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ABSTRACT

This work demonstrates a direct density functional description of the finite-temperature thermodynamic properties of solids exhibiting phase transitions through
positional and spin symmetry breaking degrees of freedom. A classic example addressed here is the rare-earth (R) nickelates RNiOs where the ground state is
characterized by crystallographic and magnetic (e.g., antiferromagnetic) long-range order (LRO), whereas the higher temperature paramagnetic phase manifests a
range of local spin and positional symmetry breaking motifs with short-range order (SRO). Unlike time-dependent simulations of spin and positional degrees of
freedom, in the present work, phases are described via a superposition of static configurations constructed by populating a periodic base lattice supercell allowing for
the formation of energy lowing distribution of positional and spin local motifs. The thermal populations of the configurations in such a superposition phase are
obtained from the energy-minimized Density Functional Theory (DFT)-calculated partition functions at different temperatures. This approach offers flexible inclusion
of different physical contributions to the free energy, such as elastic, electronic and phonon free energies, all obtained from the same underlying DFT total energy
calculations of periodic structures. The thermodynamic and magnetic properties of both LRO and SRO crystallographic and spin phases, including antiferromagnetic
(AFM) to paramagnetic (PM) Néel phase transition in YNiOj3 are studied. Including spin and phonon contributions, we find a DFT-calculated Néel temperature to be
144 K in satisfactory agreement with the experimental value of 145 K; whereas omitting the phonon contribution, one obtains a Néel temperature of 81 K. We present
phonon contributions to the DFT-calculated temperature-dependent SRO, heat capacities, and the polymorphous distribution of nonzero local magnetic moments in
the PM phase. This approach thus extends to finite temperatures the symmetry-broken DFT description of both the AFM and PM phases, demonstrating that a
thermodynamic superposition approach based on symmetry broken configurations evaluated by a mean-field like DFT is sufficient to obtain a consistent description
of the thermal physics of the AFM, PM phases and their interconversion in 3d oxides illustrated by YNiOs.

1. Introduction

The current work addresses the calculations of finite-temperature
thermodynamic properties of crystalline solids exhibiting phase transi-
tions through the combination of multiple microscopic degrees of
freedom such as spin, phonon, and ionic displacement. We explain the
concept by first discussing how multiple degrees of freedom often
necessitate considerations of larger than usual unit cell sizes affording a
distribution of different local motifs even before the temperature is
considered. Theoretical predictions of crystallographically long-range
ordered ground state structures [1-6] are often conducted by considering
simple structures made of just one or very few structural motifs, leading
to the smallest possible fundamental unit cells. In contrast, other
non-ground state structures of the same system, such as paraelastic,
paramagnetic, or paraelectric phases, could manifest a distribution of
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numerous local positional, spin, or dipole motifs with a combination of
both long-range order (LRO) and short-range order (SRO), which would
require the large-than-minimal cell to achieve a correct crystallographic
description. Perhaps the best-known examples of the ‘spatially fluctu-
ating” (or polymorphous) phases are two component substitutional
chemical alloys (AC)x(BC); x of composition x, where the alloy phase can
consist of a distribution of many different C atoms coordinated locally at
different lattice sites by a different number (n,m) of A and B neighbors
ApBp, [6]. Interestingly, such inherently large unit cell phases mani-
festing a polymorphous distribution of local motifs can also exist in pure,
non-alloyed systems [7-11]. The microscopic degrees of freedom
(m-DOF) building such local motifs can be local positional motifs (such as
differently tilted octahedra in perovskites [12-14]), or local configura-
tions of magnetic moment motifs (as in paramagnetic phases [7,9]), or
local dipole motifs (as in paraelectric phases [14]). Such local motifs can
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be calculated via the minimization of the internal energy Ey, as in
Jahn-Teller distortions in manganates [10], or structural dispropor-
tionation of octahedra in nickelates [11], or due to lone-pair-induced
positional distortions as in Pb or Bi salts [15]—all representing
intrinsic symmetry breaking. In the same way that large unit cells that
occur naturally in chemically disordered (AC)x(BC),x alloys were often
approximated by a ‘virtual crystal’ averaged cell, para phases of pure,
non-alloyed systems were also often treated theoretically using aver-
aged, high symmetry cells. When used as ‘input’ to electronic structure
calculations, such a drastic approximation of replacing a polymorphous
cell by its high symmetry virtual average led to severe contradiction
with the experiment, as illustrated in Refs. [7,10].

The current approach avoids such averaging by considering the full
distribution of local motifs instead. By exploring energy minimization
due to such intrinsic symmetry breaking while avoiding the restriction
of minimal size, high symmetry, ‘average’ unit cells [16], it was recently
pointed out that paramagnetic phases of oxide Mott insulators can
become naturally insulating, as opposed to the more traditional ‘false
metal’ predictions [17]. While the emergence of symmetry-breaking
modes does not necessarily require temperature for their formation, as
temperature increases, such distortions can be further amplified and
modify their distributions [16].

In the present paper, we extend such DFT descriptions based on the
intrinsic internal energy, Eo, of large unit cell configurations to finite
temperature, where the free energy E,-TS is the central quantity. We do
so without using the usual time-dependent simulations, such as molec-
ular dynamics. Instead, the polymorphous/fluctuating phases are
described via a superposition of static configurations constructed by
decorating a base lattice supercell with local, symmetry broken posi-
tional, and spin motifs. We study the electronic properties of both LRO
and SRO crystallographic and magnetic phases, including antiferro-
magnetic (AFM) to paramagnetic (PM) phase transition in YNiOs. This
approach incorporates electronic and phonon contributions to the DFT-
calculated temperature-dependent SRO, heat capacities, the poly-
morphous distribution of nonzero local magnetic moments in the PM
phase, and the predicted Néel temperature.

1.1. The present first-principles thermodynamic approach in the context
of other methods

We first describe alternative approaches to the problem not used in the
present work.

Modeling fluctuating phases without temperature via configurational
approximants: Sometimes, one wishes to focus on the electronic prop-
erties of disordered phases without explicitly describing temperature-
induced dynamic fluctuations. Such are the temperature-independent
configurational approximants to fluctuating phases. These include the
virtual crystal approximation (VCA) [18,19], the coherent potential
approximation (CPA) [20-22], and the special quasi-random structures
(SQS) containing the polymorphous distributions of local motifs [23]. In
these approaches, one constructs a static structural approximant for a
high-temperature disorder, modeling its electronic properties by
applying DFT to such a static approximant.

Modeling temperature-induced disorder by dynamic model Hamiltonian
simulations: More generally, one may wish to describe the electronic
properties of spatially fluctuating phases as an explicit function of
temperature. Indeed, the description of the nature of such polymorphous
phases is one of the main challenges in contemporary electronic struc-
ture theories, which is why it is being addressed in the current paper.
The standard quantum mechanical description of high temperature,
spatially fluctuating phases is often based on model Hamiltonians that
provide the energy of a given configuration in terms of the microscopic
degrees of freedom. These degrees of freedom could be (a) displace-
ments, (b) magnetic moments, or (c) electric dipoles. Hamiltonians of
types (a)-(c) are then simulated via statistical approaches such as Monte-
Carlo sampling, providing the different phases as a function of
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temperature. Examples follow:

a) When the microscopic degrees of freedom are defined by local occupation
of lattice sites of particular (say, A or B) atoms: one often uses the
generalized Ising Hamiltonian model [6]. It employs lattice config-
uration ¢, and atom-atom interaction energies {J¢} that can be
evaluated from DFT calculations [24-26] of different periodic solids
via the cluster expansion method [5,6,25,26]. Simulations of such
Ising Hamiltonian via the Monte-Carlo method provide the T vs. x
structural phase diagram, phase transition temperatures, as well as
SRO and LRO vs. temperature. Examples include the phase diagram
of various alloys [27-29] calculated in such a manner.

b) When the microscopic degrees of freedom are defined by local spins and

the ensuing magnetic moments, one often uses the representation of the

Heisenberg Hamiltonian. In this case, the spin-spin exchange in-

teractions are obtained from DFT via using the linear response

method [30] as an example. Monte-Carlo simulations of this

Hamiltonian provide a description of the low-temperature spin

ground state as well as the Néel transition temperature to the PM

phase. Examples include such modeling of the AFM-to-PM Néel

transition in GaMnAs as well as Bi;_4Sby [31-34].

When the microscopic degrees of freedom are defined by the local ferro-

electric dipole, the model Hamiltonian is often fitted from DFT static

and displacement calculations [35-37]. The corresponding Hamil-
tonian is solved via Monte-Carlo [35] to give
ferroelectric-paraelectric (FE-PE) phases. Examples include the

FE-PE phases of BaTiO3 and BiFeOs [35,36].

—

C

The above Hamiltonian models (a)-(c) can utilize first-principles
inputs, where the interaction energies are fit to the DFT data. Howev-
er, the underlying Hamiltonian used to fit such interactions involves
truncation to certain interaction types (such as pairs only) or ranges
(such as nearest and next nearest neighbors). Furthermore, coupling
between different types of m-DOF’s, such as spins and lattice distortion,
are not included automatically but can be accommodated as additional,
specialized terms in the Hamiltonian that will require additional fits. For
these reasons, we chose here to avoid such model Hamiltonian
simulations.

1.2. The superposition approach

Alternative approaches to the theory of finite temperature, spatially
fluctuating phases are based on the superposition of periodic configurations
{c} created by populating a base lattice with local motifs, such as A/B
atomic species, spin, octahedral tilting, etc. This approach extends
density functional applications to finite temperature, does not require
the decomposition of DFT total energies into individual interactions as
in the model Hamiltonian, and does not involve a time scale. The su-
perposition approach also allows flexible inclusion of different physical
contributions into the free energy, such as phonon free energies, elastic
energies or electronic entropy, all evaluated directly by DFT. Next, the
essential pertinent ideas of the superposition approach are summarized.

