
	 1	

Title:  1	

Trafficking and localization of KNOTTED1 related mRNAs in shoot meristems. 2	

 3	

Authors: 4	

Munenori Kitagawa, Xiaosa Xu, David Jackson. 5	

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. 6	

 7	

Abstract 8	

Multicellular organisms use transcripts and proteins as signaling molecules for cell-to-cell 9	

communication. Maize KNOTTED1 (KN1) was the first homeodomain transcription factor 10	

identified in plants, and functions in maintaining shoot stem cells. KN1 acts non-cell autonomously, 11	

and both its messenger RNA (mRNA) and protein traffic between cells through intercellular 12	

nanochannels called plasmodesmata. KN1 protein and mRNA trafficking are regulated by a 13	

chaperonin subunit and a catalytic subunit of the RNA exosome, respectively. These studies suggest 14	

that the function of KN1 in stem cell regulation requires the cell-to-cell transport of both its protein 15	

and mRNA. However, in situ hybridization experiments published 25 years ago suggested that KN1 16	

mRNA was missing from the epidermal (L1) layer of shoot meristems, suggesting that only the 17	

KN1 protein could traffic. Here, we show evidence that KN1 mRNA is present at a low level in L1 18	

cells of maize meristems, supporting an idea that both KN1 protein and mRNA traffic to the L1 19	

layer. We also summarize mRNA expression patterns of KN1 homologs in diverse angiosperm 20	

species, and discuss KN1 trafficking mechanisms. 21	
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 27	

Main text 28	

Cell-to-cell communication is essential for determining cell fates, and is the basis for 29	

multicellular development. For example, stem cells divide to self-renew and produce cells destined 30	

to differentiate, and many forms of cell-to-cell communication regulate their identity and 31	

proliferation 1, 2. Plants use multiple types of cell-to-cell signaling, including secreted ligands and 32	

receptors, as well as direct transfer of molecules through plasmodesmata, membrane-lined 33	

nanochannels that penetrate the cell wall 3-5. Plasmodesmal signaling is critical for maintaining 34	

plant stem cell niches, or meristems 6-8. Several transcription factors, including homeodomain 35	

factors, act as non-cell-autonomous signals by trafficking through plasmodesmata 9. 36	

Maize KNOTTED1 (KN1) was the first homeodomain transcription factor identified in 37	

plants, and the first transcription factor found to traffic via plasmodesmata 10, 11. KN1 homologs, so-38	

called class I KN1-like homeobox (KNOX I) genes, are conserved in all taxa in the plant kingdom 12, 39	

13. The primary function of KNOX I genes is to maintain the pool of stem cells in shoot meristems, 40	

as shown by the loss of meristems in maize kn1 mutants 14-16. This function, as well as cell-to-cell 41	

mobility, is conserved widely, for example, in the KN1 homolog SHOOT MERISTEMLESS (STM) 42	

in arabidopsis 17-19. While transcription factor protein trafficking is broadly documented, the 43	

function of class I KNOX genes requires trafficking of both their protein and mRNA 7, 8, 19. 44	

Regulators of class I KNOX protein and mRNA trafficking, such as chaperonins and an RNA 45	

exosome subunit, respectively, and additional mobile transcription factors, such as WUSCHEL and 46	

SHORT-ROOT, have been identified 7, 8, 20, 21, 22.  47	

In addition to short-range cell-to-cell trafficking, proteins and mRNAs are also selectively 48	

transported systemically between plant organs via the phloem. Regulatory factors and protein/RNA 49	

motifs and modifications important for this long-range transport have also been identified 23, 24. 50	

Thus, cell-to-cell signaling using proteins and mRNAs is a rapidly developing field, and although 51	
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significant progress has been made in understanding its mechanisms, there are still many open 52	

questions. 53	

Previous studies suggested that KN1 protein and mRNA interact as they traffic between 54	

cells, perhaps by forming a ribonucleoprotein (RNP) complex 11, 25, 26. If KN1 and STM traffic as 55	

RNPs, they may need to streamline their shape to pass through the tiny plasmodesmata pores. 56	

Chaperones and RNA helicases may be involved in this process 27, 28. This process may also involve 57	

