Estimation of Low Rank High Dimensional
Multivariate Linear Models for

Multi-response Data *

Changliang Zou Yuan Ke
School of Statistics and Data Sciences Department of Statistics
Nankai University University of Georgia

Wenyang Zhang
Department of Mathematics

The University of York, UK

January 26, 2021

Abstract

In this paper, we study low rank high dimensional multivariate linear
models (LRMLM) for high dimensional multi-response data. We propose
an intuitively appealing estimation approach, and develop an algorithm
for implementation purposes. Asymptotic properties are established in or-
der to justify the estimation procedure theoretically. Intensive simulation
studies are also conducted to demonstrate performance when the sample
size is finite, and a comparison is made with some popular methods from
the literature. The results show the proposed estimator outperforms all of
the alternative methods under various circumstances. Finally, using our
suggested estimation procedure we apply the LRMLM to analyse an envi-

ronmental data set and predict concentrations of PM2.5 at the locations
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concerned. The results illustrate how the proposed method provides more

accurate predictions than the alternative approaches.

KEY WORDS: BIC, cross-validation, high dimensionality, low rank,
multivariate linear models, penalised least squares estimation.
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1 Introduction

It is common to find multi-response data in many real life problems. Component-
wise analysis is clearly not a good choice for multi-response data analysis, be-
cause it does not fully make use of the information available. For example, the
observations of other components may contain the information for the com-
ponent of interest, and such information would be completely overlooked by
component-wise analysis, therefore, the resulting estimators would not be as
efficient as we can expect. It is necessary to take multivariate analysis ap-
proach for multi-response data analysis. The most commonly used multivariate
regression models are the multivariate linear models. The research in the mul-
tivariate linear models can be at least traced back to Anderson (1951). There
is much literature after Anderson (1951) about the classic multivariate linear
models, see the references in Reinsel and Velu (1998) and Anderson (2004).

With the surge in high dimensional data analysis in the past more than a
decade, the multivariate linear models in high dimensional setting are attract-
ing more and more attention than ever before. Many interesting developments
in low rank high dimensional multivariate linear models have appeared in lit-
erature, see Yuan et al. (2007), Negahban and Wainwright (2011), Obozinski
et al. (2011), Kong et al. (2017), Bing and Wegkamp (2019), Raskutti et al.
(2019), Zheng et al. (2019) and the references therein.

A commonly used approach to deal with the low rank coefficient matrix in
a multivariate linear model is based on the idea of decomposing the coefficient
matrix, say A with rank r and size p x ¢, to CDQ, where C and Q are two

matrices of size p X 7 and 7 X ¢, respectively, and D is a diagonal matrix of



size 7, where 7 is an estimator of r. The estimation of r plays a key role
for the success of the approach used. Different approaches may end up with
different ways to estimate 7, see Yuan et al. (2007) and Bing and Wegkamp
(2019). Although the existing approaches for estimating r enjoy nice asymptotic
properties, when implementing them, we often come up against a dilemma: we
create a new unknown parameter in order to estimate an unknown parameter,
this is because we have to select a tuning parameter in the estimation of r. In
addition to that, as far as the estimation of A is concerned, which is the ultimate
goal for multivariate linear models, even if we knew the rank r, in order to get
the estimator of A based on the decomposition, we would have to estimate C,
Q and D. Even with the constraints coming with the decomposition, we may
have to estimate at least (p + ¢)r unknown parameters, which is more than
the unknown parameters we need to estimate without using the decomposition
when 7 > pg/(p + q). That implies we may end up with a better estimator
of A if we simply apply the standard least squares estimation for multivariate
linear models when r > pq/(p + ¢), which clearly shows the limitation of the
decomposition based approach.

In this paper, we are going to propose an estimation procedure for the low
rank multivariate linear models, in which we only need to estimate r(p+ q) —r?
unknown parameters in order to get the estimator of A. We can easily show
r(p + q) — r? < pq, because r < min(p, q). Intuitively speaking, the proposed
estimation procedure would be more efficient than either of the standard least
squares estimation and the decomposition based approach. This conclusion is
confirmed to be true by both the asymptotic theory established in Section 4 and
simulation studies in Section 5. As part of the proposed estimation procedure,
the rank of A is estimated by the BIC, which is free of tuning parameter.
We will show the resulting estimator enjoys good theoretical properties and
performs well in simulation studies.

Another advantage of the proposed estimation procedure is it clearly appre-
ciates the high dimensionality by directly imposing a penalty on those entries

of A in question, which makes the proposed estimation procedure easily accom-



modate the high dimensional cases and enjoy the function of feature selection.