The superposition approach shares common elements with the
cluster expansion theory [5,26,38] and with basic free energy expan-
sions in thermodynamics [39]. In the cluster expansion theory [5,25,
26], the total excess energy, AE, of atomic configuration ¢ is given as a
combination of the interaction energies Jy of “figures” f (= pairs, three
bodies, etc.) weighted by the Dy (degeneracy of figure f) and by the
occurrence Il of a figure f in configuration o,

AE(0) = _DyI1;(0)J;. M
f

Inversion of this equation provides the interaction energy Jy as a
weighted sum of DFT total energies of a set of periodic structure (s),
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(a) Superposition description of YNiO,

(b) Different phases of YNiO,
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Fig. 1. Summary of thermodynamic data on YNiO3
and different degrees of freedom known in YNiOs. (a)

v: PM orthorhombic (Pnma)

Basic idea of superposition of SP and ST for a
description of thermodynamics of fluctuating phases,

G = z z Ju,v(T)Gu,v = TScons

u=stv=sp

i = structure from SLE to DLE
v = spin from SLE to DLE

where the Gibbs energy of the system at finite tem-
perature equals the weighted summation of free en-
ergy of each configuration plus the configurational
entropy among the configurations. (b) Definition of
the three phases indicating spin disproportionation
and bond disproportionation. Summary on different

(c) Thermodynamics of YNiO,

ST-SLE, SP-SLE

types of YNiO3 phases reported in the literature and

B: PM monoclinic (P2,/n)

SP and ST degrees of freedom. (c) Schematic illus-
tration of temperature-dependent Gibbs energies of

different YNiO3 phases.

ST-DLE, SP-DLE

o: AFM monoclinic (P2,/n)

Gibbs energy

ST-DLE, SP-DLE, 50% AFM

Temperature

5= (s)] A (s). @

| :@ 5
Resubstituting these interaction energies {J¢} in Eq. (1) shows that

the excess energy of any arbitrary configuration ¢’ can be expressed as a

superposition of the total energies of a set of the other configurations (s),

AE(6) = ¢&,(0))AE(s) ®3)

with coefficients given by,

&(0)=)_[11(0)] " [M,(0)]. @
8
Equations (3) and (4) [38] define the superposition concept for the
simple case of total lattice energies at T = 0 K, and show that it requires
examining the convergence with respect to the number of configurations
included in the superposition expansion. We next discuss the general-
ization to the thermodynamic limit.

1.3. The superposition approach based on finite-temperature
thermodynamics

This approach replaces the total energy at T = 0 K noted in Egs. (1)-
(4) by the free energy of different configurations at finite temperature.
Using a canonical ensemble of phase, denoting both crystal space group
with unit cell composed of N atoms and the magnetic symmetry at given
volume V and temperature T, the total partition function of the super-
position state Z(V,T) can be written as the sum over the partition
function of individual configurations, i.e.,

Z(V,T)=> 0,Z,(V,T) )]

where o represents a specific configuration distinguished by a different

occupation of lattice sites by microscopic degrees of freedom (dis-
placements, spins, dipoles). In Eq. (5), o, is the degeneracy factor rep-
resenting the multiplicity of configuration ¢ determined by the
symmetry of the selected lattice. Z,(V,T) is the partition function of
configuration ¢ expressed by [39],

Z,(V,T) =exp[—Fo(V,T) / ksT] (6)

where kp represents the Boltzmann’s constant and F,(V,T) is the
Helmbholtz energy of configuration ¢ as discussed in the next section.

The main advantages of the finite temperature superposition
approach to spatially fluctuating phases are that (i) the existence of
spatially fluctuating components in a para phase is explicitly included as
a superposition without using a time domain as in dynamic simulations.
(ii) The energetics are obtained from first-principles DFT without
requiring the step of resolving DFT total energies into elementary in-
teractions, such as effective cluster interactions, then truncating, as in
the cluster expansion method [24,25] or the Heisenberg Hamiltonian
[30,35,36]. (iii) One can readily include the interaction between the
various microscopic degrees of freedom, such as electronic structure
physics included in DFT, along with phonon physics, calculated from the
same supercell in DFT, allowing electron-phonon coupling. Another
interesting advantage is that (iv) once one computes the probability or
thermal populations x, of the different configurations, it is possible to
use them for describing other thermodynamic observables of the su-
perposition phase. Within this framework, the property Pr of the su-
perposition phase is connected to the respective properties Pr,; of the
individual configurations [40,41], such as band gaps or short-range
order, i.e.,

Pr(x,T)=Jy + ijoxﬁj (x, T)Pry @

where the additional term Jj is introduced by the partition function due
to mixing of multiple configurations, and it exists for properties such as
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The empty 80-atom 1x2x2 supercell and typical spin configurations of P2,/n YNiO,

(a) (b)

The base supercell
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Fig. 2. Schematic illustration of representative spin configurations (SC) considered in this work. (a) The empty 80-atom 1x2x2 supercell with 16 Ni sites (16 Ni-
centered oxygen octahedra) of the monoclinic P2;/n YNiO3; phase, where each Ni atom is represented by a green sphere. (b—g) The typical spin configurations in the
80-atom 1 x2x2 supercell (with SC_45 being the spin ground state AFM configuration) of the monoclinic P2;/n YNiO3 phase. The zero-spin, spin up, and spin down
Ni atoms forming the oxygen octahedra are denoted by no-arrows, upward-blue arrows, and downward-red arrows, respectively. Relative length of arrows represents
the magnitude of the magnetic moment. The Y and O atoms are not displayed for clarity. (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)

entropy, heat capacity, and bulk modulus as shown later in Egs. (12),
(13) and (15) of Section III B.

In the present work, we illustrate the finite-temperature super-
position method (Fig. 1) to study the magnetic transition between AFM
and PM in yttrium nickelate (YNiOg) within the monoclinic P2;/n space
group. The RNiO3 family of nickelates [42-50] exhibits the octahedral
volume disproportionation effect, and spin disproportionation effects.
The phase transitions in RNiO3 family were previously investigated by
using a combination of density functional theory and dynamical
mean-field theory calculations [51-54], where the critical role of strong
correlation was emphasized. Interestingly, by allowing mean-field DFT
symmetry-breaking energy lowering in large supercells [55], it was
demonstrated that the trend of the band gaps, magnetic moments,
ground state symmetry, ligand hole effects, and structural deformation
modes, including Jahn-Teller distortions in AFM and PM phases in ABO3
perovskites could be described without requiring strong correlation. In
the present work, we extend the method to finite temperature effects
using the DFT-based superposition approach [39].

2. The superposition method for magnetic phases in YNiO3:
combining spin and structural degrees of freedom

2.1. The different degrees of freedom and their representation as a
superposition of configuration

The phase diagram of YNiO3 features three phases [44-49]: (a) a
spin-ordered AFM structurally monoclinic P2;/n insulator phase, o,
existing at low temperature, transitioning at the Néel temperature (Ty =
145 K) to the (b) spin-disordered PM structurally monoclinic P2;/n
insulator phase, p, that transitions to the (c) spin-disordered PM struc-
turally orthorhombic Pbnm metallic phase, y, at the metal-to-insulator
transition temperature (Tyy = 582 K). More specifically, by “spin-di-
sordered PM” we mean that the para phases lack LRO but can have
correlated-disorder and SRO. Each of these phases a, §, and y has both
spin (SP) and structural (ST) degrees of freedom, as illustrated in Fig. 1.
Both a and B phases have two structural local environments, called
‘Double Local Environment’ (DLE), whereby there are two types of Ni-O
octahedra with different volumes, one small and the other large. These
phases also have two types of spin local environments: in phase a, these
are ~1.1 pp/atom spin (up and down) and the zero spin sublattices,
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whereas in the phase p the two local spin environments correspond to Ni
sites with a distribution of magnetic moments between 0 and ~1.1
pp/atom. In contrast, the y phase is believed to have a single type of local
environment (SLE)-both for spin and structure, forcing the system to be
metallic. The existence of such ST and SP degrees of freedom ranging
between SLE and DLE suggests that an appropriate theoretical descrip-
tion of YNiO3 phases requires explicate accounting of ST and SP motifs
and their coupling.

Fig. 1 provides an overview of the superposition method as it per-
tains to YNiOs, indicating the different degrees of freedom in each
phase. Fig. 1(a) describes the basic superposition equation where the
equilibrium phase at temperature T is a superposition over configura-
tions, plus the entropy due to mixing the spatially fluctuating configu-
rations. As the temperature is raised, the system is expected to exhibit a
different superposition of configurations, thereby transitioning from
phase a, B, and y. Fig. 1(b) defines the three base phases showing two
types of octahedra (small and large volume) and two types of spin ar-
rangements. Computationally, each phase is described by a supercell
with atomistically resolved positions and spins. Fig. 1(c) indicates the
transitions expected vs. temperature.

2.2. Selection of base and enumerating spin and lattice configurations

Allowing for various levels of inclusion of spin and structural degrees
of freedom leads to a number of possibilities for representations. Had the
YNiO3 phase been considered as nonmagnetic, its minimum cell would
contain four ABO3 formula units (f.u.), defined as a 20-atom unit cell,
referred as base cell in the rest of the paper. A minimum base cell of 16 f.
u.(16 Ni-centered octahedra) i.e., 80 atoms for the monoclinic P2;/n
YNiOj3 is shown Fig. 2(a), There are 35 possible supercells in terms of the
spatial arrangements of four 20-atom base cells. If one populates such an
80-atom supercell by restricting the initial spin configuration (i.e., prior
to the self-consistent calculation) to be 8 Ni atoms with zero moments
and 8 Ni atoms with nonzero moments, this creates 256 spin configu-
rations for each supercell, of which 37 are symmetry independent (by
considering the degeneracy factor through the symmetry analysis [56])
for the 80-atom 1x2x2 supercell. Based on the DFT total energy cal-
culations, we found that the two inequivalent Ni sites in P2;/n YNiO3
exhibit asymmetric magnetic moments, see Table Al; half of the Ni
atoms in those low energy AFM configurations are nonmagnetic with
zero spin moments, while the other half is magnetic with nonzero spin
moments in accordance with the results reported in the literature [44,
57]. Accordingly, the initial magnetic moment was set as zero for half Ni
atoms in all spin configurations in the present work, see details in Ap-
pendix I. The corresponding local magnetic moments of Ni atoms in the
37 independent spin configurations after optimization are provided in
Table AIl, and their corresponding multiplicity is given in Table AIII of
Appendix 1. Typical spin configurations of the monoclinic P2;/n YNiO3
are depicted in Fig. 2(b)—(g) for the 80-atom 1x2x2 supercell. It turns
out that those low-energy states are the spin-ordering AFM configura-
tions, where the ground state AFM configuration is featured by the spin
ordering shown in Fig. 2(f).

