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Abstract—This paper studies linear regression models for high
dimensional multi-response data with a hybrid quantum comput-
ing algorithm. We propose an intuitively appealing estimation
method based on identifying the linearly independent columns
in the coefficient matrix. Our method relaxes the low rank
constraint in the existing literature and allows the rank to diverge
with dimensions. The linearly independent columns are selected
by a novel non-oracular quantum search (NQS) algorithm which
is significantly faster than classical search methods implemented
on electronic computers. Besides, NQS achieves a near optimal
computational complexity as existing quantum search algorithms
but does not require any oracle information of the solution state.
We prove the proposed estimation procedure enjoys desirable
theoretical properties. Intensive numerical experiments are also
conducted to demonstrate the finite sample performance of the
proposed method, and a comparison is made with some popular
competitors. The results show that our method outperforms all
of the alternative methods under various circumstances.

Index Terms—high dimensional data, Grover’s algorithm,
multi-response linear model, non-oracular quantum search,
quantum machine learning

I. INTRODUCTION

High dimensional multi-response datasets are ubiquitous in
machine learning applications. The component-wise analysis is
not desirable as it does not fully make use of the information
available. For example, the observations of one component
may contain the information for the others. Overlooking this
information will result in the loss of estimation efficiency. To
that end, it is necessary to take multivariate approaches for
multi-response data analysis. Over the past two decades, the
multi-response linear models in the high dimensional setting
have been attracting more and more attention than ever before.
In particular, many interesting developments in low rank high
dimensional multi-response linear models have appeared in
literature, see [1]–[7] and references therein. Let A ∈ Rp×q

be a coefficient matrix with rank r. A commonly assumed low
rank approximation is to decompose A to CDQ, where C and
Q are two matrices of size p × r̂ and r̂ × q with r̂ being an
estimator of r, and D is a diagonal matrix of size r̂. Different
approaches may result in different ways to estimate r, see [1],
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[5]. Although the existing approaches for estimating r enjoy
nice asymptotic properties, when the low rank assumption is
violated, we often come up against a dilemma: the estimation
of C, Q and D involves at least (p+q)r unknown parameters,
which is more than the unknown parameters in A without
using the decomposition when r > pq/(p + q). Besides, low
rank approaches can only determine A up to a rotation matrix.
Let us explain this with a toy example. Suppose we want to
apply SVD to a p by q matrix A and its randomly perturbed
version Ã = A + E, where E is an estimation error matrix.
Then, the first (in terms of the descending order of singular
values) left singular vector of Ã may accidentally estimate the
second left singular vector of A due to the presence of random
errors and/or the multiplicity of singular values. Further, we
refer to Theorem 4 in [8] for theoretical discussions.

Recently, a new line of studies [9], [10] propose to recover
the rank and estimate the multi-response linear models without
decomposing the coefficient matrix A. The intuition is to rep-
resent A by its linearly independent columns whose size equals
the rank r. Statistically, this new learning procedure is more
efficient than both least-squares approach and decomposition
based approaches as it only needs to estimate r(p + q) − r2

unknown parameters which is clearly less than pq. Despite the
statistical advantage of the new learning procedure, the rank
of A is estimated by selecting a set of linearly independent
columns that minimize a loss function. When r is unknown
and possibly diverges with p and q, identifying linearly
independent columns in A involves a combinatorial search
over all subsets of sizes {1, . . . ,min(p, q)} and hence is an
NP-hard problem [11]–[13]. Therefore, solving this problem
with electronic computers is computationally expensive if not
infeasible in high dimensional and large rank scenarios.

Unlike electronic computers, a quantum computer operates
on quantum processing units, or qubits, which can take values
0, 1, or both simultaneously due to the superposition property.
The left panel of Fig. 1 gives a visualized example of a qubit.
The number of complex numbers required to characterize
quantum states usually grows exponentially with the size of
the system. For example, a quantum system with q qubits can
be in infinite many superpositions of 2q orthonormal states
simultaneously, while a classical system can only be in one
state at a time [14]. Such a paradigm change has motivated
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Fig. 1: Left: Visualization of a quantum bit; Right: Geometric
interpretation for Grover’s operation

significant developments of scalable quantum algorithms in
many areas, see [15]–[21] and references therein.

However, existing quantum search algorithms [22]–[26] are,
in general, oracular algorithms that rely on an oracle to decide
if an item is a solution or not. For example, Grover’s algo-
rithm [22] requires an oracle function that can map all solution
states to 1 and all non-solution states to 0 with one operation.
However, such a piece of oracle information is usually not
available in machine learning applications as the solution is
generally a function of random observations. When the oracle
function is inaccurate, Grover’s algorithm may rotate the initial
superposition towards the wrong direction and can perform
as bad as a random guess. To overcome the limitations, we
propose a novel method named non-oracular quantum search
(NQS). For a combinatorial search over D = 2q models,
an electrical computing algorithm requires O(D) queries to
find the target model. In contrast, within O(log2D) iterations,
NQS converges to a superposition that heavily weighs on the
solution state and hence outputs the target model with a high
probability. The complexity of NQS is upper bounded by the
order O(

√
D log2D) which is only a log2D factor larger than

the theoretical lower bound for oracular quantum search [27].
Though the NP-hardness has not been fully conquered, NQS
has made a steady step to downscale the complexity of the
combinatorial search problem.

Our contributions. (1) The proposed estimation method
is statistically more efficient when the dimensions (p and
q) and the rank (r) are large. Besides, our approach avoids
the identifiability issue in low rank methods which can only
determine A up to a rotation matrix. (2) We propose a non-
oracular search algorithm (NQS) that is free of oracle infor-
mation. To the best of our knowledge, this is the first study
of a non-oracular quantum search algorithm. Besides, NQS
provides a general non-oracular quantum search framework
as the state loss function can be tailored for various machine
learning problems, such as best subset selection, support vector
machine, clustering, and optimal design problems.

II. MODEL AND ESTIMATION METHOD

Denote Y ∈ Rq a vector of all response variables and X ∈
Rp a vector of all covariates. The multi-response linear model
follows

Y = A⊤X + ϵ, (1)

where A ∈ Rp×q is a coefficient matrix with an unknown rank
r and r ≤ q < p, and ϵ ∈ Rq is a vector of random errors.
Further, we assume

E(ϵ|X) = 0 and cov(ϵ|X) = Σ.

When a p by q matrix A is of rank r, each column of A can be
written as a linear combination of the r linearly independent
columns of A. Motivated by this observation, we propose to
estimate A and rank r by recovering the linearly independent
columns of A.

