model predictive control [27] and multi-objective programming [28]. There exists

algorithms or frameworks for exactly solving multi-parametric linear programming (mp-

LP), multi-parametric mixed-integer linear programming (mp-MILP) and multi-parametric

mixed-integer quadratic programming (mp-MIQP) [29]. The solution of multi-parametric

nonconvex nonlinear programming (mp-NLP) and multi-parametric mixed-integer noncon-

vex nonlinear programming (mp-MINLP) is generally approximated through relaxation of

nonconvex terms using convex underestimators and overestimators, and developing solution

strategy using branch-and-bound or decomposition [25]. Solution of multi-parametric pro-

gramming problem becomes even more challenging when parameter appears as left-hand

parameters, forming bilinear terms between parametric space and variable space. Approx-

imate solution of multi-parametric programming with bilinear terms and left-hand side

parameters can follow relaxation of bilinear terms using MaCormick Relaxation, and over-

lapping evaluation of critical regions [30]. This class of algorithm can yield many CRs.

In this work, we develop general models with common model building blocks for non-

intensified (NPI) and intensified (PI) systems along with their unique conditions. These

models are formulated as mp-NLP. We adaptively generate samples with input on system

parameters and output as driving force difference of NPI and PI, and train neural networks.

These neural networks are exactly reformulated as mp-MILP when the activation function is

ReLu function. The mp-MILP are solved to obtain explicit expression of optimizer and the

corresponding critical regions. These solutions are used to describe feasible and synergistic

domains. The technical flow of this work is summarized in Figure 1. In summary, the main

contributions of this work include:

• A modeling method for nonintensified and intensified systems with common model

building blocks and their unique conditions,

• A data-driven approximate algorithm for multi-parametric nonlinear programming,

• An explicit interpretation of feasibility and synergistic domains of nonintensified and

intensified system using parametric programming.

The remainder of the article is structured as follows. First, we describe systems of interest

using pairs of physicochemical phenomena and formalize the problem statement. Then, we

describe the mp-NLP models for nonintensified and intensified systems with component

property parameters. Next, we present an approximate algorithm for solving mp-NLP
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Figure 1: Framework of exploring synergistic domains of intensification using parametric programming.

Model building blocks of nonintensification (NPI) and intensification (PI) generate data. Sequential adap-

tive constrained sampling explores model feasible space and connects with neural network surrogate. The

neural network with ReLu activation function is reformulated as multi-parametric mixed-integer linear

programming problem (mp-MILP) and solved as critical regions for describing synergistic domains of in-

tensification.

problems. Finally, we demonstrate the applicability of our models and algorithms on several

case studies with industrial applications.

2. Systems of Interest and Problem Statement

Many interactions exist among physicochemical phenomena to achieve synergistic pro-

cess intensification. These interactions can be classified into reaction-separation phenomena

interactions and separation-separation phenomena interactions. Synergy between reaction

and separation operations is common in chemical operations. To simplify the discussion, we

focus on systems involving equilibrium-based reactions which is followed by a vapor-liquid

separation operation for product enrichment. Reaction equilibrium at specified reaction

conditions represents the maximum conversion attainable. Phase equilibrium determines

an upper limit for mass transfer. The methodology presented in this work is general for

investigating synergistic effects of other phenomena-phenomena interactions. The nomen-

clature is given in the Supporting Information. This section firstly describes the systems of

interest, existence of potential synergy and then demonstrates the problem statement.

System descriptions are given in Figure 2. Both systems involve I components (i =

{1, ..., I}), N reactions (n = {1, ..., N}) and a common feed stream with total flowrate F 0
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Figure 2: Process flowsheets for nonintensifed and intensified reaction-separation systems. a) Nonintensified

system with reactor followed by separator and b) Intensified system with reaction and separation in situ.

and state tuple (x0
i , T

0, P 0) in composition x, temperature T and pressure P respectively.

Nonintensified system (NPI) involves a single-phase reactor (R) followed by a separator (S).

The feed stream with total flowrate F 0 enters the reactor with reactions n in liquid phase,

which changes initial feed compositions or yield new component in reactor outlet stream.

The state of this reactor outlet stream with total flowrate FR is (xR
i , T

R, PR). The reactor

outlet is fed into separator operated at temperature T S. The outlet stream of this separator

involves a vapor stream with total flowrate V and state (ySi , T
S, P S) and a liquid stream

with total flowrate L and state (xS
i , T

S, P S) . ySi is the vapor composition of component

i. Intensfied system (PI) combines reaction and vapor-liquid phase equilibrium in a single

unit. The same feed stream with total flowrate F 0 and state (x0
i , T

0, P 0) is converted into

a vapor stream with flowrate V and state (ySi , T
S, P S) and a liquid stream with flowrate

L and state (xS
i , T

S, P S). The separation (reaction) is operated at temperature T S (TR)

and pressure P S (PR) respectively. For modeling and analysis convenience, the vapor (V )

outlet and liquid (L) outlet of nonintensified and intensified system are mixed as a stream

with total flowrate F f and state (xf
i , T

f , P f ). Variable xf
i , T

f and P f are composition,

temperature and pressure of this stream respectively. The state (xf
i , T

f , P f ) is also a pseudo

inlet state to phase equilibrium in nonintensification.

Property parameters defining given systems are θR for reaction equilibrium, and θS for

vapor-liquid equilibrium. θR and θS are uniquely defined for each system and independent of

state in composition, temperature and pressure. Parameter matrix θS involves parameters

θS,sati for component saturated pressure using Antoine equations and parameters θS,act for

activity coefficient calculation. The is denoted as θS = (θS,sati , θS,act). If the Antoine equation
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is P sat
i = exp(Ai +

Bi

(Ci+T )
), then θsati = (Ai, Bi, Ci). The number of θR and θS,act defining

the system depends on the number of components and thermodynamic models used. For

instance, for a system involving I number of components, if we consider Wilson model for

determining activity coefficient in liquid phase, then we have I(I+1)
2

+I number of parameters

[31]. If we consider UNIQUAC model for liquid phase activity coefficient, then we have
I(I+1)

2
+2I number of parameters [31]. The activity coefficient models and the procedure of

counting the number of parameters are given in the Supporting Information.

If the reaction is exothermic, then increasing TR is not favorable for reaction conversion

according to Le Chatelier’s principle. For intensified systems (PI), in situ removal of reaction

product helps to shift reaction equilibrium to product side. Hence, when separation in

the system becomes easier, the reaction conversion for PI is higher. However, PI system

only involves one temperature T S = TR. When reaction is more exothermic, the system

favors low temperature for product yield while favors high temperature for product purity

enrichment. In this case, nonintensified system with reaction followed by separation becomes

favorable. Transition regions on parameters defining reaction and separation exist such

that PI outperforms NPI or vice versa. The problem statement is as follows: Given set of

component (i = {1, ..., I}) and set of reaction (n = {1, ..., N}) in the system, find domains

on system parameters θ ∈ Θ that enables PI system gives better process performance than

NPI system or vice versa. We refer parametric domains when PI yields better process

performance than NPI as synergistic domains. These type of problems can be formulated

as multi-parametric programming or handled with sensitivity analysis.

