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Abstract:  We contrast Dirac’s theory of transition probabilities and the theory of nonadiabatic 

transition probabilities, applied to a perturbed system that is coupled to a bath.  In Dirac’s analysis, 

the presence of an excited state | k0 ñ in the time-dependent wave function constitutes a transition.  

In the nonadiabatic theory, a transition occurs when the wave function develops a term that is not 

adiabatically connected to the initial state.  Landau and Lifshitz separated Dirac’s excited-state 

coefficients into a term that follows the adiabatic theorem of Born and Fock and a nonadiabatic 

term that represents excitation across an energy gap.  If the system remains coherent, the two 

approaches are equivalent.  However, differences between the two approaches arise when coupling 

to a bath causes dephasing, a situation that was not treated by Dirac.  For two-level model systems 

in static electric fields, we add relaxation terms to the Liouville equation for the time derivative of 

the density matrix.  We contrast the results obtained from the two theories.  In the analysis based 

on Dirac’s transition probabilities,  the steady state of the system is not an equilibrium state; also, 

the steady-state population rkk,s increases with increasing strength of the perturbation and its value 

depends on the dephasing time T2.  In the nonadiabatic theory, the system evolves to thermal 

equilibrium with the bath.  The difference is not simply due to the choice of basis, because the 

difference remains when the results are transformed to a common basis.  

 

 
 
 
 
 
 
 
 
 
 
 



 3 

I.  Introduction 

In this work, we derive results for the probability of transition to an excited state for a 

quantum system in an applied electric field, when the system is coupled to a bath.  The standard 

transition probability derived by Dirac1,2 differs from the nonadiabatic transition probability first 

proposed by Landau and Lifshitz.3  Dirac gave the transition probability as | ck(t) |2, in terms of the 

coefficient for the excited state | k0 ñ in the basis of eigenfunctions of the unperturbed Hamiltonian 

H0.  Landau and Lifshitz instead gave the transition probability as | bk(t) |2, in terms of the 

coefficient for the instantaneous eigenstate | k¢ ñ of the full Hamiltonian, including the perturbation.   

If the wave function remains coherent, the differences are not physically significant. In that case, 

the differences simply reflect the choice of the basis set.  

In this work, we test the robustness of the two forms of the transition probability for 

extension to cases where the quantum system loses coherence, a situation that is outside the scope 

of Dirac’s theory1,2 and also outside the scope of the nonadiabatic analysis given by Landau and 

Lifshitz.3  We allow for dephasing and population relaxation due to contact between the system 

and a thermal bath.  We treat two-level model systems in static electric fields by adding relaxation 

terms to the Liouville equation for the density matrix.4  Then we contrast the results obtained by 

taking | ck(t) |2 as the transition probability and those obtained taking | bk(t) |2 as the transition 

probability.  The loss of coherence of the wave function leads to physically meaningful differences 

between the two approaches.  We show that the differences are not due simply to the choice of 

basis, by expressing the results in a common basis set.  To our knowledge, the current work 

provides the first illustration of these differences. 

The theory of quantum transition probabilities due to a time-dependent perturbation 

developed by Dirac has been used almost universally in perturbative treatments since his initial 

work.1,2  Dirac expanded the solution of the time-dependent Schrödinger equation as a series in 

terms of the eigenstates | k0 ñ of the unperturbed Hamiltonian, where H0 | k0 ñ = Ek,0 | k0 ñ.  For a 
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system that started in the ground state as t  ® -¥, the excited-state coefficients have the form ck(t) 

exp(-iEk,0 t/ħ).  The values of ck(t) are determined by coupled first-order, linear differential 

equations.1,2  Dirac stated that the transition probability is given by | ck(t) |2. 

Landau and Lifshitz3 separated ck(t) into two terms by integrating by parts in Dirac’s 

equation for ck(t).  The boundary term ak(t) characterizes the adjustment of the initial state to the 

perturbation by the incorporation of excited-state components, without actual excitation.  The 

results obtained using ak(t) are identical to those from the adiabatic theorem of Born and Fock,5  

since inclusion of ak(t) preserves the adiabatic connection of the perturbed state to the initial state 

of the system, | 00 ñ.  The integral that remains after integration by parts gives the nonadiabatic 

coefficient bk(t).  Working within linear response, Landau and Lifshitz3 showed that the 

nonadiabatic probability amplitudes bk(t) are identical up to a phase to the coefficients for the 

instantaneous eigenstates | k¢(t) ñ of the full, perturbed Hamiltonian H0 + H¢(t) in the time-

dependent wave function | Y(t) ñ.  Mandal and Hunt extended this result to nonlinear response.6  

The quantities | bk(t) |2, including both linear and nonlinear response, give the probability of 

transition to the instantaneous eigenstate | k¢(t) ñ, which is adiabatically connected to an excited 

state | k0 ñ of the unperturbed Hamiltonian.  The nonadiabatic theory represents an analysis in the 

basis of instantaneous eigenfunctions of the full Hamiltonian, rather than the unperturbed 

eigenbasis.   

In Dirac’s approach, if the excited state | k0 ñ appears as a component in the wave function 

for a system that has started in the ground state as t  ® -¥, its appearance is regarded as a 

transition.  A projection of the time-dependent wave function onto | k0 ñ yields ck(t) exp(-iEk,0 t/ħ), 

so the transition probability is obtained as | ck(t) |2.  In the analysis by Landau and Lifshitz, a 

transition is said to have occurred if the wave function contains a component that is not 
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adiabatically connected to the initial state.  Hence the probability of an excitation away from the 

perturbed ground state is given by | bk(t) |2.   

In this work, we show that the difference in the definition of a transition may lead to 

numerical differences in the predictions about excited-state occupancies within a single basis set, 

when the quantum system relaxes due to contact with a bath.  Experimentally detectable 

consequences of the difference between the two theories may also arise when the reaction to an 

experimental probe depends on the existence of an energy gap between a state of the perturbed 

system and the adiabatically perturbed starting state.   

The effects of coupling to a bath are described by adding relaxation terms to the Liouville 

equation for the time-evolution of the density matrix4 in the basis of the instantaneous eigenstates.  

The proper treatment of relaxation effects is more complicated in the basis { | j0 ñ } of eigenstates 

of H0.  If the relaxation terms are added to the Liouville equation in the { | j0 ñ } basis, the system 

does not evolve to equilibrium.  The apparent value rkk,s of the excited-state population at steady 

state depends on the dephasing time T2; and rkk,s increases rather than decreasing, as the 

perturbation strength increases.  These features remain after transformation to a common basis set.  

Physically significant differences arise because the interactions with the bath convert a system 

from a pure state to a mixed state. 

We use the term “nonadiabatic” refer to any quantum process that does not follow the 

adiabatic theorem.5  Hence our analysis allows for rotationally and vibrationally nonadiabatic 

processes, in addition to electronically nonadiabatic processes.7-9 In future applications to 

electronic transitions, we plan to use the nonadiabatic theory to characterize the initial excitation 

to an excited electronic potential surface, caused by an ultrafast laser pulse.  We envision that the 

subsequent time-evolution of the molecule including nonadiabatic electronic transitions due to 

non-Born-Oppenheimer effects would be treated by existing theory, which accounts for first- and 
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second-derivative nonadiabatic coupling.10-13  Reviews of methods of treating nonadiabatic 

electronic transitions associated with nuclear motion have been provided by Tully,14 Yarkony,15 

Yonehara, Hanasaki, and Takatsuka,16 Curchod and Martínez,17 Crespo-Otero and Barbatti,18 

Agostini and Curchod,19 Wang et al.,20 and Smith and Akimov.21  Interestingly, representation-

dependence also arises in surface-hopping calculations,22-25 because of differences in the velocity-

adjustment process in the adiabatic and nonadiabatic bases.  This can be minimized, e.g., by use 

of global flux surface hopping26 or surface hopping by consensus.27  As in the current work, proper 

inclusion of decoherence is also important in surface-hopping calculations.25,28,29  

Similarities exist between the notation used in this work and the notation used in the 

Förster30-37 theory or in the Redfield-type theory of exciton transfer.33,36,38-46 Here we focus on 

different physical phenomena, where interactions with a bath cause population relaxation and 

decoherence, without exciton transfer.    

In earlier work, Mandal and Hunt have carried the nonadiabatic transition theory beyond 

the results given by Landau and Lifshitz.3  We proved that the energy of a perturbed system 

separates cleanly into adiabatic and nonadiabatic terms, without cross-terms.6  We proved that the 

power absorbed by a molecule from a time-dependent electromagnetic field is equal to the time-

derivative of the nonadiabatic term in the energy, to second order.47  We derived the nth moments 

of the energy distribution as sums over excited states of | bk(t) |2 (Ek – E0)n, up to third order in the 

perturbation.48  The equations for the moments in terms of | ck(t) |2 seem to lack a simple physical 

interpretation.48 

Previously we have compared the functional forms of | bk(t) |2 and | ck(t) |2 in perturbations 

consisting of a harmonic wave in a Gaussian envelope,49 a simple Gaussian pulse,50 and a “plateau 

pulse” where the perturbing field remains constant for an interval.50  In Section II of the current 

work, we provide analytical results for the Dirac coefficients, the adiabatic coefficients, and the 
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nonadiabatic coefficients over the full time range of a transient electric field that rises via a half-

Gaussian, remains constant for an interval, and then returns to zero via a falling half-Gaussian.  

Dirac’s form of the transition probability | ck(t) |2 necessarily oscillates while the perturbing field 

is constant, while the nonadiabatic transition probability remains constant.  We have shown earlier 

that it is possible to capture this difference “on the fly,” by imposing a second perturbing field that 

overlaps in time with first pulse, while the field of the first pulse is constant.51 

In Section III, we analyze the results in the limit as the widths of the half-Gaussians go to 

zero, and the field remains constant for an interval t.  Dirac’s transition probability | ck(t) |2 shows 

oscillations, with a period that depends on the product of t and the transition frequency wk0.  