Let {xi, yi}, i = 1, . . . , n, be a sample drawn from {X,Y },
with xi = (xi1, . . . , xip)

⊤ and yi = (yi1, . . . , yiq)
⊤. We

propose to estimate A by minimizing

Ln(s; j1, . . . , js) =
n∑

i=1

{
s∑

l=1

(
yijℓ − x⊤i ajℓ

)2
+

∑
k/∈{j1,...,js}

(
yik − x⊤i

s∑
ℓ=1

bkℓajℓ

)2}
, (2)

with respect to ajℓ ’s, bkℓ’s, s and {j1, . . . , js}, where 1 ≤
j1 < · · · < js ≤ q. For ease of presentation, the dependency
of xi’s, yi’s, ajℓ ’s and bkℓ’s has been suppressed in Ln(·).

For ℓ ∈ {1, . . . , ŝ}, denote the minimizer of (2) by

ŝ, D̂ = {ĵ1, . . . , ĵŝ}, âj , j ∈ D̂, and b̂kℓ, k ∈ D̂c,

where D̂c is the complement of D̂. Then, the j-th column

of A is estimated by âj , if j ∈ D̂ or
ŝ∑

ℓ=1

b̂jℓâĵℓ , if j ∈ D̂c.

The collection of these column-wise estimators, denoted as Â,
gives the estimator of A.

When s and {j1, . . . , js} are fixed, the minimization of
Ln(s; j1, . . . , js) is a quadratic optimization problem which
has been studied in [9]. However, minimizing Ln(s; j1, . . . , js)
with respect to s and {j1, . . . , js} is non-convex and involves
a combinatorial search over

∑q
s=1

(
q
s

)
= 2q − 1 options.

Without a convex relaxation or a stage-wise approximation, the
optimization is computationally equivalent to the best subset
selection, which is a well known NP-hard problem [11]. We
will study this combinatorial optimization problem with the
help of quantum computing in Section III.

III. NON-ORACULAR QUANTUM SEARCH

A. Preliminaries

To facilitate the discussion in the paper, we review some
essential notations and definitions for quantum computing. The
typical vector space of interest in quantum search is a Hilbert
space H of dimension D = 2q with a positive integer q. For
a vector |a⟩ ∈ H, we denote its dual vector as ⟨a|, which
is an element in the dual Hilbert space H∗. Besides, H and
H∗ together naturally induce an inner product ⟨a|b⟩ = ⟨a,b⟩,
which is also known as a ‘bra-ket’. We say |a⟩ is a unit vector
if ⟨a|a⟩ = 1. A set of D vectors D = {|0⟩ , . . . , |D − 1⟩} is
called an orthonormal basis of H if ⟨i|j⟩ = δi,j , ∀ i, j ∈ D,
where δi,j = 1 when i = j and δi,j = 0 otherwise.



The framework of quantum computing resides in a state-
space postulate which describes a state of a system by a unit
vector in a Hilbert space. For example, a quantum computer of
q qubits can represent a state of a system by a unit vector |ψ⟩
in a D = 2q dimensional Hilbert space H. Let D = {|i⟩}D−1

i=0

be an orthonormal basis of H. Every state |ψ⟩ ∈ H can be
decomposed as

|ψ⟩ =
D−1∑
i=0

ϕi |i⟩ , (3)

where ϕ0, . . . , ϕD−1 is a set of coefficients with ϕi = ⟨i|ψ⟩
and

∑D−1
i=0 |ϕi|2 = 1. Another salient feature of quantum

computing is the measurement of a quantum state yields a
probabilistic outcome rather than a deterministic one. When
|ψ⟩ in (3) is measured, it collapses to a random state in
D. In addition, the probability we observe |i⟩ is |ϕi|2 for
i = 0, . . . , D − 1.
B. Grover’s algorithm and its limitations

Suppose we want to search a unique solution state |k⟩ for
some k ∈ {0, . . . , D − 1}, say the smallest real number from
a set of D real numbers, or a word from a dictionary of D
words. In Algorithm 1 below, we summarize a seminal quan-
tum search method named Grover’s algorithm [22]. Grover’s
algorithm assumes that there exists an oracle function S(·),
such that S(|k⟩) = 1 and S(|i⟩) = 0 for i ̸= k. Grover’s
algorithm is initialized with a superposition as the equally
weighted average of an orthonormal basis D = {|i⟩}D−1

i=0 . To
be specific, the initial superposition is defined as

|ψ0⟩ =
1√
D

D−1∑
i=0

|i⟩ ≡ c0 |k⟩+ d0
∑
i̸=k

|i⟩ ,

where c0 = d0 = 1√
D

. Let θ be the angle that satisfies sin2 θ =
1
D . After the j-th iteration, the coefficients are updated to cj
and dj which admit a closed form [14],{

cj = sin
(
(2j + 1)θ

)
,

dj =
1√
D−1

cos
(
(2j + 1)θ

)
.

The closed form provides an intuitive geometric interpre-
tation of Grover’s algorithm. Let |ζ⟩ = 1√

D−1

∑
i̸=k

|i⟩ be the

average of all non-solution states which is orthogonal to the
solution state |k⟩. In the j-th iteration, the operator F mirrors
|ψj−1⟩ with respect to |ζ⟩ and the operator G mirrors F |ψj−1⟩
with respect to |ψ0⟩. The right panel of Fig. 1 provides a
visualization of the two steps in a Grover’s operation. Thus,
each iteration in Grover’s algorithm is equivalent to rotating
the superposition |ψj⟩ towards the solution state |k⟩ by 2θ.
When D is large, i.e., θ is small, we can approximate the
angle by θ ≈ sin θ = 1√

D
. Then, a natural stopping criterion

for Grover’s algorithm is to choose the number of iterations
τ by (2τ + 1)/

√
D = π/2, which yields τ is approximately

⌈
√
Dπ/4⌉, where ⌈·⌉ is the ceiling function.

Grover’s algorithm is an oracular quantum algorithm as it
depends on an oracle evaluation function that maps the solu-
tion state to 1 and all other states to 0. However, such a piece of

Algorithm 1 Grover’s algorithm [22]

Input: A set D = {|i⟩}D−1
i=0 with D = 2q; a binary

evaluation function S associated with the oracle state |k⟩,
such that S(|k⟩) = 1 and S(|i⟩) = 0 for i ̸= k; number of
iterations τ = ⌈π

√
D/4⌉.