RNA-binding proteins that function as carriers, and their receptors, as well as actin and myosin that 58	

can alter plasmodesmal pore size 27, 29, 30. In our recent study, we found that a catalytic subunit of 59	

the RNA exosome, arabidopsis Ribosomal RNA-Processing Protein 44A (AtRRP44A), controls 60	

KN1 and STM mRNA trafficking between cells 8. AtRRP44A is predominantly nuclear, but when 61	

levels in the cytoplasm are enhanced by the addition of a nuclear export sequence, it has a capacity 62	

to localize to plasmodesmata. These findings suggest that AtRRP44A is involved in the 63	

plasmodesmata targeting of class I KNOX RNPs, the conversion of RNPs to a mobile form, or the 64	

trafficking through plasmodesmata. In support of these ideas, we found that KN1 mRNAs localize 65	

to cytoplasmic puncta that move dynamically around the cytoplasm, and transiently interact with 66	

plasmodesmata 8. This interaction could allow KN1 mRNA to traffic through plasmodesmata to 67	

neighboring cells. However, how KN1 mRNA is targeted to plasmodesmata is unknown. The 68	

mRNA of another mobile factor, FLOWERING LOCUS T, is tethered to endosomes and recruited 69	

to plasmodesmata via microtubules and actin 31. Since STM is also associated with endosomes and 70	

microtubule-associated proteins 20, 21, it may be targeted to plasmodesmata by a similar mechanism.  71	

The trafficking of KN1 and STM proteins and RNAs has been studied mostly in arabidopsis 72	

and tobacco leaves, but how they traffic in the shoot meristem, where they function, is less well 73	

understood. However, mutants that reduce KN1/STM protein or mRNA trafficking in the leaf, such 74	

as chaperonin or RNA exosome subunits mutants, significantly affected meristem development 7, 8, 75	

19, suggesting their trafficking in the meristem is important for normal development.  Angiosperm 76	

shoot meristems have a layered structure, where an outer epidermal L1 layer covers inner layers. 77	
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Despite multiple reports of KN1 and STM mRNA trafficking, the original report of KN1 trafficking 78	

presented contradictory results, as KN1 mRNA was detected in the inner meristem layers but absent 79	

from the L1, whereas KN1 protein was detected throughout all meristem layers 32, 33. This 80	

difference in localization led to the prediction, and later demonstration, that KN1 protein can traffic 81	

from the inner meristem layers to the L1 11. However, the original report and several others 82	

suggested that KN1 traffics with its mRNA as an RNP 8, 25.  Homeodomain proteins are known for 83	

their DNA binding activity, but their specific mRNA binding has also been demonstrated in flies 34, 84	

35. However, if KN1 mRNA can traffic, and KN1 protein and mRNA can form an RNP, it is 85	

puzzling that KN1 mRNA is not detected in the L1 layer of the maize shoot meristem. One possible 86	

explanation is that KN1 RNPs traffic between cells in the inner meristem layers, but only KN1 87	

protein traffics to L1 36, however, this seems unlikely. Another possibility is that KN1 mRNA does 88	

traffic to the L1, but its levels there are too low to be detected by in situ hybridization. Even a few 89	

KN1 mRNA molecules in the L1 could be amplified by multiple rounds of translation to produce 90	

abundant protein levels 37, 38. Indeed, we present evidence here that this is likely to be the case.  91	

Recently, single-cell mRNA sequencing (scRNA-seq) has provided unprecedented resolution in 92	

plant expression studies 39-41. In a scRNA-seq experiment of developing maize ears, we found 93	

multiple distinct cellular clusters representing known cell types and domains, and indeed we found 94	

KN1 transcripts in meristem L1 cells 42, 43 (Figure 1a). However, these transcripts could be 95	

background noise or sporadic expressions captured in the scRNA-seq experiments. A recent laser 96	

microdissection (LCM) RNA-seq experiment also detected KN1 transcripts in L1 cells of the shoot 97	

meristem. The KN1 mRNA levels in the L1 were about one tenth of those in the L2, but much 98	

higher than in leaf primordia, where STM expression is repressed 44. To support these findings, we 99	

performed KN1 in situ hybridization 32 using a longer detection period. Indeed, we detected weak 100	