Carried to all orders, these oscillations are sometimes described as Rabi oscillations52-56 in a 

constant field.  Here, we show that the nonadiabatic theory produces identical oscillations, even 

though no transitions occur while the field is acting, within this theory.  Because of the oscillations, 

an increase in the duration t of the constant field may increase the transition probability; but 

somewhat counter-intuitively, increasing the duration of the constant field may decrease the 

transition probability, and even reduce it to zero.  

 The analysis in Secs. II and III provides the groundwork for our treatment of the response 

to a perturbing field that is imposed suddenly and then remains constant.  In these two sections, 

our analysis is limited to linear response.  In Sec. IV, we treat the response to all orders in the 

perturbation, due to the sudden imposition of a constant field.  We solve the Liouville equations 

for the density matrices4 of two-level model systems in the perturbing field.  The systems are 

otherwise isolated, so their wave functions remain coherent. 

That assumption is removed in Sec. V, where we allow for dephasing and population 

relaxation.  We determine the time evolution of the density matrix for a system that starts in the 

ground state of the unperturbed Hamiltonian and then is suddenly subject to a constant applied 
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field. In the nonadiabatic transition theory, the perturbed eigenfunction basis is used, while in the 

extension of Dirac’s theory, the unperturbed eigenfunction basis is used. Adding relaxation terms 

to the Liouville equation in the perturbed basis yields Redfield theory.57-64 This approach is 

consistent with the assumption in Redfield’s work that the full Hamiltonian of the system is 

diagonal in the basis set.57,62  The system evolves to thermodynamic equilibrium in the long-time 

limit, when the density matrix is cast in the perturbed eigenfunction basis.  More generally, 

Redfield commented, “If the system has a time-dependent Hamiltonian which varies slowly 

compared to the motion of the thermal bath, the same equation of motion is obeyed [i.e., the 

Redfield equation], and the system is relaxed by the bath toward a Boltzmann distribution with 

respect to its instantaneous Hamiltonian.”57 

In Sec. V, we also test a model for the time-evolution of the density matrix in the 

unperturbed eigenfunction basis, obtained by simply adding relaxation terms to the Liouville 

equation.4,57-62  We find that the stationary solution of the Liouville equation plus relaxation terms 

is displaced from equilibrium, when expressed in the unperturbed basis.  Transformation of the 

time-dependent results in the perturbed basis back into the unperturbed basis gives different results 

from the direct evolution in the unperturbed basis.  For the two-level model systems, the 

differences depend on a host of parameters: the strength of the applied field, the transition dipole, 

the energy difference between the two unperturbed states, the temperature, and the values of the 

population relaxation time T1 and the dephasing time T2.65,66  The elements of the relaxation matrix 

depend on the spectral density of the bath, see, e.g., Refs. 62, 67, and 68.  We find the correct form 

of the time-evolution equations for the density matrix in the unperturbed basis, by transforming 

the Redfield equations in the perturbed basis back to the unperturbed basis.   

 More sophisticated treatments, going beyond the Redfield equation in the secular 

approximation, are possible. For example, nonsecular contributions to the relaxation matrix can be 
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retained;69-73 the effects of a finite bath size74-76 and feedback from the system to the bath77-79 can 

be included.  Initial correlations between the quantum system and the bath can also be taken into 

account.80-83 A closely related alternative treatment is based on the Lindblad equation,84-89 the most 

general generator of Markovian dynamics in quantum systems.89 That approach also ensures the 

positivity of the density operator.84-86 Quantum systems interacting with thermal baths have been 

treated with multiple forms of the master equation,75,76,90-94 including versions that are coarse-

grained72,95 or partially coarse-grained,96 local,73 nonlocal,97 or global.98 A time-dependent convex 

mix of the solutions of the local and global equations has been suggested.99  Space100 and time101 

correlations of the noise have been included explicitly in master-equation treatments.  Generalized 

master equations have been developed to treat a quantum system in a quantum environment.102,103 

Equations of the Nakajima-Zwanzig type104-106 contain a memory kernel107-111 and an 

inhomogeneous term that accounts for the initial system-bath correlations.  

 Non-Markovian behavior has also been investigated;112-115 for example, in the non-

Markovian limit, time-correlated noise has been shown to lead to noncanonical dependence of the 

population distribution on temperature.101  A stochastic Schrödinger equation corresponds to the 

Redfield equation with “slipped” initial conditions; the general version is non-Markovian, but if 

the bath is delta-correlated, a Markovian process results.116  An exact reduced density matrix for 

the quantum harmonic oscillator, correct to second order in system-bath coupling has been 

obtained by nonequilibrium Green’s function techniques and used to validate a modified Redfield 

solution.117   

 Alternative treatments of quantum systems in heat baths have been based on distribution 

functions in state space118 or phase space.119-122  The evolution of the reduced density matrix has 

also been addressed with tensor propagator123 and projection operator124 methods; the latter also 
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yields a general Redfield approach to tunnelling in a molecule embedded in solvent.125,126  Path 

integral methods77,111,127-129 have been used to obtain influence functionals127 and to analyze the 

time evolution of reduced density matrices.77,111,128,129  In particular, quantum-classical path 

integral methods have made it possible to obtain numerically exact, fully quantum mechanical 

results for dynamics in  systems with a large number of vibrational modes.129  

 The level of analysis that we have adopted is sufficient to show the differences between 

the results obtained within the nonadiabatic transition theory and the extended Dirac theory, after 

transformation to the same basis set.  We anticipate that the differences will persist in a more 

detailed treatment based on a master equation or a generalized master equation.   

In Section VI, we conclude by providing a brief summary and discussion of planned 

extensions of this work.   
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II.  Transition probabilities for a system in a pure state, in a transient applied field 

 For a quantum system with an unperturbed Hamiltonian H0 in a perturbation lH¢(t), the 

time-dependent Schrödinger equation is 

 H(t) | Y(t) ñ = [H0 + lH¢(t)] | Y(t) ñ = (iħ) ¶ | Y(t) ñ/¶t  . (1) 

Dirac1,2 solved Eq. (1) by writing the solution as a series in the unperturbed eigenfunctions | k0 ñ, 

where H0 | k0 ñ = Ek,0 | k0 ñ, 

 | Y(t) ñ = S ck(t) exp(-iEk,0 t/ħ) | k0 ñ  . (2) 
    k 

For a system that is initially in the unperturbed ground state | 00 ñ of H0 as t  ® -¥, ck(t) satisfies 
    t 

 ck(t) = (-il/ħ) ò-¥  á k0 | H¢(t¢) | 00 ñ exp[ i (Ek,0 – E0,0) t¢/ħ ]  dt¢  , (3) 

to first order in the perturbation.1,2  Dirac expressed the probability of a transition to the excited 

state | k0 ñ as | ck(t) |2 = | á k0 | Y(t) ñ |2.  In a modified approach, Landau and Lifshitz suggested 

integrating by parts in Eq. (3), to separate ck(t) into two terms,3 

 ck(t) = á k0 | lH¢(t) | 00 ñ exp(iwk0t)/(E0,0 – Ek,0) 
  t 

  + (ħwk0)-1  ò-¥ á k0 | l ¶H¢(t¢)/¶t¢ | 00 ñ exp[i (Ek,0 – E0,0) t¢/ħ] dt¢ , (4) 

where ħwk0 = (Ek,0 – E0,0).  The boundary term in Eq. (4) gives the first-order adiabatic coefficient 

ak(t), while the remaining integral represents nonadiabatic effects, which are characterized by the 

coefficient  bk(t).  The adiabatic term depends on the instantaneous value of the perturbation at 

time t, while the nonadiabatic term depends explicitly on the time-derivative of the perturbation at 

times t¢ £ t.   Landau and Lifshitz stated that | bk(t) |2 gives the probability of transition to an excited 

state, if the perturbation takes on a small constant value as t ® ¥.  We have interpreted | bk(1)(t) |2 

more generally as the transition probability, even when the perturbation continues to vary in time. 

In this section, we determine the response to a perturbation H¢(t) that is given by  
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  ì  V exp(-at2)  for t < 0 
H¢(t) =  í  V for 0  £  t £ t (5) 

   î  V exp[-b(t – t)2] for t > t , 

setting l = 1 and using the width parameters a for the rising half-Gaussian and b for the falling 

half-Gaussian. We assume that the system occupies the ground state | 00 ñ of the unperturbed 

Hamiltonian H0 as t  ® -¥. The application of H¢(t) introduces into | y(t) ñ components of excited-

states | k0 ñ with coefficients ck(t) exp(-iEk,0 t/ħ), where ck(t) satisfies 
    t 

 ck(t) = (-i/ħ) ò-¥  á k0 | V | 00 ñ exp(-at¢2) exp[ i (Ek,0 – E0,0) t¢/ħ ] dt¢  , (6) 

for t < 0.  From Eq. (6), in units with ħ = 1, 

 ck(t) = -(i/2) (p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[(2at – iwk0)/(2a1/2)]} (7) 

for t < 0.  In Eq. (7) and below, Erf denotes the error function, defined as the integral of a 

normalized Gaussian function from zero to the argument of the function.130  It is an entire function.  

We have followed the convention used in Mathematica,131 which differs from the definition by 

Whittaker and Watson,132 where the normalization factor is omitted. 