Initialization: Prepare a superposition |ψ0⟩ =
1√
D

∑D−1
i=0 |i⟩ on a quantum register of p-qubits.

for j = 1, . . . , τ ; do
Grover’s operation: Let |ψj⟩ = GF |ψj−1⟩, where
F |i⟩ = (1− 2S(|i⟩)) |i⟩, G = 2 |ψ0⟩ ⟨ψ0| − ID, and ID
is a D ×D identity matrix.

end for
Output: Measure the latest superposition |ψτ ⟩ on the quan-
tum register.

oracle information is usually not available in machine learning
problems as the states are measured over random samples.
When we have partial or inaccurate oracle information of the
solution state, say we may only identify the solution state up
to a subset of states, i.e. |k⟩ ∈ M ⊂ {|0⟩ , . . . , |D − 1⟩}, the
best oracle evaluation function that we can construct is{

S(|i⟩) = 1, when i ∈ M,

S(|i⟩) = 0, when i ∈ Mc.

Then, each iteration of Grover’s algorithm rotates the current
superposition towards the hyperplane spanned by the states in
M instead of the true solution state |k⟩. As a result, Grover’s
algorithm creates a biased estimator and fails to converge.
The bias is lower bounded by the difference between |k⟩
and the projection of the initial superposition on the hyper-
plane spanned by the states in M. When we have no oracle
information of the solution state at all, the oracle evaluation
function can only be constructed by a randomly selected
solution state. Then, Grover’s algorithm is highly likely to
rotate the initial superposition in the wrong direction and the
output of the algorithm can be as bad as a random guess. We
empirically demonstrate this phenomenon in Section V-D.

C. Non-oracular quantum search algorithm

To solve the linearly independent column selection prob-
lem on a quantum computer, we first encode all subsets of
{1, . . . , q} as quantum states in an orthonormal basis of H,
i.e. D = {|i⟩}D−1

i=0 with D = 2q . Further, we define a state
loss function g(·) : H → R as follows

g(|i⟩) ≡ L̂n(s; j1, . . . , js),

where the state |i⟩ ∈ D is a vector in H that corresponds to
the subset {j1, . . . , js}, and L̂n is the minimum of (2) with
respect to fixed s and {j1, . . . , js}. Intuitively, we want to find
the best subset of columns corresponding to the quantum state
that minimizes the state loss function.

We propose to establish a non-oracular quantum search
(NQS) algorithm which consists of the following three steps.



(1) INITIALIZATION: We randomly choose an initial bench-
mark state |w⟩ from D = {|i⟩}D−1

i=0 . Also, we pre-specify a
learning rate λ ∈ (0, 1) with a recommendation λ = 0.5.
(2) UPDATING: We run Algorithm 1 over D by inputting |w⟩
as the oracle state and τ = ⌈πλ−m/2/4⌉ as the number of
iterations, where m is a positive integer. Denote the output
of Algorithm 1 as |wnew⟩ which is a state in D. Then, we
compare |wnew⟩ with |w⟩ in terms of the state loss function
g(·). If g(|wnew⟩) < g(|w⟩), we update the current benchmark
state |w⟩ to |wnew⟩, otherwise we do not update |w⟩.
(3) ITERATION AND OUTPUT: Start with m = 1 and repeat
the updating step. After each updating step, set m = m + 1.
NQS stops when m > C(λ) lnD, where C(λ) is a positive
constant that depends on the learning rate λ. In our numer-
ical experiments, we set C(λ) = −6 logλ 10, which works
well. Then, we measure the quantum register with the latest
superposition. The output is the observed state in D and its
corresponding subset of columns.

Unlike Grover’s algorithm, NQS randomly selects a state in
D as the benchmark state which does not require any oracle
information about the solution. Then, NQS iteratively updates
the benchmark state towards the direction that reduces the state
loss function. Besides, NQS is data-adaptive in the sense that it
starts with a conservative learning step size (e.g. m = 1) and
gradually increases the learning step size as the benchmark
state has been updated towards the truth. We summarize NQS
in Algorithm 2 below. The selection of λ and the sensitivity
analysis will be discussed in Section V-C.

Algorithm 2 Non-oracular quantum search (NQS)

Input: An orthonormal basis D = {|i⟩}D−1
i=0 of size D = 2q ,

a state loss function g(·) that maps a state in D to a real
number, and a learning rate λ ∈ (0, 1).
Initialization Set m = 1. Randomly select a state in D as
the initial benchmark state |w⟩. Define a local evaluation
function S( · , |w⟩ , g) such that S(|i⟩ , |w⟩ , g) = 1 if
g(|i⟩) ≤ g(|w⟩) and S(|i⟩ , |w⟩ , g) = 0 if g(|i⟩) > g(|w⟩).
repeat

(1) Run Algorithm 1 by inputting D, S( · , |w⟩ , g) and
τ(m) = ⌈πλ−m/2/4⌉.
(2) Measure the quantum register and denote the readout
by |wnew⟩.
(3) If g(|wnew⟩) < g(|w⟩), set |w⟩ = |wnew⟩ and update
S( · , |w⟩ , g) accordingly.
(4) m = m+ 1.

until m > C(λ) lnD, where C(λ) is a positive constant
depends on λ.
Output: The latest benchmark state |w⟩.

D. Intuition of non-oracular quantum search

Next, we discuss the intuition of NQS. Suppose that we
implement NQS on a set D = {|i⟩}D−1

i=0 with a pre-specified
state loss function g(·) and a learning rate λ ∈ (0, 1). We
assume there is a sole solution state in D that minimizes g(·).

Without loss of generality, we number the states in D as the
ascending rank of their state loss function values, i.e.

g(|0⟩) < g(|1⟩) ≤ g(|2⟩) ≤ · · · ≤ g(|D − 1⟩), (4)

where |0⟩ is the sole solution state.
If the initialization step luckily selects the sole solution

state |0⟩ as the initial benchmark state, NQS will never update
the benchmark state and hence reduces to Grover’s algorithm
with a known oracle state and τ ≈

√
Dπ/4. Therefore, NQS

can recover the true state with a high success probability. A
more interesting discussion would be considering the initial
benchmark state |w⟩ does not coincide with the truth, i.e.
|w⟩ ̸= |0⟩.

Given the rank in (4), the local evaluation function
S(|i⟩ , |w⟩ , g) can be simplified as{

S(|i⟩ , |w⟩ , g) = 1, if i ≤ w,

S(|i⟩ , |w⟩ , g) = 0, if i > w.