The present work focuses on the 80-atom 1x2x2 supercell as the
base model for the o and  monoclinic P2;/n YNiO3 phases in Fig. 1
(extension to the orthorhombic y phase is presently not considered). It is
worthwhile to mention that in combination with the accurate energies
determined from first-principles phonon calculations, the present su-
perposition method can be extended to large magnetic systems via the
cluster expansion method and/or the machine learning model to explore
the system size effects. Unless specified otherwise, the discussions in the
rest of the paper are for the o and f monoclinic P2;/n YNiOs phases, i.e.,
the spin-ordered AFM structurally monoclinic P2;/n insulator o phase
and the spin-disordered PM structurally monoclinic P2;/n insulator f
phase, see Fig. 1(b).
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3. Execution of the thermodynamic superposition method
3.1. Entropy factor in the superposition method

Egs. (5) and (6) are the basis of the superposition approach to the
first-principles thermodynamics. Here, the physical content used by Egs.
(5) and (6) is explained as it applied to superposition. This section also
details how the various thermodynamic quantities and the o-to-p Néel
phase transitions are calculated.

The Helmholtz energy of a configuration in Eq. (6) is given by,

F,(V,T)=E,(V,T=0)+F,,s,(V,T) + Fsee(V,T) (€)]

where o represents a specific configuration distinguished by a different
occupation of lattice sites by microscopic degrees of freedom,
E,(V,T=0) is the 0 K total internal energy of configuration o deter-
mined from periodic DFT calculations, and F,,(V,T) is the lattice
vibrational free energy of configuration ¢. Here, F, ,3(V,T) can be ob-
tained either from (i) the DFT phonon calculations (details as described
in Ref. [57]), or (ii) via the simplified Debye model [58]. The term
Fse(V,T) is the thermal electronic contribution related to electron
excitation at finite temperature [59]. For the insulating monoclinic
P2;/n YNiOs, it is negligible [57,60].

The superposition of the partition functions of the different config-
urations in Eq. (5) gives the total Helmholtz energy of the superposition
phase as,

F(V,T)= —ksTInZ(V,T) = > %F,(V,T) = TSeouy(V, T) 9)

where the probability or thermal population of configuration ¢ is given
by,

10)

Xo=w,Z;(V,T)/Z(V,T) = 0, exp( - w) .

kT

Scong(V, T) is the entropy due to the mixing of multiple configurations
[39]. We approximate it as the uncorrelated probability (avoiding the
need for correlated Monte-Carlo calculations):

Seong (V. T) = — k,;Z:w{, Kz)—) In (z)—)} = k,;;[xu In x, — x, In ,].
an

Due to the positive value of entropy, the superposition phase (such as
the PM phase) composed of a superposition of periodic configurations is
thermally stabilized. It is worthwhile to emphasize that this specific
entropy is not the alloy-like entropy due to mixing atoms but rather a
different entropy due to mixing configurations of various motifs in a
non-alloyed system. As will be demonstrated in subsequent sections,
Scons(V, T) plays an important role in the high-temperature disordered
phase [39]. Note that the recent work reported by Jones and Stevanovic
et al. [61] does not contain the mixing term in the superposition method.

3.2. Computing the thermodynamic quantities from DFT superposition

With the Helmholtz energy of each configuration, as obtained from
the DFT-based calculations in Eq. (8), the thermal population of each
configuration is computed by minimizing the Helmholtz energy of the
superposition phase from Eq. (9), under a given temperature and pres-
sure. Consequently, relevant thermodynamic quantities of the super-
position phase can be obtained. For instance, the entropy of the
superposition phase is expressed as,

S(V,T)=Sens (V. T) + > _%,S,(V, T) 12)

where S, = —(dF,/0dT), is the entropy of configuration ¢. The heat ca-

pacity at constant volume Cy = —T(0°F/ 0T?),, is obtained as,
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Cy(V.T)=Coy(V,T) + > %,Cov(V,T) (13)

where C,y is the heat capacity of configuration ¢, and Cpy is the
magnetic contribution to the heat capacity induced by configurational
coupling or spin fluctuations. Cp, y is given by

ZXG(EU)Z - (ZXOEJ> :| (14)

where E; = F, + TS, is the energy of configuration ¢. The heat capacity
at constant pressure can be obtained from C, = Cy + A2BrTV with 2
being the volume thermal expansion coefficient, and the isothermal bulk
modulus based on By = V(3°F/dV?),. given by,

Cm.V(V7 T) = g

Br(V,T) = Bur(V,T) + Y xB,r(V,T)

(15)

- ﬁV{ [Zx,,PG} - ZxU(P{,)Z} + D XeBor(V,T)

where B, r is the magnetic contribution to isothermal bulk modulus, B, r
the isothermal bulk modulus of configuration ¢, and P, = —dF,/dV.

3.3. The AFM-to-PM Neéel transition temperature

An AFM-to-PM phase transition can be either first-order or second-
order, which are separated by a critical point [62]. For a first-order
transition with respect to temperature, both entropy and heat capacity
change discontinuously from one phase to another phase; while in a
second-order transition, the entropy changes continuously, and the heat
capacity changes discontinuously. Since both AFM and PM phases are
superpositions of various spin configurations but with different thermal
populations, the second-order transition temperature can be alterna-
tively estimated when the thermal population of the spin ground state
configuration decreases to half, which may also be corroborated by the
zero macroscopic magnetization [63]. As such, the Néel temperature for
the AFM-to-PM phase transition can be estimated from the cross point of
the thermal populations between the spin ground state AFM configu-
ration and the summed thermal populations of other spin non-ground
state configurations.

4. DFT calculations for total energies of periodic spin
configurations

4.1. Details of the DFT calculations

The thermodynamic quantities defined in Sec. III are obtained from
the DFT-based calculations. We performed the DFT total energy and
force minimization calculations for the periodic spin configurations
indicated above in a plane wave basis set with exchange-correlation of
the generalized gradient approximation (GGA) with Perdew-Burke-
Ernzerhof revised for densely-packed solids and their surfaces (PBEsol)
[25,64], as implemented in the Vienna Ab-initio Simulation Package
(VASP) [65]. Van der Waals contribution to the energy of 3d perovskites
is not considered. The interaction between the ions and valence elec-
trons was described by the projected augmented wave (PAW) method
[66,67]. The pseudopotentials were treated with eleven valence elec-
trons for Y (4524p64d1552), ten for Ni (3d84sz), and six for O (2sz2p4). We
employed the DFT + U approach where Uegs = U- J with Hubbard U due
to the energy increase from an electron addition to a specific site and J
due to the screened exchange energy, as introduced by Dudarev et al.
[68] for partial removal of unphysical self-interaction. Our evaluation of
different Ueg values within the range of 0.5-2.0 eV indicated that the
Uesr= 1.0 eV for the 3d orbital of Ni gives the most consistent description
of various magnetic energetics over the range of atomic volumes of
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Fig. 3. DFT-calculated configuration-dependent phonon DOS of three spin
configurations (SC) in the crystallographic a monoclinic P2;/n YNiO3 phase,
including (a) the spin ground state AFM configuration (SC_45 with the low
energy), and (b)-(c) the two AFM configurations above the spin ground state
(SC_24 and SC_52 with the medium energy and high energy, respectively).
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monoclinic P2;/n YNiOs. As confirmed in our previous work [57], the
predicted local spin moment of the magnetic Ni sites, the highest phonon
frequency at the I" point and the band gap are all in excellent agreement
with those values measured from experiments. As such, we used U =
1.0 eV for subsequent calculations in the present work. Recall that the U
in DFT is not the U in the Hubbard Hamiltonian, as the former acts
merely to partially cancel self-interaction but does not represent a strong
on-site correlation. Indeed, the numerical value of Uegr = 1.0 eV in DFT is
very different (by a factor of 5 or 10) from the value appropriate for Ni in
Hubbard Hamiltonian modeling.

For the first-principles calculations, a plane wave cutoff energy of
520 eV was used. The k-point meshes [66] in reciprocal space were the
I'-centered 6x4x4 for the 80-atom supercell. The total energy conver-
gence tolerance was set as 107 eV/atom. Local spin moment was ob-
tained by integrating the spin density within the PAW spheres (i.e., the
setting of LORBIT = 11 in VASP) [69]. For each spin configuration, the 0
K total energy was calculated at seven volumes in the vicinity of equi-
librium volume. The resultant energy vs. volume data points were fitted
by the four-parameter Birch-Murnaghan equation of state (EOS), based
on which the equilibrium volume (Vp), energy (Eo), bulk modulus (By),
and its pressure derivative (B'p) can be determined, as shown in
Table AIII of Appendix [. The obtained energy for each spin configura-
tion was used as the 0 K energy. i.e., E;(V,T= 0) in Eq. (8).

4.2. DFT phonon calculations and vibrational contribution to free energy

To obtain the vibrational contribution for the monoclinic P2;/n
YNiO3z phase shown in Fig. 1(b), phonon calculations were performed at
five volumes near the equilibrium volume for each of the spin configu-
rations of the o monoclinic P2;/n YNiOs. Using the supercell approach
[70] with VASP as the computational engine, the Hessian matrix and
force constants were obtained using the 80-atom 1x2x2 supercell.
Fourier transformation of the resultant force constants yields the
dynamical matrix, and the diagonalization of the dynamical matrix gives
the phonon frequencies and eigenvalues for each selected q point in the
reciprocal space. Integration over a large sample of q vectors in the
entire Brillouin zone yields phonon density of states (DOS), based on
which relevant thermodynamic properties, such as the vibrational free
energy and entropy, can be acquired [71]. Fig. 3 shows the calculated
phonon DOS at the equilibrium volume of three spin configurations in
the o monoclinic P2;/n insulating YNiOs, including the spin ground
state AFM configuration (SC_45) and two other AFM configurations
(SC_24 and SC_52) above the spin ground state. There are no imaginary
phonon modes, indicating that these spin configurations are dynami-
cally stable at 0 K.

