Nonadiabatic transition probabilities for quantum systems in electromagnetic fields:

Dephasing and population relaxation due to contact with a bath

Sara D. Jovanovski, Anirban Mandal, and Katharine L. C. Hunt
Department of Chemistry, Michigan State University

East Lansing, Michigan 48824

Email of corresponding author: huntk@msu.edu




Abstract: We contrast Dirac’s theory of transition probabilities and the theory of nonadiabatic
transition probabilities, applied to a perturbed system that is coupled to a bath. In Dirac’s analysis,
the presence of an excited state | ko ) in the time-dependent wave function constitutes a transition.
In the nonadiabatic theory, a transition occurs when the wave function develops a term that is not
adiabatically connected to the initial state. Landau and Lifshitz separated Dirac’s excited-state
coefficients into a term that follows the adiabatic theorem of Born and Fock and a nonadiabatic
term that represents excitation across an energy gap. If the system remains coherent, the two
approaches are equivalent. However, differences between the two approaches arise when coupling
to a bath causes dephasing, a situation that was not treated by Dirac. For two-level model systems
in static electric fields, we add relaxation terms to the Liouville equation for the time derivative of
the density matrix. We contrast the results obtained from the two theories. In the analysis based
on Dirac’s transition probabilities, the steady state of the system is not an equilibrium state; also,
the steady-state population pks increases with increasing strength of the perturbation and its value
depends on the dephasing time T>. In the nonadiabatic theory, the system evolves to thermal
equilibrium with the bath. The difference is not simply due to the choice of basis, because the

difference remains when the results are transformed to a common basis.



1. Introduction

In this work, we derive results for the probability of transition to an excited state for a
quantum system in an applied electric field, when the system is coupled to a bath. The standard
transition probability derived by Dirac!-? differs from the nonadiabatic transition probability first
proposed by Landau and Lifshitz.® Dirac gave the transition probability as | ck(t) |*, in terms of the
coefficient for the excited state | ko ) in the basis of eigenfunctions of the unperturbed Hamiltonian
Ho. Landau and Lifshitz instead gave the transition probability as | bk(t) |?, in terms of the
coefficient for the instantaneous eigenstate | k” ) of the full Hamiltonian, including the perturbation.
If the wave function remains coherent, the differences are not physically significant. In that case,
the differences simply reflect the choice of the basis set.

In this work, we test the robustness of the two forms of the transition probability for
extension to cases where the quantum system loses coherence, a situation that is outside the scope
of Dirac’s theory'* and also outside the scope of the nonadiabatic analysis given by Landau and
Lifshitz.> We allow for dephasing and population relaxation due to contact between the system
and a thermal bath. We treat two-level model systems in static electric fields by adding relaxation
terms to the Liouville equation for the density matrix.* Then we contrast the results obtained by
taking | ck(t) |* as the transition probability and those obtained taking | bi(t) |* as the transition
probability. The loss of coherence of the wave function leads to physically meaningful differences
between the two approaches. We show that the differences are not due simply to the choice of
basis, by expressing the results in a common basis set. To our knowledge, the current work
provides the first illustration of these differences.

The theory of quantum transition probabilities due to a time-dependent perturbation
developed by Dirac has been used almost universally in perturbative treatments since his initial
work.!? Dirac expanded the solution of the time-dependent Schrédinger equation as a series in

terms of the eigenstates | ko ) of the unperturbed Hamiltonian, where Ho | ko ) = Exo| ko ). For a



system that started in the ground state as t — —oo, the excited-state coefficients have the form ci(t)
exp(—iExo t/h). The values of ci(t) are determined by coupled first-order, linear differential
equations.? Dirac stated that the transition probability is given by | ck(t) [*.

Landau and Lifshitz® separated c(t) into two terms by integrating by parts in Dirac’s
equation for ci(t). The boundary term ax(t) characterizes the adjustment of the initial state to the
perturbation by the incorporation of excited-state components, without actual excitation. The
results obtained using ax(t) are identical to those from the adiabatic theorem of Born and Fock,’
since inclusion of ax(t) preserves the adiabatic connection of the perturbed state to the initial state
of the system, | 0o ). The integral that remains after integration by parts gives the nonadiabatic
coefficient bi(t). Working within linear response, Landau and Lifshitz®> showed that the
nonadiabatic probability amplitudes bi(t) are identical up to a phase to the coefficients for the
instantaneous eigenstates | k'(t) ) of the full, perturbed Hamiltonian Ho + H'(t) in the time-
dependent wave function | ¥(t) ). Mandal and Hunt extended this result to nonlinear response.®
The quantities | bi(t) |?, including both linear and nonlinear response, give the probability of
transition to the instantaneous eigenstate | k'(t) ), which is adiabatically connected to an excited
state | ko ) of the unperturbed Hamiltonian. The nonadiabatic theory represents an analysis in the
basis of instantaneous eigenfunctions of the full Hamiltonian, rather than the unperturbed
eigenbasis.

In Dirac’s approach, if the excited state | ko ) appears as a component in the wave function
for a system that has started in the ground state as t — —oo, its appearance is regarded as a
transition. A projection of the time-dependent wave function onto | ko ) yields ck(t) exp(—iExot/h),
so the transition probability is obtained as | c(t) |>. In the analysis by Landau and Lifshitz, a

transition is said to have occurred if the wave function contains a component that is not



adiabatically connected to the initial state. Hence the probability of an excitation away from the
perturbed ground state is given by | bi(t) |*.

In this work, we show that the difference in the definition of a transition may lead to
numerical differences in the predictions about excited-state occupancies within a single basis set,
when the quantum system relaxes due to contact with a bath. Experimentally detectable
consequences of the difference between the two theories may also arise when the reaction to an
experimental probe depends on the existence of an energy gap between a state of the perturbed
system and the adiabatically perturbed starting state.

The effects of coupling to a bath are described by adding relaxation terms to the Liouville
equation for the time-evolution of the density matrix* in the basis of the instantaneous eigenstates.
The proper treatment of relaxation effects is more complicated in the basis { | jo ) } of eigenstates
of Ho. If the relaxation terms are added to the Liouville equation in the { | jo ) } basis, the system
does not evolve to equilibrium. The apparent value pkis of the excited-state population at steady
state depends on the dephasing time T»; and pxs increases rather than decreasing, as the
perturbation strength increases. These features remain after transformation to a common basis set.
Physically significant differences arise because the interactions with the bath convert a system
from a pure state to a mixed state.

We use the term “nonadiabatic” refer to any quantum process that does not follow the
adiabatic theorem.” Hence our analysis allows for rotationally and vibrationally nonadiabatic
processes, in addition to electronically nonadiabatic processes.”” In future applications to
electronic transitions, we plan to use the nonadiabatic theory to characterize the initial excitation
to an excited electronic potential surface, caused by an ultrafast laser pulse. We envision that the
subsequent time-evolution of the molecule including nonadiabatic electronic transitions due to

non-Born-Oppenheimer effects would be treated by existing theory, which accounts for first- and



second-derivative nonadiabatic coupling.'0-!3

Reviews of methods of treating nonadiabatic
electronic transitions associated with nuclear motion have been provided by Tully,'* Yarkony,!®
Yonehara, Hanasaki, and Takatsuka,'® Curchod and Martinez,!” Crespo-Otero and Barbatti,'®
Agostini and Curchod,! Wang et al.,° and Smith and Akimov.?! Interestingly, representation-
dependence also arises in surface-hopping calculations,?*>> because of differences in the velocity-
adjustment process in the adiabatic and nonadiabatic bases. This can be minimized, e.g., by use
of global flux surface hopping?® or surface hopping by consensus.?’ As in the current work, proper
inclusion of decoherence is also important in surface-hopping calculations.?>-28-2?

Similarities exist between the notation used in this work and the notation used in the
Forster’®-37 theory or in the Redfield-type theory of exciton transfer.>3-36-*8-46 Here we focus on
different physical phenomena, where interactions with a bath cause population relaxation and
decoherence, without exciton transfer.

In earlier work, Mandal and Hunt have carried the nonadiabatic transition theory beyond

the results given by Landau and Lifshitz.?

We proved that the energy of a perturbed system
separates cleanly into adiabatic and nonadiabatic terms, without cross-terms.® We proved that the
power absorbed by a molecule from a time-dependent electromagnetic field is equal to the time-
derivative of the nonadiabatic term in the energy, to second order.*’” We derived the n moments
of the energy distribution as sums over excited states of | bi(t) |* (Ex— Eo)", up to third order in the
perturbation.*® The equations for the moments in terms of | c(t) |* seem to lack a simple physical
interpretation.*®

Previously we have compared the functional forms of | bi(t) |> and | ck(t) |* in perturbations
consisting of a harmonic wave in a Gaussian envelope,* a simple Gaussian pulse,*® and a “plateau

pulse” where the perturbing field remains constant for an interval.®® In Section II of the current

work, we provide analytical results for the Dirac coefficients, the adiabatic coefficients, and the



nonadiabatic coefficients over the full time range of a transient electric field that rises via a half-
Gaussian, remains constant for an interval, and then returns to zero via a falling half-Gaussian.
Dirac’s form of the transition probability | ck(t) |* necessarily oscillates while the perturbing field
is constant, while the nonadiabatic transition probability remains constant. We have shown earlier
that it is possible to capture this difference “on the fly,” by imposing a second perturbing field that
overlaps in time with first pulse, while the field of the first pulse is constant.>!