In the context of multi-response data analysis, the proposed estimation pro-
cedure also comes with a very nice practical implication, which is the impacts of
explanatory variables on some responses are linear combinations of the impacts
on certain responses when the matrix coefficient is of low rank, this would be
very helpful when it comes to interpreting the results for a given real dataset,
and may lead to some interesting findings in the discipline which the dataset
comes from.

To implement the proposed estimation procedure, we have also developed
an algorithm for the estimation. Our simulation studies show the proposed
algorithm is fast and accurate.

The rest of this paper is organised as follows: we begin with a detailed
description of the models we are going to address in Section 2. The proposed
estimation procedure and associated computational algorithm are described in
Section 3. The asymptotic properties of the estimators obtained by the pro-
posed estimation procedure are presented in Section 4. Section 5 is devoted to
simulation studies, in which we will examine how well the proposed estimation
works. Finally, in Section 6, we apply the low rank multivariate linear models
together with the proposed estimation procedure to analyse an environmental
data set and predict the concentrations of PM2.5 at the locations concerned.
The results show the proposed method provides more accurate prediction than
other methods. We leave the theoretical proofs of all asymptotic properties in

the Appendix.

2 The low rank high dimensional multivariate linear

models

To give a generic description of the models we are going to address, we use Y
to denote the vector of all response variables, X the vector of all covariates.
Without any confusion, from now on, we call Y the response variable, X the

covariate. We assume Y is of ¢ dimension, X is of p dimension. p and q



may tend to co when sample size tends to co. The low rank high dimensional

multivariate linear models which we are going to address in this paper are
Y =A'X +e¢, (2.1)

where A is a p X ¢ unknown matrix of unknown rank r, r < ¢ < p, € =

(€1,...,€4) " is a ¢ dimensional random error, and
E(e| X) =0, cov(e|X)=2X.

Like Yuan et al. (2007), Bing and Wegkamp (2019) and Raskutti et al. (2019),
we assume X = 02Iq, and o2 is unknown.

Suppose we have a sample (X,|, Y;T),i =1, ---, n, from (X, Y'T), the

1

model for the sample can be written as
Y=XA+E (2.2)

where Y = (Y1, -+, ¥,)", X=(X1, -+, X)) ,and E= (€1, -+, €,)".

3 Estimation procedure

Throughout this paper, for any matrix € = (wj;) of size p x ¢ and any vector

b= (b1, ---, by), we define

1/2
p g /

p q p
10 =D wyl, I21= (> wh]| Llbla=®"b)Y2 b= bl
1=1

i=1 j=1 i=1 j=1

For any integers 1 < j; < jo < -+ < j, < ¢, the complement set of set D,.,
D, = {j1,---, jr}, is denoted by D¢, that is D¢ = {1, 2, ---, ¢} \ D,. Let Y°
be the ith column of Y,

Yp, = (le, cee Yj’“), Hy(r) = {Dy, : rank(Ap,) = r},

Hy(r) = {Dy : rank(Ap,) <7}, G(k) = {B € RP** . rank(B) = k},

and A\pin(B) and Apax(B) be the smallest and largest eigenvalues of a square

matrix B.



Suppose we have an independent and identically distributed sample (YZ-T, XZ-T ),
i=1, -, n,from (YT, XT). A standard penalised least squares estimation
would provide us with an estimator A of A, which is the minimiser of

n

SOV = ATX[P + Pa([|A), (3.1)
=1

where Py(-) is a penalty function. However, this estimation does not take
into account the information that A is of low rank, which would result in an
estimator not as efficient as we could expect. In fact, it is easy to see this
estimation is equivalent to componentwise penalised least squares estimation
for (2.1).

The proposed estimation procedure will fully make use of the low rank

information of A, and the resulting estimator will be more efficient.

3.1 Estimation method

The idea, based on which the proposed estimation is constructed, is that each
column of A is a linear combination of r linearly independent columns of A.
Based on this idea, we propose the following estimation procedure for A. We
start with the case when the rank r of A is known, then propose an estimation

for r.

3.1.1 When r is known

Let Y; = (yila T yiq)Ta X = (xila T xip)T for i = 17 ey N Apply the

idea of penalised least squares estimation and minimise
n T 9 T 2
D) OICTERCIN D SR (PR oL
i=1 { I=1 k¢{j1, -, jr} =1
T
+> Pa(llag ) (3.2)
=1
with respect to a;;s, biss, and {j1, ---, jr}, where 1 < j; <--- < j, <gq, P\(")

is a penalty function, A involved is a tuning parameter which can be selected

by some criterion, such as BIC.



When r is large, bges are also likely to have sparsity, in which case, we can
add another penalty term into (3.2) to penalise bggs. However, when r is small,
which is the case of main interest, there is no need to penalise bgs, this is
because for each component of Y;, say the kth component, there are only r byys,
which is not many.