Based on the results of DFT phonon calculations, the vibrational
contribution to free energy at finite temperature can be obtained by:

hw

Fup(V,T) = ksT / ln{Z sinh {W} } 2(w)dw a16)
0

where kg is the Boltzmann constant, # is the Planck constant, w is the
phonon frequency, and g(w) is the phonon DOS. The vibrational free
energy of Eq. (16) can be used to obtain the single configuration
F,(V, T) in Eq. (8). We find that the direct DFT phonon vibrational free
energy calculations can be simplified with little loss of accuracy by
replacing the more computationally demanding phonon calculations by
the Debye model [72], where the Debye temperature is determined from
the Debye-Griineisen model with a nearly constant scale factor sp, as
explained in Appendix II.
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Fig. 4. (a) Relative calculated configuration dependent internal energy AE per
20-atom unitcell vs. volume based on Eq. (8) for the 37 independent spin
configurations (SC) belonging to the 80-atom 1x2x2 supercell of the o
monoclinic P2;/n YNiOs3 at 0 K, and (b) relative Helmholtz energy AF at 150 K,
together with (c) the relative Gibbs energy AG (G = F + PV with P being the
pressure) normalized to thermal energy kT for each spin configuration as a
function of temperature. The energy vs. volume curves are fitted by the Birch-
Murnaghan four-parameter EOS, where the energy of the spin ground state
AFM configuration at its theoretical equilibrium volume is taken as the refer-
ence state, and the red point indicates the equilibrium volume of the spin
ground state AFM configuration. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Temperature-dependent thermal populations for different spin config-
urations (SC) of the monoclinic P2;/n YNiO3 at 0 GPa, including the AFM
ground state (GS) and the sum over the remained spin configurations (i.e., the
spin non-ground state configurations) with (a), and without (b) the vibrational
contribution. The solid vertical line denotes the measured Néel temperature
(Ty = 145 K) of the monoclinic P2;/n YNiO3 [44].

5. Results and discussion

5.1. Configurational dependence of volume-minimized internal energy
and free energy

The T = 0 K internal DFT energies were obtained for each spin and
space configuration belonging to the crystallographic ground state of
monoclinic P2;/n YNiOs. The corresponding internal energy vs. volume
plots fitted by the Birch-Murnaghan EOS are shown in Fig. 4(a) for all 37
independent spin configurations, where the reference state is taken as
the minimum energy of the spin ground state AFM configuration shown
in Fig. 2(f) at its equilibrium volume. The equilibrium volume, energy,
bulk modulus, and derivative of bulk modulus with respect to pressure
for these individual spin configurations were summarized in Table AIII
of Appendix I. There are a number of spin configurations with their
energies close to that of the spin ground state AFM configuration. The
energy difference between the spin FM configuration and the spin
ground state AFM configuration is 25.53 meV per 20-atom unit cell, and
was used together with their energy values listed in Table AIII of Ap-
pendix I as the 0 K energy in Eq. (8) to calculate the Helmholtz energies
for each spin and space configuration.

The Helmholtz energies of these spin configurations at finite tem-
perature were obtained from Eq. (8). Helmholtz energy vs. volume at T
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= 150 K (i.e., around the Néel temperature) is plotted in Fig. 4(b) with
the Helmholtz energy of the spin ground state AFM configuration at its
theoretical equilibrium volume, denoted by the red circle, as the refer-
ence. The Gibbs energy (G = F + PV with P being the pressure)
normalized to thermal energy kT, i.e., AG/kT, is presented in Fig. 4(c)
with respect to the spin ground state AFM configuration as a function of
temperature for the 37 spin configurations of the monoclinic P2;/n
YNiO3 at 0 GPa. The dramatical decrease of AG/kT with respect to the
increase of temperature indicates the increase of thermal populations of
spin non-ground state configurations at elevated temperatures, as re-
flected by Eq. (10).

From Fig. 4(a) and (b), one can see that the SC_36 has the lowest
internal energy among all spin non-ground state configurations at 0 K,
followed by the SC_34, SC_33, SC_38, SC_26, and SC_15 (see also
Table AIll in Appendix I, together with their phonon DOS in Figure A1 of
Appendix I). However, at 150 K, the SC_38 has the lowest free energy
among all spin non-ground state configurations due to the higher en-
tropy of SC_38. SC_38 is followed by the SC_36, SC_34, SC_33, and SC_15
in increasing order of free energy. This is also shown in Fig. 4(c) that the
free energy of SC_38 is the closest to that of the SC_45 spin ground state
configuration over the temperature range considered.

Fig. 4(a) further shows that the energy curve of the SC_45 spin
ground state AFM configuration does not cross any energy curves of spin
non-ground state configurations in the volume range plotted. To further
study the stability of various spin configurations at 0 K, the energy-
volume curves are plotted in Figure A2 of Appendix I with a wider
range of volume for the SC_45 spin ground state AFM configuration and
the low energy spin non-ground state configurations. It can be seen that
the energy curve of the SC_45 spin ground state AFM configuration
mergers into the SC_36 at a smaller volume, corresponding to a positive
pressure around 17.5 GPa, and at a larger volume, corresponding to a
negative pressure around —13.5 GPa (see inserts in Figure A2b). These
observations indicate that the transitions between the spin ground state
and non-ground state configurations at 0 K are second-order in nature.

5.2. The AFM-to-PM Néel transition and the role of phonons

5.2.1. Configuration-dependent thermal population and Néel transition
temperature

Based on Egs. 9-11, we obtain the temperature evolution of the
thermal population coefficients for each spin and space configuration in
the superposition phase of monoclinic P2;/n YNiOs. Fig. 5(a) and (b)
show the predicted T-dependent thermal populations of all spin con-
figurations at 0 GPa with and without the vibrational contribution,
respectively. As reflected in Fig. 5(a) that below ~50 K the system is
dominated by the spin ground state AFM configuration with its thermal
population close to 1; above ~50 K, the thermal populations of those
spin non-ground state configurations become substantial, and their
summation equals to that of the spin ground state AFM configuration at
T = 144 K. Because the behavior of the superposition phase reflects the
spin-disordering state, the cross point in Fig. 5 with the thermal popu-
lation of the spin ground state AFM configuration being 0.5 can be
defined as the Néel transition temperature (Ty) of monoclinic P2;/n
YNiO3. More spin non-ground state configurations appear above 144 K,
with the sum of their thermal populations larger than that of the spin
ground state AFM configuration. This indicates the predominance of the
spin-disordered PM phase in the monoclinic P2;/n YNiO3 system. It is
remarkable that without fitting parameters the calculated AFM-to-PM
transition temperature of 144 K is in good agreement with the experi-
mental observation that the monoclinic P2;/n YNiO3 system transforms
from the spin-ordered AFM phase to the spin-disordered PM phase at
~145 K [44,60,73].

As shown in Fig. 4(c), the spin ground state AFM configuration has
the lowest free energy in the temperature range considered under 0 GPa
pressure, implying that no transition would take place if we compare the
free energy of individual spin configurations, since the spin ground state
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Fig. 6. Calculated AFM-to-PM temperature and pressure (T-P) phase diagram
of the monoclinic P2;/n YNiO3 system. The parabolic shape suggests both a
positive pressure transition and a negative pressure transition. The black line
shows the present prediction from the cross point of thermal populations be-
tween the spin ground state AFM configuration and the summation of other spin
configurations (i.e., xapm = 0.5). The red sphere denotes the value measured
from experiments [44]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

AFM configuration should be stable at this temperature range. At the
same time, it shows that the free energy difference normalized to the
thermal energy decreases dramatically with the increase of temperature,
indicating that the thermal populations of those spin non-ground state
configurations increase with temperature, as described by Eq. (10). This
results in the contribution of magnetic configurational entropy
Sconf(V, T) to the free energy of the monoclinic P2;/n YNiO3 system, as
reflected in Eq. (9). As such, the thermal populations for these spin
configurations in monoclinic P2;/n YNiOs system increase with tem-
perature due to the contribution from Scs(V, T), which makes the
prediction of AFM-to-PM phase transition of monoclinic P2;/n YNiO3
system possible.

In typical statistical mechanics, the internal energy is used in the
partition function rather than the free energy as in our superposition
method, as shown by Eq. (6) [39]. For comparison, Fig. 5(b) plots the
thermal populations of all spin configurations without the vibrational
contribution in Eq. (8), showing that the thermal population of the
SC_45 spin ground state AFM configuration reduces to about half at 81 K,
much lower than 144 K with the vibrational entropy included in Fig. 5
(a). This is due to the fact that the vibrational entropies of the majority of
spin non-ground state configurations are smaller than that of the spin
ground state AFM configuration, as shown in Figure A8 of Appendix I
Consequently, the total thermal population of spin non-ground state
configurations without the entropy contribution increases more with
temperature than with the vibrational entropy contribution, particularly
the SC_36, SC_33, and SC_34 spin non-ground state configurations, as
shown in Fig. 5(b). Furthermore, it is observed that the SC_36, SC_34,
SC_38 are the dominant spin non-ground state configurations with the
vibrational entropy contribution, while the SC_36, SC_33, and SC_34 are
the dominant spin non-ground state configurations without the vibra-
tional entropy contribution. This demonstrates the importance of using
free energy in the partition function.