In Section III, we analyze the results in the limit as the widths of the half-Gaussians go to
zero, and the field remains constant for an interval t. Dirac’s transition probability | ck(t) |* shows
oscillations, with a period that depends on the product of t and the transition frequency ®ko.
Carried to all orders, these oscillations are sometimes described as Rabi oscillations®?~° in a
constant field. Here, we show that the nonadiabatic theory produces identical oscillations, even
though no transitions occur while the field is acting, within this theory. Because of the oscillations,
an increase in the duration t of the constant field may increase the transition probability; but
somewhat counter-intuitively, increasing the duration of the constant field may decrease the
transition probability, and even reduce it to zero.

The analysis in Secs. II and III provides the groundwork for our treatment of the response
to a perturbing field that is imposed suddenly and then remains constant. In these two sections,
our analysis is limited to linear response. In Sec. IV, we treat the response to all orders in the
perturbation, due to the sudden imposition of a constant field. We solve the Liouville equations
for the density matrices* of two-level model systems in the perturbing field. The systems are
otherwise isolated, so their wave functions remain coherent.

That assumption is removed in Sec. V, where we allow for dephasing and population
relaxation. We determine the time evolution of the density matrix for a system that starts in the

ground state of the unperturbed Hamiltonian and then is suddenly subject to a constant applied



field. In the nonadiabatic transition theory, the perturbed eigenfunction basis is used, while in the
extension of Dirac’s theory, the unperturbed eigenfunction basis is used. Adding relaxation terms
to the Liouville equation in the perturbed basis yields Redfield theory.>’-%* This approach is
consistent with the assumption in Redfield’s work that the full Hamiltonian of the system is
diagonal in the basis set.’”*? The system evolves to thermodynamic equilibrium in the long-time
limit, when the density matrix is cast in the perturbed eigenfunction basis. More generally,
Redfield commented, “If the system has a time-dependent Hamiltonian which varies slowly
compared to the motion of the thermal bath, the same equation of motion is obeyed [i.e., the
Redfield equation], and the system is relaxed by the bath toward a Boltzmann distribution with
respect to its instantaneous Hamiltonian.”>’

In Sec. V, we also test a model for the time-evolution of the density matrix in the
unperturbed eigenfunction basis, obtained by simply adding relaxation terms to the Liouville
equation.*>7-62 We find that the stationary solution of the Liouville equation plus relaxation terms
is displaced from equilibrium, when expressed in the unperturbed basis. Transformation of the
time-dependent results in the perturbed basis back into the unperturbed basis gives different results
from the direct evolution in the unperturbed basis. For the two-level model systems, the
differences depend on a host of parameters: the strength of the applied field, the transition dipole,
the energy difference between the two unperturbed states, the temperature, and the values of the
population relaxation time T and the dephasing time T».9>%¢ The elements of the relaxation matrix
depend on the spectral density of the bath, see, e.g., Refs. 62, 67, and 68. We find the correct form
of the time-evolution equations for the density matrix in the unperturbed basis, by transforming
the Redfield equations in the perturbed basis back to the unperturbed basis.

More sophisticated treatments, going beyond the Redfield equation in the secular

approximation, are possible. For example, nonsecular contributions to the relaxation matrix can be



retained;%’7 the effects of a finite bath size’*7¢ and feedback from the system to the bath’”"" can
be included. Initial correlations between the quantum system and the bath can also be taken into
account.?-%3 A closely related alternative treatment is based on the Lindblad equation,*% the most
general generator of Markovian dynamics in quantum systems.® That approach also ensures the
positivity of the density operator.?*%¢ Quantum systems interacting with thermal baths have been

75,76,90-94

treated with multiple forms of the master equation, including versions that are coarse-

72,95 97
d 1,

graine or partially coarse-grained,”® local,”® nonlocal,”” or global.”® A time-dependent convex
mix of the solutions of the local and global equations has been suggested.” Space!? and time!?!
correlations of the noise have been included explicitly in master-equation treatments. Generalized

master equations have been developed to treat a quantum system in a quantum environment.!%%103

104-106 1107-111

Equations of the Nakajima-Zwanzig type contain a memory kerne and an
inhomogeneous term that accounts for the initial system-bath correlations.

Non-Markovian behavior has also been investigated;'!'*!!> for example, in the non-
Markovian limit, time-correlated noise has been shown to lead to noncanonical dependence of the
population distribution on temperature.!°! A stochastic Schrodinger equation corresponds to the
Redfield equation with “slipped” initial conditions; the general version is non-Markovian, but if
the bath is delta-correlated, a Markovian process results.!'® An exact reduced density matrix for
the quantum harmonic oscillator, correct to second order in system-bath coupling has been
obtained by nonequilibrium Green’s function techniques and used to validate a modified Redfield
solution.!”

Alternative treatments of quantum systems in heat baths have been based on distribution

functions in state space!'® or phase space.!!1??> The evolution of the reduced density matrix has

also been addressed with tensor propagator!? and projection operator!?* methods; the latter also



yields a general Redfield approach to tunnelling in a molecule embedded in solvent.!?>!26 Path

127

integral methods’”-!11:127-129 have been used to obtain influence functionals'?’ and to analyze the

time evolution of reduced density matrices.””!11:128.129

In particular, quantum-classical path
integral methods have made it possible to obtain numerically exact, fully quantum mechanical
results for dynamics in systems with a large number of vibrational modes.!?

The level of analysis that we have adopted is sufficient to show the differences between
the results obtained within the nonadiabatic transition theory and the extended Dirac theory, after

transformation to the same basis set. We anticipate that the differences will persist in a more

detailed treatment based on a master equation or a generalized master equation.
In Section VI, we conclude by providing a brief summary and discussion of planned

extensions of this work.
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I1. Transition probabilities for a system in a pure state, in a transient applied field

For a quantum system with an unperturbed Hamiltonian Ho in a perturbation AH'(t), the
time-dependent Schrédinger equation is

H(t) [ (1) ) = [Ho + AH'()] | (1) ) = (ih) O | ¥ (1) )/ct . )
Dirac!? solved Eq. (1) by writing the solution as a series in the unperturbed eigenfunctions | ko ),
where Ho | ko ) = Exo| ko ),

| W(t) ) = 2 ci(t) exp(—iExo t/h) | ko ) . )
k

For a system that is initially in the unperturbed ground state | 0o ) of Ho as t — —oo, ci(t) satisfies
t

eu(®) = (<t | (ko | H'(t) | 00 ) expl i (Exo — Eoo) t/h] dt’ | 3)
to first order in the perturbation.!? Dirac expressed the probability of a transition to the excited
state | ko ) as | ck(t) > =] (ko | ¥(t) ) | In a modified approach, Landau and Lifshitz suggested

integrating by parts in Eq. (3), to separate ci(t) into two terms,?

ck(t) = (ko | AH'(t) | 00 ) exp(iokot)/(Eo,0 — Ex,0)
t
+ (hwko) ™! ,[700( ko | A CH'(t")/0t" | 0o ) exp[i (Ex,0 — Eo,) t'/h] dt’, 4)

where hoko = (Exo — Eo,0). The boundary term in Eq. (4) gives the first-order adiabatic coefficient
ax(t), while the remaining integral represents nonadiabatic effects, which are characterized by the
coefficient bi(t). The adiabatic term depends on the instantaneous value of the perturbation at
time t, while the nonadiabatic term depends explicitly on the time-derivative of the perturbation at
times t' <t. Landau and Lifshitz stated that | bk(t) |* gives the probability of transition to an excited
state, if the perturbation takes on a small constant value as t — . We have interpreted | bi()(t) |?
more generally as the transition probability, even when the perturbation continues to vary in time.

In this section, we determine the response to a perturbation H'(t) that is given by

11



V exp(—at?) fort<0
H'(t) = A% for0 < t<t (5)
V exp[-b(t — 1)?] fort>rt,
setting A = 1 and using the width parameters a for the rising half-Gaussian and b for the falling
half-Gaussian. We assume that the system occupies the ground state | Op ) of the unperturbed

Hamiltonian Ho ast — —oo. The application of H'(t) introduces into | y(t)) components of excited-

states | ko ) with coefficients ci(t) exp(—iEk, t/h), where ci(t) satisfies
t

eu(®) = (=i/m) | (ko| V| 00 exp(~at’) exp[ i (Exo— Eno) t/h]dt (6)

for t <0. From Eq. (6), in units with h =1,

ck(t) = —(1/2) (t/a)"? (ko | V | 00 ) exp[-wxo?/(4a)] {1 + Erf[(2at — iwko)/(2a"?)]} (7)

for t < 0. In Eq. (7) and below, Erf denotes the error function, defined as the integral of a
normalized Gaussian function from zero to the argument of the function.!*° It is an entire function.
We have followed the convention used in Mathematica,'*! which differs from the definition by
Whittaker and Watson,'?? where the normalization factor is omitted.