KN1 mRNA in situ signal in L1 cells (Figure 1b). While we cannot rule out the possibility that this 101	

signal is from diffusion of the alkaline phosphatase reaction product, the combined evidence of 102	
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scRNA-seq, LCM and mRNA in situ hybridization supports the idea that a small amount of KN1 103	

mRNA traffics from the inner meristem layers to the L1. 104	

It is also interesting to compare expression patterns of KN1 and STM homologs in diverse 105	

angiosperm species. Expression varies significantly between species and meristem stages, 106	

suggesting interesting hypotheses about the regulation of trafficking of KN1/STM-related 107	

transcripts. In maize, KN1 mRNA appears to be restricted to the inner meristem layers in both 108	

vegetative and inflorescence stages, and is mostly undetectable in the L1 layer 32 except as 109	

described above. Similar patterns are seen in other species, including in brachypodium spikelet and 110	

floral meristems and wheat vegetative meristems 45, 46. In some species, however, expression is 111	

clearly observed in the L1 layer at particular stages of development. For example, mRNA of the 112	

rice KN1 ortholog ORYZA SATIVA HOMEOBOX1 (OSH1) localizes to the inner meristem layers of 113	

vegetative and inflorescence meristems, but is also observed in the L1 meristem layer in spikelet 114	

and early stage flower meristems. However, expression is once again restricted to the inner 115	

meristem layers in the late stage flower meristems 47, 48 (Figure 1c-g). In tomato and tobacco, KN1 116	

ortholog mRNAs are also restricted to the inner cell layers in vegetative meristems, but are clearly 117	

detected in the L1 layer at the reproductive stages 49-51. Thus, localization of KN1 homolog 118	

transcripts is often excluded from the L1 layer in vegetative stages, but found in the L1 layer in later 119	

stages. A different situation is observed for arabidopsis STM, where its mRNA is not detected in 120	

the L1 in early embryo stages, but is detected there in later embryo and seedling and reproductive 121	

stages17 (Figure 1h). What causes these changes in mRNA localization between species and 122	

meristem stages? One possibility is that KNOX I gene transcription switches between layers 123	

depending on the species and/ or developmental stage. However, another possibility is that the 124	

mobility of KNOX I mRNA between cell layers is differentially regulated. In support of this idea, 125	

the permeability and number of plasmodesmata change dynamically during meristem transitions 52, 126	

and this might affect selective transport of specific transcripts.  A better understanding of these 127	
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processes could enable manipulation of KNOX expression and localization to fine-tune meristem 128	

activity, and improve plant growth and crop yields.  129	
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 282	

Figure 1. KN1 mRNAs are detected at low levels in L1 (epidermal) cells of maize meristems. (A) 283	

Single-cell RNA sequencing42 indicates that KN1 transcripts are abundant in meristem (clusters 9, 284	
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10, and 11), vasculature (clusters 4, 5, and 12), and ground tissue (clusters 1 and 8), but also present 285	

at low levels in meristem L1 cells (cluster 6, asterisks). (B) Over-exposure of a KN1 mRNA in situ 286	

hybridization shows a weak signal in the L1 (pink) and a strong signal in the inner meristem layers 287	

(dark blue) in a maize ear spikelet pair meristem. (C-G) Rice OSH1 mRNA is absent from the L1 288	

layer of the vegetative shoot apical meristem (SAM) (C) but observed in some L1 cells in the 289	

inflorescence meristem (im) (D), and is throughout the L1 in the spikelet meristem (sm) (E) and 290	

floret meristem (fm) (F), then is again restricted to the inner layers in the later stage fm (G). P0 and 291	

P1, plastochron 0 and 1; rg, rudimentary glume; sl, sterile lemma; ca, carpel. (H) mRNA in situ 292	

hybridization showing STM mRNA in the entire vegetative shoot meristem including L1 layer in 293	

arabidopsis. The data used for panel A is from 42. Panel C, D, E, F-G, and H used images from 54, 55, 294	

56, 48 and 8 with modifications, respectively. Scale bars = 50 µm.   295	
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