5.2.2. The driving force for AFM-to-PM Néel transition

To understand the underlying physics associated with the AFM-to-
PM phase transition of monoclinic P2;/n YNiOs, we analyzed the con-
nections among free energies of various spin configurations and that of

Materials Today Physics 27 (2022) 100805

the system, along with the T-dependent thermal population. As shown in
Fig. 4, the free energy of all spin non-ground state configurations is
higher than that of the spin ground state AFM configuration in the
considered temperature range. This indicates that the free energy dif-
ferences between the spin non-ground state configurations and the spin
ground state AFM configuration would not result in variation of spin
configurations in the system, as the free energy of the system would
increase with the addition of the spin non-ground state configurations.
This is reflected by the summation term in Eq. (9). There is also evidence
from Eq. (9) that the free energy of the system can be reduced by the last
term in Eq. (9), i.e., the magnetic configurational entropy with respect to
the competition of the spin ground state and non-ground state config-
urations. This magnetic configurational entropy increases with tem-
perature, as shown by Fig. 9(b) in Section D, due to the increase of
thermal populations of those spin non-ground state configurations, as
reflected by Eq. (10) and Fig. 5(a). It is worthwhile to mention that such
specific entropy is not the alloy-like entropy due to mixing atoms, but
rather a different entropy due to mixing configurations of various motifs
in a non-alloyed system.

5.2.3. The pressure-dependence of the AFM-to-PM Néel transition

The temperature and pressure phase diagram for the AFM-to-PM
phase transition of the monoclinic P2;/n YNiO3 system is depicted in
Fig. 6 with the experimental value at 0 GPa denoted by the red sphere.
With increasing pressure, the AFM-to-PM transition temperature in-
creases and then decreases. This varying trend of T-P correlation in the
monoclinic P2;/n YNiOg is in correspondence with that reported for
other magnetic materials [74]. As shown in both Figs. 5 and 6, an
excellent agreement between the present calculation and the experi-
mental measurement is achieved for the AFM-to-PM phase transition in
monoclinic P2;/n YNiO3 system at the pressure of 0 GPa.

As the transition temperature approaches 0 K, it is manifested as a
phenomenon known as quantum phase transition, which is beyond the
scope of the present work. It is noted that the pressure range for the AFM
phase at 0 K is between —7.5 and 15 GPa, which is narrower than —13.5
to 17.5 GPa obtained from Figure A2 in Appendix I. This is because the
zero-point energy was not included in Figure A2. With increasing tem-
perature, the magnetic configurational entropy becomes more impor-
tant, which increases the thermal populations of those spin non-ground
state configurations and results in the narrower pressure range of the
AFM phase region. Fig. 6 shows that the Néel temperature reaches its
maximum of 146 K at around —1.15 GPa so that in the negative pressure
region, the Néel temperature increases with the increasing pressure;
while in the positive pressure region, the Néel temperature decreases
with increasing pressure. In comparison with the previous models, the
present DFT-based superposition approach can be considered as an
improved parameter-free thermodynamic model using the collinear spin
configurations. Furthermore, more spin configurations are included in
the present superposition approach than in the SQS method for
describing the spin-disordered PM phase of RNiO3 [55]. In this context,
our temperature-dependent DFT-based thermodynamic model for posi-
tionally and magnetically disordered phases provides a predictive
approach for investigating the magnetic phase transition of nickelates
and the underlying mechanism behind such order-to-disorder phase
transition.

5.3. The polymorphous distribution of magnetic moment

5.3.1. Total and local magnetic moment at 0 K

The distribution of local magnetic moments on Ni sublattice (my; for
Ni;—Nijg) in the 37 spin configurations of the monoclinic P2;/n YNiOg at
0 K is shown in Figure A3(a) of Appendix I, together with their detailed
values in Table AIl of Appendix I. As discussed above, there are two
asymmetrical Ni sites with small and large magnetic moments, which
form the centers of the small and large oxygen octahedral clusters in the
monoclinic P2;/n YNiOs, respectively. The local magnetic moments of
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Fig. 7. Predicted Ni-site dependent local magnetic moment as a function of
temperature for the monoclinic P2;/n YNiOs, averaged over the 37 spin con-
figurations based on my; = Z}-J,ox”j(T)-mNiU), where x,;(T) is the T-dependent
thermal population of o, and my; ;) is the corresponding magnetic moment of a
specific Ni atom in o, and j = 1, 2, ...denotes the 37 spin configurations. The
solid vertical line denotes the measured Néel temperature (Ty = 145 K) of the
monoclinic P2;/n YNiO3 [44].

Ni sites are within 0.00-0.54 pg/atom for Ni;—Nig and 1.10 pp/atom for
Nig—Nijg. These results are in good agreement with the experimental
values measured from magnetic intensities [44], where the two ineq-
uivalent Ni sites have the average magnetic moment values of 0.71 and
1.41 pp/atom, respectively. The distributions of total magnetic moment
(Myotar) for the 37 spin configurations at T = 0 K are present in Figure A3
(b) of Appendix I, arranged into five sets in terms of the total magnetic
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moment from 0.00 pp/80 atom-supercell of AFM configuration to 15.50
pe/80 atom-supercell of FM configuration and into subsets in terms of
their energies with respect to that of the spin ground state AFM
configuration.

5.3.2. Temperature-dependent local magnetic moment of Ni sites

Based on the thermal populations and the local magnetic moment on
Ni sites in each of these spin configurations, the T-dependent magnetic
moment on Ni sites can be evaluated from Eq. (7). Specifically, the
average magnetic moment of Ni atom (my;) is evaluated by my; =
Zfzoxgj(T) “Myi(j), where x,;(T) is the T-dependent thermal population of
a specific spin configuration ¢, and my;; is the corresponding magnetic
moment of a specific Ni atom in o, and j = 1, 2, ...denotes the 37 spin
configurations in the a monoclinic P2;/n YNiOs. The variation of the
average magnetic moment of each Ni site with respect to temperature is
shown in Fig. 7. It can be seen that the average spin moments of the
magnetic Ni atoms (i.e., Nig-Nijg) decrease from the initial 1.10 pg/
atom to a value within 0.00-0.50 pp/atom as the temperature increases;
whereas the average spin moments of those nonmagnetic Ni atoms (i.e.,
Ni;-Nig) remain around 0.00 pg/atom. Below 50 K, the spin ground state
AFM configuration with half magnetic Ni atoms (1.10 pg/atom) and half
nonmagnetic Ni atoms (0.00 pp/atom) dominates the system in terms of
the average magnetic moment; whereas the average magnetic moment
of Ni sites changes gradually above ~50 K, signifying the appearance of
the spin-disordering state in the monoclinic P2;/n YNiO3 system.

To further understand the effect of temperature on magnetic prop-
erties, we calculate the temperature-dependent distribution of local
moments (M) from the superposition method as:
ij(,j(T) -M<DL)U]., where M(DL)gj is the spin distribution of 6, and j = 1, 2,

Mp) =

...corresponds to the 37 spin configurations in the a monoclinic P2;/n
YNiOs. In these calculations, we assumed that there are two equivalent
structures (i.e., FM with magnetic moments -p and FM with magnetic
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Fig. 9. Predicted thermodynamic quantities of the monoclinic P2,/n YNiO3 system as a function of temperature from the present superposition approach, including
(a) thermal expansion coefficient, (b) magnetic configurational entropy, (c) bulk modulus, and (d) magnetic contribution to heat capacity under the pressure of 0
GPa. The solid vertical line denotes the Néel temperature (Ty = 145 K) of the monoclinic P2;/n YNiO3 measured in experiment [44].

moment +1) and that for every spin configuration, there is an equivalent
spin configuration where all spins are reversed. The results, shown in
Fig. 8(a), demonstrate that while AFM YNiO3 at 0 K can indeed be
described as the system having two unique spin environments (i.e.,
nonmagnetic and magnetic Ni sublattices), the increase of temperature
induces broadening of the local spin motifs. Importantly, above 0 K but
below Ty, the AFM YNiOs cannot be described with only two single
magnetic moments. For instance, at 100 K, Ni sites in the compressed,
small octahedra have magnetic moments in the range of |0.26| + 0.26
pp, while Ni sites in large, expanded octahedra the moments are in the
range of |1.07| + 0.09 pp. As the temperature increases above Ty, the
distribution of local magnetic moments resembles that found in the spin
quasi-random PM models [75]. These results thus demonstrate that
paramagnetic phases of Mott insulators cannot be described within
nonmagnetic assumption, which has led to the famous (false) break-
down of band theory [76-80], namely predicting zero gap in the PM
phase. We now understand that this was not a breakdown of band theory
but rather a breakdown of the assumed minimal long-range ordered unit
cell [7].

5.4. Thermodynamic quantities and spin SRO from the DFT superposition
approach

5.4.1. Temperature-dependent thermodynamic quantities

The Helmholtz energy of the monoclinic P2;/n YNiO3 system is ob-
tained from the present superposition approach via Eq. (9). Accordingly,
relevant thermodynamic quantities with respect to temperature and
volume, including the thermal expansion coefficient, entropy, bulk
modulus, and heat capacity of the superposition phase can be derived
from Egs. 12-15. The results are presented in Fig. 9. All these quantities
change monotonically with respect to temperature, except the magnetic
contribution to heat capacity (i.e., Cp,y), which exhibits a maximum
around 128 K as depicted in Fig. 9(d), indicating a Schottky anomaly. As
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heat capacity is related to the derivative of entropy to temperature, this
suggests the maximum entropy increases around 128 K, which is indeed
shown in Fig. 9(b), with the slope reaching the maximum at this tem-
perature. This is reflected in Fig. 5(a) that the thermal populations of the
two dominant spin non-ground state configurations, i.e., SC_38 and
SC_36, reach their maximum values at around 128 K though the total
population of spin non-ground state configurations continues to increase
with temperature, but at a descending rate. This is primarily related to
magnetic configurational entropy induced by the mixing of various spin
configurations, as confirmed in many magnetic materials [63,81,82]. As
a second-order transition, such as the present AFM-to-PM transition of
monoclinic P2;/n YNiOs, is defined by the discontinuity in heat capacity
of the system, thus this can be correlated to the temperature of
maximum heat capacity with the Néel temperature, which is supported
by the fact that this temperature is indeed close to the values predicted
from both the thermal populations discussed in section B and experi-
mental measurement from magnetic intensity [44,73]. In this context,
the magnetic configurational entropy due to thermodynamic fluctua-
tions of spin ground state and non-ground state configurations at finite
temperature is responsible for the anomaly variation in heat capacity of
the monoclinic P2;/n YNiOs system. It is noteworthy that here the
specific entropy is not the alloy-like entropy due to mixing atoms, but
rather a different entropy due to mixing configurations of various motifs
in a non-alloyed system.

