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Abstract

Multicellular organisms use transcripts and proteins as signaling molecules for cell-to-cell
communication. Maize KNOTTED1 (KN1) was the first homeodomain transcription factor
identified in plants, and functions in maintaining shoot stem cells. KN1 acts non-cell autonomously,
and both its messenger RNA (mRNA) and protein traffic between cells through intercellular
nanochannels called plasmodesmata. KN1 protein and mRNA trafficking are regulated by a
chaperonin subunit and a catalytic subunit of the RNA exosome, respectively. These studies suggest
that the function of KNI in stem cell regulation requires the cell-to-cell transport of both its protein
and mRNA. However, in situ hybridization experiments published 25 years ago suggested that KN/
mRNA was missing from the epidermal (L1) layer of shoot meristems, suggesting that only the
KNT1 protein could traffic. Here, we show evidence that KN/ mRNA is present at a low level in L1
cells of maize meristems, supporting an idea that both KN1 protein and mRNA traffic to the L1
layer. We also summarize mRNA expression patterns of KN1 homologs in diverse angiosperm

species, and discuss KN1 trafficking mechanisms.
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Main text

Cell-to-cell communication is essential for determining cell fates, and is the basis for
multicellular development. For example, stem cells divide to self-renew and produce cells destined
to differentiate, and many forms of cell-to-cell communication regulate their identity and
proliferation " *. Plants use multiple types of cell-to-cell signaling, including secreted ligands and
receptors, as well as direct transfer of molecules through plasmodesmata, membrane-lined

1 3-5

nanochannels that penetrate the cell wall *~. Plasmodesmal signaling is critical for maintaining

plant stem cell niches, or meristems ®*. Several transcription factors, including homeodomain
factors, act as non-cell-autonomous signals by trafficking through plasmodesmata °.
Maize KNOTTED1 (KNI1) was the first homeodomain transcription factor identified in

10, 11

plants, and the first transcription factor found to traffic via plasmodesmata . KNI homologs, so-
called class I KNI-like homeobox (KNOX I) genes, are conserved in all taxa in the plant kingdom '>
1. The primary function of KNOX I genes is to maintain the pool of stem cells in shoot meristems,

14-16

as shown by the loss of meristems in maize kn/ mutants . This function, as well as cell-to-cell

mobility, is conserved widely, for example, in the KN/ homolog SHOOT MERISTEMLESS (STM)

in arabidopsis '"’

. While transcription factor protein trafficking is broadly documented, the
function of class I KNOX genes requires trafficking of both their protein and mRNA "% ',
Regulators of class I KNOX protein and mRNA trafficking, such as chaperonins and an RNA
exosome subunit, respectively, and additional mobile transcription factors, such as WUSCHEL and
SHORT-ROOT, have been identified "% 2% 222,

In addition to short-range cell-to-cell trafficking, proteins and mRNAs are also selectively
transported systemically between plant organs via the phloem. Regulatory factors and protein/RNA
4532

motifs and modifications important for this long-range transport have also been identifie

Thus, cell-to-cell signaling using proteins and mRNAs is a rapidly developing field, and although
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significant progress has been made in understanding its mechanisms, there are still many open
questions.

Previous studies suggested that KN1 protein and mRNA interact as they traffic between
cells, perhaps by forming a ribonucleoprotein (RNP) complex '"**>*°. If KN1 and STM traffic as
RNPs, they may need to streamline their shape to pass through the tiny plasmodesmata pores.

27,28

Chaperones and RNA helicases may be involved in this process . This process may also involve

RNA-binding proteins that function as carriers, and their receptors, as well as actin and myosin that

: 27,29, 30
can alter plasmodesmal pore size “~

. In our recent study, we found that a catalytic subunit of
the RNA exosome, arabidopsis Ribosomal RNA-Processing Protein 44A (AtRRP44A), controls
KNI and STM mRNA trafficking between cells *. AtRRP44A is predominantly nuclear, but when
levels in the cytoplasm are enhanced by the addition of a nuclear export sequence, it has a capacity
to localize to plasmodesmata. These findings suggest that AtRRP44A is involved in the
plasmodesmata targeting of class I KNOX RNPs, the conversion of RNPs to a mobile form, or the
trafficking through plasmodesmata. In support of these ideas, we found that KN/ mRNAs localize
to cytoplasmic puncta that move dynamically around the cytoplasm, and transiently interact with
plasmodesmata ®. This interaction could allow KN/ mRNA to traffic through plasmodesmata to
neighboring cells. However, how KN/ mRNA is targeted to plasmodesmata is unknown. The
mRNA of another mobile factor, FLOWERING LOCUS T, is tethered to endosomes and recruited
to plasmodesmata via microtubules and actin *'. Since STM is also associated with endosomes and

. . : 20,21
microtubule-associated proteins =

, it may be targeted to plasmodesmata by a similar mechanism.
The trafficking of KN1 and STM proteins and RNAs has been studied mostly in arabidopsis
and tobacco leaves, but how they traffic in the shoot meristem, where they function, is less well
understood. However, mutants that reduce KN1/STM protein or mRNA trafficking in the leaf, such
as chaperonin or RNA exosome subunits mutants, significantly affected meristem development "%