 While the field is rising, the nonadiabatic coefficient bk(t) is given by 

 t 

 bk(t) =  -2a wk0-1  ò-¥ á k0 | V | 00 ñ t¢ exp(-at¢2) exp(iwk0t¢) dt¢ . (8) 

Thus for t < 0, with ħ = 1, 

 bk(t) = á k0 | V | 00 ñ wk0-1 exp[-wk02/(4a)] exp[-(2at – iwk0)2/(4a)]  

  – (i/2) (p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[(2at - iwk0)/(2a1/2)]} . (9) 

For t < 0, the adiabatic coefficient can be obtained directly from the expression 

 ak(t) = á k0 | H¢(t) | 00 ñ exp(iwk0t)/w0k 

         = -á k0 | V | 00 ñ exp(-at2) exp(iwk0t)/wk0 , (10) 
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with  ħ = 1 as before.  The adiabatic coefficient ak(t) can also be obtained as the difference between 

ck(t) from Eq. (7) and bk(t) from Eq. (9), 

ak(t) = - á k0 | V | 00 ñ wk0-1 exp[-wk02/(4a)] exp[-(2at – iwk0)2/(4a)] .  (11) 

Equations (10) and (11) give identical results for t < 0.  At t = 0, 

ak(t = 0) = -á k0 | V | 00 ñ/wk0  , (12) 

bk(t = 0) = á k0 | V | 00 ñ wk0-1  

– (i/2) (p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[-iwk0/(2a1/2)] }, (13)

and ck(t = 0) = -(i/2) (p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[–iwk0/(2a1/2)] }.  

(14) The result for bk(t) at t = 0 is consistent with our previous results for the case when a 

perturbation is imposed via a rising half-Gaussian,49 

Re[bk(t = 0)] = á k0 | V | 00 ñ {1/wk0 – a-1/2 DawsonF[(2a1/2)-1 wk0] } , (15) 

and Im[bk(t = 0)] = - á k0 | V | 00 ñ { (1/2)(p/a)1/2 exp[-wk02/(4a) ] } . (16) 

In Eq. (15), DawsonF[x] denotes the Dawson integral F(x), defined as the integral of exp(y2) 

integrated over y from zero to x, then multiplied by exp(-x2).133 

While the perturbation is constant,  bk(t) remains constant at the value bk(t = 0), but ck(t) oscillates 

due to the oscillations in ak(t).  So for times t in the range between 0 and t,  

ak(t) = -á k0 | V | 00 ñ exp(iwk0t)/wk0 , (17) 

  bk(t) = á k0 | V | 00 ñ wk0-1  

– (i/2) (p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[-iwk0/(2a1/2)] }, (18) 

and ck(t) = á k0 | V | 00 ñ [1 – exp(iwk0t)]/wk0 

– (i/2)(p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[-iwk0/(2a1/2)] }  . (19)
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Next we derive the results for the excited-state coefficients when the perturbation is turned off via 

a falling half Gaussian, beginning at time t.  We calculate the change Dck(t) in the Dirac coefficient 

ck(t) relative to its value at t = t from the relation,  
t 

Dck(t) = -i òt  á k0 | V | 00 ñ exp[-b(t¢ – t)2] exp(iwk0t¢)  dt¢ (20) 

for t > t.  Then 

Dck(t) = (1/2) á k0 | V | 00 ñ exp[itwk0 – wk02/(4b)] (p/b)1/2 

( Erfi[wk0/(2b1/2)] + i Erf{[-2b (t – t) + iwk0]/(2b1/2)}) . (21) 

From Eqs. (19) and (21), while the magnitude of the applied field is decreasing, ck(t) is given by 

ck(t) = á k0 | V | 00 ñ [1 – exp(iwk0t)]/wk0 

– (i/2)(p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[-iwk0/(2a1/2)] }

+ (1/2) á k0 | V | 00 ñ exp[itwk0 – wk02/(4b)] (p/b)1/2

( Erfi[wk0/(2b1/2)] + i Erf{[-2b (t – t) + iwk0]/(2b1/2)}) . (22) 

In Eq. (22), Erfi[z] denotes the imaginary error function, which is related to the error 

function Erf[z] by Erfi[z] = -i Erf[iz].134 We have used the version of Erfi[z] implemented 

in Mathematica;131 see also Ref. 134. 

For t > t, the change Dbk(t) in the nonadiabatic coefficient bk(t) relative to its value at time 

t satisfies   
  t 

Dbk(t) =  -2b/wk0  òt á k0 | V | 00 ñ (t¢ - t) exp[-b(t¢ – t)2] exp(iwk0t¢)  dt¢ . (23) 

Evaluation of the integral in Eq. (23) gives 

Dbk(t) = (1/2) á k0 | V | 00 ñ { 2 exp[-b (t – t)2 + iwk0t]/wk0 – 2 exp(iwk0t)/wk0 

- i (p/b)1/2 exp[iwk0t - wk02/(4b)] Erf{[2b(t - t) - iwk0]/(2b1/2)}

+ (p/b)1/2 exp[iwk0t - wk02/(4b)] Erfi[wk0/(2b1/2)] } . (24)
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From Eqs. (18) and (24), we obtain the value of bk(t) while the applied field is declining as 

bk(t) = á k0 | V | 00 ñ wk0-1  – (i/2) (p/a)1/2 á k0 | V | 00 ñ exp[-wk02/(4a)] {1 + Erf[-iwk0/(2a1/2)] } 

+ (1/2) á k0 | V | 00 ñ { 2 exp[-b (t – t)2 + iwk0t]/wk0 – 2 exp(iwk0t)/wk0

- i (p/b)1/2 exp[iwk0t - wk02/(4b)] Erf{[2b(t - t) - iwk0]/(2b1/2)}

+ (p/b)1/2 exp[iwk0t - wk02/(4b)] Erfi[wk0/(2b1/2)] } . (25) 

Taking the limit as t ® ¥, we find 

limt®¥ bk(t) = á k0 | V | 00 ñ { [1 - exp(iwk0t)]/wk0

– (i/2) (p/a)1/2 exp[-wk02/(4a)] {1 + Erf[-iwk0/(2a1/2)] }

- (i/2) (p/b)1/2 exp[iwk0t - wk02/(4b)]

+ (1/2) (p/b)1/2 exp[iwk0t - wk02/(4b)] Erfi[wk0/(2b1/2)] } , (26) 

since limt®¥ exp[-b (t – t)2 + iwk0t]/wk0 = 0 and limt®¥ Erf{[2b(t - t) - iwk0]/(2b1/2)} = 1.  From 

Eq. (22) and limt®¥ Erf{[-2b(t - t) - iwk0]/(2b1/2)} = -1, similarly we find 

limt®¥ ck(t) = á k0 | V | 00 ñ { [1 – exp(iwk0t)]/wk0 

– (i/2) (p/a)1/2 exp[-wk02/(4a)] {1 + Erf[-iwk0/(2a1/2)] }

– (i/2) (p/b)1/2 exp[itwk0 – wk02/(4b)]

+ (1/2) (p/b)1/2 exp[itwk0 – wk02/(4b)] Erfi[wk0/(2b1/2)] }  . (27) 

The results for bk(t) and ck(t) in the limit as t ® ¥ are identical as expected, since limt®¥ ak(t) = 0. 

It is interesting to examine the long-time limiting results in the case where the perturbation 

is turned on and off very rapidly.  In the limit as a ® ¥, we find 

lima ® ¥ limt®¥ bk(t) = lima ® ¥ limt®¥ ck(t) 

= á k0 | V | 00 ñ [1 - exp(iwk0t)]/wk0 

+ (i/2) (p/b)1/2 á k0 | V | 00 ñ exp[iwk0t - wk02/(4b)]

+ (1/2) á k0 | V | 00 ñ (p/b)1/2 exp[iwk0t - wk02/(4b)] Erfi[wk0/(2b1/2)] , (28) 
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and then taking the limit as b ® ¥ as well, we obtain 

lim b ® ¥ lima ® ¥ limt®¥ bk(t) = á k0 | V | 00 ñ [1 - exp(iwk0t)]/wk0 . (29) 

Equation (29) is identical to the result in the sudden approximation.135-142  

Different functional forms of | bk(t) |2 and | ck(t) |2 are observed, depending on the values of 

wk0, t, a and b.  Figures S.1-S.4 in the supplementary material143 illustrate a few of these forms. 

In this case, the difference simply reflects the difference in the choice of the basis set. 
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III.  Results in the sudden approximation  

 An oscillatory pattern in the probability of transition to an excited state | k0 ñ of an 

unperturbed Hamiltonian is found for a system that is perturbed by a constant field that lasts for 

time t.  Figure 1 shows the scaled transition probability Pk, which is obtained by dividing | ck(t) |2 

by the norm-square of the transition matrix element | á k0 | H¢ | 00 ñ |2, for all times t after the 

perturbation has ended (in the absence of dephasing and population relaxation).  For this plot, we 

have set ħ = 1.  The transition probability depends on the product wk0t.  The transition frequency 

wk0 and the interval t during which the field is applied are in arbitrary, but interrelated units; so 

for example, if t is given in picoseconds, then wk0 has units of 1012 s-1. 

 

 

 

 

 

 

 

 

 

Figure 1.  Scaled quantum transition probability Pk º | ck(t) |2 | á k0 | H¢ | 00 ñ |-2 after a perturbing 
field has been turned off, as a function of the transition frequency wk0 and the duration of the 
constant field t.  Results from the sudden approximation. 

 The oscillations in the final occupancy of the excited state shown in Fig. 1 resemble Rabi 

oscillations,52-56 although the calculations used to prepare Fig. 1 were limited to linear response.  

Our purpose in this section is to show that identical oscillations in Pk are predicted by | bk(t) |2, even 

t 

wk0 

Pk 
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though the value of | bk(t) |2 remains constant while the perturbing field is acting.  Additionally, we 

explain why oscillations emerge in the nonadiabatic transition theory. 