While the field is rising, the nonadiabatic coefficient bi(t) is given by

t
bi®) = —2ai | (ko |V |00)t exp(—at?) exp(ionat’) dt’ . ®)

Thus fort <0, withh =1,
bi(t) = (ko | V| 00 ) oko~! exp[-wro*/(4a)] exp[—(2at — ioko)*/(4a)]
—(i/2) (t/a)"? (ko | V | 00 ) exp[-wko*/(4a)] {1 + Erf[(2at — iwko)/(2a")]} . (9)
For t <0, the adiabatic coefficient can be obtained directly from the expression
ax(t) = (ko | H'(t) | 00 ) exp(imkot)/mok

=—(ko| V|00 ) exp(—at®) exp(iokot)/wxo , (10)

12



with h=1 as before. The adiabatic coefficient ax(t) can also be obtained as the difference between
ck(t) from Eq. (7) and by(t) from Eq. (9),
a(t)=—(ko| V|00 ) oo exp[-wro®/(4a)] exp[—(2at — iwko)*/(4a)] . (11)
Equations (10) and (11) give identical results for t <0. Att=0,
ax(t=0)=—(ko| V| 00 Yoxo , (12)
bi(t=0)=(ko| V|00 ) oo
—(i/2) (m/a)'? (ko | V| 00 ) exp[-wro*/(4a)] {1 + Erfl-iow/(2a'?)]}, (13)
and cx(t=0)=—(1/2) (t/a)"? (ko | V | 00 ) exp[—wko*/(4a)] {1 + Erf[-ioko/(2a'?)] }.
(14) The result for bi(t) at t = 0 is consistent with our previous results for the case when a
perturbation is imposed via a rising half-Gaussian,*
Re[bi(t=0)]=(ko| V|00 ) {1/wxo — a "> DawsonF[(2a"?)" ko] } , (15)
and  Im[bi(t=0)]=—-(ko|V|00) {(1/2)(/a)"? exp[-wko*/(4a)] } . (16)
In Eq. (15), DawsonF[x] denotes the Dawson integral F(x), defined as the integral of exp(y?)
integrated over y from zero to x, then multiplied by exp(—x?).!33
While the perturbation is constant, bk(t) remains constant at the value bi(t = 0), but ck(t) oscillates
due to the oscillations in ax(t). So for times t in the range between 0 and T,
ax(t) =—(ko | V| 00 ) exp(imxot)/oko , (17)
bi(t) =(ko| V|00 ) ok
—(i2) (t/a)"* (ko | V | 00 ) exp[-oko®/(4a)] {1 + Erfl-imxo/(2a'2)] }, (18)
and  c(t)=(ko|V|00)[1 - exp(imkot)]/wko

— (i/2)(n/a)'? { ko | V | 00 ) exp[-wko*/(4a)] {1 + Erf[-iok/(2a"?)] } . (19)
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Next we derive the results for the excited-state coefficients when the perturbation is turned off via
a falling half Gaussian, beginning at time t. We calculate the change Ack(t) in the Dirac coefficient

ck(t) relative to its value at t = T from the relation,
t

Ack(t) = —1 ,[ (ko | V|00 )exp[-b(t' — 1)*] exp(iokot’) dt (20)
for t> 1. Then
Ack(t) = (1/2) (ko | V| 00 ) exp[itwro — oko*/(4b)] (n/b)"?
(Erfifoxo/(26"2)] + 1 Erf{[-2b (t — 7) + imK0]/(2b"2)}) . (21)
From Egs. (19) and (21), while the magnitude of the applied field is decreasing, ci(t) is given by
ck(t) =(ko | V|00 ) [l —exp(iokot)]/®ko
— (i/2)(n/a)"* { ko | V | 00 ) exp[-wko*/(4a)] {1 + Erf[—ioke/(2a"?)] }
+(1/2) (ko | V | 00 ) exp[itwxo — wko*/(4b)] (n/b)"?
(Erfifoxo/(26")] + 1 Erf{[-2b (t — 7) + imK0]/(2b"?)}) . (22)
In Eq. (22), Erfi[z] denotes the imaginary error function, which is related to the error
function Erf[z] by Erfi[z] =i Erf[iz].'"** We have used the version of Erfi[z] implemented
in Mathematica;'3! see also Ref. 134.
For t > 1, the change Abi(t) in the nonadiabatic coefficient bi(t) relative to its value at time

T satisfies
t

Ab(t) = —2b/mko .[T (ko |V]00)(t'—1)exp[-b(t' —1)*] exp(imkot’) dt’. (23)
Evaluation of the integral in Eq. (23) gives
Abi(t) = (1/2) (ko | V| 00 ) {2 exp[—b (t — 1)* + iwxot]/oxo — 2 exp(imkot)/®ko
— 1 (n/b)"? exp[iokot — wko*/(4b)] Exf{[2b(t — 1) — iwx0]/(26'2)}

+ (n/b)? exp[imkot — wko?/(4D)] Erfifoxo/(26"?)]} . (24)
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From Egs. (18) and (24), we obtain the value of bi(t) while the applied field is declining as

bi(t) = (ko | V|00 ) oko™" — (i/2) (n/a)"*> { ko | V | 00 ) exp[-mko*/(4a)] {1 + Erf[-ioko/(2a"?)] }
+(1/2) (ko | V| 00 ) {2 exp[—b (t — T)* + iwkot]/oxo — 2 exp(imkot)/®ko
— 1 (n/b)"? exp[iokot — wko*/(4b)] Exf{[2b(t — 1) — iwx0]/(26'2)}
+ (n/b)!? exp[imwot — wxo*/(4b)] Erfiloxo/(26V%)]} . (25)
Taking the limit as t — oo, we find
limi—e bi(t) = (ko | V[ 00 ) {[1 — exp(iokot)]/oxo
—(i/2) (n/a)"? exp[-wxo?/(4a)] {1 + Erf[—iow/(2a'?)] }
— (i/2) (n/b)"? exp[iokot — Oko*/(4D)]
+(1/2) (n/b)'"* exp[iowot — wxo*/(4b)] Erfi[wwo/(26V2)]} , (26)
since lime exp[—b (t — 1)? + iwkot]/wko = 0 and limie Erf{[2b(t — 1) — iwko]/(26Y?)} = 1. From
Eq. (22) and limi-e Erf{[-2b(t — 1) — iwko]/(2b"?)} = —1, similarly we find
lim—e ck(t) = (ko | V| 00 ) {[1 — exp(iokot)]/odxo
—(i/2) (n/a)"? exp[-wxo?/(4a)] {1 + Erf—iow/(2a'?)] }
— (i/2) (n/b)'"? exp[itoko — wko*/(4D)]
+(1/2) (n/b)'"* exp[itoxo — 0ko*/(4b)] Erfi[owe/(26'?)]} . (27)
The results for bi(t) and ci(t) in the limit as t — oo are identical as expected, since limi e ai(t) = 0.
It is interesting to examine the long-time limiting results in the case where the perturbation
is turned on and off very rapidly. In the limit as a — o, we find
limy - o limee0 bi(t) = limg - o limiseo Ci(t)
=(ko|V]00)[l—exp(iokot)]/mko
+ (1/2) (=/b)V* { ko | V | 00 ) exp[imiot — 0xo*/(4b)]

+(1/2) (ko | V| 00 ) (/)" expliowot — oro/(4b)] Exfilo/(26')], (28)
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and then taking the limit as b — oo as well, we obtain
lim 5 5 o lima 5 o0 limese br(t) = (ko | V| 00 ) [1 — exp(imkot)]/wko . (29)

Equation (29) is identical to the result in the sudden approximation.!33-142

Different functional forms of | bi(t) |* and | ck(t) |* are observed, depending on the values of
ko, T, a and b. Figures S.1-S.4 in the supplementary material'’ illustrate a few of these forms.

In this case, the difference simply reflects the difference in the choice of the basis set.
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III. Results in the sudden approximation

An oscillatory pattern in the probability of transition to an excited state | ko ) of an
unperturbed Hamiltonian is found for a system that is perturbed by a constant field that lasts for
time 1. Figure 1 shows the scaled transition probability Pk, which is obtained by dividing | ck(t) |?
by the norm-square of the transition matrix element | (ko | H' | Qo ) [>, for all times t after the
perturbation has ended (in the absence of dephasing and population relaxation). For this plot, we
have set h = 1. The transition probability depends on the product mkot. The transition frequency
ko and the interval t during which the field is applied are in arbitrary, but interrelated units; so

for example, if T is given in picoseconds, then wio has units of 102 s7!,

Figure 1. Scaled quantum transition probability Pk = | ck(t) |* | {( ko | H' | 00 ) |2 after a perturbing
field has been turned off, as a function of the transition frequency mko and the duration of the
constant field t. Results from the sudden approximation.