3. Mathematical Models

In this section, we present the mathematical models for intensified and noninensified

systems respectively. Firstly, we present the rigorous models for these two systems using

equilibrium-based reaction and phase equilibrium models. These two systems are described

using common model building blocks and their unique conditions on compositions, temper-

ature and pressure. Next, we impose assumptions to simplify the proposed rigorous models

to reduce the number of property parameters without compromising necessary system infor-

mation. The objective function is to maximize system driving force. Finally, we present the

simplified models of intensified and nonintensified systems. These simplified models enable

the sample generation for data-driven multi-parametric programming in Section 4.
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3.1. Rigorous Models

Based on flowsheet description of nonintensified and intensified system in Section 2, we

describe the common constraints (CC) for nonintensified and intensified systems as follows:

KR
n =

∏

i

(γR
i x

R
i )

νn,i ∀n ∈ N (1)

γR
i = f(xR

i , T
R, θR) ∀i ∈ I (2)

KR
n = exp(−

∆Grxn
n

RTR
) ∀n ∈ N (3)

F0x
0
i +

∑

n

ξn,kνn,i = F fxf
i ∀i ∈ I (4)

F fxf
i = V ySi + LxS

i ∀i ∈ I (5)

KS
i = P sat

i (T S, θsati )γS
i (x

S
i , T

S, θS,act)/P S ∀i ∈ I (6)

ySi = KS
i x

S
i ∀i ∈ I (7)

∑

i

xS
i = 1,

∑

i

ySi = 1,
∑

i

xf
i = 1 (8)

CC represents Eqs. 1−8. Eq. 1 defines the equilibrium constant of reaction n using

activity coefficient γR
i of component i and reaction outlet composition xR

i along with the

component stoichiometric coefficient νn,i of reaction n. Note the convention that the stoi-

chiometric coefficients are negative for reactants and positive for products. Eq. 2 determines

the liquid phase activity coefficient γR
i using activity coefficient models, e.g., Wilson mod-

els and UNIQUAC. Here, we only consider liquid-phase reactions covering a wide range of

important reactions. Gas-phase reactions can be incorporated by revising the expression of

reaction equilibrium constant KR
n (Eq. 3) using vapor composition and fugacity coefficients

of components involved in reactions. Eq. 3 determines the reaction equilibrium constant

using Gibbs energy of reaction ∆Grxn and reaction temperature TR (adapted from equilib-

rium reaction model from Seider et al. [32]). Eq. 4 is molar balance for the whole system

(nonintensified or intensified). F0 and F f are total inlet flow and outlet flow of systems. x0
i

and xf
i defines the inlet and outlet composition of systems. ξn,k is the extent of reaction n

for key reactant k ∈ I with stoichiometric coefficient as νn,k = −1. Eq. 5 indicates that the

outlet flow is the mixture of vapor flow V and liquid flow L from the flash operation. The

composition for vapor flow and liquid flow are xS
i and ySi respectively.

Eq. 6 determines the phase equilibrium constantKS
i for component i. Here, P sat

i (T S, θsati )

is the saturated pressure, which is a function of separator temperature T S. γS
i (x

S
i , T

S, θS,act)

is the activity coefficient of component i in the liquid phase. P S is the separator pressure.
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Ideal gas condition in vapor phase is assumed and hence fugacity coefficient is equal to

one. Eq. 7 defines equilibrium relation between liquid and vapor composition. Eq. 8 indi-

cates that summation of composition fractions goes to one. The alternative models using

kinetics-based reactions can be found in Li [33]. In addition to these common constraints

that describe the nonintensified and intensified systems, another two set of unique conditions

(denoted as NPI-C and PI-C) exist that indicate the physical conditions of nonintensifica-

tion and intensification respectively. In another words, nonintensified system is described

through CC + NPI-C and intensified system is described through CC + PI-C.

xR
i = xf

i , TR ≤ TBUB(xf
i , P

f ), T S ≤ TDEW (xf
i , P

f ) (NPI-C) (9)

xR
i = xS

i , TR ≥ TBUB(xf
i , P

f ), T S ≤ TDEW (xf
i , P

f ), TR = T S, PR = P S (PI-C) (10)

NPI-C indicates that in the case of nonintensification, the reaction outlet composition

is equal to that of system outlet composition. Besides, reaction temperature is below the

bubble point if the reaction happens in liquid phase. And separation temperature is be-

low the dew point. Here both bubble and dew points are dependent on the state of final

outlet stream due to the equivalence of reaction outlet and system outlet. NPI conditions

on reaction temperature TR can be revised to TR ≥ TDEW (xf
i , P

f ) if the reaction occurs

in vapor phase. TBUB and TDEW refer to bubble point and dew point temperature re-

spectively, which are function of pseudo inlet state (xf
i , P

f ) for composition and pressure.

PI-C indicates that for intensified system, the reaction outlet composition is equal to that

of separation liquid outlet and the reaction temperature (pressure) equals to separation

temperature (pressure). Energy balance is not included here as the energy balance can be

satisfied with sufficient amount of utility investment and hence will be redundant. In fact,

the model equations for intensified system (CC+PI-C) can be reformulated to keep one liq-

uid phase composition (xR
i or xS

i ) and operation temperature (TR or T S). This reformulated

model is equivalent to other model formulations for intensified systems, such as the work of

Sanderson and Chien [34], Barbosa and Doherty [35]. NPI-C and PI-C conditions also indi-

cate that TDEW (xf
i , P

f ) ≥ TBUB(xf
i , P

f ). It can be shown that if the system pressures (PR

and P S) are fixed as constant and one reaction exists, then nonintensified system involves

two degree of freedom (TR and T S) and intensified system involve one degree of freedom,

i.e., operating temperature [36]. The degree of freedom is denoted as DOF.

3.2. Model Simplification

The proposed model involves many system parameters and nonlinear terms in molar

balances, reaction and phase equilibrium. We impose the following assumptions to simplify
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the modeling of reaction and phase equilibrium while not compromising important property

parameters defining the physical systems.

Assumption 1: we assume that KR
n can be directly related with

∏

i

(xR
i )

νn,i . Hence, the

equilibrium constant is composition-based instead of activity-based. This composition-based

equilibrium constant is denoted as KR,x
n . The equilibrium constant can be calculated and

related with reaction temperature TR as follows:

KR,x
n =

∏

i

(xR
i )

νn,i n ∈ N (11)

KR,x
n = exp(An +

Bn

TR
) n ∈ N (12)

Eq. 11 – 12 essentially fit integration of van’t Hoff equation (dlnK
dT

)p =
∆Hrxn

RT 2 when ∆Hrxn

is independent of temperature within certain temperature ranges [32]. Here An and Bn

are system parameters define reaction equilibrium of reaction n. An = lnK0
n corresponds

with lnKR,x
n at reference sates. Hence, when lnK0

n are the same for multiple reactions at

the different reference states, An can be fixed as a common value to reduce the number

of parameter input. Bn is ∆Grxn
n /R (Gibbs energy of reaction at the reference state) or

∆Hrxn
n /R (heat of reaction at the reference state) depending on data availability. Using Eq.