 We use the sudden approximation135-142 for this analysis.  Equivalent results are obtained 

from the transition probabilities in Sec. II as the widths of a half-Gaussian rise of an applied field 

and of a half-Gaussian decay of the field both go to zero.  The analytical results are simple in this 

limiting case.  Despite its limitations, the sudden approximation is quite useful in elucidating the 

origin of the oscillations within the nonadiabatic transition theory. 

 We consider a perturbation that is turned on via a Heaviside theta function at t0 and later is 

turned off equally abruptly, after an interval t during which the field remains constant.  Then 

 á k0 | H¢(t¢) | 00 ñ = á k0 | H¢ | 00 ñ {q(t¢ – t0) – q[t¢ – (t0 + t)]} (30) 

and á k0 | ¶H¢(t¢)/¶t¢ | 00 ñ = á k0 | H¢ | 00 ñ {d(t¢ - t0) - d[t¢ - (t0 + t)]}  . (31) 

For convenience, we have set l = 1.  The second term in Eq. (4) gives bk(t), with the matrix element 

á k0 | ¶H¢(t¢)/¶t¢ | 00 ñ from Eq. (31).  We use Eq. (3) for ck(t) with á k0 | H¢(t¢) | 00 ñ from Eq. (30).  

When t < t0, all three excited-state coefficients ak(t),  bk(t), and ck(t) vanish.  When t0 < t < t0 + t,  

ak(t) = -á k0 | H¢ | 00 ñ exp(iwk0t)/(ħwk0)  , (32) 

 bk(t) = á k0 | H¢ | 00 ñ exp(iwk0t0)/(ħwk0)  ,  (33)   

and ck(t) = á k0 | H¢ | 00 ñ [exp(iwk0t0) – exp(iwk0t)]/(ħwk0)  . (34) 

While the applied field is constant, the nonadiabatic transition probability is constant also, and 

 | bk(t) |2 = | á k0 | H¢ | 00 ñ |2/(ħwk0)2  . (35) 

The Dirac form of the transition probability oscillates, 

 | ck(t) |2 = | á k0 | H¢ | 00 ñ |2 {2 – 2 cos[wk0(t – t0)]}/(ħwk0)2  . (36) 

If the wave function remains coherent, then after the field has been turned off,  

bk(t) = ck(t) = á k0 | H¢ | 00 ñ exp(iwk0t0) [1 – exp(iwk0t)]/(ħwk0)  , (37) 
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and | bk(t) |2 = | ck(t) |2 = | á k0 | H¢ | 00 ñ |2 [2 – 2 cos(wk0t)]/(ħwk0)2  . (38) 

So the final transition probabilities are identical, as expected since ak(t) = 0 for t > t0 + t. 

 The final transition probability drops to zero if wk0t = 2np for any integer n, while if wk0t 

= (2n + 1)p, the final transition probability is maximized at 

| bk(t) |2 = | ck(t) |2 = 4 | á k0 | H¢ | 00 ñ |2/(ħwk0)2  . (39) 

The maximum is four times the value of | bk(t) |2 while the applied field is constant.   Figure 2 

shows | bk(t) |2 and | ck(t) |2 for intervals t of lengths 9p/wk0, 9.2p/wk0, 9.4p/wk0, 9.6p/wk0, 9.8p/wk0, 

and 10p/wk0, with wk0 = 12p/5 in all cases.  For convenience, we have set t0 = 0. 

 The coefficient ck(t) is continuous as a function of time throughout, while ak(t) and bk(t) 

are discontinuous at t0 and t0 + t.  This is a consequence of taking the limits as the widths of the 

half-Gaussians for the rise and decay of the field both go to zero; equivalently, it is a consequence 

of the sudden approximation.135-142 As shown in Sec. II, continuous functions ak(t) and bk(t) are 

obtained for any non-zero widths of the half-Gaussians. 

Figures S.5 and S.6 in the supplementary material143 show the real and imaginary parts of 

ak(t), bk(t), and ck(t) scaled by á k0 | H¢ | 00 ñ, for t = 9p/wk0, 9.25p/wk0, 9.5p/wk0, 9.75p/wk0, and 

10p/wk0, with t0 = 0 to simplify the separation of the real and imaginary parts of the coefficients.  

Other choices of t0 introduce overall phase factors into ak(t), bk(t), and ck(t) without affecting the 

transition probabilities.  Independent of the duration of the plateau, the adiabatic coefficient ak(t) 

jumps to the value ak(t = 0+) = -á k0 | H¢ | 00 ñ/(ħwk0) immediately after the field has been turned 

on.  The imaginary part of ak(t) is zero at t = 0+.  Both the real and imaginary parts of ak(t) oscillate 

while the field is acting.  When the field is turned off, ak(t) immediately drops to zero. 

The coefficient bk(t) jumps to bk(t = 0+) = á k0 | H¢ | 00 ñ/(ħwk0) immediately after the field 

has been turned on and remains constant while the constant field is acting.  This is physically 
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     Scaled nonadiabatic transition probability | bk(t) |2   and Dirac’s form | ck(t) |2 
 

 
 
 

 
 
 

 
 
 
Figure 2.  Nonadiabatic transition probability | bk(t) |2 and Dirac’s form of the transition probability 
| ck(t) |2 as functions of time, for various durations t of the perturbation: t = 9p/wk0, 9.2p/wk0, 
9.4p/wk0, 9.6p/wk0, 9.8p/wk0, and 10p/wk0, with wk0 = 12p/5.  Both transition probabilities are 
scaled as in Fig. 1. 
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reasonable, because bk(t) is the coefficient of the instantaneous eigenstate | k¢ ñ in the wave 

function, up to a phase. When the perturbation is first imposed and ck(t) = 0, necessarily bk(t) ¹ 0 

already, because the unperturbed and perturbed basis sets differ.  Due to the choice t0 = 0, bk(t) has 

no imaginary part while the field acts.  When the field is turned off, bk(t) jumps to its final value, 

á k0 | H¢ | 00 ñ [1 – exp(iwk0t)]/(ħwk0). 

The pattern of the transition probabilities | ck(t) |2 after the field has been turned off—

specifically, the oscillations in the transition probabilities—can be explained by considering the 

relationship between ak(t) and bk(t) in the limit as t approaches t from below.  If t = (2n + 1)p/wk0, 

the imaginary parts of ak(t), bk(t), and ck(t) all vanish as t ® t-. The real part of ak(t) satisfies 

lim t ®t- ak(t) = á k0 | H¢ | 00 ñ/(ħwk0)  . (40)   

Since lim t ®t- bk(t) is identical to the limit for ak(t) in Eq. (40), the values of ak(t) and bk(t) 

reinforce each other, so that  

lim t ®t ck(t) = 2á k0 | H¢ | 00 ñ/(ħwk0) , (41) 

and the transition probability is maximized.  In contrast, if t = 2np/wk0, again the imaginary parts 

of ak(t), bk(t), and ck(t) vanish in the limit as t ® t-, but in this case, 

lim t ®t- ak(t) = -á k0 | H¢ | 00 ñ/(ħwk0) . (42)   

Consequently we find lim t ®t ck(t) = 0, leading to a minimum of the transition probability when 

the pulse duration satisfies t = 2np/wk0.   

 In intermediate cases with t = (2n + 1/2)p/wk0 or t = (2n + 3/2)p/wk0, the nonadiabatic 

transition probability changes by the same increment when the field is turned on and when it is 

turned off.  Then for t > t,  

| bk(t) |2 = | ck(t) |2 = 2 | á k0 | H¢ | 00 ñ |2/(ħwk0)2  . (43) 
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For t > t, ak(t) = 0, while bk(t) and ck(t) have both real and imaginary components that are nonzero.  

For t > t, from Eq. (37) with t0 = 0, 

bk(t) =  á k0 | H¢ | 00 ñ [1 – cos(wk0t) – i sin(wk0t)]/(ħwk0)  .  (44)  

If wk0t = Arccos(1/2), cos(wk0t) = 1/2 and sin(wk0t) = ± (3/4)1/2.  For either sign of sin(wk0t), 

 | bk(t) |2 =  | á k0 | H¢ | 00 ñ |2 [1/2 + i (3/4)1/2][1/2 – i (3/4)1/2]/(ħwk0)2  

  = | á k0 | H¢ | 00 ñ |2/(ħwk0)2 , (45) 

for t > t, as well as for 0 < t < t.  That is, if wk0t = Arccos(1/2), the transition probability | bk(t) |2 

is identical while the field is acting and after the field has been turned off. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 



 23 

IV.  Time evolution of the density matrix for a model two-level system in a constant field  

 In this section, we start by examining the time evolution of the density matrix for a model 

two-level system in a constant field, as characterized by the Liouville equation4 in the basis of the 

unperturbed eigenstates by extension of Dirac’s theory and separately in the basis of the perturbed 

eigenstates, as in the nonadiabatic transition theory.  The analysis applies to a system that starts in 

the unperturbed ground state | 00 ñ at t = 0.  The system is isolated aside from the effects of the 

applied field, which is held constant at times t > 0.  Thus the system remains coherent in this case.  

The coefficient c0(t) for the ground eigenstate falls off gradually from its initial value c0(0) = 1, 

while ck(t) rises gradually from its initial value ck(0) = 0.  We take the limiting case of a  

perturbation that is turned on via a rising half-Gaussian, as the width of the half-Gaussian goes to 

zero (consistent with the sudden approximation135-142).  Since the eigenstate | 00 ñ is a superposition 

of the eigenstates | 0¢ ñ and | k¢ ñ of the perturbed Hamiltonian, the coefficient bk¢(t) is already non-

zero at t = 0, and | b0¢(0) | < 1.   