The oscillations in the final occupancy of the excited state shown in Fig. 1 resemble Rabi
oscillations,’?3¢ although the calculations used to prepare Fig. 1 were limited to linear response.

Our purpose in this section is to show that identical oscillations in Pk are predicted by |bk(t) |, even
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though the value of |bi(t) |* remains constant while the perturbing field is acting. Additionally, we
explain why oscillations emerge in the nonadiabatic transition theory.

We use the sudden approximation!3>-142 for this analysis. Equivalent results are obtained
from the transition probabilities in Sec. II as the widths of a half-Gaussian rise of an applied field
and of a half-Gaussian decay of the field both go to zero. The analytical results are simple in this
limiting case. Despite its limitations, the sudden approximation is quite useful in elucidating the
origin of the oscillations within the nonadiabatic transition theory.

We consider a perturbation that is turned on via a Heaviside theta function at to and later is
turned off equally abruptly, after an interval t during which the field remains constant. Then

(ko |H'(t") | 00)=(ko|H"| 00 ) {O(t" —to) — O[t' — (to + T)]} (30)
and (ko |cH'(t")/ct' | 00 )=(ko|H"|00) {O(t' —to) = O[t' — (to + T)]} . 31
For convenience, we have set A = 1. The second term in Eq. (4) gives bi(t), with the matrix element
(ko | cH'(t")/ct" | 0o ) from Eq. (31). We use Eq. (3) for ci(t) with ( ko | H'(t") | 00 ) from Eq. (30).

When t < to, all three excited-state coefficients ax(t), bk(t), and ck(t) vanish. When to <t <tp + T,

ax(t) = —(ko | H' | 0o ) exp(ioxot)/(hoxo) |, (32)
bk(t) = (ko | H' | 00 ) exp(imkoto)/(hoko) (33)
and  ci(t) =(ko|H']| 00 ) [exp(imkoto) — exp(iwkot)]/(hwko) . (34)

While the applied field is constant, the nonadiabatic transition probability is constant also, and

| bi(®) =1 (ko | H' [ 00 ) [P/(heowo)® (35)
The Dirac form of the transition probability oscillates,

| ck(®) =] (ko |H | 00)[* {2 — 2 cos[oxo(t — t0)]}/(hwko)* . (36)
If the wave function remains coherent, then after the field has been turned off,

bi(t) = ck(t) = (ko | H' | 00 ) exp(imkoto) [1 — exp(icwkot)]/(hoko) , (37)
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and | be(t) P=|ck®) ?=|(ko|H | 00) |* [2 -2 cos(wkot)]/(hoko)* . (38)
So the final transition probabilities are identical, as expected since ax(t) = 0 for t > to + 1.

The final transition probability drops to zero if wkot = 2n= for any integer n, while if ®kot
= (2n + 1)m, the final transition probability is maximized at

| bi(t) P =] ex(t) P=4| (ko | H'| 00 ) |/(hexo)? . (39)
The maximum is four times the value of | bi(t) |> while the applied field is constant. Figure 2
shows | bi(t) |> and | ck(t) |? for intervals t of lengths 9t/®wko, 9.27/0xo, 9.47/wk0, 9.67/®K0, 9.8 7/ 00,
and 107/wko, with ko = 127t/5 in all cases. For convenience, we have set to = 0.

The coefficient ck(t) is continuous as a function of time throughout, while ai(t) and bx(t)
are discontinuous at to and to + 1. This is a consequence of taking the limits as the widths of the
half-Gaussians for the rise and decay of the field both go to zero; equivalently, it is a consequence
of the sudden approximation.!3>-14? As shown in Sec. II, continuous functions ax(t) and bi(t) are
obtained for any non-zero widths of the half-Gaussians.

Figures S.5 and S.6 in the supplementary material'** show the real and imaginary parts of
ax(t), bi(t), and ck(t) scaled by ( ko | H" | 0o ), for T = 9n/®ko, 9.251/wk0, 9.5T/wko, 9.751/wr0, and
10mt/wko, with to = 0 to simplify the separation of the real and imaginary parts of the coefficients.
Other choices of to introduce overall phase factors into ax(t), bk(t), and ck(t) without affecting the
transition probabilities. Independent of the duration of the plateau, the adiabatic coefficient ax(t)
jumps to the value ax(t = 07) = —( ko | H' | 0o )/(hwko) immediately after the field has been turned
on. The imaginary part of ax(t) is zero at t = 0. Both the real and imaginary parts of ax(t) oscillate
while the field is acting. When the field is turned off, ax(t) immediately drops to zero.

The coefficient bi(t) jumps to bi(t = 0%) = ( ko | H' | 0o )/(hwko) immediately after the field

has been turned on and remains constant while the constant field is acting. This is physically
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0.08

0.06

0.04

0.02

0.

0.08

0.06

0.04

0.02

0.08

0.06

0.04

0.02

| T =9/
] ]
-2 0 6
BE 9.41/wxo
] ]
-2 0 6
T = 9.8/ ko
] ]
-2 0 6

0.08

0.06

0.04

0.02

0.

0.08-

0.06

0.04

0.02

0.08

0.06

0.04

0.02

and Dirac’s form | ck(t) |2 ——

RBE 9.21/wxo
] ] ] ]
-2 2 4 6
T = 9.67/Wko
| | | |
-2 2 4 6
T =107/ Mo
] ] ] ]
-2 2 4 6

Figure 2. Nonadiabatic transition probability | bi(t) |* and Dirac’s form of the transition probability
| ck(t) |* as functions of time, for various durations t of the perturbation: T = 9nt/®wko, 9.27/®ko,
9.41/wko, 9.6T/®k0, 9.8T/®Ko, and 107/mko, With ko = 127/5. Both transition probabilities are
scaled as in Fig. 1.
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reasonable, because bk(t) is the coefficient of the instantaneous eigenstate | k' ) in the wave
function, up to a phase. When the perturbation is first imposed and ci(t) = 0, necessarily bk(t) # 0
already, because the unperturbed and perturbed basis sets differ. Due to the choice to = 0, bi(t) has
no imaginary part while the field acts. When the field is turned off, bi(t) jumps to its final value,
(ko |H'"|00)[1—exp(iokot)]/(hwko).

The pattern of the transition probabilities |ck(t) |* after the field has been turned off—
specifically, the oscillations in the transition probabilities—can be explained by considering the
relationship between ai(t) and bi(t) in the limit as t approaches t from below. If T = (2n + 1)1/wko,
the imaginary parts of ax(t), bi(t), and ci(t) all vanish as t — t~. The real part of ax(t) satisfies

limt —t— ax(t) = (ko | H'" | 0o )/(hoko) . (40)
Since limt —1— bi(t) is identical to the limit for aw(t) in Eq. (40), the values of ax(t) and bi(t)
reinforce each other, so that

limt -t c(t) = 2( ko | H' | 00 )/(hoxo) , (41)
and the transition probability is maximized. In contrast, if T = 2nm/wwo, again the imaginary parts
of ax(t), bi(t), and ck(t) vanish in the limit as t — t~, but in this case,

limt —t— ax(t) = —( ko | H' | 00 )/(hoko) . (42)
Consequently we find limt —t ck(t) = 0, leading to a minimum of the transition probability when
the pulse duration satisfies T = 2nm/mxo.

In intermediate cases with t = (2n + 1/2)m/mko or T = (2n + 3/2)m/wko, the nonadiabatic
transition probability changes by the same increment when the field is turned on and when it is
turned off. Then for t > 1,

[ br(®) =] cx(t) > =2 | (ko | H' | 00 ) P/(hoxo)* . (43)
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For t > 1, ax(t) = 0, while bi(t) and ck(t) have both real and imaginary components that are nonzero.
For t > 1, from Eq. (37) with to = 0,
bi(t)= (ko |H' |00 ) [1 — cos(mkot) — 1 sin(mkot)]/(hwko) . (44)
If kot = Arccos(1/2), cos(wkot) = 1/2 and sin(wkot) = £ (3/4)"2. For either sign of sin(wkot),
| be(t) = | (ko |H |00 ) P [1/2 +i (3/4)V2[1/2 — i (3/4)"?]/(hwio)?
= (ko | H'[00) [/(hoxo)?, (45)
for t > 1, as well as for 0 <t < 1. That is, if mkt = Arccos(1/2), the transition probability | bi(t) |*

is identical while the field is acting and after the field has been turned off.
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IV. Time evolution of the density matrix for a model two-level system in a constant field

In this section, we start by examining the time evolution of the density matrix for a model
two-level system in a constant field, as characterized by the Liouville equation* in the basis of the
unperturbed eigenstates by extension of Dirac’s theory and separately in the basis of the perturbed
eigenstates, as in the nonadiabatic transition theory. The analysis applies to a system that starts in
the unperturbed ground state | Op ) at t = 0. The system is isolated aside from the effects of the
applied field, which is held constant at times t > 0. Thus the system remains coherent in this case.
The coefficient co(t) for the ground eigenstate falls off gradually from its initial value co(0) = 1,
while ci(t) rises gradually from its initial value ck(0) = 0. We take the limiting case of a
perturbation that is turned on via a rising half-Gaussian, as the width of the half-Gaussian goes to
zero (consistent with the sudden approximation!¥-142), Since the eigenstate | 0o ) is a superposition
of the eigenstates | 0’ ) and | k' ) of the perturbed Hamiltonian, the coefficient by(t) is already non-
zero att=0, and | bo(0) | < 1.