11 – 12 to replace Eq. 1 – 3, we avoid all parameters involved with liquid-phase activity

coefficient calculation.

Assumption 2: we assume that KS
i can be expressed as a linear function of phase equi-

librium temperature in the following form (Figure 3):

KS
i = mS

i T
S + bSi i ∈ I (13)

Using Eq. 13 to replace Eq. 6, we avoid all parameters involved with saturated pressure, ac-

tivity coefficient and fugacity coefficient. mS
i and bSi are slopes and intercepts of these linear

relations for component i. Both mS
i and nS

i take into account the influence of composition

and temperature on phase equilibrium and characterize phase equilibrium performance. Be-

sides, relative volatility αi,i′ between component i and i′ is the ratio of KS
i and KS

i′ . The

following equation shows that relative volatility between two components can be determined

using mS
i if bSi = 0:

αi,i′ =
mS

i T
S

mS
i′T

S
=

mS
i

mS
i′

i ∈ I, i′ ∈ I (14)

The approximation of phase equilibrium using linear relation within narrow temperature

range is more accurate. As shown in Figure 3, around the reference phase equilibrium point
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(T S,∆, KS,∆), the predicted equilibrium constant using Eq. 13 is the same as actual equilib-

rium constant at this point. For wider temperature range, Eq. 13 is a linear regression within

that range and captures the overall behavior of phase equilibrium. This observation suggests

that if mS
i varies with temperature, then the linear approximation at desired temperature

can be improved. Similar to reaction equilibrium, we fix bSi as constant for multiple com-

ponents to reduce parametric inputs. Besides, within narrow range of reaction composition

change in liquid phase, we consider the bubble/dew points TBUB(xf
i , P

f )/TDEW (xf
i , P

f ) as

constant parameters, e.g., TBUB(xf
i , P

f ) = TBUB.

Figure 3: An illustration of linear approximation of phase equilibrium. At the phase equilibrium point of

interest, the linear approximation is exact. For wider temperature range, the linear approximation captures

overall phase equilibrium feature.

.

We use θCC = (Bn,m
S
i ) for parameters involved with common constraints and θUC =

{TBUB, TDEW} for parameters involved with unique conditions. We denote the common

constraints for nonintensified and intensified systems under simplifying assumptions as CC-

S (involving Eqs. 11 – 12, 4 – 5, 13, 7 – 8). CC-S can be copied into CC-SNPI and CC-SPI

to distinguish nonintensified and intensified systems respectively. Using DOF of CC-S, the

following relations are held:

CC-SNPI = fNPI(TR,NPI , T S,NPI , θCC) (15a)

CC-SPI = fPI(TR,PI , T S,PI , θCC) (15b)

Similarly, the unique conditions in Eqs. 9 – 10 for nonintensified and intensified systems
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can be summarized as follows:

(xR,NPI
i , xf,NPI

i , TR,NPI , θUC) ∈ πNPI-C (16a)

(xR,PI
i , xS,PI

i , TR,PI , θUC) ∈ πPI-C (16b)

πNPI-C is a set defined on composition and temperature using unique conditions (shown in

Eq. 9) of nonintensified sytems. πPI-C is a set defined on composition, temperature and

pressure using unique conditions (shown in Eq. 10) of intensified sytems. The vector for

all system parameters is denoted as θ = (θCC , θUC) = (Bn,m
S
i , T

BUB, TDEW ). Hence, there

are N + I + 2 number of parameters defining nonintensified and intensified systems under

simplifying assumptions.

3.3. Objective Function

In this work, we choose the driving force as performance metric [21]. This driving force

is the absolute difference of product purity (for product component i∗ ∈ I) in vapor phase

and liquid phase at phase equilibrium. This objective function can be formulated as follows

for nonintensified and intensified systems respectively:

objNPI = |yS,NPI
i∗ − xS,NPI

i∗ | (17)

objPI = |yS,PI
i∗ − xS,PI

i∗ | (18)

3.4. mp-NLP Models for Nonintensified and Intensified Systems

Under simplifying assumptions listed in Section 3.2, we now describe the mp-NLP formu-

lations for nonintensified and intensified systems. Both of these two models involve common

constraints CC-S, their unique conditions (NPI-C or PI-C) and system parameters θ. These

two problems for nonintensified and intensified systems are denoted as mp-NLPNPI and

mp-NLPPI respectively and presented as follows:

(mp-NLPNPI)



















max objNPI(θ) = |yS,NPI
i∗ − xS,NPI

i∗ |

s.t. CC-SNPI = fNPI(TR,NPI
i , T S,NPI

i , θCC)

(xR,NPI
i , xf,NPI

i , TR,NPI , θUC) ∈ πNPI-C, θ = (θCC , θUC) ∈ Θ ⊆ Rnθ

(mp-NLPPI)



















max objPI(θ) = |yS,PI
i∗ − xS,PI

i∗ |

s.t. CC-SPI = fPI(TR,PI
i , T S,PI

i , θCC)

(xR,PI
i , xS,PI

i , TR,PI , θUC) ∈ πPI-C, θ = (θCC , θUC) ∈ Θ ⊆ Rnθ
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θ is the vector of system parameters and belongs to the bounded set Θ with the dimension

as the number of parameters nθ. The detailed models of mp-NLPNPI and mp-NLPPI are

given in the Supporting Information.

3.5. Definition of Synergistic Effects using Optimality

It is desired to operate the chemical system under optimal operating conditions. The

change of systems’ driving force with their DOF is shown in Figure 4. As mentioned in

Section 3.1, nonintensified systems involve two DOF as TR,NPI and T S,NPI under constant

operating pressure. Intensified systems involve one DOF as TR,PI = T S,PI under constant

operating pressure. As magnitude of DOF in the system varies, the driving force of the

system fluctuates. Generally, this type of relation is highly nonlinear and nonconvex con-

sidering the nonlinear functions used to describe the model physics.

Figure 4: An illustration on the change of system driving force synergy with the magnitude of degree of

freedom. a) Condition-I: maximum driving force of PI is larger than maximum driving force of NPI (PI is

preferred), and b) Condition-II: maximum driving force of NPI is larger than maximum driving force of PI

(NPI is preferred).

.

By running the mp-NLPNPI and mp-NLPPI optimization models respectively, we ob-

tain the operating conditions on reaction and separation temperature under the maxi-

mum driving force for NPI and PI system. These maximum driving forces are denoted

as objNPI,∗ = |yS,NPI
i∗ − xS,NPI

i∗ |max,∗ and objPI,∗ = |yS,PI
i∗ − xS,PI

i∗ |max,∗ for NPI and PI.