 The time-evolution of the density matrix for the two-level model system in the applied field 

is characterized by the Liouville equation,4 

 ¶r(t)/¶t = -(i/ħ) [H(t), r(t)]  . (46) 

In the unperturbed state basis {| 00 ñ , | k0 ñ}, where H0 | 00 ñ = E0 | 00 ñ and H0 | k0 ñ = Ek | k0 ñ, the 

initial conditions for the density matrix elements are r00(0) = 1, and rkk(0) = r0k(0) = rk0(0) = 0, 

since r(0) = | 00 ñ á 00 |.  The full Hamiltonian is the sum of the original unperturbed Hamiltonian 

H0 and the perturbation H¢.  We assume that the diagonal elements of the perturbation vanish and 

that the off-diagonal elements of the Hamiltonian are real and equal.  The off-diagonal elements 

are time independent for t > 0.  We define h0k as H0k/ħ and use the relation (Ek – E0)/ħ = wk0.  Then 

the time-evolution equations for the density matrix elements in the unperturbed basis are 
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¶r00(t)/¶t = - i h0k rk0(t) + i h0k r0k(t)  , (47)

¶rkk(t)/¶t = - i h0k r0k(t) + i h0k rk0(t)  , (48)

¶rk0(t)/¶t = - i wk0 rk0(t) - i h0k [r00(t) - rkk(t)]  , (49) 

and ¶r0k(t)/¶t = i wk0 r0k(t) - i h0k [rkk(t) - r00(t)]  . (50) 

At this point, it is useful to separate the real and imaginary terms in the differential equations, since 

the diagonal elements of the density matrix are purely real, and the off-diagonal elements are 

complex conjugates.  Setting rk0(t) = p(t) + i q(t), we find    

¶r00(t)/¶t = 2 h0k q(t)  , (51)

¶rkk(t)/¶t = - 2 h0k q(t)  , (52)

¶p(t)/¶t = wk0 q(t)  , (53) 

and ¶q(t)/¶t = - wk0 p(t) + h0k [rkk(t) – r00(t)]  . (54) 

The solutions of Eqs. (51)-(54) are 

r00(t) = {g2 – 2 h0k2 [1 – cos(gt)]}/g2  , (55) 

rkk(t) = 2 h0k2 [1 – cos(gt)]/g2 , (56) 

p(t) = h0k wk0 [cos(gt) – 1]/g2 , (57) 

and q(t) = -h0k sin(gt)/g  , (58) 

where the angular frequency g is given by g = (4h0k2 + wk02)1/2.  The populations of the states | 00 ñ 

and | k0 ñ oscillate with a period of 2p/g.  The maximum value of rkk(t) is 4h0k2/g2.  To test the 

accuracy of our numerical work, we have compared the analytical values and numerical values of 

g, the maximum value of rkk(t), the first time at which the maximum is reached, the minimum of 

rkk(t), and the first time at which the minimum is reached (after t = 0), for five different values of 

h0k.  The results are listed in Table 1 in the supplementary material.  The level of agreement 

between the analytical and numerical values is very high in all cases. 
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Next we consider the time evolution of the density matrix for an isolated two-state system 

in the perturbed eigenfunction basis {| 0¢ ñ, | k¢ ñ}.  These states are the eigenstates of the full 

Hamiltonian, including the perturbation.  In this basis, 

r(t = 0) = | 0¢ ñ á 0¢ | 00 ñ á 00 | 0¢ ñ á 0¢ | + | k¢ ñ á k¢ | 00 ñ á 00 | 0¢ ñ á 0¢ | 

+ | 0¢ ñ á 0¢ | 00 ñ á 00 | k¢ ñ á k¢ | + | k¢ ñ á k¢ | 00 ñ á 00 | k¢ ñ á k¢ |  . (59) 

The transformation matrices between the basis sets {| 00 ñ, | k0 ñ} and  {| 0¢ ñ, | k¢ ñ} are independent 

of time in the current case.  Explicit equations for the inner products in Eq. (59) are given in the 

supplementary material. All four elements of r(t) in the perturbed eigenfunction basis are non-

zero at t = 0.  The off-diagonal elements satisfy r0¢k¢(t) = rk¢0¢*(t) at t = 0 and at all later times.  The 

trace of the density matrix equals one, so r0¢0¢(t)  = 1 - rk¢k¢(t).  For an isolated system, the density 

matrix is idempotent in either basis, because the system is always in a pure state.   

The density matrix satisfies the Liouville equation, Eq. (46).  Since the full Hamiltonian is 

diagonal in the basis {| 0¢ ñ, | k¢ ñ} with Ek¢ and E0¢,  the diagonal matrix elements of the commutator 

of H with r vanish.  The off-diagonal elements are given by [H(t), r(t)]k¢0¢ = (Ek¢ – E0¢) rk¢0¢(t) and 

the relation r0¢k¢(t) = rk¢0¢*(t).  Hence the time derivatives of the density matrix elements in the 

basis {| 0¢ ñ, | k¢ ñ} satisfy 

¶rk¢k¢(t)/¶t = ¶r0¢0¢(t)/¶t = 0  , (60) 

¶rk¢0¢(t)/¶t = -(i/ħ) (Ek¢ – E0¢) rk¢0¢(t)  , (61) 

and ¶r0¢k¢(t)/¶t = ¶rk¢0¢*(t)/¶t  . (62) 

In this basis, the ground and excited-state populations remain constant at their initial values.  The 

off-diagonal elements oscillate with the angular frequency g, since (Ek¢ – E0¢)/ħ = g, as shown in 

the supplementary material, and therefore 

rk¢0¢(t) = rk¢0¢(0) exp(-igt) . (63) 
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The components of the density matrices in the two basis sets {| 00 ñ, | k0 ñ} and  {| 0¢ ñ, | k¢ ñ} are 

plotted in Figures S.7 and S.8 in the supplementary material, for a case with wk0 = 3.99086 ps-1 

and h0k = 1.496573 ps-1. With these values of the parameters, r00(0) = 1, rkk(0) = 0, r0¢0¢(0) = 0.9, 

and r k¢k¢(0) = 0.1.  While the plots in Figs. S.7 and S.8 look quite different, upon transformation 

of the results from the perturbed basis to the unperturbed basis, identical values are obtained for 

each of the matrix elements, as is expected for a pure state.  In the supplementary material, we 

prove analytically that the values are identical, when expressed in the same basis.  The 

oscillations in Re[rk¢0¢(t)] and Im[rk¢0¢(t)] give rise to the oscillations in r00(t) and rkk(t).  



27 

V. Effects of dephasing and population relaxation

In this section, we analyze the time evolution of the two-level system coupled to a bath.  

To include the effects of dephasing and population relaxation due to interactions with the bath, we 

use Redfield theory in the secular approximation as developed in Ref. 57. The full nonlinear 

response is included in the calculations in this section. 

We assume that the system starts in the unperturbed ground state | 00 ñ at t = 0; then it is 

perturbed by a constant field that acts at times t > 0.  It is further perturbed by interactions with a 

thermal bath at times t > 0.  Redfield derived equations for the time-development of the system’s 

density matrix due to the effects of the bath, using two different approaches,57 the first involving 

random semiclassical perturbations of the system, and the second involving a full Hamiltonian for 

the system and bath, including an interaction term.   

In the first approach, the Hamiltonian is expressed as the sum of the Hamiltonian of the 

unperturbed system and a Hermitian stochastic term G that characterizes interactions with the bath.  

Redfield analyzed the time evolution of the system’s density matrix, with the assumption that G 

vanishes when averaged over the bath at any time.57  The correlation time of the fluctuations of 

the bath is assumed to be short, relative to the time scale over which the density matrix elements 

of the system change appreciably. Redfield derived the density matrix as a function of time, to 

second order in the perturbation due to the bath, within the interaction representation.57  Because 

the stochastic term in the Hamiltonian averages to zero and the correlation time is assumed to be 

short, the first-order terms are negligible.  The second-order terms incorporate the bath effects, so 

that the time derivative of raa¢ is given by the Liouville equation plus relaxation terms of the type 

Raa¢,bb¢ rbb¢, summed over b and b¢.57 The relaxation matrix R depends on the spectral density of 

the fluctuations in the bath.57 Consideration of the magnitudes of the elements Raa¢,bb¢ in the 
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relaxation matrix shows that significant contributions to the time derivative of raa¢ are obtained 

only from the secular terms, i.e., terms with a - a¢ - b + b¢ = 0.57  Physically, this implies that the 

perturbations due to the bath connect states of the system that differ in energy by the approximate 

magnitude of the perturbation.  Transformation back from the interaction representation to find the 

original density matrix of the system gives the Redfield equation in the form used in this work, 

Eq. (64) below. 

Redfield also analyzed the effects of interactions in a second approach, allowing in 

principle for a full quantum mechanical description of the bath.57 In this approach, the total 

Hamiltonian is the sum of the system Hamiltonian, the bath Hamiltonian, and a coupling term G, 

which is a sum of products of an operator for the system and an operator for the bath.  The analysis 

in this case begins with the full density matrix for the system and the bath; the reduced density 

matrix for the system is obtained by taking the trace over the bath states.57  The bath is assumed to 

be in a state of thermal equilibrium initially; at t = 0, the full density matrix is diagonal in the bath 

states, and the system is not entangled with the bath.  When the system evolves according to the 

time-dependent Schrödinger equation, the full density matrix becomes mixed—it is no longer a 

simple product of the density matrix for the system and the density matrix for the bath.57  However, 

if the fluctuations of the bath occur on a significantly shorter time scale than the variation of the 

reduced density matrix for the system, the bath effectively re-randomizes as the system evolves, 

remaining constantly in a state of thermal equilibrium.57  This introduces an apparent irreversibility 

into this approach, whereas in the first approach, irreversibility resulted from the stochastic nature 

of G.57    

We note that in the first approach, Redfield allowed for the possibility that the average of 

the stochastic perturbation is non-zero.  In that case, he suggested redefining the system’s 
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Hamiltonian to include the average of G over the bath.57  Similarly, in the second approach, the 

stationary perturbations due to G modify the system’s Hamiltonian into an effective Hamiltonian 

to second order.57  In this work, we have taken the average of G to be zero within the first approach.  