The time-evolution of the density matrix for the two-level model system in the applied field

is characterized by the Liouville equation,*
cp(ty/ct =—(i/h) [H(1), p(t)] - (46)

In the unperturbed state basis {| 0o ), | ko )}, where Ho | 0o ) = Eo | 0o ) and Ho | ko ) = Ex | ko ), the
initial conditions for the density matrix elements are poo(0) = 1, and pxk(0) = pok(0) = pxo(0) = 0,
since p(0) =| 0o ) { 0o |. The full Hamiltonian is the sum of the original unperturbed Hamiltonian
Ho and the perturbation H'. We assume that the diagonal elements of the perturbation vanish and
that the off-diagonal elements of the Hamiltonian are real and equal. The off-diagonal elements
are time independent for t > 0. We define hox as How/h and use the relation (Ex — Eo)/h = wko. Then

the time-evolution equations for the density matrix elements in the unperturbed basis are
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Cpoo(t)/ct = —ihok pro(t) + 1hok pok(t) 47)

cpxk(t)/ct = —ihok pok(t) + 1hok pro(t) , (43)
Cpxo(t)/Ct = —1mko pro(t) —1hok [poo(t) — prx(t)] , (49)
and  Cpok(t)/Ct = im0 pok(t) —ihok [prk(t) — poo(t)] . (50)

At this point, it is useful to separate the real and imaginary terms in the differential equations, since
the diagonal elements of the density matrix are purely real, and the off-diagonal elements are

complex conjugates. Setting pxo(t) = p(t) +1q(t), we find

Epoo(t)/t =2 hok q(t) , (51)
Epu(t)/ét = =2 hok q(t) , (52)
ep(t)/0t = oko q(t) (53)

and  Oq(t)/t = —oko p(t) + hok [pri(t) — poo(t)] . (54)

The solutions of Egs. (51)-(54) are

poo(t) = {y* = 2 hoi® [1 — cos(y)]}/7* , (55)
p(t) = 2 ho® [1 — cos(yt)]/v* (56)
p(t) = hox oko [cos(yt) — 11/, (57)
and  q(t) = —hox sin(yt)/y , (58)

where the angular frequency y is given by y = (4hok? + oko?)"2. The populations of the states | 0o )
and | ko ) oscillate with a period of 2n/y. The maximum value of pik(t) is 4ho*/y>. To test the
accuracy of our numerical work, we have compared the analytical values and numerical values of
v, the maximum value of pik(t), the first time at which the maximum is reached, the minimum of
pkk(t), and the first time at which the minimum is reached (after t = 0), for five different values of
hok. The results are listed in Table 1 in the supplementary material. The level of agreement

between the analytical and numerical values is very high in all cases.
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Next we consider the time evolution of the density matrix for an isolated two-state system
in the perturbed eigenfunction basis {|0"), | k')}. These states are the eigenstates of the full
Hamiltonian, including the perturbation. In this basis,

p(t=0)=10"){0"[00)(00[0") 0" [+][k")(k"[00)(00|0") (0"

+107)C0"[00) (00 k") (K [+]k")(Kk"[00)(00 k) (k[ . (59)
The transformation matrices between the basis sets {| 0o ), | ko )} and {|0’), | k")} are independent
of time in the current case. Explicit equations for the inner products in Eq. (59) are given in the
supplementary material. All four elements of p(t) in the perturbed eigenfunction basis are non-
zero att = 0. The off-diagonal elements satisfy pow(t) = pro*(t) at t = 0 and at all later times. The
trace of the density matrix equals one, so poo(t) =1 — prw(t). For an isolated system, the density
matrix is idempotent in either basis, because the system is always in a pure state.

The density matrix satisfies the Liouville equation, Eq. (46). Since the full Hamiltonian is
diagonal in the basis {|0'), | k')} with Ex and E¢, the diagonal matrix elements of the commutator
of H with p vanish. The off-diagonal elements are given by [H(t), p(t)Jxo = (Ex — Eo) pro(t) and
the relation pok(t) = pro®(t). Hence the time derivatives of the density matrix elements in the

basis {|0"), | k')} satisty

Bp(t)/Bt = Bpoo(t)/et=0 , (60)
Bpro(t)/dt = —(i/h) (Ex — Eo) pro(t) (61)
and  Bpor(t)/dt = Spro*(t)et . (62)

In this basis, the ground and excited-state populations remain constant at their initial values. The
off-diagonal elements oscillate with the angular frequency v, since (Ex — Eo)/h =y, as shown in

the supplementary material, and therefore

pro(t) = pro(0) exp(=iyt) . (63)
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The components of the density matrices in the two basis sets {| 0o ), | ko )} and {|0"), | k')} are
plotted in Figures S.7 and S.8 in the supplementary material, for a case with wxo = 3.99086 ps~!
and hox = 1.496573 ps~!. With these values of the parameters, poo(0) = 1, pik(0) = 0, poo(0) = 0.9,
and px(0) = 0.1. While the plots in Figs. S.7 and S.8 look quite different, upon transformation
of the results from the perturbed basis to the unperturbed basis, identical values are obtained for
each of the matrix elements, as is expected for a pure state. In the supplementary material, we
prove analytically that the values are identical, when expressed in the same basis. The

oscillations in Re[pro(t)] and Im[pro(t)] give rise to the oscillations in poo(t) and prk(t).
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V. Effects of dephasing and population relaxation

In this section, we analyze the time evolution of the two-level system coupled to a bath.
To include the effects of dephasing and population relaxation due to interactions with the bath, we
use Redfield theory in the secular approximation as developed in Ref. 57. The full nonlinear
response is included in the calculations in this section.

We assume that the system starts in the unperturbed ground state | 0o ) at t = 0; then it is
perturbed by a constant field that acts at times t > 0. It is further perturbed by interactions with a
thermal bath at times t > 0. Redfield derived equations for the time-development of the system’s
density matrix due to the effects of the bath, using two different approaches,’’ the first involving
random semiclassical perturbations of the system, and the second involving a full Hamiltonian for
the system and bath, including an interaction term.

In the first approach, the Hamiltonian is expressed as the sum of the Hamiltonian of the
unperturbed system and a Hermitian stochastic term G that characterizes interactions with the bath.
Redfield analyzed the time evolution of the system’s density matrix, with the assumption that G

57 The correlation time of the fluctuations of

vanishes when averaged over the bath at any time.
the bath is assumed to be short, relative to the time scale over which the density matrix elements
of the system change appreciably. Redfield derived the density matrix as a function of time, to
second order in the perturbation due to the bath, within the interaction representation.>’ Because
the stochastic term in the Hamiltonian averages to zero and the correlation time is assumed to be
short, the first-order terms are negligible. The second-order terms incorporate the bath effects, so
that the time derivative of pqo' is given by the Liouville equation plus relaxation terms of the type
r's7

R’ pp’ ppp’s summed over 3 and B'.°” The relaxation matrix R depends on the spectral density of

the fluctuations in the bath.’” Consideration of the magnitudes of the elements R’ pp’ in the
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relaxation matrix shows that significant contributions to the time derivative of pu« are obtained
only from the secular terms, i.e., terms with o — o' — B + B’ = 0.7 Physically, this implies that the
perturbations due to the bath connect states of the system that differ in energy by the approximate
magnitude of the perturbation. Transformation back from the interaction representation to find the
original density matrix of the system gives the Redfield equation in the form used in this work,
Eq. (64) below.