In the m-th iteration, NQS calls Algorithm 1 by inputting D,
S( · , |w⟩ , g) (suppose that w ̸= 0) and τ(m) = ⌈πλ−m/2/4⌉.
Algorithm 1 initializes an equally weighted superposition as

|ψ0⟩ =
1√
D

D−1∑
i=0

|i⟩ ≡ α0

w∑
i=0

|i⟩+ β0

D−1∑
j=w+1

|j⟩ ,

with α0 = β0 = 1√
D

.
Then, Algorithm 1 applies τ(m) times of Grover’s operation

to |ψ0⟩ which updates |ψ0⟩ to |ψτ(m)⟩ with coefficients
satisfying{

ατ(m) =
1√
w+1

sin
(
(2τ(m) + 1)θ

)
,

βτ(m) =
1√

D−w−1
cos
(
(2τ(m) + 1)θ

)
,

where the angle θ satisfies sin2 θ = (w+ 1)/D. After the m-
th iteration, Algorithm 1 outputs a random state |wnew⟩ ∈ D
with the following probability mass function

P (|wnew⟩ = |i⟩) =

{
α2
τ(m), if i ≤ w,

β2
τ(m), if i > w.

Since the learning rate λ ∈ (0, 1), we have α2
τ(m) > 1/D >

β2
τ(m) for some positive m. After the m-th iteration, NQS

amplifies the probability of drawing the states whose state loss
function values are smaller or equal to g(|w⟩). Meanwhile,
NQS suppresses the probability of drawing the states whose
state loss function values are greater than g(|w⟩). Geomet-
rically, NQS rotates the initial superposition |ψ0⟩ towards

1√
w+1

w∑
i=0

|i⟩, which is an average of the states that can reduce

the state loss function from |w⟩. If the output of the m-th
iteration is |wnew⟩ = |i⟩ for some i ≥ w, NQS will not
update |w⟩. On the other hand, if i < w, NQS will update
|w⟩ with |wnew⟩, which is equivalent to descending |w⟩ to a
state with a smaller state loss function value. In Fig. 2, we
visually illustrate the mechanism of NQS when q = 2.

Intuitively, one can think of NQS as a “quantum elevator”
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Fig. 2: An illustrative example (q = 2) for non-oracular quantum search.

that starts at a random floor of a high tower and aims to descent
to the ground floor. Each operation, a quantum machine ran-
domly decides if this elevator stays at the current floor or goes
down to a random lower-level floor. The probability of going
down will gradually increase as the number of operations
increases. After a large enough amount of operations, it is
not hard to imagine that the “quantum elevator” can descend
to the ground floor with a high success probability.

IV. THEORETICAL RESULTS

This section presents the major theoretical results of the
paper. Due to the space limitation, we defer some regularity
conditions, technical lemmas, and detailed proofs to Appendix
A.

First, we justify the intuition of NQS in Theorem 1 below.
Theorem 1 states that within O(log2D) iterations, NQS finds
the sole solution state with any arbitrary success probability
greater than 50%.

Theorem 1. Let κ ∈ (0.5, 1) be a constant. With probability
at least κ, NQS (e.g. Algorithm 2) finds the sole solution state
within Cκ log2D iterations, where Cκ is a positive constant
that depends on κ.

Suppose that, in the m-th iteration of Algorithm 2, the
current benchmark state is |wm⟩ with g(|wm⟩) being the sm-
th smallest among {g(|i⟩)}D−1

i=0 . Theorem 2 below shows the
expected number of Grover’s operations that Algorithm 2
needs to update g(|wm⟩) is of order O(

√
D/sm).

Theorem 2. Let |wm⟩ be the current benchmark state in the
m-th iteration of Algorithm 2. Let sm be the rank of g(|wm⟩)
in the sorted sequence of {g(|i⟩)}D−1

i=0 in ascending order,
sm = 1, . . . , D. The expected time for Algorithm 2 to update
|wm⟩ is of order O(

√
D/sm).

Theorems 1 and 2 together imply the computational com-
plexity upper bound for NQS is of order O(

√
D log2D),

which is only a log2D factor larger than the theoretical lower
bound for oracular quantum search algorithms [27]. Therefore,
NQS achieves a near optimal computational efficiency for
oracular quantum search algorithms without using any oracle
information.

In Theorem 3 below, we establish a consistency property
for the rank estimator and an oracle property for the coef-
ficient matrix estimator Â ≡ Â(r̂; ĵ1, . . . , ĵr), where r̂ and
{ĵ1, . . . , ĵr} are the rank and the linearly independent columns
selected by NQS.

Theorem 3. Suppose conditions 1–4 in Appendix A.1 hold.
With a probability approaching 1, we have

r̂ = r and ∥Â − A∥F = Op(
√
r(p+ q − r) log p/n),

where ∥ · ∥F is the Frobenius norm.

Theorem 3 implies that we can correctly identify the linearly
independent columns in A with an overwhelming probability
when n is large. The proposed coefficient matrix estimator is
consistent and satisfies an oracle property since the conver-
gence rate is in line with existing results [2] as if the rank and
the location of linearly independent columns were known.

V. NUMERICAL STUDIES

In this section, we use several numerical experiments to
assess the finite sample performance of the proposed learning
procedure, which is denoted as Hybrid Quantum Estimation
(HQE). To be specific, HQE uses Algorithm 2 to select
linearly independent columns in the coefficient matrix and
then estimate the coefficient matrix. We also compare HQE
with five alternative methods: ES and FA are similar to HQE
except that the linearly independent columns are selected by
Exhaustive Search and Forward Adding, respectively; STRS



TABLE I: Simulation results over 200 replications with standard
errors shown in parentheses.