In the second approach, this corresponds to assuming that the dynamical perturbations have a much 

larger effect than the stationary perturbations due to the bath.  In any case, the energy difference 

between the unperturbed ground state | 0 ñ and the excited state | k ñ  and the energy difference 

between the perturbed ground state | 0¢ ñ and the excited state | k¢ ñ shift identically through second 

order, when any stationary perturbation due to the bath is included in the system’s Hamiltonian. 

In both approaches, the relaxation matrix R is determined by the spectral density of the 

fluctuations in the bath.57  In the first approach, however, the relaxation of the system to thermal 

equilibrium must be treated in an ad hoc manner, either by applying the time-evolution equation 

to the difference between the system’s density matrix and the density matrix at thermal 

equilibrium,57 or by modifying the elements of the relaxation matrix to satisfy detailed balance.  In 

the second approach, the spectral densities take a quantum mechanical form that accounts 

explicitly for the thermal equilibrium of the bath, and thus automatically allows the system to 

evolve to thermal equilibrium at long times.57  Calculations of the spectral densities from first 

principles require an accurate description of the bath dynamics, and that is beyond the scope of 

the current work (cf. Refs. 129 and 143).  Instead, we draw on experimental results to 

obtain relaxation parameters that are physically realistic; as shown below, this yields 

differences between the analyses in the perturbed and unperturbed basis sets that range from 

~2.5% to more than 88%.  For the two-level model systems, connections between the 

population relaxation time T1 and the dephasing time T2 and the matrix elements in the 

Redfield theory57 are made by the relationships Rk¢k¢,0¢0¢ = -1/T1 and Rk¢0¢,k¢0¢ = 1/T2.  
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We first examine the results for the density matrix using the Redfield equation in the 

perturbed basis, where the system’s Hamiltonian is diagonal, as in Redfield’s original analysis.57  

Use of the perturbed basis is consistent with the nonadiabatic transition theory.  Separately, we 

examine the effects of adding relaxation terms directly to the Liouville equation4 in the 

unperturbed basis, and we show that non-physical results are obtained in this case.  The coupling 

to the bath destroys the coherence of the wave function.  Due to the loss of coherence, predictions 

based on using | bk(t) |2 or | ck(t) |2 for the transition probability differ, even after the results have 

been transformed to a single basis.  Comparison of the results in Sections IV and V shows that the 

differences between results in the two basis sets are fundamentally attributable to the relaxation 

terms.   

In Redfield’s theory, the time derivative of the reduced density matrix r(t) for the system 

is given by the equation,57 

¶r(t)/¶t = -(i/ħ) [H(t), r(t)] - R : r(t)  , (64) 

where R is the relaxation matrix that characterizes the coupling to the bath, and [R : r(t)]jk denotes 

the sum of Rjk,mn r(t)mn over m and n.  We assume that coupling to the bath environment is weak, 

and that R is static or very slowly changing over time.57  Modifications for strong coupling 

are possible (see, e.g., Refs. 144 and 145), but they are not considered here.   

In the secular approximation, the non-zero elements of the relaxation matrix are Rk¢k¢,k¢k¢, 

R0¢0¢,0¢0¢, Rk¢k¢,0¢0¢, R0¢0¢,k¢k¢, Rk¢0¢,k¢0¢, and R0¢k¢,0¢k¢.57  These matrix elements are system-, bath- and 

temperature-dependent. Allowing for coupling to the bath, the equations of motion for the density 

matrix elements in the perturbed basis become 

¶rk¢k¢(t)/¶t = - Rk¢k¢,k¢k¢ rk¢k¢(t) - Rk¢k¢,0¢0¢ r0¢0¢(t)   , (65) 
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¶r0¢0¢(t)/¶t = - R0¢0¢,k¢k¢ rk¢k¢(t)  - R0¢0¢,0¢0¢ r0¢0¢(t)   , (66) 

and ¶rk¢0¢(t)/¶t = -(i/ħ) (Ek¢ – E0¢) rk¢0¢(t) – Rk¢0¢,k¢0¢ rk¢0¢(t)  , (67) 

with r0¢k¢(t) given by the complex conjugate of rk¢0¢(t). 

The relationships Rk¢k¢,k¢k¢ = - R0¢0¢,k¢k¢ and Rk¢k¢,0¢0¢ = - R0¢0¢,0¢0¢ ensure that the sum of rk¢k¢(t) 

and r0¢0¢(t) remains constant in time, at one.  After thermal equilibrium is reached with the bath, 

rk¢k¢(t) and r0¢0¢(t) individually remain constant in time; they are related by 

(r0¢0¢/rk¢k¢)eq = exp[(Ek¢ - E0¢)/kT] = x  , (68) 

with x > 1, since | 0¢ ñ is the perturbed ground state.  The requirement for rk¢k¢ to remain constant 

in time when the two-level system is in thermal equilibrium with the bath implies that Rk¢k¢,k¢k¢ = 

- x Rk¢k¢,0¢0¢, and therefore R0¢0¢,k¢k¢ = x Rk¢k¢,0¢0¢.  Finally, R0¢0¢,0¢0¢ = - Rk¢k¢,0¢0¢ = x-1 Rk¢k¢,k¢k¢.  Setting R

= -Rk¢k¢,0¢0¢ (i.e., R > 0), we obtain the solutions of the coupled equations for rk¢k¢(t) and r0¢0¢(t), 

rk¢k¢(t) = {1 - [1 - rkk(0) (1 + x)] exp[-(1 + x) R t]}/(1 + x) (69)  

and r0¢0¢(t) = {x + [1 - rkk(0) (1 + x)] exp[-(1 + x) R t]}/(1 + x) . (70)  

Because we are considering the reduced density matrix for the system in contact with the bath, we 

take R0¢0¢,k¢k¢ = x Rk¢k¢,0¢0¢, rather than Rk¢k¢,0¢0¢ = R0¢0¢,k¢k¢, which would follow from Fermi’s Golden 

Rule for an isolated system.2,146  In the limit as t ® ¥, the ratio r0¢0¢(t)/rk¢k¢(t) ® x, as expected 

for thermal equilibrium.  Since 0 < exp[-(1 + x) R t] < 1 for t >0, we can set x = exp[-(1 + x) R 

t], with x < 1.  Then at an arbitrary time t > 0, rk¢k¢(t) – rk¢k¢(0) is given by 

rk¢k¢(t) – rk¢k¢(0) = (1 – x) [1 – rk¢k¢(0) – rk¢k¢ (0) x]/(1 + x) . (71) 

If the initial population of the excited state exceeds the population at thermal equilibrium, then we 

have x > [1 – rk¢k¢(0)]/rk¢k¢(0), so [1 – rk¢k¢(0) – rk¢k¢ (0) x] < 0.  Then since x < 1 and x > 1, rk¢k¢(t) 

at later times is less than its initial value.  If the initial population of the excited state is less than 

the value at thermal equilibrium, [1 – rk¢k¢(0) – rk¢k¢ (0) x] > 0, and rk¢k¢(t) rises from its initial value.  
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From Eq. (67) in the perturbed eigenfunction basis, the time evolution of the off-diagonal 

element of the density matrix rk¢0¢(t) is decoupled from the evolution of the diagonal elements.  

Setting Rk¢0¢,k¢0¢ = 1/T2, and solving for rk¢0¢(t), we obtain 

rk¢0¢(t) = rk¢0¢(0) exp[-iwk¢0¢t – (t/T2)] , (72) 

with r0¢k¢(t) = rk¢0¢(t)*. 

The results for the density matrix elements in the perturbed basis, with the inclusion of 

dephasing and population relaxation are plotted in Fig. 3.  The rationale for the parameter choices  

Figure 3.  Density matrix elements in the perturbed basis for a hypothetical two-level system with 
parameter values wk0 = 3.99086 ps-1, h0k = 1.496573 ps-1, T1 = 1/R = 0.141865 ps and T2 = 
0.0704659 ps.  The imaginary part q(t) of the off-diagonal element of the density matrix rk¢0¢ has 
been multiplied by a factor of 10 before plotting, to show its behavior more clearly.  

used to produce Fig. 3 is explained in the supplementary material.  They apply to a hypothetical 

two-level system with the parameters chosen to be appropriate for the J, M = 0, 0 and J, M = 1, 0 

states of HCl in liquid argon at 84 K.147  We have neglected the dependence of the dipole 

moment on the bath, and hence the dependence of the off-diagonal Hamiltonian matrix elements 
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h0k and hk0 on the bath.  This should be a reasonable approximation for very dilute HCl in liquid 

argon, the system we have used to obtain the parameters for the two-level model analyzed here.  