Redfield also analyzed the effects of interactions in a second approach, allowing in
principle for a full quantum mechanical description of the bath.’” In this approach, the total
Hamiltonian is the sum of the system Hamiltonian, the bath Hamiltonian, and a coupling term G,
which is a sum of products of an operator for the system and an operator for the bath. The analysis
in this case begins with the full density matrix for the system and the bath; the reduced density
matrix for the system is obtained by taking the trace over the bath states.’” The bath is assumed to
be in a state of thermal equilibrium initially; at t = 0, the full density matrix is diagonal in the bath
states, and the system is not entangled with the bath. When the system evolves according to the
time-dependent Schrodinger equation, the full density matrix becomes mixed—it is no longer a
simple product of the density matrix for the system and the density matrix for the bath.>” However,
if the fluctuations of the bath occur on a significantly shorter time scale than the variation of the
reduced density matrix for the system, the bath effectively re-randomizes as the system evolves,
remaining constantly in a state of thermal equilibrium.>” This introduces an apparent irreversibility
into this approach, whereas in the first approach, irreversibility resulted from the stochastic nature
of G.*7

We note that in the first approach, Redfield allowed for the possibility that the average of

the stochastic perturbation is non-zero. In that case, he suggested redefining the system’s

28



Hamiltonian to include the average of G over the bath.>” Similarly, in the second approach, the
stationary perturbations due to G modify the system’s Hamiltonian into an effective Hamiltonian
to second order.>’ In this work, we have taken the average of G to be zero within the first approach.
In the second approach, this corresponds to assuming that the dynamical perturbations have a much
larger effect than the stationary perturbations due to the bath. In any case, the energy difference
between the unperturbed ground state | 0 ) and the excited state | k ) and the energy difference
between the perturbed ground state | 0" ) and the excited state | k' ) shift identically through second
order, when any stationary perturbation due to the bath is included in the system’s Hamiltonian.
In both approaches, the relaxation matrix R is determined by the spectral density of the
fluctuations in the bath.>” In the first approach, however, the relaxation of the system to thermal
equilibrium must be treated in an ad hoc manner, either by applying the time-evolution equation
to the difference between the system’s density matrix and the density matrix at thermal
equilibrium,’” or by modifying the elements of the relaxation matrix to satisfy detailed balance. In
the second approach, the spectral densities take a quantum mechanical form that accounts
explicitly for the thermal equilibrium of the bath, and thus automatically allows the system to
evolve to thermal equilibrium at long times.’’” Calculations of the spectral densities from first
principles require an accurate description of the bath dynamics, and that is beyond the scope of
the current work (cf. Refs. 129 and 143). Instead, we draw on experimental results to
obtain relaxation parameters that are physically realistic; as shown below, this yields
differences between the analyses in the perturbed and unperturbed basis sets that range from
~2.5% to more than 88%. For the two-level model systems, connections between the
population relaxation time T; and the dephasing time T» and the matrix elements in the

Redfield theory’ are made by the relationships Rix, o0 = —1/T1 and Ry xor = 1/T.
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We first examine the results for the density matrix using the Redfield equation in the
perturbed basis, where the system’s Hamiltonian is diagonal, as in Redfield’s original analysis.>’
Use of the perturbed basis is consistent with the nonadiabatic transition theory. Separately, we
examine the effects of adding relaxation terms directly to the Liouville equation* in the
unperturbed basis, and we show that non-physical results are obtained in this case. The coupling
to the bath destroys the coherence of the wave function. Due to the loss of coherence, predictions
based on using | bi(t) |* or | ck(t) |* for the transition probability differ, even after the results have
been transformed to a single basis. Comparison of the results in Sections IV and V shows that the
differences between results in the two basis sets are fundamentally attributable to the relaxation
terms.

In Redfield’s theory, the time derivative of the reduced density matrix p(t) for the system

is given by the equation,’’

op(t)/ot =—(i/h) [H(Y), p()] - R:p(t) , (64)
where R is the relaxation matrix that characterizes the coupling to the bath, and [R : p(t)]jx denotes
the sum of Rjk,mn p(t)mn Over m and n. We assume that coupling to the bath environment is weak,

and that R is static or very slowly changing over time.%’

Modifications for strong coupling
are possible (see, e.g., Refs. 144 and 145), but they are not considered here.
In the secular approximation, the non-zero elements of the relaxation matrix are Ry ki,

7 These matrix elements are system-, bath- and

Ro0,00, Rik 00, Roo ki, Rioxo, and Rox ok
temperature-dependent. Allowing for coupling to the bath, the equations of motion for the density

matrix elements in the perturbed basis become

cprk(t)/ct = — Rewxi pri(t) — Riw oo poo(t) (65)
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cpoo(t)/ct = — Roo ki prk(t) — Roo,oo poo(t) (66)
and  Spro(t)/ot = —(i/h) (Ex — Eo) pro(t) — Reo o pro(t) (67)
with po(t) given by the complex conjugate of pror(t).

The relationships Ry kv = — Roo ki and Ry 00 = — Roo 00 ensure that the sum of pii/(t)
and poo(t) remains constant in time, at one. After thermal equilibrium is reached with the bath,
prk(t) and poo(t) individually remain constant in time; they are related by

(Poo/pric)*= exp[(Ex — Eo)/KT] =& , (68)
with € > 1, since | 0" ) is the perturbed ground state. The requirement for pii to remain constant
in time when the two-level system is in thermal equilibrium with the bath implies that Ry k' =
— & Riw, 00, and therefore Ry ki = & Riw,00. Finally, Roo 00 = — Rew 00 = £ Riew . Setting R
= —Rkw 0o (i.e., R > 0), we obtain the solutions of the coupled equations for pri/(t) and poo(t),

pie(t) = {1 = [1 = pi(0) (1 + E)] exp[—~(1 + &) R t]}/(1 + ) (69)
and  poo(t) ={&+[1 —pu(0) (1 +&)] exp[—(1 +E) Rt]}/(1+E). (70)
Because we are considering the reduced density matrix for the system in contact with the bath, we
take Roo wk = & Rk 00, rather than Rk 00 = Roo xk, which would follow from Fermi’s Golden
Rule for an isolated system.>!*® In the limit as t — oo, the ratio poo(t)/pri(t) = &, as expected
for thermal equilibrium. Since 0 < exp[—(1 + &) R t] <1 for t >0, we can set x = exp[—(1 + &) R
t], with x < 1. Then at an arbitrary time t > 0, pri(t) — prr(0) is given by

pri(t) — pr(0) = (1 —x) [1 = pri(0) — prew (0) EJ/(1 + &) . (71)
If the initial population of the excited state exceeds the population at thermal equilibrium, then we
have & > [1 — prw(0)]/prk(0), so [1 — prk(0) — prkr(0) E] < 0. Then since x <1 and § > 1, pri(t)
at later times is less than its initial value. If the initial population of the excited state is less than

the value at thermal equilibrium, [1 — pr(0) — pr'(0) ] > 0, and pr/(t) rises from its initial value.

31



From Eq. (67) in the perturbed eigenfunction basis, the time evolution of the off-diagonal
element of the density matrix pro(t) is decoupled from the evolution of the diagonal elements.
Setting Rio o = 1/T2, and solving for pro(t), we obtain

pro(t) = pro(0) exp[—iowot — (HT2)], (72)
with po(t) = pro(t)*.

The results for the density matrix elements in the perturbed basis, with the inclusion of

dephasing and population relaxation are plotted in Fig. 3. The rationale for the parameter choices
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Figure 3. Density matrix elements in the perturbed basis for a hypothetical two-level system with

parameter values wko = 3.99086 ps~!, hox = 1.496573 ps~!, T; = 1/R = 0.141865 ps and T» =
0.0704659 ps. The imaginary part q(t) of the off-diagonal element of the density matrix pro has
been multiplied by a factor of 10 before plotting, to show its behavior more clearly.

used to produce Fig. 3 is explained in the supplementary material. They apply to a hypothetical
two-level system with the parameters chosen to be appropriate for the , M=0,0and J, M=1,0
states of HCI in liquid argon at 84 K.!*7 We have neglected the dependence of the dipole

moment on the bath, and hence the dependence of the off-diagonal Hamiltonian matrix elements
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hok and hko on the bath. This should be a reasonable approximation for very dilute HCI in liquid
argon, the system we have used to obtain the parameters for the two-level model analyzed here.
Next we examine outcomes in the unperturbed basis, supposing that the relaxation terms

can simply be added to the Liouville equation. We approximate the elements of the relaxation
matrix as Rikkk = — & Rik,00, Rookk = Eo Rik,00, and Roo,00 = — Rik,00 = o' Rikkk, Where (poo/prik)®d
= &o. Then the density matrix in the unperturbed eigenfunction basis would reach equilibrium in
the absence of the perturbation H'. The difference between Ex — Eo and Ex — E¢ produces the
difference between & and &, and it is of second order in the perturbation. Replacing o by & does
not affect the qualitative features of the results. As before, R = Roo,00, Rok,0x = Rxoxo = 1/T2, hox =
Hox/h, and we set (Ex — Eo)/h = oko. The time-evolution equations for the density matrix elements

in the unperturbed basis are

Bpoo(t)/t = —ihok pro(t) + ihok por(t) — R poo(t) + &o R palt) , (73)
Opik(t)/t = —ihok por(t) + ihok Pro(t) — £o R pa(t) + R poo(t) , (74)
Bpro(t)/Bt = —i ko pro(t) —ihok poo(t) + ihok pr(t) — (1/T2) pro(t) , (75)
and  Gpo(t)/et = ioo pok(t) —ihok p(t) + ihox poo(t) — (1/T2) poi(t) . (76)