5.4.2. Temperature-dependence of the spin short-range order
Temperature does not only induce the change of absolute magnetic
moments on the Ni sublattice, but also affects the spin SRO. We first
calculate the distribution of total magnetic moments around each Ni
atom in the first coordination sphere (referenced here as a local mag-
netic motif) using the superposition approach. The results shown in
Fig. 8(b) demonstrate that at T = 0 K, the total magnetic moments in the
first coordination sphere are always zero — the spins are perfectly
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Fig. 10. Temperature-dependence of spin SRO computed as SRO = 1 — %,

where SD(T) is the standard deviation of the distribution of total magnetic
moments around Ni atom in the monoclinic P2;/n YNiO3 within its 1st coor-
dination sphere, and SD(SQS) is in the spin-SQS model used in Ref. [75]. The
solid vertical line denotes the measured Néel temperature (Ty = 145 K) of the
monoclinic P2;/n YNiO3 [44].

ordered. Indeed, in the lowest energy AFM monoclinic P2;/n YNiOsg,
each magnetic/nonmagnetic Ni site has 6 nonmagnetic/magnetic AFM
Ni atoms with accumulated zero magnetic moments. As temperature
increases, the zero local spin motifs remain dominant, but there is the
appearance of nonzero magnetic motifs, whose contribution increases
with temperature, which can be seen by the broadening of distribution
of local spin motifs (Fig. 8(b)). All these results can be understood from
the breaking spin SRO (Fig. 10), which is calculated as SRO =

1- %%, where SD(T) is the standard deviation of the distribution of
total magnetic moments around Ni atom in monoclinic P2;/n YNiOg
within its 1st coordination sphere as computed by the superposition
method, and SD(SQS) is in the spin-SQS model (i.e., high-temperature
limit of paramagnetic state) used in Ref. [75]. Importantly, these re-
sults demonstrate that as temperature increases, the SROs within the

first coordination sphere approach that of the spin-SQS model.
6. Conclusions

A superposition approach to density functional thermodynamics on
the basis of ensemble partition function with inputs being determined
from first-principles calculations is utilized to predict the AFM-to-PM
transition of monoclinic disproportionated P2;/n YNiOs in the nickel-
ates family. The mixing of various configurations at finite temperature is
quantitatively addressed, providing accurate temperature-dependent
density functional thermodynamics of positionally and magnetically
disordered phase, and revealing the important role of spatial fluctua-
tions in the AFM-to-PM phase transition. It was demonstrated that a
complete description of the magnetic transition from the low tempera-
ture spin-ordered AFM phase to the high temperature spin-disordered
PM phase of monoclinic disproportionated P2;/n YNiOs can be ach-
ieved. The magnetic configurational entropy, which derives from the
competition among spin ground state and non-ground state

12

Materials Today Physics 27 (2022) 100805

configurations, is responsible for the occurrence of the AFM-to-PM
transition in monoclinic disproportionated P2;/n YNiOs. The pre-
dicted Néel temperature for the monoclinic disproportionated P2;/n
YNiO3 of 144 K at 0 GPa is in good agreement with the experimental
value of 145 K. Our investigations offer an improved parameter-free
thermodynamic model, and thus provide an alternative method to un-
derstand the rich landscape of perovskite nickelates.
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Appendix I. Local magnetic moments of Ni in the 40-atom and 80-atom supercells

This section focuses on the local magnetic moments of Ni sites in different spin configurations at T = 0 K, with respect to the reason for setting the
initial zero moment of half Ni atoms in the monoclinic P2;/n YNiO3 phase. The minimum cell of the YNiO3 phase contains ABO3 formula units (f.u.), i.
e., the 20-atom unit cell. Here we firstly use a 40-atom 1 x /2 x v/2 supercell with eight Ni ions, which appear in a total of 256 spin configurations
(SC). These configurations can be further reduced to 63 independent ones by considering the degeneracy factor through the symmetry analysis [56].
We performed DFT total energy calculations for these spin configurations. The results listed in Table Al shows the local magnetic moment of each Ni
atom, and total energy with respect to the lowest energy (AE) for the 63 independent spin configurations in the 40-atom 1 x v/2 x v/2 supercell of the
monoclinic P2;/n YNiOs. The AFM configuration with minimum energy is taken as the reference state for each case (AE). Accordingly, these spin
configurations can be grouped in terms of AE: including those 15 spin configurations in low energy state (AE: 0-6 meV/unitcell), 17 spin configu-
rations in medium energy state (AE: 18.8-19.2 meV/unitcell), and the remaining spin configurations in high energy state (AE: > 65 meV /unitcell). It is
found that the two inequivalent Ni sites in these 63 spin configurations have asymmetrical magnetic moment. Remarkably, those low-energy states are
all AFM configurations, where half of the Ni atoms are nonmagnetic with zero spin moment, while the other half are magnetic with spin moment of
1.10-1.19 pp/atom. They are labeled as Ni_s and Ni_l being the centers of the small and the large oxygen octahedra in monoclinic P2;/n YNiO3 phase,
respectively, as shown in Table Al These predicted results are in good correspondence with the experimental measurements [46], where the spin
moments of the nonmagnetic Ni site and magnetic Ni site is 0.71 pg/atom and 1.41 pg/atom, respectively. Since the low-energy configurations are
determinative for the present superposition thermodynamic model, the initial magnetic moment of half Ni atoms in the spin configurations of
supercells was set as zero for subsequent calculations.

Table Al

Calculated local magnetic moment (my;: pp/atom) of Ni sites in the 63 independent spin configurations (SC) belonging to the 40-atom 1 x v/2 x /2 supercell of the
monoclinic P21/n YNiO3 system, together with the total energy (AE: meV per unitcell) relative to the minimum-energy AFM state.

SC_No. myis mpis myis myis myiL mpyi myi myi AE
SC0 0.56 0.56 0.56 0.56 1.05 1.05 1.05 1.05 18.82
SC2 0.34 0.16 0.34 0.16 -1.11 1.14 1.04 1.14 19.12
SC_3 0.54 0.54 0.54 0.54 —-0.25 -0.25 0.82 0.82 141.15
SC 4 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 5.39
SC5 0.56 0.56 0.56 0.56 1.05 1.05 1.05 1.05 18.82
SC_6 0.13 0.24 0.13 0.24 -1.10 0.16 1.05 0.95 106.32
SC7 0.16 0.34 0.16 0.34 -1.11 1.14 1.14 1.04 19.09
SC8 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 5.39
SC9 0.30 0.26 0.26 0.30 —0.32 1.10 —-0.32 1.10 172.07
SC_10 0.16 0.34 0.34 0.16 -1.11 1.14 1.04 1.14 19.12
SC_11 0.34 0.16 0.16 0.34 -1.11 1.14 1.14 1.04 19.09
SC_12 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 5.39
SC_13 1.19 -1.19 1.19 -1.19 -0.16 0.16 —0.16 0.16 65.91
sC_14 0.13 0.24 0.13 0.24 -1.10 0.16 1.05 0.95 106.21
SC_15 0.28 —0.57 0.26 0.64 -1.07 0.58 0.54 1.00 82.79
SC_16 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 5.39
SC_17 —0.86 0.27 —0.86 0.27 0.26 0.26 —-0.89 —0.89 153.53
SC_18 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 0.00
SC_19 -0.16 —0.34 —0.16 —0.34 -1.14 —1.04 —-1.14 1.11 19.09
SC_20 0.17 -0.17 0.17 -0.17 -1.19 -1.19 1.19 1.19 65.08
SC_22 —0.16 —0.34 -0.16 —-0.34 -1.14 —1.04 —1.14 1.11 19.09
SC_23 -0.17 0.17 0.17 -0.17 -1.19 -1.19 1.19 1.19 65.08
SC_24 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 0.00
SC_25 0.23 0.22 0.22 0.23 0.96 -1.11 —-0.15 1.04 97.12
SC_26 0.17 -0.17 0.17 -0.17 -1.19 -1.19 1.19 1.19 65.08
SC_27 0.00 0.00 0.00 0.00 -1.10 —-1.10 1.10 1.10 0.00
SC_29 —0.56 —0.56 —0.56 —0.56 —1.05 —1.05 —1.05 -1.05 18.82
SC_30 —0.82 —0.52 —0.82 —0.52 -0.76 —0.85 —0.85 0.24 76.68
SC_31 -0.17 0.17 —-0.17 0.17 -1.19 -1.19 1.19 1.19 69.08
SC_32 -0.34 -0.16 —0.34 —0.16 —1.04 —-1.14 —1.14 1.11 19.12
SC_33 0.17 -0.17 -0.17 0.17 -1.19 -1.19 1.19 1.19 65.08
SC_34 —0.16 —0.34 —0.34 —0.16 —1.04 -1.14 —1.14 1.11 19.12
SC_35 -0.17 0.17 —-0.17 0.17 -1.19 -1.19 1.19 1.19 65.08
SC_37 —0.56 —0.56 —0.56 —0.56 -1.05 —1.05 -1.05 -1.05 18.82
SC_41 —-0.91 —-0.91 —-0.07 -0.07 -1.03 —0.04 —1.03 —0.04 133.35
SC_42 -0.17 -0.17 —-0.25 —0.25 —1.04 -0.16 1.11 —-0.94 102.28
SC_43 -0.03 —0.03 0.19 0.19 —-1.01 1.16 1.16 0.15 140.49
SC_44 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 5.39
SC_45 -1.10 -1.10 1.10 1.10 0.00 0.00 0.00 0.00 0.71
SC_46 0.22 0.23 0.23 0.22 -1.11 0.96 1.04 -0.15 97.50
SC_47 0.15 0.24 0.24 0.15 -1.11 0.95 0.17 1.05 102.81
SC_48 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 5.39
SC_49 0.17 -0.17 0.17 —-0.17 -1.19 1.19 -1.19 1.19 65.08
SC_50 0.34 0.16 0.34 0.16 -1.11 1.14 1.04 1.14 19.12
SC.51 0.16 0.34 0.16 0.34 -1.11 1.14 1.14 1.04 19.09
SC_53 0.17 0.17 -0.17 -0.17 -1.19 —-1.19 1.19 1.19 65.08
SC_54 0.00 0.00 0.00 0.00 -1.10 —1.10 1.10 1.10 0.00
SC_56 -0.17 0.17 0.17 -0.17 -1.19 -1.19 1.19 1.19 65.08
SC_57 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 0.00
SC_62 -0.17 -0.17 0.17 0.17 -1.19 -1.19 1.19 1.19 65.08