If objPI,∗ ≥ objNPI,∗, then PI can achieve higher driving force compared with NPI under

optimal conditions. In this case, PI outperforms NPI due to PI’s synergistic effects. If
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objPI,∗ ≤ objNPI,∗, then NPI can achieve higher driving force compared with PI under op-

timal conditions. The designer should choose NPI system to operate instead of PI system.

These relations are summarized as follows:

|yS,PI
i∗ − xS,PI

i∗ |max,∗ ≥ |yS,NPI
i∗ − xS,NPI

i∗ |max,∗ (PI is prefered) (19)

|yS,NPI
i∗ − xS,NPI

i∗ |max,∗ ≥ |yS,PI
i∗ − xS,PI

i∗ |max,∗ (NPI is prefered) (20)

The above two relations suggest that given system parameters θ, if we evaluate the

objective value difference of nonintensified systems and intensified systems, i.e., objNPI,∗(θ)−

objPI,∗(θ), then we know which system is preferred. Hence, objNPI,∗(θ) − objPI,∗(θ) is an

important output indicator for given input parameter vector θ.

4. Data-driven Multi-Parametric Programming

The multi-parametric nonlinear programming formulations for nonintensified and in-

tensified systems are denoted as mp-NLPNPI and mp-NLPPI respectively. The involved

parameters define reaction and phase equilibrium under simplifying assumptions. These

parameters are left-hand parameters that form bilinear terms between variable space and

parametric space (e.g., ms
i ) or parameters involved in the remaining reaction nonlinear terms

(e.g., Bn). In addition, the existence of many bilinear terms in molar balances makes the ex-

act solution of mp-NLPNPI and mp-NLPPI computationally expensive. Hence, we develop

an approximate algorithm to solve these mp-NLPs.

This algorithm is illustrated in Figure 5. We use a constrained sampling problem (the

formulation is the same as the one given in Section 4.1) to generate initial samples (e.g.,

150 samples). The input system parameters are scaled within
[

0, 1
]

. Then we use neural

network (NN) as surrogate to obtain the relation between input parameters and output

objective value difference. The details of neural network formulation are given in the Sup-

porting Information. This surrogate is iteratively evaluated using test samples generated

from adaptive constrained sampling (Section 4.1). Around the data region with maximum

errors, new samples are inserted. This procedure helps to avoid overfitting, identify data

errors and generate enough training samples. When current sample size (NP ) is larger than

threshold sample size (NC), validations using random samples initialize. When termination

criterion (e.g., coefficient of determination R2 is greater than a threshold value R0) is met,

the output data together with validation data is used to train a simpler neural network

with ReLu activation function. This neural network is reformulated as a multi-parametric

mixed-integer linear programming problem (Section 4.2).
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Figure 5: Algorithm flowchart for data-driven multi-parametric programming. The neural network is se-

lected as surrogate to connect input system parameters with output metrics. Adaptive constrained sampling

inserts samples at the parametric space with the maximum predicting errors under trained surrogate. The

output and validation data are used to train a simpler neural network. This neural network can be reformu-

lated as multi-parametric mixed integer linear programming problem when the neural network activation

function is ReLu function.

4.1. Sequential Adaptive Constrained Sampling

The formulation of constrained sampling is adopted from Shachit et al. [37] with con-

straints from Eqs. 15 – 16 for each sample p. Here, the set p, p′ ∈ P = {1, .., |P|} designates

the number of samples to evaluate. The set d, d′ ∈ D = {1, .., |D|} represents the dimension
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of parameter. The detailed formulation (denoted as PS) is given as follows:

min W 2

s.t. CC-SNPI
p = fNPI(T̃R,NPI

p , T̃ S,NPI
p , θ̃CC

d′,p) (21a)

(x̃R,NPI
i,p , x̃f,NPI

i,p , T̃R,NPI
p , θ̃UC

p ) ∈ πNPI-C (21b)

CC-SPI
p = fPI(T̃R,PI

p , T̃ S,PI
p , θ̃CC

d′,p) (21c)

(x̃R,PI
i,p , x̃f,PI

i,p , T̃R,PI
p , θ̃UC

p ) ∈ πPI-C (21d)

ud,p =
θ̃d,p − θLd
θUd − θLd

, ud,p ∈
[

0, 1
]

(21e)

θ̃d,p = {θ̃
CC
d′,p, θ̃

UC
p } (21f)

W 2 = (
4

3
)|D| +

1

|P|2

∑

p∈P

∑

p′∈P

∏

d∈D

(
3

2
− |ud,p − ud,p′ |+ |ud,p − ud,p′ |

2) (21g)

Problem PS generates a series of system parameters which are feasible under both in-

tensified and nonintensified systems. Meanwhile, problem PS is connected with adaptive

sampling to improve accuracy of NN surrogate modeling without exhaustively exploring

full parametric space [38, 39]. W 2 is the wrap-around L2 discrepancy (WD) proposed by

Hickernell [40]. ud,p is a scaled parameter vector with ranges as
[

0, 1
]

. Eq. 21e relates the

scaled parameter ud,p with original parameters θ̃d,p. The steps in this section involves the

solution of PS to explore the parametric space of θ̃d,p ∈ Θnθ×|P|. Global optimization of this

problem is a challenge when sample size and dimension are large. Next, nonlinear optimiza-

tion problems mp-NLPNPI and mp-NLPPI are solved respectively to global optimality by

fixing property parameters to the solution of PS as θ̃d,p for each sample p. Hence the output

for NPI system and PI system are maximum driving force respectively. The overall output

for given input parameters θ̃d,p is the difference of maximum driving force as follows:

Yp = objNPI,∗(θ̃d,p)− objPI,∗(θ̃d,p) (22)

Since input parameter vector θ is scaled as u, a sample p involves a vector of dimensionless

system parameters (u) and maximum driving force difference of nonintensified and intensi-

fied systems at these parameters (Yp).

The problem PS has four uses. Firstly, directly running problem PS yields initial samples.

Since the solution of PS is computationally expensive due to nonlinearity and dimensionality,

initial samples are generally of small size and obtained using local optimization. Secondly,

problem PS is used to generate test samples (with size NT ) with random initialization to
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identify a parametric vector with maximum prediction errors using neural network surrogate.

This test sample is denoted as Sp∗ = (u1,p∗, u2,p∗, ..., unθ,p∗). If we denote the predicted sample

output as Y pred
p , then this maximum error identification on sample index is achieved using

p∗ = argmaxp |Yp − Y pred
p |.

Figure 6: An illustration of sequential adaptive constrained sampling. Sp∗ is the sample with maximum

prediction error. Sp∗ is sequentially updated using new test samples, which are generated within sequentially

tightened input bounds
[

uL
d,p, u

U
d,p]. This procedure improves the identification of data region with maximum

prediction errors.

Thirdly, problem PS is used to generate new samples to be added into existing samples.