ρ 0.1 0.5

b 0.4 0.7 0.4 0.7

RANK

ES 3.055(0.268) 3.025(0.211) 3.260(0.577) 3.110(0.385)
HQE 3.065(0.284) 3.025(0.211) 3.280(0.601) 3.115(0.390)
FA 3.050(0.240) 3.020(0.140) 3.390(0.713) 3.170(0.501)
STRS 5.465(0.929) 5.485(0.930) 5.550(0.944) 5.550(0.950)
TR 14.39(0.932) 14.94(0.326) 14.85(0.497) 14.98(0.140)
OLS 15.00(0.000) 15.00(0.000) 15.00(0.000) 15.00(0.000)

EST

ES 0.100(0.015) 0.096(0.013) 0.154(0.026) 0.147(0.024)
HQE 0.101(0.015) 0.096(0.013) 0.155(0.026) 0.147(0.024)
FA 0.101(0.015) 0.097(0.014) 0.143(0.012) 0.149(0.026)
STRS 0.111(0.013) 0.111(0.013) 0.141(0.016) 0.141(0.016)
TR 0.113(0.014) 0.148(0.024) 0.162(0.023) 0.238(0.040)
OLS 0.156(0.006) 0.156(0.006) 0.199(0.008) 0.199(0.008)

PRED

ES 1.222(0.056) 1.206(0.049) 1.295(0.074) 1.271(0.070)
HQE 1.223(0.058) 1.206(0.049) 1.295(0.074) 1.271(0.070)
FA 1.225(0.060) 1.207(0.052) 1.304(0.082) 1.279(0.080)
STRS 1.268(0.056) 1.269(0.056) 1.271(0.056) 1.271(0.056)
TR 1.274(0.065) 1.441(0.128) 1.330(0.079) 1.604(0.163)
OLS 1.482(0.036) 1.482(0.036) 1.482(0.036) 1.482(0.036)

stands for Self-Tuning Rank Selection, which is a low rank
matrix decomposition approach [5]; TR stands for Trace-
norm Regularization, which is a penalized matrix estimation
approach [28]; and the Ordinary Least Squares estimator
(OLS). Notice that ES is computationally infeasible in high
dimension. Hence, we implement ES with oracle information
that the rank of the coefficient matrix is upper bounded by
twice the truth. To that end, we consider ES as an oracle upper
bound and OLS as a naive lower bound for the numerical
experiments. Replication codes and data will be released in a
Github repository upon acceptance.

A. Implementation details

We implement the quantum experiments on IBM Quan-
tum Experience (www.ibm.com/quantum-computing), a pub-
licly available cloud-based quantum computing system. This
platform has developed a Qiskit Python development kit
(https://qiskit.org/), which allows users to perform both quan-
tum computing and classical computing in a single project.
According to the rule of thumb recommendations in Sec-
tion V-C, we choose λ = 0.5 and C(λ) = −6 logλ 10 in
Algorithm 2 throughout the paper (as the proposed algorithm
is not sensitive to these choices).

B. Simulation experiments

Let X = (x1, . . . , xn)
⊤ and Y = (y1, . . . , yn)⊤ be a random

sample that follows the multi-response linear model (1). We
generate xi ∼ Np(0,Σ) with Σ = (σjk)

p
j,k=1 and σjk =

ρ|j−k| for some ρ ∈ [0, 1). The errors are drawn from i.i.d.
N(0, 1). The coefficient matrix satisfies A = bΓ0Γ1, with
b > 0, Γ0 ∈ Rp×r, Γ1 ∈ Rr×q and r ≤ min(p, q). The
entries of Γ0 and Γ1 are independently drawn from N(0, 1).
The rank r and parameter b together control the signal to noise
ratio. Further, we independently generate {X̃, Ỹ} as a testing
sample of size nt. We set the training and testing sample sizes
as n = 100 and nt = 200, and the dimensions as p = 50,
q = 15 and r = 3. Besides, we choose ρ = 0.1, 0.5 and
b = 0.4, 0.7. For each setting, we simulate 200 replications.

TABLE II: Mean (SD) of selection accuracy over 100 replications.

|D| NQS Grover

256 0.998(0.004) 0.012(0.011)
512 0.997(0.006) 0.008(0.006)

1024 0.998(0.005) 0.004(0.006)

The numerical performance is assessed by the following
three criteria: (1) estimated rank (RANK) r̂; (2) scaled esti-
mation error (EST) ∥Â−A∥F/

√
pq; and (3) scaled prediction

error (PRED) ∥Ỹ − X̃Â∥F/
√
ntq. The simulation results are

presented in Table I. It can be seen that HQE performs
almost identically to the oracle method ES in all scenarios,
which implies the proposed non-oracular quantum search is
a successful quantum alternative for exhaustive search. FA
and STRS perform less promising than HQE and ES. OLS
performs worst in all scenarios as it completely ignores the
low rank structure.
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Fig. 3: Scaled prediction error versus the learning rate λ. The mean
and standard errors of scaled prediction error over 200 replications
are plotted as red dots and vertical error bars, respectively. The solid
line is a smoothed curve.

C. Sensitivity analysis for learning rate

The proposed non-oracular quantum search algorithm in-
volves a learning rate λ ∈ (0, 1) which controls the “step
size” of each iteration. In this subsection, we use the low
dimensional setting introduced in Section V-B to assess the
sensitivity of Algorithm 2 with respect to the choice of λ.
To be specific, we let λ be a sequence of grid points between
0.40 and 0.60 with a step size of 0.02. For each λ, we simulate
the low dimensional setting for 200 replications. The scaled
prediction error versus the values of λ is reported in Fig. 3.
We observe that Algorithm 2 is not very sensitive to the
choice of λ. Further, the smallest prediction error is attained
when λ is around 0.5, which aligns with our rule-of-thumb
recommendation.

D. NQS versus Grover’s algorithm

We provide an empirical comparison between NQS and
Grover’s algorithm in Table II to select the smallest number
in a random set D whose elements are i.i.d. drawn from
U [0, 1]. For all three sets of cardinalities, NQS achieves near-
perfect results while Grover behaves like random guesses.
This observation, which is in line with the discussions in
Section III-B, shows that oracular quantum search algorithms



cannot be effectively applied to statistical and machine learn-
ing problems.

E. Real data example

Particulate matter up to 2.5µm (PM2.5) is a complex
mixture of solid particles, chemicals (e.g., sulfates, nitrates),
and liquid droplets in the air, which include inhalable particles
that are small enough to penetrate the thoracic region of the
respiratory system. Long term exposure to PM2.5 may lead
to an increase in hospital admissions related to respiratory
and cardiovascular morbidity, such as aggravation of asthma,
respiratory symptoms, and cardiovascular disorders [29]–[33].

We investigate the relationship between the concentration
of PM2.5 and four air pollutants: ozone (O3), sulfur diox-
ide (SO2), carbon monoxide (CO), and nitrogen dioxide
(NO2). The dataset consists of 728 daily observations between
January 2017 and April 2019 collected from 15 outdoor
monitoring sites across the United States. We have taken
the first-order difference for each variable to remove the
non-stationarity. The original dataset is publicly available at
https://www.epa.gov/outdoor-air-quality-data.