After we express pro(t) as a sum of its real and imaginary parts, as pxo(t) = p(t) + 1 q(t), we find

Opoo(t)/St = 2 hok q(t) —R poo(t) + &o R prk(t) , (77)
Opik(t)/St = —2 hok q(t) —Eo R pk(t) + R poo(t) , (78)
cp(t)/ot = ko q(t) - (1/T2) p(t) , (79)
and  2q(t)/ct = — ko p(t) + hok prk(t) — hok poo(t) — (1/T2) q(t) . (80)

The elements of the density matrix in the unperturbed basis are plotted in Fig. 4 below, for the

hypothetical two-level system. The imaginary part q(t) of the off-diagonal element of the density
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matrix pro has been multiplied by a factor of 10 before plotting and the real part p(t) has been

multiplied by 25, to show the behaviors of both more clearly.
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Figure 4. Density matrix elements in the unperturbed basis for the hypothetical two-level system
with parameters as in Fig. 3.

Figure 5 shows the error in excited-state population pwk calculated directly in the
unperturbed basis for a stronger perturbation and shorter Tz, compared with pxk found by
transforming the density matrix in the perturbed basis into the unperturbed basis.

Equations (77)-(80) are coupled, first-order linear homogeneous equations, so they are
analytically soluble in principle; however, the full analytical solutions are quite lengthy

algebraically. The stationary solution (denoted by the subscript s) is comparatively simple though,

0005 = {2 ha/Ta + Eo R [(1/T2)? + oI, (81)
Pkks = 12 ho?/T2 + R [(1/T2)* + owo’]}n~! (82)
ps=ho R (1 -&) mon™ , (83)
and gs=hw R (1 -&)/(T2)n!, (84)
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where n =4 ho? (1/T2) + R (1 + &) [oko? + (1/T2)?] . In the unperturbed basis, Eqgs (77)-(80) do
not relax to equilibrium. At the stationary state, the ratio poo,s/pkk,s differs from both &y and &. This
ratio depends on T; but T> characterizes the dephasing time, so it includes the effects of purely

adiabatic collisions, which should not alter the population ratio at steady state.

0.02ff

0.00 -

A -0.024
~0.04{t
~0.06
-0.08

0. 0.1 0.2 0.3 0.4
t (ps)

Figure 5. Difference A between pi«(t) calculated directly in the unperturbed basis and pi«(t) found
by transformation of the density matrix in the perturbed basis, as a function of time. Parameters
for the rotational transition J, M = 0,0 — 1, 0 of HCI in liquid argon at 84 K:'*7 wyo = 3.99086
ps7!, hok = 3.45619 ps!, £ = 1.43748, £ = 2.06636, T1 = 0.142 ps, but with T> = 0.0352 ps.

The deviation of poo,s/pxk,s from thermal equilibrium depends on the parameters hok, ®xo, Eo

(or &), R, and T>. The deviation from equilibrium is larger for strong fields (large how/mko) and for

larger values of T», although large values of &g tend to suppress the deviation. After the coherences
in the perturbed basis have decayed, coherences still remain in the unperturbed basis.

Figure 6 on the next page shows the steady-state population prks of state | k’ ) in the
perturbed basis as a function of hok, the off-diagonal Hamiltonian matrix element divided by h.

Values of pri s obtained in the perturbed basis are plotted directly, while results obtained in the
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unperturbed basis from Eqgs. (81)—(84) have been transformed into the perturbed basis before the
comparison is made.

In generating Fig. 6, other parameters for the model two-level system have been adapted
from information on rotational dephasing and population decay for HCI in liquid argon at T = 105
K.!'¥7 The system is hypothetical, but the state | 0o ) corresponds roughly to the ground rotational
state of HCl, and the state | ko ) corresponds to the first excited rotational state with J =1 and M =
0. Other parameter values'*’ used for this plot are R = 7.93651 ps™!, T2 = 0.0958 ps, ok =

3.99086 ps!, &0 = 1.33685, & = 1.437480, y = 4.98858 ps~.

0.45

0.44
0.43

PKK’
0.42
0.41

0.40

hok (ps™)

Figure 6. Stationary excited-state populations vs. hox. Blue curve: Population pyi s of the
perturbed excited state obtained with the Redfield equation, from Eq. (69) in the long-time limit.

Red curve: Population pyrs found from Egs. (81)—(84) in the unperturbed basis after
transformation into the perturbed basis.

In a two-level system, a perturbation pushes the ground and excited states further apart.
Therefore, the population pxi should drop as hox increases. This pattern is observed for the direct

calculation of pkk in the perturbed basis (shown as the blue curve in Fig. 6), but not for the
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calculation starting from Egs. (81)—(84) in the unperturbed basis, followed by transformation into
the perturbed basis (shown as the red curve). In the unperturbed basis, as in the original Dirac
theory, when the excited state | ko ) contributes to the adiabatic adjustment of the original ground
state | 0o ) to the perturbation, that counts as a transition. For this reason, increasing the strength
of the perturbation hok appears to cause an increase in the population of the excited state, even after
transformation of the results in Egs. (81-84) into the perturbed basis.

Figure 7 on the next page shows the excited-state population pyks as a function of the
dephasing time T>. For the results shown in this figure, we have set hox = 2.0 ps™, wko = 3.99086
psT!, R=3.0ps7!, &£ =1.50838, and &) = 1.33685. In the perturbed basis, pk s is independent of
the dephasing time, but the result for px s depends on Ta, if pri s is obtained by transformation of
the stationary solutions in Egs. (81)-(84) into the perturbed basis.

In the supplementary material, we derive the differential equations in the unperturbed
basis that correspond exactly to the Redfield equations®’ in the perturbed basis. They are

v? Opi/ot = (1/2) R (1 + &) wxo® [1 = 2pr(t)] — (1/2) ER wro v + (1/2) R oo ¥

+ (2/T2) ho*[1 = 2pi(t)] =2 [R (1 + &) — (1/T2)] hox wxo p(t)

— 292 hox q(t) , (85)
oko Op/et =% q(t) — (1/T2) hok [1 = 2pwk(t)] — (1/T2) wko p(t) + 2 hok Opi/ct, (86)
2q/ct = hok [pxk(t) — poo(t)] — @xo p(t) — (1/T2) q(1) , (87)

and Cpoo/Ct = —Cpu/Ct. Interestingly, the differential equation for q(t), the imaginary part of the
off-diagonal density matrix element pxo, is identical to the differential equation produced by simply
adding relaxation terms to the Liouville equation* in the unperturbed basis. The equations for
Cpxk/Ct and Op/ct are not the same as those obtained by adding relaxation terms to the Liouville

equation, however. The stationary solutions of Egs. (85)-(87) are
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Prks = (1/2) —owo (- D)/[2y €+ 1], (88)
ps =hox (1 = &)/[y (E+ )], (89)

and qs=0, as derived in the supplementary material.

0.46

PK'k’
0.44

0.42H

T2 (ps)

Figure 7. Stationary population pxi of the perturbed excited state vs. the dephasing time T> from
0.05 ps to 2.0 ps. Blue: pii from the Redfield equations.’” Red: pii from Egs. (81)-(84) in the
unperturbed basis, followed by transformation to the perturbed basis.

The equilibrium solutions for the density matrix elements in the perturbed basis are px,s
= 1/(1+§&), poos=E&/(1+E), and pros = poks = 0. In the supplementary material,'** we also prove
that results identical to Eqgs. (88) and (89) are derived by transforming the equilibrium solutions of
the Redfield equations®” in the perturbed basis into the unperturbed basis. Thus the stationary
solutions of Egs. (85)-(87) correspond to true thermal equilibrium with the bath. Equations (85)-
(87) with Cpoo/Ct = —Cpri/Ct are the correct differential equations for the density matrix elements

for a two-level system coupled to a bath, when written in the unperturbed basis.
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The comparisons in Figs. 5-7 show that the differences between the two solutions of the
Liouville equation plus relaxation terms are physically significant, because the results have been
expressed in a single basis in each case.

Additional considerations come into play if a physical phenomenon depends on the
population of a state that is excited above the perturbed ground state, with a gap in the energies.
Then the difference between pr and prk becomes significant. We have evaluated poo — pxk and

poo — prk for hypothetical two-level systems modeled with parameters appropriate for the

147 148 149,150

rotational relaxation of hydrogen chloride,'*” fluoroacteylene,'*® cyanoacetylene, carbonyl

sulfide,'*!"153 nitrous oxide,!** and ethylene oxide.!>>

We have selected these species because T
and T have been determined experimentally for them, and differences between the two approaches
are apparent in the results in these cases. The results are listed in Table 3 in the supplementary
material. The percent differences between poo — pxk and poo — prk range from 2.54% to 88.72%
with the parameters we have used.