(continued on next page)
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Table AI (continued)

SC_No. myis myis myis myis myiL myiL myi L myiL AE
SC_64 0.17 -0.17 —-0.17 0.17 -1.19 -1.19 1.19 1.19 65.08
SC_71 0.27 0.27 —0.86 —0.86 0.26 —0.89 0.26 —0.89 153.53
SC_72 0.08 0.08 0.24 0.24 —-1.06 1.15 —0.26 1.15 136.17
SC_73 -0.15 -0.15 —0.24 —0.24 —1.05 -0.17 —0.95 1.11 102.86
SC_74 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 5.39
SC_76 0.34 0.16 0.16 0.34 -1.11 1.14 1.04 1.14 19.12
SC_.77 0.16 0.34 0.34 0.16 -1.11 1.14 1.14 1.04 19.09
SC_79 -0.17 -0.17 0.17 0.17 -1.19 -1.19 1.19 1.19 65.08
SC_80 0.00 0.00 0.00 0.00 -1.10 -1.10 1.10 1.10 0.00

Then the 8 f,u. 40-atom supercell was raised to a minimum base cell of 16 f.u. (16 Ni-centered octahedra), i.e., 80 atoms of the P2;/n YNiO3. There
are 35 possible 80-atom supercells in terms of the spatial arrangements of four 20-atom base cells. Populating such an 80-atom supercell by restricting
the initial spin configuration (i.e., prior to the self-consistent calculation) to be 8 Ni atoms with zero moments and 8 Ni atoms with nonzero moments,
creates 256 spin configurations for each supercell, of which 37 are symmetry independent for the 80-atom 1x2x2 supercell used in the present work.
Table AII lists the calculated local magnetic moment of 16 Ni atoms in the 37 independent spin configurations belonging to the 80-atom 1x2x2
supercell of the monoclinic P2;/n YNiOs. It turns out that these 16 Ni atoms can be classified into two types, i.e., the nonmagnetic Ni sites including
Ni;—Nig with spin moment of 0-0.54 pg/atom, and the magnetic Ni sites including Nig—Ni; ¢ with spin moment of 1.10 pg/atom. Their distributions are
depicted in Figure A3 and are consistent with both those determined from the 40-atom supercell and those measured from experiments. Table AIIl
shows the results of energy-volume fitting data for the 37 independent spin configurations of the 80-atom 1x2x2 supercell, and their corresponding
multiplicity. The next step beyond the 16 f.u. cell (80-atom cell) is a 32 f.u. cell (160-atom cell) with 155 unique supercells in terms of the spatial
arrangements of eight 20-atom base cells. There are 65536 spin configurations obtained by considering half of the Ni atoms for each supercell as
nonmagnetic, and only 4992 are independent configurations for the 160-atom 2x2x 2 supercell. Table AIV provides relevant number of supercells and
spin configurations of the monoclinic P2;/n YNiOs involved in the finite temperature superposition method. The present work focuses on the 80-atom
1x2x2 supercell as the base model for the monoclinic P2;/n YNiOg system.

Table AII
Calculated local spin moment (my;: pg) of Ni atoms in the 37 independent spin configurations (SC) belonging to the 80-atom 1x2x2 supercell of monoclinic P2;/n
YNiO3 system.

SC_No. Mmni1 mni2 Mni3 MnNi4 MnNis Mni6 Mniz MnNig mni9 Mni10 Mni11 Mni12 Mni13 MNi14 Mni15 Mni16
SC.0 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
SC.2 0.36 0.17 0.51 0.17 0.36 0.49 0.50 0.49 —1.10 1.11 1.03 1.11 1.08 1.11 1.08 1.11
SC3 0.17 0.36 0.17 0.51 0.49 0.36 0.49 0.51 1.10 -1.11 1.11 1.03 1.11 1.08 1.11 1.08
SC_4 0.01 0.01 0.18 0.18 0.33 0.33 0.49 0.49 -1.10 -1.10 1.07 1.07 1.11 1.11 1.11 1.11
SC5 0.33 -0.17 0.33 -0.17 0.33 0.48 0.33 0.48 -1.15 1.14 -1.15 1.14 1.08 1.14 1.08 1.14
SC_6 0.18 0.01 0.01 0.18 0.49 0.33 0.33 0.49 1.07 —1.10 -1.10 1.07 1.11 1.10 1.10 1.11
SC.7 0.01 -0.31 0.01 -0.17 0.32 0.33 0.32 0.47 1.14 —1.08 -1.14 1.09 1.11 1.13 1.11 1.14
SC8 —0.16 0.33 —-0.16 0.33 0.48 0.33 0.48 0.33 1.15 -1.15 1.15 -1.15 1.15 1.09 1.15 1.09
SC9 —0.31 0.01 —0.17 0.01 0.33 0.32 0.47 0.32 —1.08 -1.14 1.09 -1.14 1.13 1.11 1.14 1.11
SC_10 -0.31 —0.31 -0.31 -0.31 0.31 0.31 0.31 0.31 -1.13 -1.13 -1.13 -1.13 1.13 1.13 1.13 1.13
SC_11 0.19 0.17 0.49 0.17 0.19 0.17 0.49 0.17 -1.13 1.14 1.05 1.14 -1.13 1.14 1.05 1.14
SC_12 —0.16 0.00 0.17 0.18 0.18 0.00 0.49 0.18 -1.12 —1.08 1.07 1.09 -1.12 1.12 1.08 1.12
SC_13 0.34 0.16 0.34 0.16 0.34 0.16 0.34 0.16 1.04 1.14 -1.10 1.14 -1.10 1.14 1.04 1.14
SC_14 0.17 —0.16 0.32 —0.16 0.17 0.16 0.32 0.16 -1.18 1.17 -1.15 1.17 -1.13 1.17 1.04 1.17
SC_15 0.01 0.01 0.01 0.17 0.33 0.01 0.33 0.17 1.07 —1.09 -1.10 1.10 —1.10 1.12 1.07 1.13
SC_16 —0.16 —0.31 0.00 —0.17 0.170.00 0.00 0.31 0.16 -1.16 -1.07 -1.14 1.11 -1.11 1.14 1.07 1.16
SC_17 —0.48 0.00 —0.18 0.00 0.18 0.00 0.48 0.00 -1.10 —0.98 1.10 —0.98 -1.10 0.98 1.10 0.98
SC_18 0.01 0.17 0.01 0.01 0.33 0.17 0.33 0.01 1.07 1.10 -1.10 -1.09 -1.10 1.13 1.07 1.12
SC_19 —0.16 —0.17 0.00 —0.32 0.17 0.16 0.32 0.00 -1.15 1.11 -1.14 —1.06 -1.11 1.15 1.06 1.14
SC_20 —0.33 0.00 —0.33 0.00 0.33 0.00 0.33 0.00 1.08 —0.98 —1.08 —0.98 —1.08 0.98 1.08 0.98
SC_22 0.17 0.19 0.17 0.49 0.17 0.19 0.17 0.49 1.14 -1.13 1.14 1.05 1.14 -1.13 1.14 1.05
SC_23 0.00 —0.16 0.18 0.17 0.00 0.18 0.18 0.48 —1.08 -1.12 1.09 1.07 1.12 -1.12 1.12 1.08
SC_24 0.00 —0.48 0.00 —0.18 0.00 0.18 0.00 0.48 —0.98 —1.10 —0.98 1.10 0.98 -1.10 0.98 1.10
SC_25 0.16 0.34 0.16 0.34 0.16 0.34 0.16 0.34 1.14 1.04 1.14 -1.11 1.14 -1.11 1.14 1.04
SC_26 0.01 0.01 0.16 0.01 0.01 0.33 0.16 0.33 -1.09 1.07 1.10 -1.10 1.12 -1.10 1.13 1.07
SC_27 —0.16 0.17 —0.16 0.32 0.17 0.17 0.16 0.32 1.17 -1.18 1.17 -1.15 1.17 -1.13 1.17 1.04
SC_28 -0.31 —0.16 -0.17 0.00 0.00 0.17 0.16 0.32 —1.06 -1.15 1.11 -1.14 1.14 -1.11 1.15 1.06
SC_29 0.17 0.01 0.01 0.01 0.17 0.33 0.01 0.33 1.10 1.07 -1.09 -1.10 1.13 -1.10 1.12 1.07
SC_30 0.00 —0.33 0.00 —0.33 0.00 0.33 0.00 0.33 —0.98 1.08 —0.98 —1.08 0.98 —1.08 0.98 1.08
SC_31 -0.17 —0.16 -0.32 0.00 0.16 0.17 0.00 0.32 1.11 -1.16 -1.06 -1.14 1.16 -1.11 1.14 1.06
SC_33 -0.18 -0.18 0.18 0.18 -0.18 —-0.18 0.18 0.18 -1.10 -1.10 1.10 1.10 -1.10 —-1.10 1.10 1.10
SC_34 0.00 —0.16 0.00 0.16 0.00 —0.16 0.00 0.16 1.09 -1.11 -1.09 1.11 —1.09 -1.11 1.09 1.11
SC_36 —0.16 0.00 0.16 0.00 —0.16 0.00 0.16 0.00 -1.11 1.09 1.11 —1.09 -1.11 -1.09 1.11 1.09
SC_38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.10 1.10 -1.10 -1.10 -1.10 -1.10 1.10 1.10
SC_42 0.15 —0.15 0.15 —0.15 0.15 -0.15 0.15 —-0.15 -1.16 1.16 -1.16 1.16 -1.16 1.16 -1.16 1.16
SC_45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —1.10 1.10 1.10 —1.10 1.10 -1.10 -1.10 1.10
SC.52 —0.16 0.16 —-0.16 0.16 —0.16 0.16 —-0.16 0.16 1.19 -1.19 1.19 -1.19 1.19 -1.19 1.19 -1.19
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Table AIII

Physical quantities of the 37 independent spin configurations (SC) belonging to the 80-atom 1 x2x 2 supercell of the monoclinic of P2;/n
YNiOg system, including the equilibrium volume (Vp: A3 per 20-atom unitcell), bulk modulus (By: GPa) and its pressure derivative (By’),
together with the energy (AEy: meV per 20-atom unitcell) relative to the spin ground state AFM configuration (SC_45), and the cor-
responding multiplicity for each spin configuration.