In the experiment, we compare the prediction performance
of our method (HQE) with the other five competitors. We
use the first 600 observations as the training set and the rest
128 observations as the testing set. Scaled prediction errors
and estimated ranks are presented in Table III. According to
Table III, ES and HQE perform identically and outperform
the other methods. FA, STRS and TR suffer from high
prediction errors as they overestimate the rank. As expected,
OLS performs the worst since it ignores the low rank structure.
Further, we visualize the site level association between the
concentrations of PM2.5 and the other four air pollutants at
the 15 outdoor monitoring sites in Fig. 4. The plots in Fig. 4
show clear geographical clustering structures, which may lead
to some interesting scientific findings.

TABLE III: Results for the real data example.

PRED RANK

ES 0.925 1
HQE 0.925 1
FA 0.932 2

STRS 0.942 4
TR 0.927 15

OLS 0.966 15

VI. CONCLUDING REMARKS

Multi-response datasets are commonly encountered in ma-
chine learning problems. Existing literature [1], [5] proposes
to estimate the coefficient matrix by low rank decompositions.
However, when the low rank assumption is not valid, the
decomposition scheme can create more unknown parameters
than estimating the original matrix directly. To address this
challenge, we propose to estimate the coefficient matrix by
selecting linearly independent columns, which provides a

O3 SO2

CO NO2

−0.010

−0.005

0.000

0.005

0.010

β
^

Fig. 4: Associations between PM2.5 and the other four air pollutants
at the 15 outdoor monitoring sites in the United States.

mathematically elegant solution. A novel non-oracular quan-
tum search algorithm tackles the computationally challeng-
ing column selection problem. Theoretical justifications and
numerical studies support the advantages of the proposed
estimation approach.

APPENDIX

A. Proofs for theoretical results in Section IV

The appendix provides regularity conditions, technical lem-
mas and detailed proofs for the theoretical results in Sec-
tion IV.
A.1 Regularity conditions and tchnical lemmas

First, we impose the regularity conditions which are re-
quired to establish the asymptotic properties in theorems.

Condition 1. There exist positive constants c1 and c2
such that with probability one c1 ≤ λmin(n

−1X⊤X) <
λmax(n

−1X⊤X) ≤ c2.

Condition 2. For some positive constants c3 and c4,
E{exp(c3ϵ2j )} < c4 for j = 1, . . . , q.

Condition 3. The elements of A and XA are
bounded. The matrix A is Ωn-sparse in the sense that
max1≤ℓ≤q

∑p
j=1 I(ajℓ ̸= 0) ≤ Ωn, where I(·) is an indicator

function.

Condition 4. We assume r ≤ q ≤ p and rp log p/n→ 0 when
n→ ∞.

Condition 1 is a restricted eigenvalue condition, which
is widely used in the literature, e.g., [34]. It requires the
the sample matrix of covariates to behave reasonably well.
Condition 2 requires the errors to be sub-Gaussian, and
hence their tail probabilities decay exponentially. Condition
3 facilitates our derivation but can be much relaxed so that
the true signal strength depends on n as well. Condition 4
imposes a requirement on the diverging rates of p, q and r in
order to obtain consistent estimations when n→ ∞.

Next, we provide two technical lemmas to pave the way for
the proof of main theorems. We omit the proof of Lemma 1
as it can be found in the literature.



Lemma 1 (c.f. Lemma 1 in [23]). For any real numbers α
and β and any positive integer m, we have

m−1∑
j=0

cos(α+ 2βj) =
sin(mβ) cos(α+ (m− 1)β)

sinβ
.

In particular, when α = β, the above equality can be simplified
as

m−1∑
j=0

cos(α+ 2βj) =
sin(2mα)

2 sinα
.

Lemma 2. Let s0 be the (unknown) number of solutions
states among D states. Let θ be such that sin2 θ = s0/D.
Let γ be an arbitrary positive integer. Let j be an integer
sampled uniformly between 0 and τ − 1. If we observe the
register after applying j Grover’s operations to the initial state
|ψ0⟩ =

∑D−1
i=0

1√
D
|i⟩, the probability of obtaining a solution

is exactly

Pτ =
1

2
− sin(4τθ)

4τ sin(2θ)
.

Further, we have Pτ ≥ 1
4 when τ ≥ 1

sin(2θ) .

Proof of Lemma 2. The probability of finding one solution
state among s0 if we perform j Grover’s operations is s0k2j =

sin2((2j + 1)θ). When we choose 0 ≤ j < τ randomly, the
average success probability follows

Pτ =
τ−1∑
j=0

1

τ
sin2((2j + 1)θ)

=
1

2τ

τ−1∑
j=0

{1− cos((2j + 1)2θ)}

=
1

2
− sin(4τθ)

4τ sin 2θ
.

If τ ≥ 1
sin(2θ) , we complete the proof as the following

inequality holds

sin(4τθ)

4τ sin 2θ
≤ 1

4τ sin 2θ
≤ 1

4
.

A.2 Proof of Theorem 1
For the ease of presentation and without loss of generality,

we re-number the states in descending order in this proof, i.e.

g(|0⟩) > g(|1⟩) ≥ g(|2⟩) ≥ · · · ≥ g(|D − 1⟩) > g(|D⟩),

where |D⟩ is the unique solution state and |0⟩ is an added
initial state to facilitate the discussion with g(|0⟩) being an
arbitrary large value.

Let us assume Algorithm 2 is initialized with the least
favorable state |0⟩. Let Z denote the number of iterations the
algorithm takes to arrive at the solution state |D⟩. The rule
that Algorithm 2 moves from |0⟩ to |D⟩ can be abstracted as
the following mathematical process.

ITERATION 1: Draw an integer X1 uniformly from 0 to
D, then the algorithm moves from |0⟩ to |X1⟩.

ITERATION 2: Draw an integer X2 uniformly from 0
to D − X1, then the algorithm moves from |X1⟩ to
|X1 +X2⟩.

...
ITERATION z: Draw an integer Xz uniformly from 0 to
D−

∑z−1
i=1 Xi, then the algorithm moves from |

∑z−1
i=1 Xi⟩

to |
∑z

i=1Xi⟩. If
∑z

i=1Xi = D, then the algorithms stops
as at Z = z as it finds the solution state |D⟩. Otherwise,
the algorithm goes to the (z + 1)th iteration.

As we can see, the total number of iterations Z is a discrete
random variable that can take any positive integer values. To
prove Theorem 1, it is equivalent to show that the κ-th quantile
of the discrete random variable Z is upper bounded by Cκ lnD
for a positive constant Cκ. The proof will be unveiled by three
steps.

Step 1: A partial sum process.
To investigate the probability distribution of Z, we first

study the partial sum of Xi. Define a partial sum process

Sz =

z∑
i=1

Xi for z = 1, 2, . . . .