We sequentially create a trust-region on ud,p using a scaling factor σ with a fixed value within

range of
[

0, 1
]

. The trust region is defined as a set of points around the located sample

Sp∗. This procedure is illustrated in Figure 6. The lower and upper bounds of ud,p for this

trust-region are uL
d,p = σud,p∗ and uU

d,p = (2−σ)ud,p∗ respectively (σ = 0.7 or 0.8). The size of

trust region decreases with the increase of σ value. These bounds are sequentially tightened

for each ud,p and new test samples are generated accordingly to better locate the region

with maximum prediction errors. Within the new bound for ud,p ∈
[

uL
d,p, u

U
d,p

]

, problem PS

is used to generate some new samples with size NS to insert into the previous sample set.

Finally, problem PS is used to generate random samples for validation.
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4.2. Multi-parametric Mixed-integer Linear Programming

We use multi-parametric programming to investigate parameters’ influence on maxi-

mum driving force of nonintensified and intensified systems. The trained neural network

with ReLu activation function can be reformulated as a mixed-integer linear programming

(MILP) problem [41, 42] and the detailed MILP formulation is given in the Supporting

Information. Treating input as varying property parameters, the ReLu neural network can

be formulated as a multi-parametric mixed-integer linear programming problem with the

following form (mp-MILPReLu):

(mp-MILPReLu)



















min µ

s.t. fNN(x, z, u) = 0, gNN(x, z) ≤ 0

µ ≥ 0, x ∈ X ⊆ Rnx , z ∈ {0, 1}nz , u ∈ U ⊆ Rnθ

µ is a pseudo objective function with lower bound as zero. Hence, mp-MILPReLu is a

parametric feasibility problem with a constant zero objective value. x is the vector of

optimization variables in the bounded set X ⊆ Rnx . z is the vector of binary variables

demonstrating the sign of neuron values, z = {Z2,1, Z2,2, ..., Z2,|J |}. u is the vector of

continuous 0-1 dimensionless system parameters in the bounded set U ⊆ Rnθ . For the

MILP of trained ReLu neural network, fNN(x, z, u) = 0 denotes the linear equalities shown

in Eqs. S5a – S5d. Similarly, gNN(x, z) ≤ 0 are the linear inequalities shown in Eqs. S5e

– S5f. The obtained output solution, x∗(u), of mp-MILPReLu can be expressed as follows

[25, 43]:

x∗(u) = objNPI,∗(θ)− objPI,∗(θ) =































h1(u) if u ∈ CR1

h2(u) if u ∈ CR2

...

hω(u) if u ∈ CRω

(23)

Here the optimal objective value objNPI,∗(θ) and objPI,∗(θ) are numerically obtained by

fixing at sampled property parameters θ. CRω are unique critical regions for partition w

with the expression as CRω = {u | Aωu ≤ Bω}. These critical regions CRω are polytopes

defined as intersection of facets Aωu ≤ Bω (a set of linear inequalities). The union of these

critical regions is the full parametric space, i.e.,
⋃

ω CRω = U . The function hω(u) is an

affine function with the expression as hω(u) = Fωu+Gω. The symbols Aω, Bω, Fω, and Gω

are coefficients matrix associated with critical region CRω. This mp-MILPReLu problem is

solved using MATLAB-based MPT3 toolbox [44].
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5. Theoretical Properties

This section summarizes two properties. Property 1 shows that the parametric space of

feasible intensified and nonintensified systems can be described as union of CRs. Similarly,

Property 2 shows that the parametric space of intensified or nonintensified systems with

enhanced driving force can be described as union of CRs.

Property 1. Feasible parametric space of NPI and PI systems is
⋃

ω CRω.

Proof. The feasible parameters u ∈ U generated using problem PS along with the cor-

responding output, i.e., Yp, are connected using ReLu neural network. This ReLu neural

network is reformulated as problem mp-MILPReLu. The solution of the mp-MILPReLu par-

titions the input parameter space U into critical regions CRω. Hence, U =
⋃

ω CRω. □

Property 2. The parametric space of synergistic PI systems is
⋃

ω(CRω

⋂

{hω(u) ≤ 0}).

Proof. The feasible parametric space U is partitioned into CRω, i.e., U =
⋃

ω CRω. Within

each partition ω, the maximum absolute driving force difference between NPI and PI systems

is x∗(u) = objNPI,∗(θ)− objPI,∗(θ) = hω(u) from Eq. 23.

Eq. 19 gives the condition on when PI is preferred. This is equivalent to hω(u) ≤ 0.

Hence, the union of feasibility condition and synergistic condition gives the parametric space

of synergistic PI systems, i.e.,
⋃

ω(CRω

⋂

{hω(u) ≤ 0}). □

Property 2 suggests that the parametric space of synergistic process intensification is

the overlapping of reaction-separation feasible space and parametric space with nonpositive

maximum diving force between nonintensified and intensified systems. This property also

means process intensification does not necessarily lead to enhanced driving force compared

with nonintensified counterpart. Note that
⋃

ω(CRω

⋂

{hω(u) ≤ 0}) in Property 2 can be

also an empty set if CRω fully favors nonintensification.

Example. We use a two-parameter example to illustrate Property 1 and Property 2. This

example is based on a ternary system (components are M , H, and O) with reaction and

vapor-liquid phase equilibirum. The reaction is: M + H ←→ O. This illustrative example

is to find decision boundary transitioning from intensification to nonintensification. The

details of this example are discussed in Section 6.3. Constant parameters are summarized

in Table 1. Feed composition is (x0
M , x0

H , x
0
O) = (0.48, 0.01, 0.51). Varying parameters are

slope of phase equilibrium constant for component M , mS
M , and bubble point, TBUB, with

bounds as
[

0.005, 0.015
]

and
[

315 K, 335 K
]

respectively.
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Table 1: Fixed parameters for the illustrative example

Feed composition (x0M , x0H , x0O) = (0.48, 0.01, 0.51)

Reaction equilibrium Phase equilibirum

∆Hrxn for KR (kJ/kmol) −7432 mS
H 0.005

An = lnK0 for KR 16.5 mS
O 0.0016

bSi 0

TDEW (K) 350

With reference bounds of
[

0, 0.05
]

and
[

250 K, 420 K
]

to scale mS
M and TBUB, these

two scaled parameters are bounded using Eq. 21e as
[

0.1, 0.3
]

and
[

0.38, 0.5
]

respectively.

The procedure of generating approximate parametric solutions is summarized in Figure

7. For simplicity, we generate input training data on these varying parameters (10,000

data points) using Latincube sampling within bounded two-dimensional space, fix these

parameters in mp-NLPNPI and mp-NLPPI and only keep samples which are feasible to

both of mp-NLPNPI and mp-NLPPI models. After this step, 4541 samples remain and is

shown in Figure 7a. Next, we prepare validation data with smaller size following the same

procedure mentioned above and present these data in Figure 7b. The Z-dimension of Figure

7a – b is the difference of maximum driving force between NPI and PI, which is denoted as

100(objNPI,∗(θ)−objPI,∗(θ)). Here, the maximum driving force difference is multiplied with

a scaling factor of 100. Note that for both training and validation data, there is a region of

infeasibility that are not commonly feasible to NPI and PI models. Furthermore, the red

line in Figure 7a indicates an equal driving force of NPI and PI systems and is a decision

boundary of intensification and nonintensification.