" suggesting their trafficking in the meristem is important for normal development. Angiosperm

shoot meristems have a layered structure, where an outer epidermal L1 layer covers inner layers.
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Despite multiple reports of KN/ and STM mRNA trafficking, the original report of KN1 trafficking
presented contradictory results, as KN/ mRNA was detected in the inner meristem layers but absent
from the L1, whereas KN1 protein was detected throughout all meristem layers **>*. This
difference in localization led to the prediction, and later demonstration, that KN1 protein can traffic
from the inner meristem layers to the L1 ''. However, the original report and several others
suggested that KN1 traffics with its mRNA as an RNP ®*. Homeodomain proteins are known for
their DNA binding activity, but their specific mRNA binding has also been demonstrated in flies **
> However, if KNI mRNA can traffic, and KN1 protein and mRNA can form an RNP, it is
puzzling that KN/ mRNA is not detected in the L1 layer of the maize shoot meristem. One possible
explanation is that KN1 RNPs traffic between cells in the inner meristem layers, but only KN1
protein traffics to L1 °°, however, this seems unlikely. Another possibility is that KN/ mRNA does
traffic to the L1, but its levels there are too low to be detected by in situ hybridization. Even a few
KNI mRNA molecules in the L1 could be amplified by multiple rounds of translation to produce

37,38

abundant protein levels . Indeed, we present evidence here that this is likely to be the case.

Recently, single-cell mRNA sequencing (scRNA-seq) has provided unprecedented resolution in

39-41

plant expression studies . In a scRNA-seq experiment of developing maize ears, we found

multiple distinct cellular clusters representing known cell types and domains, and indeed we found

243 (Figure 1a). However, these transcripts could be

KNI transcripts in meristem L1 cells
background noise or sporadic expressions captured in the sScRNA-seq experiments. A recent laser
microdissection (LCM) RNA-seq experiment also detected KN/ transcripts in L1 cells of the shoot
meristem. The KNI mRNA levels in the L1 were about one tenth of those in the L2, but much
higher than in leaf primordia, where STM expression is repressed **. To support these findings, we
performed KN1 in situ hybridization ** using a longer detection period. Indeed, we detected weak

KNI mRNA in situ signal in L1 cells (Figure 1b). While we cannot rule out the possibility that this

signal is from diffusion of the alkaline phosphatase reaction product, the combined evidence of
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scRNA-seq, LCM and mRNA in situ hybridization supports the idea that a small amount of KN/
mRNA traffics from the inner meristem layers to the L1.

It is also interesting to compare expression patterns of KN1 and STM homologs in diverse
angiosperm species. Expression varies significantly between species and meristem stages,
suggesting interesting hypotheses about the regulation of trafficking of KNI1/STM-related
transcripts. In maize, KN/ mRNA appears to be restricted to the inner meristem layers in both

2

vegetative and inflorescence stages, and is mostly undetectable in the L1 layer *> except as

described above. Similar patterns are seen in other species, including in brachypodium spikelet and

. - - 45, 46
floral meristems and wheat vegetative meristems ™

. In some species, however, expression is
clearly observed in the L1 layer at particular stages of development. For example, mRNA of the
rice KN/ ortholog ORYZA SATIVA HOMEOBOXI (OSH]I) localizes to the inner meristem layers of
vegetative and inflorescence meristems, but is also observed in the L1 meristem layer in spikelet
and early stage flower meristems. However, expression is once again restricted to the inner

47,48

meristem layers in the late stage flower meristems (Figure 1c-g). In tomato and tobacco, KNI

ortholog mRNAs are also restricted to the inner cell layers in vegetative meristems, but are clearly

detected in the L1 layer at the reproductive stages *'

. Thus, localization of KNI homolog
transcripts is often excluded from the L1 layer in vegetative stages, but found in the L1 layer in later
stages. A different situation is observed for arabidopsis STM, where its mRNA is not detected in
the L1 in early embryo stages, but is detected there in later embryo and seedling and reproductive
stages'’ (Figure 1h). What causes these changes in mRNA localization between species and
meristem stages? One possibility is that KNOX 1 gene transcription switches between layers
depending on the species and/ or developmental stage. However, another possibility is that the
mobility of KNOX I mRNA between cell layers is differentially regulated. In support of this idea,

the permeability and number of plasmodesmata change dynamically during meristem transitions >,

and this might affect selective transport of specific transcripts. A better understanding of these
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processes could enable manipulation of KNOX expression and localization to fine-tune meristem

activity, and improve plant growth and crop yields.
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283  Figure 1. KNI mRNAs are detected at low levels in L1 (epidermal) cells of maize meristems. (A)

284  Single-cell RNA sequencing® indicates that KN transcripts are abundant in meristem (clusters 9,
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10, and 11), vasculature (clusters 4, 5, and 12), and ground tissue (clusters 1 and 8), but also present
at low levels in meristem L1 cells (cluster 6, asterisks). (B) Over-exposure of a KNI mRNA in situ
hybridization shows a weak signal in the L1 (pink) and a strong signal in the inner meristem layers
(dark blue) in a maize ear spikelet pair meristem. (C-G) Rice OSHI mRNA is absent from the L1
layer of the vegetative shoot apical meristem (SAM) (C) but observed in some L1 cells in the
inflorescence meristem (im) (D), and is throughout the L1 in the spikelet meristem (sm) (E) and
floret meristem (fm) (F), then is again restricted to the inner layers in the later stage fm (G). PO and
P1, plastochron 0 and 1; rg, rudimentary glume; sl, sterile lemma; ca, carpel. (H) mRNA in situ
hybridization showing STM mRNA in the entire vegetative shoot meristem including L1 layer in
arabidopsis. The data used for panel A is from 2 Panel C, D, E, F-G, and H used images from 54,55,

26-4% and ® with modifications, respectively. Scale bars = 50 pum.
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