Next we examine outcomes in the unperturbed basis, supposing that the relaxation terms 

can simply be added to the Liouville equation.  We approximate the elements of the relaxation 

matrix as Rkk,kk = - x0 Rkk,00, R00,kk = x0 Rkk,00, and R00,00 = - Rkk,00 = x0-1 Rkk,kk, where (r00/rkk)eq 

= x0.  Then the density matrix in the unperturbed eigenfunction basis would reach equilibrium in 

the absence of the perturbation H¢.  The difference between Ek – E0 and Ek¢ - E0¢ produces the 

difference between x and x0, and it is of second order in the perturbation.  Replacing x0 by x does 

not affect the qualitative features of the results.  As before, R = R00,00, R0k,0k = Rk0,k0 = 1/T2, h0k = 

H0k/ħ, and we set (Ek – E0)/ħ = wk0.  The time-evolution equations for the density matrix elements 

in the unperturbed basis are 

¶r00(t)/¶t = - i h0k rk0(t) + i h0k r0k(t) – R r00(t) + x0 R rkk(t) , (73)

¶rkk(t)/¶t = - i h0k r0k(t) + i h0k rk0(t) – x0 R rkk(t) + R r00(t) , (74)

¶rk0(t)/¶t = - i wk0 rk0(t) - i h0k r00(t) + i h0k rkk(t) – (1/T2) rk0(t) , (75) 

and ¶r0k(t)/¶t = i wk0 r0k(t) - i h0k rkk(t) + i h0k r00(t) – (1/T2) r0k(t)  . (76) 

After we express rk0(t) as a sum of its real and imaginary parts, as rk0(t) = p(t) + i q(t), we find 

¶r00(t)/¶t = 2 h0k q(t) – R r00(t) + x0 R rkk(t) , (77)

¶rkk(t)/¶t = - 2 h0k q(t) – x0 R rkk(t) + R r00(t) , (78)

¶p(t)/¶t = wk0 q(t) – (1/T2) p(t) , (79) 

and ¶q(t)/¶t = - wk0 p(t) + h0k rkk(t) – h0k r00(t) – (1/T2) q(t)  . (80) 

The elements of the density matrix in the unperturbed basis are plotted in Fig. 4 below, for the 

hypothetical two-level system. The imaginary part q(t) of the off-diagonal element of the density 
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matrix rk¢0¢ has been multiplied by a factor of 10 before plotting and the real part p(t) has been 

multiplied by 25, to show the behaviors of both more clearly. 

Figure 4.  Density matrix elements in the unperturbed basis for the hypothetical two-level system 
with parameters as in Fig. 3.  

Figure 5 shows the error in excited-state population rkk calculated directly in the 

unperturbed basis for a stronger perturbation and shorter T2, compared with rkk found by 

transforming the density matrix in the perturbed basis into the unperturbed basis.   

Equations (77)-(80) are coupled, first-order linear homogeneous equations, so they are 

analytically soluble in principle; however, the full analytical solutions are quite lengthy 

algebraically. The stationary solution (denoted by the subscript s) is comparatively simple though, 

r00,s = {2 h0k2/T2 + x0 R [(1/T2)2 + wk02]}h-1 , (81) 

rkk,s = {2 h0k2/T2 + R [(1/T2)2 + wk02]}h-1  , (82) 

(83)             ps = h0k R (1 – x0) wk0 h-1  , 

and qs = h0k R (1 – x0)/(T2) h-1  , (84) 
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where h = 4 h0k2 (1/T2) + R (1 + x0) [wk02 + (1/T2)2] .  In the unperturbed basis, Eqs (77)-(80) do 

not relax to equilibrium.  At the stationary state, the ratio r00,s/rkk,s differs from both x0 and x.  This 

ratio depends on T2; but T2 characterizes the dephasing time, so it includes the effects of purely 

adiabatic collisions, which should not alter the population ratio at steady state.    

Figure 5.  Difference D between rkk(t) calculated directly in the unperturbed basis and rkk(t) found 
by transformation of the density matrix in the perturbed basis, as a function of time.  Parameters 
for the rotational transition J, M = 0,0 ® 1, 0 of HCl in liquid argon at 84 K:147 wk0 = 3.99086 
ps-1, h0k = 3.45619 ps-1, x0 = 1.43748, x = 2.06636, T1 = 0.142 ps, but with T2 = 0.0352 ps.  

The deviation of r00,s/rkk,s from thermal equilibrium depends on the parameters h0k, wk0, x0 

(or x), R, and T2.  The deviation from equilibrium is larger for strong fields (large h0k/wk0) and for 

larger values of T2, although large values of x0 tend to suppress the deviation.  After the coherences 

in the perturbed basis have decayed, coherences still remain in the unperturbed basis. 

Figure 6 on the next page shows the steady-state population rk¢k¢,s of state | k¢ ñ in the 

perturbed basis as a function of h0k, the off-diagonal Hamiltonian matrix element divided by ħ.  

Values of rk¢k¢,s obtained in the perturbed basis are plotted directly, while results obtained in the 
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unperturbed basis from Eqs. (81)-(84) have been transformed into the perturbed basis before the 

comparison is made.    

In generating Fig. 6, other parameters for the model two-level system have been adapted 

from information on rotational dephasing and population decay for HCl in liquid argon at T = 105 

K.147  The system is hypothetical, but the state | 00 ñ corresponds roughly to the ground rotational 

state of HCl, and the state | k0 ñ corresponds to the first excited rotational state with J = 1 and M = 

0. Other parameter values147 used for this plot are R = 7.93651 ps-1, T2 = 0.0958 ps, wk0 = 

3.99086 ps-1, x0 = 1.33685, x = 1.437480, g = 4.98858 ps-1. 

Figure 6.  Stationary excited-state populations vs. h0k.   Blue curve:  Population rk¢k¢,s of the 
perturbed excited state obtained with the Redfield equation, from Eq. (69) in the long-time limit.  
Red curve: Population rk¢k¢,s found from Eqs. (81)-(84) in the unperturbed basis after 
transformation into the perturbed basis. 

In a two-level system, a perturbation pushes the ground and excited states further apart.  

Therefore, the population rk¢k¢ should drop as h0k increases.  This pattern is observed for the direct 

calculation of rk¢k¢ in the perturbed basis (shown as the blue curve in Fig. 6), but not for the 
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calculation starting from Eqs. (81)-(84) in the unperturbed basis, followed by transformation into 

the perturbed basis (shown as the red curve).  In the unperturbed basis, as in the original Dirac 

theory, when the excited state | k0 ñ contributes to the adiabatic adjustment of the original ground 

state | 00 ñ to the perturbation, that counts as a transition.  For this reason, increasing the strength 

of the perturbation h0k appears to cause an increase in the population of the excited state, even after 

transformation of the results in Eqs. (81-84) into the perturbed basis.     

Figure 7 on the next page shows the excited-state population rk¢k¢,s as a function of the 

dephasing time T2.  For the results shown in this figure, we have set h0k = 2.0 ps-1, wk0 = 3.99086 

ps-1, R = 3.0 ps-1, x = 1.50838, and x0 = 1.33685.  In the perturbed basis, rk¢k¢,s is independent of 

the dephasing time, but the result for rk¢k¢,s depends on T2, if rk¢k¢,s is obtained by transformation of 

the stationary solutions in Eqs. (81)-(84) into the perturbed basis. 

In the supplementary material, we derive the differential equations in the unperturbed 

basis that correspond exactly to the Redfield equations57 in the perturbed basis.  They are 

g2 ¶rkk/¶t = (1/2) R (1 + x) wk02 [1 – 2rkk(t)] – (1/2) x R wk0 g + (1/2) R wk0 g 

+ (2/T2) h0k2 [1 - 2rkk(t)] - 2 [R (1 + x) - (1/T2)] h0k wk0 p(t)

- 2 g2 h0k q(t) , (85)

wk0 ¶p/¶t = g2 q(t) - (1/T2) h0k [1 - 2rkk(t)] - (1/T2) wk0 p(t) + 2 h0k ¶rkk/¶t , (86) 

¶ q/¶t = h0k [rkk(t) - r00(t)] - wk0 p(t) - (1/T2) q(t) , (87) 

and ¶r00/¶t = -¶rkk/¶t.  Interestingly, the differential equation for q(t), the imaginary part of the 

off-diagonal density matrix element rk0, is identical to the differential equation produced by simply 

adding relaxation terms to the Liouville equation4 in the unperturbed basis.  The equations for 

¶rkk/¶t and ¶p/¶t are not the same as those obtained by adding relaxation terms to the Liouville 

equation, however.  The stationary solutions of Eqs. (85)-(87) are 
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(88) 

(89) 

          rkk,s = (1/2) - wk0 (x - 1)/[2g (x + 1)] , 

          ps = h0k (1 – x)/[g (x + 1)] , 

and    qs = 0, as derived in the supplementary material. 

Figure 7.  Stationary population rk¢k¢ of the perturbed excited state vs. the dephasing time T2 from 
0.05 ps to 2.0 ps.  Blue:  rk¢k¢ from the Redfield equations.57  Red: rk¢k¢ from Eqs. (81)-(84) in the 
unperturbed basis, followed by transformation to the perturbed basis.   

The equilibrium solutions for the density matrix elements in the perturbed basis are rk¢k¢,s

= 1/(1 + x), r0¢0¢,s = x/(1 + x), and rk¢0¢,s = r0¢k¢,s = 0.  In the supplementary material,143 we also prove 

that results identical to Eqs. (88) and (89) are derived by transforming the equilibrium solutions of 

the Redfield equations57 in the perturbed basis into the unperturbed basis.  Thus the stationary 

solutions of Eqs. (85)-(87) correspond to true thermal equilibrium with the bath.  Equations (85)-

(87) with ¶r00/¶t = -¶rkk/¶t  are the correct differential equations for the density matrix elements

for a two-level system coupled to a bath, when written in the unperturbed basis. 
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The comparisons in Figs. 5-7 show that the differences between the two solutions of the 

Liouville equation plus relaxation terms are physically significant, because the results have been 

expressed in a single basis in each case. 

Additional considerations come into play if a physical phenomenon depends on the 

population of a state that is excited above the perturbed ground state, with a gap in the energies.  