With training and validation samples, we train a ReLu neural network with 6 neurons

and one hidden layer. This trained neural network involves a R2 of 0.99 and is reformulated

as mp-MILPReLu. This mp-MILPReLu is solved using MPT3 toolbox with 9 critical regions.

Expressions of these critical regions are summarized in Supporting Information. Comparing

Figure 7a and Figure 7c, the feasible region of NPI and PI systems are described as union of

critical region CR1, CR2, CR3 and CR7. This validates Property 1. Note that, the feasible

region generated using mp-MILPReLu is expanded into infeasibility region shown Figure 7a.

This is because we do not capture the information of sample infeasibility while training

neural network. Since only feasible physical samples in a practical system can be obtained

in chemical manufacturing, these samples can be still evaluated using the solutions of critical

regions or trained neural network to compare driving force differences. Finally, we impose

19



the condition of preferred PI, as shown in Eq. 19 or 20, on the parametric solutions of

mp-MILPReLu. These relations are essentially cutting planes that divide each critical region

into regions of intensification and nonintensification if transition between PI and NPI exists.

Specifically, CR1 fully favors intensification, and division boundary exists in CR2, CR3 and

CR7 for transitioning from intensification to nonintensification. This validates Property 2.

Figure 7: An illustration of parametric properties of intensification and nonintensification. a) Training

samples generated from NPI and PI models, b) validation samples generated from NPI and PI models, c)

parametric solutions of mp-MILPReLu, and d) parametric space of NPI and PI. The red line in a) indicates

a decision boundary of PI and NPI and is approximated as the boundary of green region and blue region

in d). KS
M is a phase equilibrium constant of component M .
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6. Implementation and Case Studies

This section summarizes the implementation of the proposed model and algorithm. The

proposed models and algorithms are implemented on reaction-separation systems ranging

from methyl acetate production and xylene separation to MTBE production.

6.1. Implementation Details

Unless specified in detailed case studies, the general settings are outlined in this section.

Toolbox or software involve toolboxes implemented in MATLAB and optimization software

GAMS [45]. MATLAB-based toolboxes include Neural network toolbox [46] for neural

network training, Multi-Parameteric Toolbox (MPT3) [44] connected with YALMIP [47]

for solving mp-MILP. We also use removeoverlaps function of MPT3 to avoid overlapping

of critical regions. Optimization solver in GAMS includes KNITRO [48] and BARON[49].

KNITRO is used for solving problem PS to get samples for initialization, validation and

testing or provide initial guess of PS for new samples to be inserted. The size of initial,

test and validation samples are 150, 100 and 100 respectively. BARON is used to find

sample outputs based on initialization from KNITRO by global optimalization of problem

mp-NLPPI and mp-NLPNPI at the sampled parameter θ. The optimization settings for

KNITRO are default and BARON is set with maximum CPU time as ten seconds, absolute

and relative optimality gap as zero.

We consider a neural network with simple network structure as one input layer, one

hidden layer and one output layer. The settings of neural network is default unless mentioned

in the specific case study. In the training phase, we use 120 neurons and can use tansig

activation function first if poslin activation function does not yield high prediction accuracy.

In this way, when test samples are imposed on the current trained prediction models, the

parametric space with maximum errors can be better located. If the prediction capability

of trained models on the training set is not good enough, the location with maximum

errors in the test sample may not be the true location of model errors. Overfitting is

avoided due to the random adaptive sampling. After the convergence of adaptive constrained

sampling, we retrain a ReLu neural network by reducing the number of neurons using final

training samples while not compromising too much prediction accuracy on the validation

samples. This helps to reduce the number of binary variables in the mp-MILPReLu. To

reduce computational time, initial test samples and validation samples are prepared using

offline parallel computing [50] with random initial starting points by activating random seed

in GAMS for solution of problem PS.
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6.2. Quaternary Systems with Constant Feed Composition

For reaction-separation systems involving four components, we consider reactions with

the form as A + B ←→ C + D. Components A, B are reactants and components C,

D are reaction products. The detailed examples involve methyl acetate production, i.e.,

methanol (A) + acetic acid (B) ←→ methyl acetate (C) + water (D) and m-xylene, p-

xylene transmetalation reaction, i.e., sodium p-xylene (A) + m-xylene (B) ←→ p-xylene

(C) + sodium m-xylene (D) . Here, p-xylene and m-xylene are isomers of dimethylbenzene.

p-xylene is slightly lighter than m-xylene with their relative volatility as 1.029 and they

have close boiling points [51]. For simplicity, m-xylene, sodium p-xylene, sodium m-xylene

and p-xylene are denoted as mxy, Napxy, Namxy and pxy respectively. The first reaction

produces methyl acetate, which is an effective solvent [52]. The second reaction helps

to separate two close-boiling components, i.e, m-xylene and p-xylene, which are industrial

solvents or intermediates for many derivatives [53]. The key products of the first and second

reaction are methyl acetate and p-xylene respectively.

Table 2: Simplified reaction and phase equilibrium models for four-component systems

Cases Methyl Acetate production Transmetalation reaction

Reaction equilibrium Fitted from Song et al. [54] Fitted from from Terrill et al. [51]

KR definition KR,x = xMeAcxH2O

xHOAcxMeOH
KR,x =

xNamxyxpxy

xNapxyxmxy

KR calculation lnKR,x = −∆H
R

1
T
+ lnK0 lnKR,x = −∆H

R
1
T
+ lnK0

∆Grxn/∆Hrxn for KR ∆Hrxn = −1881.82 kJ/kmol ∆Hrxn = −3992.88 kJ/kmol

An = lnK0 for KR 1 1

Phase equilibrium

mS
A 0.0044 0

mS
B 6×10−4 0.004

mS
C 0.0105 1.029mS

B

mS
D 0.0016 0

TBUB (K) 334.71 413.15

TDEW (K) 359.22 433.15

We first fit the original rigorous reaction model for methyl acetate production [54] and

m-xylene, p-xylene transmetalation reaction [51] to composition-based equilibrium reaction

model. Phase equilibrium relation of methyl acetate production is fitted from ASPEN

HYSYS simulation using UNIQUAC models. Phase equilibrium relation of m-xylene and

p-xylene is fitted from equilibrium relation using Antoine equation with ideal gas and ideal
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solution approximation while the components Napxy and Namxy are assumed to be non-

volatile [51]. Both physical systems are operated under constant pressure of 1 bar. These

original models and details of model fitting are given in the Supporting Information. The

fitted reaction and phase equilibrium models are summarized in Table 2. An = 1 as a

common fixed reference value for this case study. bSi = 0 for simplicity of analysis. The

reaction temperature range for fitting the first reaction is
[

313.15 K, 323.15 K
]

according

to the experimental setup in Song et al. [54]. The phase equilibrium temperature range of

the first system are
[

334.5 K, 359.5 K
]

according to HYSYS simulation. The reaction and

phase equilibrium temperature range for fitting the second system are
[

413.15 K, 433.15 K
]

according to Terrill et al. [51]