Notice that (Sz|Sz−1 = sz−1, . . . , S1 = s1)
D
=

(Sz|Sz−1 = sz−1) ∼ unif{sz−1, D}. Also, we can show
{Sz}z=1,2,... is a submartingale, i.e. E[Sz|S1, . . . , Sz−1] =
E[Sz|Sz−1] ≥ Sz−1. Thus, {Sz}z=1,2,... is a discrete-time
Markov chain with a finite state space {0, 1, 2, . . . , D}.

Moreover, the expectation of Sz satisfies

E[Sz] = E [E[Sz|Sz−1]] = E
[
Sz−1 +D + 1

2

]
= E[Sz−1]/2 + (D + 1)/2

= E[X1]/2
z−1 + (D + 1)

(
1− 1/2z−1

)
= (D + 1)/2z ++(D + 1)

(
1− 1/2z−1

)
= (D + 1)

(
1− 1/2z

)
.

Step 2: The probability mass function of Z.
Next, we derive the probability mass function of Z. The

derivation is based on the Markov property of the partial sum
process {Sz}z=1,2, .... Define a transition matrix P as

P =



1
D+1

1
D+1

1
D+1 · · · 1

D+1
1

D+1

0 1
D

1
D · · · 1

D
1
D

0 0 1
D−1 · · · 1

D−1
1

D−1
...

...
...

. . .
...

...
0 0 0 · · · 1

2
1
2

0 0 0 · · · 0 1


.

Let πz be a row vector with dimension D + 1 that denotes
the distribution of the chain {Sz}z=1,2,... at time z. By the
definition of {Sz}z=1,2, ... and P , we have

πz+1 = πzP, for z = 1, 2, . . . .



Hence, we can write out π1, π2 and π3 as

π1 =
( 1

D + 1
,

1

D + 1
,

1

D + 1
, . . . ,

1

D + 1
,

1

D + 1

)
,

π2 =
1

D + 1

(
1

D + 1
,
D+1∑
i1=D

1

i1
, . . . ,

D+1∑
i1=1

1

i1

)
, and

π3 =
1

D + 1

(
1

(D + 1)2
,
D+1∑
i2=D

1

i2

D+1∑
i1=i2

1

i1
, . . . ,

D+1∑
i2=1

1

i2

D+1∑
i1=i2

1

i1

)
.

In general, we can summarize the expression of πz for z =
1, 2, . . . as

πz =
(
P(Sz = 0), . . . ,P(Sz = D)

)
,

where for j = 0, 1, . . . , D,

P(Sz = j) =

1

D + 1

D+1∑
iz−1=D+1−j

1

iz−1

D+1∑
iz−2=iz−1

1

iz−2
· · ·

D+1∑
i1=i2

1

i1
,

Therefore, we can write out the probability mass function
of Z = z for z = 1, 2, . . . as

P(Z = z) = P
(
Sz = D

)
=

1

D + 1

D+1∑
iz−1=1

1

iz−1
· · ·

D+1∑
i1=i2

1

i1
.

(5)

Notice that the last summation in (5), i.e.
∑D+1

i1=i2
1
i1

, is a
finite partial sum of a harmonic series. Hence, we can write
it as

D+1∑
i1=i2

1

i1
= ln(D + 1) + ηD+1 − ln(i2)− ηi2

≍ ln(D + 1)− ln(i2), where ηz ≍ 1

2z
.

Let us move on to the next level of summation in (5), which
is upper bounded by

D+1∑
i2=i3

1

i2

D+1∑
i1=i2

1

i1
≍

D+1∑
i2=i3

1

i2

[
ln(D + 1)− ln(i2)

]
≲ ln(D + 1)

[
ln(D + 1)− ln(i3)

]
≲ ln2(D + 1),

and lower bounded by
D+1∑
i2=i3

1

i2

D+1∑
i1=i2

1

i1
≍

D+1∑
i2=i3

1

i2

[
ln(D + 1)− ln(i2)

]
≍ ln(D + 1)

[
ln(D + 1)− ln(i3)

]
−

D+1∑
i2=i3

ln(i2)

i2

≳ ln2(D + 1)− ln(D + 1) ln(i3),

since
∑D+1

i2=i3

ln(i2)
i2

≍ 1
2 ln

2(D + 1)− 1
2 ln

2(i3).

Similarly, we can go through all the summations in (5) and

show

P(Z = 0) =
1

D + 1
and P(Z = z) ≍ lnz−1(D + 1)

D + 1
.

(6)

Step 3: The κ-th quantile of Z.
With the results in (6), we summarize the cumulative

distribution function of Z as

FZ(z) = P(Z ≤ z) =
z∑

j=0

P(Z = j)

≍ 1

D + 1
+

z∑
j=1

lnj−1(D + 1)

D + 1
≍ lnz−2(D + 1)

D + 1
.

Let z = c ln(D+1) with a positive constant c ∈ (0, 1), we
have

FZ(z) ≍
lnz−2(D + 1)

D + 1
≍ (D + 1)c ln ln(D+1)

D + 1
≍ 1.

Therefore, for any κ ∈ ( 12 , 1), there exists a positive constant
Cκ such that the κ-th quantile of Z is upper bounded by
Cκ log2D, which completes the proof.

A.3 Proof of Theorem 2
Suppose we are in the m-th iteration of Algorithm 2. Let

|wm⟩ be the current benchmark state and sm be the rank of
g(|wm⟩) in the sorted sequence of {g|i⟩}D−1

i=0 in ascending
order, sm = 1, . . . , D. Notice that Algorithm 2 implements
τ(m) = ⌈πλ−m/2/4⌉ ≡ ⌈π

4 γ
m⌉ Grover’s operations, where

γ = λ−1/2. We are interested in finding the expected number
of Grover’s operations to update |wm⟩.

Let θ be the angle such that sin2 θ = sm/D. Let

τ∗m =
1

sin(2θ)
=

D

2
√

(D − sm)sm
<

√
D

sm
.

We say that the algorithm reaches a phase transition for |wm⟩
if τ(s) exceeds τ∗(m) for some s ≥ m.

The expected total number of Grover’s operations needed
to reach the phase transition for |wm⟩ is upper bounded by

π

4

⌈logγ(τ
∗
m)⌉∑

j=0

γj <
π

4

γm − 1

γ − 1
<
τ∗m + 1

γ − 1
.

Thus, if the algorithm updates |wm⟩ before it reaches the
phase transition, the expected number of Grover’s operations
is at most of order O(τ∗m), which is further upper bounded by
O(
√
D/sm).