Then the difference between rk¢k¢ and rkk becomes significant.  We have evaluated r00 - rkk and 

r0¢0¢ - rk¢k¢ for hypothetical two-level systems modeled with parameters appropriate for the 

rotational relaxation of hydrogen chloride,147 fluoroacteylene,148 cyanoacetylene,149,150 carbonyl 

sulfide,151-153 nitrous oxide,154 and ethylene oxide.155  We have selected these species because T1 

and T2 have been determined experimentally for them, and differences between the two approaches 

are apparent in the results in these cases.  The results are listed in Table 3 in the supplementary 

material. The percent differences between r00 - rkk and r0¢0¢ - rk¢k¢ range from 2.54% to 88.72% 

with the parameters we have used.   

It is important to note that for some physical systems, no detectable difference is expected 

between the results in the perturbed and unperturbed basis sets.  For example, in many applications 

in the theory of nuclear magnetic resonance, there is no distinction between the two basis sets:  

Typically the eigenfunctions of the spin operator in the z direction are chosen as the unperturbed 

basis in zero field.  The Hamiltonians for the spins perturbed by a static field in the z direction are 

diagonal in this basis, and the differences discussed here do not arise.   

For vibrational relaxation, it may be very difficult to detect the differences between the 

results from Eqs. (65)-(67) in the perturbed basis, and those from direct addition of relaxation 

terms to the Liouville equation in the unperturbed basis, via Eqs. (73)-(76).  Detectable differences 

would most likely require a strong perturbation that is capable of producing a high population in 
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the perturbed excited state | k¢ ñ.  For nitrogen molecules, for example, an intense, inhomogeneous 

applied field would be required.  While large values of T1/T2 tend to increase the discrepancies 

between results obtained in the perturbed and unperturbed basis sets, for N2 the value of x0 is so 

large that the differences are likely to be undetectable in normal circumstances. 
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VI. Summary and discussion

We have examined the differences between transition probabilities computed with the 

nonadiabatic theory,3,6,47-51 which employs coefficients for the instantaneous eigenfunctions of the 

full Hamiltonian including the perturbation, versus those found with Dirac’s standard theory,1,2 

which relies on coefficients for the eigenfunctions of the original, unperturbed Hamiltonian H0.  If 

a system remains coherent, the numerical differences simply reflect different choices of the basis 

set; but when interactions with a bath produce dephasing and population relaxation, the observed 

differences are physically significant.   

Sections II and III lay the groundwork for our analysis of the density matrix for a two-level 

system in a field that is imposed suddenly and then remains constant.  In Sec. IV, we have used 

the Liouville equation4 for the time-dependent density matrix, incorporating response to all orders 

in the perturbation.  Then in Sec. V, we introduced the effects of dephasing and population 

relaxation.  In earlier work, we had proven that the differences between | bk(t) |2 and | ck(t) |2 could 

be detected experimentally by imposing a second perturbation after the coherences induced by 

the first perturbation had completely decayed.51  In this work, we have considered a single 

external perturbation, but we have allowed for the full time-dependence of the reduced density 

matrix for a system coupled to a thermal bath. 

We solved the Redfield equation57 in the perturbed basis, for a model two-level system 

treated in the secular approximation.  When  the relaxation terms were added directly to the 

Liouville equation4 in the unperturbed basis, we found that the density matrix did not evolve to 

thermal equilibrium.  The stationary solutions for r00 and rkk in the unperturbed basis depend on 

T2, the dephasing time; but T2 is affected by elastic collisions that cause pure dephasing with no 

change in population, so the stationary values of r00 and rkk should be independent of T2.  We 
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have demonstrated that the results from the analyses in the perturbed and unperturbed basis sets 

differ, after transformation to a single, common basis. 

We also compared the stationary values of r00 – rkk with the equilibrium values of r0¢0¢ - 

rk¢k¢ in the perturbed basis.  The comparison shows the absolute differences in the predicted level 

of  “excitation,” for hypothetical model systems with parameters drawn from rotational 

relaxation of hydrogen chloride,147 fluoroacteylene,148 cyanoacetylene,149,150 carbonyl 

sulfide,151-153 nitrous oxide,154 and ethylene oxide.155  

The differences between the results allowing for relaxation in the perturbed and 

unperturbed basis sets are enhanced when the energy difference between the unperturbed ground 

and excited states is relatively small, when the perturbation is large, and when T2 is small compared 

with T1.  The differences are not detectable in standard NMR experiments, because the perturbed 

and unperturbed basis sets are identical in that case.  The differences are also likely to be quite 

small in vibrational relaxation, because the equilibrium ratio of r0¢0¢ to rk¢k¢ is typically very large.  

In Sec. V and the supplementary material, we have shown how to account for relaxation 

effects accurately in the unperturbed basis.  We obtained the appropriate time-evolution equations 

by transforming the Redfield equations57 in the perturbed basis to the corresponding equations in 

the unperturbed basis.  The time-evolution equation for the imaginary part of the off-diagonal 

density matrix element rk0(t) is the same as that obtained by adding the relaxation terms to the 

Liouville equation in the unperturbed basis, but the equation for the real part of the off-diagonal 

density matrix element differs, as do the equations for the time-dependence of r00(t) and rkk(t).       

In future work, we plan extensions that are beyond the scope of this work.  Working within 

the nonadiabatic transition framework, we plan to include multiple quantum states of specific 

quantum systems, starting with a thermal distribution over states (cf. Refs. 156-161). If a harmonic 
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field is imposed after the stationary solution or thermal equilibrium has been reached, differences 

in the predicted power absorption should follow from the differences between r00,s – rkk,s versus 

r0¢0¢ - rk¢k¢ at equilibrium.  We plan to consider the effects of the gradual imposition of a 

constant field, an oscillatory applied field,55,162,163 or a chirped field.164-166 We will also analyze 

spontaneous decay of excited states of atoms and molecules in a static electric field,  

following an initial excitation.   

Treating the interactions between the system and the bath at a higher level would allow 

us to account for the effects of a perturbing field on the relaxation matrix elements167 and for 

the effects of the bath on the off-diagonal matrix elements in the Hamiltonian; but the current 

level of treatment is sufficient to show the differences between the nonadiabatic theory and 

Dirac’s transition theory and to reveal qualitative features of the differences. The nonadiabatic 

theory, which makes a distinction between the excited-state coefficient bk(t) and the full Dirac 

coefficient ck(t) may also be applicable to exciton transfer.30-46 For a clear-cut demonstration of 

differences that may arise in the treatment of exciton transfer, accurate values of the transition 

matrix elements for large molecules would be needed, however. In studies of the response to 

ultrashort laser pulses that initiate electronically nonadiabatic transitions,168 we anticipate that 

the distinction between ak(t) and bk(t) will affect the formation and motion of vibrational wave 

packets. The adiabatic terms ak(t) contribute to the probability amplitude for the molecule to 

remain on the perturbed electronic ground state, while the bk(t) terms characterize the 

formation of wave packets that evolve on the excited-state potential energy surfaces. 
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Supplementary Material 

In the supplementary material, we provide the transformation matrix elements between the 

unperturbed and perturbed basis sets in a constant applied field.  We prove that the analytic 

solutions of the Liouville equation4 for a two-level model system are equivalent in the perturbed 

and unperturbed basis sets in the absence of coupling to a bath, as expected for a system that 

remains coherent.  When decoherence arises due to contact with a bath for a system in a constant 

field, we prove that the results from the Redfield theory57 in the perturbed basis differ from the 

results obtained by adding relaxation terms to the Liouville equation4 in the unperturbed basis.  We 

show that the density matrix in the unperturbed basis does not evolve to thermal equilibrium, the 

excited state population increases with increasing strength of the applied field, and the stationary 

populations depend on the dephasing time T2. We transform the Redfield equations in the 

perturbed basis into the unperturbed basis, to identify the equivalent equations in that basis.  Then 

we determine the stationary solutions of the equivalent equations in the unperturbed basis, and 

show that the results for the ground and excited-state populations, and for the off-diagonal 

elements of the density matrix are identical, when obtained from those stationary solutions of the 

newly derived equations in the unperturbed basis or by transformation of the thermal equilibrium 

results in the perturbed basis into the unperturbed basis.  Figures S.1-S.4 in the supplementary 

material illustrate various forms of | bk(t) |2 and | ck(t) |2 that may develop when a constant field is 

applied and turned off either rapidly or gradually.  Figure S.5 shows the real parts of ak(t), bk(t), 

and ck(t) as functions of time within the sudden approximation, when the perturbing field is held 

constant for intervals t = 9p/wk0, 9.25p/wk0, 9.5p/wk0, 9.75p/wk0, and 10p/wk0.  Figure S.6 shows 

the corresponding imaginary parts of the probability amplitudes ak(t), bk(t), and ck(t).  Table 1 

provides tests of the accuracy of the numerical results by comparison with the values of g, the 
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maximum excited-state population, the time at which the maximum is first reached, the minimum 

excited-state population, and the time at which the minimum is first reached.  Table 2 lists the 

values of rotational state energies of HCl for J = 0-6, and the values of T1 and T2 as calculated by 

Velasco et al.147 for HCl in liquid argon at 105 K.  In Fig. S.7 and S.8, we show T1 and T2 as 

functions of EJ/kT at T = 105 K, from Ref. 147, along with the Mathematica fits to these plots.  

We have used these results to approximate T1 and T2 at 84 K, for use in Sec. V.  Table 3 lists the 

values of r00,s – rkk,s at steady state in the unperturbed basis, for comparison with r0¢0¢ - rk¢k¢ at 

thermal equilibrium in the perturbed basis, for hypothetical two-level systems with parameters 

drawn from experimental results for HCºCF,148 HCºCCN,149,150 OCS,151 15N2O,154 and 

C2H4O,155 and parameters from simulations on HCl in liquid argon.147 
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