After the data preparation, we compute the general explicit solutions using the proposed

data-driven multi-parametric programming. Property parameters are θ = (B1,m
S
A,m

S
B,m

S
C ,

mS
D, T

BUB, TDEW ). The ranges
[

θL, θU
]

for B1, m
S
i , T

BUB and TDEW are
[

100 K, 500 K
]

,
[

0, 0.1
]

,
[

250 K, 420 K
]

and
[

250 K, 500 K
]

respectively. Using these ranges, parameter

θ can be scaled to dimensionless parameter u = {u1, u2, u3, u4, u5, u6, u7} with ranges as
[

0, 1
]

. u1, u2,3,4,5 and u6/u7 are for B1, m
S
i , T

BUB/TDEW . Besides, An = 1 and bSi = 0

as common fixed reference points. The feed composition for this four-component system

is fixed as equal molar feed conditions x0
A = x0

B = 0.5. The prediction performance on

maximum driving force difference is given in the Supporting Information with R2 > 0.98.

This neural network is reformulated as mp-MILPReLu. The parametric solution of this

problem for four-component system are summarized in Table S2 – S3 (13 critical regions)

of the Supporting Information and encapsulate all single-reaction four-component systems

under the simplifying assumptions and given parameter bounds. Any systems with negative

maximum driving force difference favors intensification.

Using the fitted data from Table 2, we can find that the dimensionless parametric en-

try for the methyl acetate production falls into critical region CR3 with objNPI,∗(θ) −

objPI,∗(θ) = −0.569 × 10−2. Similarly, dimensionless parametric entry for the system in-

volving transmetalation reaction for the separation of mxy and pxy falls into critical region

CR9 with objNPI,∗(θ)− objPI,∗(θ) = 9.694× 10−2. Hence, the first reaction-separation sys-

tems at their given parametric input favors process intensification while the second system

favors nonintensification at the given parametric conditions. This prediction can be also

validated through direct optimization by running simplified models under these fixed prop-

erty parameters. The direct optimization for these two systems gives difference of maximum

driving force difference as −1.137× 10−2 (system with reaction 1) and 0.337× 10−2 (system

23



with reaction 2) respectively. Decisions of intensification and nonintensification are consis-

tent with predictions. Solution details of these two systems are given in the Section S6 of

Supporting Information.

Figure 8: Reduced parametric solutions for four-component system. a) methyl acetate production system,

and b) mxy/pxy reaction-separation system. The red lines are operating curve under their corresponding

dimensionless phase equilibrium parameters, i.e., u2 for mS
A (A is MeOH) and u4 for mS

C (C is MeAc) in

left figure, u3 for mS
B (B is mxy) and u4 for mS

C (C is pxy) in right figure.

After investigating PI opportunities for these two cases at the fixed parametric en-

tries, several additional assumptions are imposed to map the parametric solutions of methyl

acetate production system and mxy/pxy reaction-separation system into two-dimensional

space. This helps to visualize the parametric solutions and study how phase equilibrium

property influences synergistic conditions. For methyl acetate production system, these

assumptions are :1) the bubble/dew points are TBUB = 334.71 K and TDEW = 359.22 K

according to HYSYS simulation; 2) the slopes for phase equilibrium constant of the first two

heaviest component are fixed as constants: mS
B = 6× 10−4 for acetic acid and mS

D = 0.0016

for water. Hence the remaining parameters are mS
A,m

S
C (reaction-related constants are

given in Table 2). After scaling for the two fixed values under bounds of
[

θL, θU
]

, we have

u1 = 0.316, u3 = 0.006, u5 = 0.016, u6 = 0.498 and u7 = 0.437. For mxy and pxy reaction-

separation system, these assumptions are :1) the bubble/dew points are TBUB = 413.15K

and TDEW = 433.15K, close to bounds of temperature ranges; 2) the slopes of phase equilib-
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rium constant of nonvolatile components are zero, i.e., mS
A = mS

D = 0. Hence the remaining

parameters are mS
B,m

S
C . After scaling the fixed values, we have u1 = 0.951, u2 = u5 = 0,

u6 = 0.960 and u7 = 0.733. Remaining ud for these two examples corresponds with slopes

of component phase equilibrium constant. Varying remaining ud for two different systems

essentially varies phase equilibrium constant approximation at different temperatures. Ac-

cording to Property 2, the parametric space of synergistic process intensification is the

union of feasible space and parametric space with negative maximum driving force differ-

ence. Hence after combining the critical expressions in Table S11 – S12 with the constraint

100(objNPI,∗(u) − objPI,∗(u)) ≤ 0 (or ≥ 0), we can get the approximate region involving

intensification (or nonintensification). The reduced parametric solutions of methyl acetate

production and mxy/pxy reaction-separation systems are shown in Figure 8.

These reduced parametric solutions in Figure 8 show that the hotspot involving synergis-

tic effects are disjoint within the reduced parametric space. By varying temperature within

the operating region, the relation between investigated dimensionless phase equilibrium pa-

rameters can be obtained from the simulation shown in Figure S3 of Supporting Information.

These relations are represented by red lines in Figure 8. The lower and upper ends of these

relations correspond with lower and upper bounds of dimensionless equilibrium constant

slope mS
i . As shown in Figure 8, within temperature ranges of phase equilibrium and with

equal-ratio feed, mxy/pxy reaction-separation system operate within a very narrow equilib-

rium constant slope ranges due to their close-boiling mixtures. Furthermore, under equal

molar feed composition, methyl acetate production system always favors intensification and

mxy/pxy reaction-separation system always favor nonintensification.

6.3. Ternary Systems with Varying Feed Composition

The ternary systems involve reactions with the form as M + H ←→ O. Components

M , H are reactants and O is the desired product. This case study shows how synergistic

effects evolve with feed compositions. Specifically, we consider a reaction for MTBE pro-

duction, i.e., isobutene (M) + methanol (H) ←→ MTBE (O). The investigated reaction

is significant in chemical industry. For instance, the reaction product MTBE can be used

as fuel additive or solvent [55]. Although the reference parameters are based on MTBE

production, additional reaction and separation systems are included if their property pa-

rameters fall into investigated parameter bounds. Simulation and simplified reaction/phase

equilibrium models are given in Figure S6 and Table S5 of Supporting Information.

To reduce computational efforts, three most important composition points are considered
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at the approximate region of extreme driving force reported in Lopez-Arenas et al. [21].

These composition points are (x0
i−butene, x

0
MeOH , x

0
MTBE) = (0.05, 0.8, 0.15) (composition

I), (0.2, 0.2, 0.6) (composition II), and (0.48, 0.01, 0.51) (composition III). Composition

I and III correspond with maximum driving force while composition II correspond with

minimum driving force [21]. These compositions represent compositions in typical MTBE

reactive distillation stages [56]. For example, composition III (rich in isobutene and MTBE)

appears above isobutene feed stage, composition II is located at bottom of column (rich in

MTBE) and composition I (rich in methanol) appears below methanol feed stage.