If the phase transition for |wm⟩ is reached, as proved by
Lemma 2, every new iteration of Algorithm 2 will be able to
update |wm⟩ with a probability at least 1/4 since τ(s) ≥ τ∗m.
Then, the expected iterations to update |wm⟩ after the phase
transition is upper bounded by a positive constant. Hence,
the expected number of additional Grover’s operations needed
to update |wm⟩ after the phase transition is upper bounded
by Cτ∗m for some positive constant C. These two scenarios
together complete the proof.



A.4 Proof of Theorem 3

Let r be the the rank of A and J = {j1, . . . , jr} be the
indices set of linearly independent columns of A. We denote r̂
and Ĵ = {ĵ1, . . . , ĵr̂} the estimators of r and J obtained from
Algorithm 2. Theorem 1 has shown that NQS can correctly
identify the number and locations of linearly independent
columns of A with any arbitrarily high probability. In this
proof, we prove the second result in Theorem 3 over the event
that E = {r̂ = r, Ĵ = J } whose exception probability, i.e.
Pr(Ec), is negligible when n diverges.

Without loss of generality, we can column-wise permute A
such that

A = (A1, A2) ≡ (A1, A1B) ,

where A1 ∈ Rp×r has the r linearly independent columns
of A, A2 ∈ Rp×(q−r) has the rest q − r columns, and
B ∈ Rr×(q−r) is a coefficient matrix such that A2 = A1B.
With a bit of violation of notations, we denote the matrices
of responses, covariates and errors by their columns, i.e.,
Y = (y1, . . . , yq), X = (x1, . . . , xp) and E = (e1, . . . , eq)
in the proof. Then, we follow the column-wise permute of A
and represent Y and E as

Y = (Y1, Y2) and E = (E1, E2) .

Also, we can represent the loss function (2) as

Ln(J ,A1,B) = Gn(A1) +Hn(A1,B),

where

Gn(A1) = ∥Y1 − XA1∥2F and Hn(A1,B) = ∥Y2 − XA1B∥2F.

Given a full rank matrix A1, by minimizing the function
Hn(A1,B) with respect to B, we obtain that

Hn(A1) ≡ Hn(A1, B̂) = tr
{

Y⊤
2 (I − HZ)Y2

}
,

where HZ = Z(Z⊤Z)−1Z⊤ and Z = n−1/2XA1. Further, for
the ease of presentation, we denote

Ln(A1) ≡ Ln(J ,A1, B̂).

Let δn =
√
r(p+ q − r) log p/n and C1 > 0 be a large

constant. We aim to show that as n→ ∞,

Pr

{
inf

w∈Rp×r;∥w∥F=C1

Ln(A1 + δnw) < Ln(A1)

}
→ 0. (7)

The condition in (7) implies that there exists a local minimum
in the ball {A1 + δnw : ∥w∥F ≤ C1} with probability tending
to one. Hence, there exists a local minimizer of Ln(A1) such
that ∥Â1 − A1∥F = Op(δn).

First, we have the following decomposition

Ln(A1 + δnw)− Ln(A1)

={Gn(A1 + δnw)−Gn(A1)}+ {Hn(A1 + δnw)−Hn(A1)}
≡∆1 +∆2.

With some calculations, we can show that

∆1 = nδ2ntr{w⊤(n−1X⊤X)w} − 2δntr(E⊤
1 Xw).

By Condition 1, we have tr{w⊤(n−1X⊤X)w} ≥ c1∥w∥2F.
Then, the first term of ∆1 is lower bounded by C2

1c1nδ
2
n,

which is quadratic in C1.
For the second term of ∆1, using Cauchy-Schwartz inequal-

ity, we have

2δntr(E⊤
1 Xw) ≤ 2δnC

∑
ℓ∈D

p∑
j=1

(x⊤j eℓ)2
1/2

.

By Condition 2 and the exponential tail probability of sub-
Gaussian variables, we have

pqPr
(
|x⊤j eℓ| > C2

√
n log p

)
→ 0 as n→ ∞

for a sufficiently large C2 > 0. Thus, x⊤
j eℓ = Op(

√
n log p)

for all j and ℓ. Consequently, the second term of ∆1 is of
order Op(

√
rnp log pδnC1), which is linear in C1. Therefore,

by the definition of δn, as long as the constant C1 is sufficiently
large, the first term of ∆1 dominates the second term with an
arbitrarily large probability.

Next, we study ∆2. To simplify the presentation, we denote
Ã1 = A1 + δnw, Z̃ = n−1/2XÃ1, H = HZ and H̃ = H ˜Z.

By Y2 = XA1B + E2 and Z(I − H) = 0, some simple
algebra yields that

∆2 = δ2ntr
{
(XwB)⊤(I − H̃)(XwB)

}
+ 2δntr

{
E⊤
2 (I − H̃)(XwB)

}
+ tr

{
E⊤
2 (H − H̃)E2

}
. (8)

Following the same arguments as in ∆1, it can be shown
that as long as the constant C1 is sufficiently large, the first
term on the right side of (8) dominates the second term with
an arbitrarily large probability.

Consider the third term on the right side of (8). By Condi-
tion 1 again, we get

∥Z̃ − Z∥F ≤ c2∥ÃD − AD∥2 = O(δnC1),

∥Z̃
⊤

Z̃ − Z⊤Z∥2 = O(δnC1),

∥(Z̃⊤
Z̃)−1 − (Z⊤Z)−1∥2 = O(δnC1),

and ∥H̃ − H∥2 = O(δnC1),

where ∥ · ∥2 is the spectral norm. To that end, we can show
the following result holds

tr
{

E⊤
2 (H − H̃)E2

}
= tr

[
n−1E⊤

2 X
{

A1(Z⊤Z)−1A⊤
1 − Ã1(Z̃

⊤
Z̃)−1Ã

⊤
1

}
X⊤E2

]
= tr

[
n−1/2E⊤

2 X
{

A1(Z⊤Z)−1A⊤
1 − Ã1(Z̃

⊤
Z̃)−1Ã

⊤
1

}
n−1/2X⊤E2

]
≤ O(δnC1)∥n−1/2E⊤

2 X∥2F
= Op(δnC1rp log p),

which is of smaller order of ∆1.
By combining the arguments for ∆1 and ∆2, the result in (7)

holds if we choose a sufficiently large positive constant C1.



Further, we can verify that ∥B̂ − B∥F = Op(δn) in a similar
fashion. Thus, ∥Â − A∥F = Op(δn) follows naturally.
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