It is important to note that for some physical systems, no detectable difference is expected
between the results in the perturbed and unperturbed basis sets. For example, in many applications
in the theory of nuclear magnetic resonance, there is no distinction between the two basis sets:
Typically the eigenfunctions of the spin operator in the z direction are chosen as the unperturbed
basis in zero field. The Hamiltonians for the spins perturbed by a static field in the z direction are
diagonal in this basis, and the differences discussed here do not arise.

For vibrational relaxation, it may be very difficult to detect the differences between the
results from Egs. (65)-(67) in the perturbed basis, and those from direct addition of relaxation

terms to the Liouville equation in the unperturbed basis, via Egs. (73)—(76). Detectable differences

would most likely require a strong perturbation that is capable of producing a high population in
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the perturbed excited state | k' ). For nitrogen molecules, for example, an intense, inhomogeneous
applied field would be required. While large values of T1/T> tend to increase the discrepancies
between results obtained in the perturbed and unperturbed basis sets, for N> the value of &p is so

large that the differences are likely to be undetectable in normal circumstances.
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VI. Summary and discussion

We have examined the differences between transition probabilities computed with the

nonadiabatic theory,-¢47-31

which employs coefficients for the instantaneous eigenfunctions of the
full Hamiltonian including the perturbation, versus those found with Dirac’s standard theory,!?
which relies on coefficients for the eigenfunctions of the original, unperturbed Hamiltonian Ho. If
a system remains coherent, the numerical differences simply reflect different choices of the basis
set; but when interactions with a bath produce dephasing and population relaxation, the observed
differences are physically significant.

Sections II and III lay the groundwork for our analysis of the density matrix for a two-level
system in a field that is imposed suddenly and then remains constant. In Sec. IV, we have used
the Liouville equation* for the time-dependent density matrix, incorporating response to all orders
in the perturbation. Then in Sec. V, we introduced the effects of dephasing and population
relaxation. In earlier work, we had proven that the differences between | bi(t) |* and | ck(t) [> could
be detected experimentally by imposing a second perturbation after the coherences induced by
the first perturbation had completely decayed.’! In this work, we have considered a single
external perturbation, but we have allowed for the full time-dependence of the reduced density
matrix for a system coupled to a thermal bath.

We solved the Redfield equation’” in the perturbed basis, for a model two-level system
treated in the secular approximation. When the relaxation terms were added directly to the
Liouville equation* in the unperturbed basis, we found that the density matrix did not evolve to
thermal equilibrium. The stationary solutions for poo and pik in the unperturbed basis depend on
T, the dephasing time; but T> is affected by elastic collisions that cause pure dephasing with no

change in population, so the stationary values of poo and pxk should be independent of T>.. We
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have demonstrated that the results from the analyses in the perturbed and unperturbed basis sets
differ, after transformation to a single, common basis.

We also compared the stationary values of poo — pxk with the equilibrium values of poo —
prk in the perturbed basis. The comparison shows the absolute differences in the predicted level
of “excitation,” for hypothetical model systems with parameters drawn from rotational

147 fluoroacteylene,'*®  cyanoacetylene,'*-'>*  carbonyl

relaxation of hydrogen chloride,
sulfide,'>!*153 nitrous oxide,'>* and ethylene oxide.!>

The differences between the results allowing for relaxation in the perturbed and
unperturbed basis sets are enhanced when the energy difference between the unperturbed ground
and excited states is relatively small, when the perturbation is large, and when T> is small compared
with Ti. The differences are not detectable in standard NMR experiments, because the perturbed
and unperturbed basis sets are identical in that case. The differences are also likely to be quite
small in vibrational relaxation, because the equilibrium ratio of poo to pri is typically very large.

In Sec. V and the supplementary material, we have shown how to account for relaxation
effects accurately in the unperturbed basis. We obtained the appropriate time-evolution equations
by transforming the Redfield equations®’ in the perturbed basis to the corresponding equations in
the unperturbed basis. The time-evolution equation for the imaginary part of the off-diagonal
density matrix element pko(t) is the same as that obtained by adding the relaxation terms to the
Liouville equation in the unperturbed basis, but the equation for the real part of the off-diagonal
density matrix element differs, as do the equations for the time-dependence of poo(t) and pik(t).

In future work, we plan extensions that are beyond the scope of this work. Working within
the nonadiabatic transition framework, we plan to include multiple quantum states of specific

quantum systems, starting with a thermal distribution over states (cf. Refs. 156-161). If a harmonic
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field is imposed after the stationary solution or thermal equilibrium has been reached, differences
in the predicted power absorption should follow from the differences between poos — pxk,s versus
poo — prk at equilibrium. We plan to consider the effects of the gradual imposition of a
constant field, an oscillatory applied field,’>'%193 or a chirped field.!6*1% We will also analyze
spontaneous decay of excited states of atoms and molecules in a static electric field,
following an initial excitation.

Treating the interactions between the system and the bath at a higher level would allow

167 and for

us to account for the effects of a perturbing field on the relaxation matrix elements
the effects of the bath on the off-diagonal matrix elements in the Hamiltonian; but the current
level of treatment is sufficient to show the differences between the nonadiabatic theory and
Dirac’s transition theory and to reveal qualitative features of the differences. The nonadiabatic
theory, which makes a distinction between the excited-state coefficient by(t) and the full Dirac
coefficient ck(t) may also be applicable to exciton transfer.’*#¢ For a clear-cut demonstration of
differences that may arise in the treatment of exciton transfer, accurate values of the transition
matrix elements for large molecules would be needed, however. In studies of the response to
ultrashort laser pulses that initiate electronically nonadiabatic transitions,'®® we anticipate that
the distinction between ax(t) and bi(t) will affect the formation and motion of vibrational wave
packets. The adiabatic terms ax(t) contribute to the probability amplitude for the molecule to

remain on the perturbed electronic ground state, while the bi(t) terms characterize the

formation of wave packets that evolve on the excited-state potential energy surfaces.
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Supplementary Material

In the supplementary material, we provide the transformation matrix elements between the
unperturbed and perturbed basis sets in a constant applied field. We prove that the analytic
solutions of the Liouville equation* for a two-level model system are equivalent in the perturbed
and unperturbed basis sets in the absence of coupling to a bath, as expected for a system that
remains coherent. When decoherence arises due to contact with a bath for a system in a constant
field, we prove that the results from the Redfield theory®” in the perturbed basis differ from the
results obtained by adding relaxation terms to the Liouville equation* in the unperturbed basis. We
show that the density matrix in the unperturbed basis does not evolve to thermal equilibrium, the
excited state population increases with increasing strength of the applied field, and the stationary
populations depend on the dephasing time T>. We transform the Redfield equations in the
perturbed basis into the unperturbed basis, to identify the equivalent equations in that basis. Then
we determine the stationary solutions of the equivalent equations in the unperturbed basis, and
show that the results for the ground and excited-state populations, and for the off-diagonal
elements of the density matrix are identical, when obtained from those stationary solutions of the
newly derived equations in the unperturbed basis or by transformation of the thermal equilibrium
results in the perturbed basis into the unperturbed basis. Figures S.1-S.4 in the supplementary
material illustrate various forms of | b(t) |* and | ck(t) |* that may develop when a constant field is
applied and turned off either rapidly or gradually. Figure S.5 shows the real parts of ax(t), bk(t),
and ci(t) as functions of time within the sudden approximation, when the perturbing field is held
constant for intervals T = 9t/wko, 9.251/ ®ko, 9.57/®k0, 9.757/®K0, and 107/wko. Figure S.6 shows
the corresponding imaginary parts of the probability amplitudes ax(t), bk(t), and ck(t). Table 1

provides tests of the accuracy of the numerical results by comparison with the values of y, the
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maximum excited-state population, the time at which the maximum is first reached, the minimum
excited-state population, and the time at which the minimum is first reached. Table 2 lists the
values of rotational state energies of HCI for J = 0-6, and the values of T and T as calculated by
Velasco et al.'*” for HCI in liquid argon at 105 K. In Fig. S.7 and S.8, we show T; and T as
functions of Ey/kT at T = 105 K, from Ref. 147, along with the Mathematica fits to these plots.
We have used these results to approximate Ti and T> at 84 K, for use in Sec. V. Table 3 lists the
values of poos — pkk,s at steady state in the unperturbed basis, for comparison with poo — pxi at
thermal equilibrium in the perturbed basis, for hypothetical two-level systems with parameters
drawn from experimental results for HC=CF,'*® HC=CCN,#%150 OCS,">! ’N,0,'>* and

C>2H40,'> and parameters from simulations on HCI in liquid argon.'4’
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