SC_No. Vo By By AE, Multiplicity
SC.0 206.45 196.59 4.21 25.53 2
SC.2 206.41 197.17 4.44 24.68 8
SC_3 206.41 197.22 4.45 24.61 8
SC_4 206.34 198.98 4.84 17.32 16
SC5 206.46 194.26 3.86 47.14 4
SC.6 206.35 197.71 4.54 16.35 16
SC7 206.34 195.15 4.23 31.66 16
SC8 206.46 194.32 3.89 47.04 4
SC9 206.32 195.05 4.35 31.72 16
SC_10 206.26 193.39 4.51 41.57 4
SC_11 206.41 196.73 4.32 26.08 4
SC.12 206.33 197.97 4.57 12.77 16
SC_13 206.39 196.79 4.09 23.08 4
SC_14 206.45 195.00 4.06 46.64 8
SC_15 206.28 197.52 4.53 9.52 8
SC_16 206.32 195.72 4.36 26.04 8
SC.17 206.31 194.55 4.29 23.54 4
SC_18 206.28 197.42 4.53 12.28 8
SC_19 206.34 195.26 4.15 27.70 8
SC_20 206.24 194.04 4.26 20.16 4
SC_22 206.40 196.18 4.28 25.77 4
SC_23 206.34 197.90 4.56 12.78 16
SC_24 206.31 194.53 4.28 23.56 4
SC_25 206.35 197.15 4.47 22.71 4
SC_26 206.28 197.54 4.53 9.50 8
SC_27 206.46 194.63 3.92 46.97 8
SC_28 206.32 195.70 4.36 26.03 8
SC_29 206.27 197.40 4.53 12.30 8
SC_30 206.21 194.61 4.60 19.76 4
SC.31 206.34 195.23 4.14 27.73 8
SC_33 206.33 198.22 4.58 4.18 4
SC_34 206.28 197.78 4.50 3.63 4
SC_36 206.28 197.80 4.50 3.60 4
SC_38 206.23 197.26 4.48 5.52 2
SC 42 206.57 193.41 3.88 73.61 1
SC_45 206.24 197.56 4.43 0 2
SC_52 206.62 194.68 3.62 72.69 1

Table AIV

Relevant information of the monoclinic P2;/n YNiOs3 involved in the superposition method, including the number of formula unit, the number of atoms, the number of
supercells, the objective supercell, the corresponding number of spin configurations and the number of unique spin configurations in each case. Note that the number of
spin configurations in the 40-atom 1 x /2 x /2 supercell is created by considering initial non-zero magnetic moment of all Ni sites, whereas that in the 80-atom
1x2x2 supercell and the 160-atom 2x2x2 supercell are created by considering initial non-zero magnetic moment of half of the Ni atoms.

Number of formula Number of atoms (atoms/ Numbers of such Objective Number of spin Number of unique spin
unit cell) supercell supercell configurations configurations

4 20 1 1x1x1 1 1

8 40 7 1x V2x V2 256 63

16 80 35 1x2x2 256 37

32 160 155 2x2x2 65536 4992
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Fig. Al. Calculated configuration-dependent phonon density of state (DOS) of four spin configurations (SC) in the monoclinic P2;/n YNiOs, i.e., SC_33 (a), SC_34 (b),
SC_36 (c), and SC_38 (d), respectively.
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Fig. A2. Calculated configuration-dependent energy-volume (a), and energy-pressure (b) diagrams at 0 K for the spin ground state configuration SC_45 and non-
ground state configuration SC_34, with the spin configurations and the second-order transition pressure shown as inserts in (b).
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Fig. A3. Ni-site dependent magnetic moment of the monoclinic P2;/n YNiOs. (a) Distribution of the local magnetic moments on 16 Ni atoms (my;) in the 37 in-
dependent spin configurations belonging to the 80-atom 1x2x2 supercell of monoclinic P2;/n YNiO3. Two inequivalent Ni sites are distinguished by the
nonmagnetic Ni atoms from Ni; to Nig with my; = 0.00-0.54 pg/atom, and the Ni atoms from Nig to Ni;¢ with my; denoted by my; = 1.10 pg/atom. (b) Histograms of
the total magnetic moment for each of the 37 independent spin configurations belonging to the 80-atom 1x2x2 supercell of monoclinic P2;/n YNiO3 at 0 K, based on
which these spin configurations are arranged into five groups with their energy relative to the spin ground state AFM configuration provided in the insert.

Appendix II. Vibrational contribution to the free energy: fitting the Debye model to DFT phonon thermodynamics

This section focuses on the lattice vibrational contribution to thermodynamics at finite temperature, and the evidence of how closely the Debye
model agrees with the DFT phonon free energy for different excited states.

Debye model approximation to the phonon free energy

As an alternative method to more computationally demanding phonon calculations, the Debye model for estimating the lattice vibrational
contribution to free energy is given by:

Fo(V.T) :gkga,) n kBT{3 In {1 - exp( —%)] - D(%)} (A1)

where O, is the Debye temperature, D(@p /T) is the Debye function. @p can be determined from the Debye-Griineisen model via:
n
B Vo”
Op = sAV (A;) (7‘)) (A2)

where s is the scaling factor, By is the bulk modulus, M is the average atomic mass, A = (6ﬂ2)]/3(h /kg) is a constant of 231.04 if Vin A%and Bin GPa, y
is the Griineisen parameter given by y = [(1 +Bj) /2 —x] with x = 2/3 for high temperature condition and x = 1 for low temperature condition. The
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usefulness of the Debye model depends on whether the scaling factor s, that produces an agreement between the Debye model, and the explicit DFT
phonon calculations of free energy will depend strongly or weakly on the spin non-ground state configurations (e.g., SC_24 and SC_52) in the supercell.
As shown in Figure A4, we tested this by comparing the Helmholtz energies from the phonon DOS presented in Fig. 3 in the main text. It is found that s
is close to each other, i.e., sp = 0.906 for the high-energy AFM state SC_52, and so = 0.861 for the medium-energy AFM state SC_24, and so = 0.898 for

the low-energy AFM state SC_45.
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Fig. A4. Calculated configuration-dependent Helmholtz energy (eV/cell-80atoms) as a function of volume (A%/cell-80 atoms) predicted by the Debye model and the
phonon calculations for the AFM configuration SC_45 at the spin ground state (a, b), as well as two AFM configurations above the spin ground state of SC_24 with
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Evidence of how closely Debye model reproduced DFT phonon free energy

As such, we make a systematic comparison for the vibrational contribution to free energy, and relevant thermodynamic properties of the
monoclinic P2;/n YNiO3. The according thermodynamic quantities (including heat capacity Cp, entropy S, enthalpy H, and Gibbs energy G) of the
AFM configurations at the low-energy, medium-energy and high-energy state (i.e., the spin ground state AFM configuration of SC_45, as well as the
two spin non-ground states AFM configurations of SC_24 and SC_52), predicted by the DFT phonon calculations in comparison with those by the Debye
model under zero external pressure are shown in Figure A5, Figure A6 and Figure A7, respectively. Noting that the results predicted by Debye model
with sp = 0.617, the value of which is usually used for metallic system, are also presented in Figure A5 for comparison. It turns out that the ther-
modynamic properties predicted by the Debye model are in good correspondence with those by the DFT phonon calculations. This indicates that
reasonable results can be obtained from the Debye model without performing the time-consuming first-principles phonon calculations for all of these
spin configurations. As such, we demonstrated that the Debye model do not change the main physics of the present work. Accordingly, the Debye
model with sp = 0.9 was used to acquire the vibrational contribution of individual spin configuration in the present work, i.e., F, ;5 (V, T) in Eq. (8). The
entropy of the 37 independent spin configurations in the monoclinic P2;/n YNiOg system as a function of temperature under the pressure of 0 GPa was
shown in Figure A8, where the entropy of spin ground state AFM configuration is taking as a reference.
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Fig. A5. Calculated configuration-dependent thermodynamic quantities at finite temperature of the spin ground state AFM configuration (SC_45 with low energy) for
the monoclinic P2;/n YNiO3 obtained by the DFT phonon calculations (red solid line) and the Debye model (so = 0.898 fitted to phonon data in green dot-dashed line
and sp = 0.617 commonly used for metals in blue dotted line), including (a) Heat capacity Cp, (b) Entropy S, (c) Gibbs energy G, and (d) Enthalpy H.
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Fig. A6. Calculated configuration-dependent thermodynamic quantities at finite temperature of the spin configuration above the spin ground state (SC_24 with
medium energy) for the monoclinic P2;/n YNiO3 obtained by the DFT phonon calculations and the Debye model, including (a) Heat capacity Cp, (b) Entropy S, (c)
Gibbs energy G, and (d) Enthalpy H. The results based on the DFT phonon calculations are denoted by the red solid line, and those based on the Debye model with
scaling factor of so = 0.861 adjusted using phonon data by the green dash line.
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Fig. A7. Calculated configuration-dependent thermodynamic quantities at finite temperature of the spin configuration above the spin ground state (SC_52 with high
energy) for the monoclinic P2;/n YNiO3 obtained by the DFT phonon calculations and the Debye model, including (a) Heat capacity Cp, (b) Entropy S, (c) Gibbs
energy G, and (d) Enthalpy H. The results based on the DFT phonon calculations are denoted by the red solid line, and those based on the Debye model with scaling
factor of sp = 0.906 adjusted using phonon data by the green dash line.
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