Table 3: Fixed and varying parameters for system projections

MTBE production

Cases Composition I Composition II Composition III

Reaction equilibrium

∆Hrxn for KR (kJ/kmol) −7166.9 −7275.2 −7432

An = lnK0 for KR 16.5 16.5 16.5

Phase equilibrium

mS
O 0.0029 0.0014 0.0008

TBUB (K) 364.3 381 320

TDEW (K) 424.0 399.5 371.5

The involved property parameters are θ = (B1,m
S
M ,mS

H ,m
S
O, T

BUB, TDEW ). The bounds
[

θL, θU
]

for B1, m
S
i , T

BUB and TDEW are
[

100 K, 500 K
]

,
[

0, 0.05
]

,
[

250 K, 420 K
]

and
[

250

K, 500 K
]

respectively. Using these ranges, parameter θ can be scaled to 0-1 dimensionless

parameter u = {u1, u2, u3, u4, u5, u6}. u1, u2,3,4 and u5/u6 are for B1, m
S
i , T

BUB/TDEW .

Besides, An = 16.5 and bSi = 0 as common fixed reference points. The prediction perfor-

mance (R2 ≥ 0.98) and parametric solutions of ternary system are given in Section S7 of

Supporting Information. Several additional assumptions are imposed to map the paramet-

ric solutions of ternary systems into two-dimensional space. The fixed parameters involve

the reaction-related constants (B1) and bubble/dew points (TBUB/TDEW ), the slopes for

phase equilibrium constant of product O (mS
O). The varying parameters are slopes for

phase equilibrium constant of two reactants (mS
M ,mS

H). Since some property parameters

are fixed for projection, states (composition and temperature) at these fixed values may

not be achieved. Hence not all random combinations of these fixed property parameters

ensure the feasibility of mp-NLPNPI and mp-NLPPI . To ensure the feasibility of simplified

models, we run constrained sampling problem PS to obtain these property parameters to
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be fixed, which are close to property parameters obtained from HYSYS simulation (Table

S5). Then, using these fixed property parameters, all samples for the varying parameters

(mS
M ,mS

H) are feasible. The final fixed parameters are summarized in Table 3.

Figure 9: Reduced parametric solutions for three-component system. a) Feed composition I, b) Feed

composition II, and c) Feed composition III. The red lines are dimensionless property parameters of phase

equilibrium constants, i.e., u2 for mS
M (M is i-butene) and u3 for mS

H (H is methanol).

According to Property 2, the parametric space of synergistic process intensification is the

union of feasible space and parametric space with negative maximum driving force difference.
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Hence after combining the critical region expressions with the constraint 100(objNPI,∗(u)−

objPI,∗(u)) ≤ 0 (or ≥ 0), we obtain the approximate region involving intensification (or non-

intensification). The reduced parametric solutions of ternary systems are given in Figure

9. The sampled property parameters (mS
M ,mS

H) through constrained adaptive sampling are

marked as red lines on system parametric solutions. At composition I and II and within

investigated parametric domains, the ternary system always favor nonintensification. At

composition III, most of operating region stay within region of intensification. However,

narrow region of transitioning from nonintensification to intensification exists, which sug-

gests equal maximum driving force at transition boundary.

To explain the transition from NPI to PI, sensitivity analysis is implemented at sampled

mS
M and mS

H values. mS
M/mS

H is recalculated as relative volatility using Eq. 14 (note

bSi = 0). The sensitivity analysis is shown in Figure 10. At lower relative volatility, phase

equilibrium temperature is high since separation is more difficult (Figure 10d). Reaction

temperature in nonintensified system can be lower than that of intensified system due to

decoupling of reaction and phase equilibrium temperature. In fact, nonintensified system

reaction temperature is always at the temperature lower bound 250 K if sufficient amount

of cooling utility is supplied. Since the reaction is exothermic, reaction yield of product O

is higher in nonintensified system than intensified system (Figure 10e). Product O is the

heaviest component at composition III and hence more product O remains in liquid phase for

nonintensified system (Figure 10b). This results in a favorable region of nonintensification

in Figure 9c. As the temperature increases, the effect of product removing into vapor phase

through phase equilibrium is enhanced. This product removing effect facilitates reaction

yield in intensification system (Figure 10e) and hence results in higher absolute driving

force. Then production of product O using intensified system is more favorable at higher

relative volatility. This critical relative volatility is 1.47 when PI outperforms NPI (Figure

10c) . If relative volatility further increases, separation becomes easier and lower separation

temperature is required to achieve maximum driving force. When separation temperature

decreases to bubble point, few vapor flow exists and system involves weak physical meaning.

To summarize, this analysis demonstrates the competing phenomena and synergistic ef-

fects between reaction and phase equilibrium. Besides, this suggests the existence of critical

property region with favorable transition from nonintensification to intensification or vice

versa. Furthermore, it shows that the proposed data-driven parametric programming algo-

rithm facilitates the identification of intensification hot-spots with physical interpretation.
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Figure 10: Change of objective function and decisions with relative volatility at composition III. a) Maximum

driving force objective, b) Decisions of phase equilibrium product compositions, c) Driving force difference

between NPI and PI, d) Decisions of phase equilibrium temperature and e) Decisions of reaction rate.

Critical relative volatility exists with favorable transition from NPI to PI systems.
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7. Conclusions

Given design targets and component property parameters, understanding synergistic

domains of process intensification is critical for decision making of intensified (PI) or non-

intensified (NPI) systems. In this work, we approximate the synergistic domains through

data-driven parametric programming based on solutions of PI and NPI system models.

These models leverage common model building blocks with unique conditions for intensified

and nonintensified systems. Simplifying assumptions, i.e., composition-based reaction equi-

librium constant and approximate linear phase equilibrium relations, are imposed to reduce

number of system parameters. Hence, models of intensfied and nonintensified systems are

mp-NLP with parameters defining reaction and separation. We refer synergistic domains as

ranges of system parameters with enhanced maximum driving force for intensified systems.

These ranges are identified using an algorithm of data-driven multi-parametric programming

by reformulating ReLu neural network surrogate as mp-MILP. We show feasibility condi-

tions of nonintensifed and intensfied systems can be represented as union of critical regions.

Similarly, we represent synergistic domains with PI outperforming NPI using critical regions.

The proposed framework is applied to multi-component reaction-separation systems. With

equal-mole feed conditions of reactants, the methyl acetate production system always favor

intensification while m-xylene/p-xylene production system always favors nonintensification.

By varying ternary system feed composition, we show that at composition region rich in

more volatile reactant and least volatile product, the transition from nonintensification to

intensification happen at critical reactant relative volatility. Future work involves the ap-

plication of these synergistic conditions for process design, and bounding process synthesis

and intensification.
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