Notice that the minimiser of (3.2) is not unique. We denote a minimiser of

(3.2) by
25:{51,""37“}7 éjajef)a [A)kg,kEZA)C,EE{]_,“-,T}.
For any j, 1 < j < g, the jth column of A is estimated by
a;, if jeD
r ~ A
A e .
e; bjed;,, ifje€D

We use A(r) to denote the estimator of A.

The non-uniqueness of the minimiser of (3.2) is because that there can be
more than one ways to choose r independent columns D, so that Ap_ is full-
rank. Theoretically speaking, as long as Ap, and r can be well estimated, we
can recovery the low-rank structure of A regardless of the choice of D,. Our
theory shows that the consistency of our proposed estimator holds uniformly in
D,; please refer to Lemmas 1-3 in the Appendix. Hence, this non-unique issue
does not affect the performance of the proposed estimation procedure, which is

further corroborated via extensive simulations in Section 5.

3.1.2 Estimation of r

The estimation of A in section 3.1.1 is built on the assumption that the rank
r of A is known, and this assumption is not realistic in reality. In fact, rank r
plays a very important role in the estimation of A. If r is underestimated, a
substantial bias would creep into the estimation procedure and make the final
estimator of A very biased. On the other hand, if r is overestimated, we would

have to estimate unnecessarily many unknown parameters, which would make



the final estimator of A have big variance. In this paper, we use BIC, which is

defined as follows, to estimate r

BIC(k) = ||[Y — XA(k)|? + \kplog phy, (3.3)
where h,, is a positive diverging sequence, which can be set to be logn. The
estimator of r is given by

7 = arg min BIC(k),
1<k<F

where 7 is a pre-specified bound for r. The proposed estimator A(f) of A is
the A(r), obtained in section 3.1.1, with r being replaced by 7.

We will show in Section 4 the proposed BIC estimator # enjoys an excellent
asymptotic property, say it tends to identify the true model consistently. If the
prediction accuracy is our primary concern, we can consider the multifold cross-
validation (CV), which tends to select the model with the optimal prediction
performance (Zhang, 1993). The data are splitted randomly into M groups of
equal sizes (assuming that n/M is an integer for simplicity), Gp,,m =1,..., M.
For each k, 1 < k < ¢, let A_m(k) be the estimator of A, obtained by the
method in Section 3.1.1 when the rank of A is k, without using the observations

of the mth group. The cross-validation sum is defined as

M
vk =3 S i AL (kx> (3.4)

m=1i€G,

The CV estimator of r is taken to be the minimiser of CV (k).

3.2 Computational algorithm

The minimisation of (3.2) can be difficult. We propose an iterative algorithm
to solve this problem. The route of our algorithm is: we first minimise (3.2),
for given {ji, ---, jr}, with respect to a;s, bges, and denote the resulting
minimum of (3.2) by F(j1, -+, jr), then minimise F(j1, ---, j,), with respect
to j1, -+, jr. The details of our algorithm are described as follows.

For any given {ji, ---, jr}, we minimise (3.2) with respect to a;;s and bys

by the following iterative approach



(1) We minimise

n T

SN (i~ XT i) + 3 Palllas )
=1

i=1 [=1

(0)

with respect to aj;s, and denote the minimiser by a;’s. There are many
existing methods to do the minimisation in this step, because this is the

minimisation for standard penalised least squares estimation.
(2) Minimise

n ' 2
Z Z (yik - X; Z bkea§-3)>
= kg (ir, . 3} =1

(0)

with respect to bys, and denote the minimiser by b,,’s. Clearly, b,(g(?

enjoys

a closed form, therefore, the minimisation in this step is very easy.

(3) Let ag?)s and b,g%)s be the initial values, and minimise (3.2) iteratively.
Specifically, let a®s and b,(:z)s be the values of aj;s and byes in the kth

i
iteration. Replace the bgss in (3.2) by bgz)s and minimise (3.2) with respect

k+1 . o
to ajs, ag-l Vg are taken to the resulting minimiser.

Replace the aj;s in (3.2) by ag.fﬂ)

bk,’ﬁsa bgz—’— Y

s and minimise (3.2) with respect to
s are taken to the resulting minimiser.

)

Continue the iteration until convergence, the limits of ag-f)s and b,(!z s are

the minimser of (3.2), and the minimum of (3.2) is denoted by F'(j1, - , jr)-

A naive approach to minimise F'(ji, ---, jr), with respect to j1, -+, jr,
would be to compute F(ji, ---, j.) for each possible {ji, ---, j.}, where
1 <5 <-,<jr <gq, and the {j1, -+, jr} which minimises the obtained
F(ji, ---, jr)s is the minimiser {j1, ---, j,} of F(j1, --- , jr). However, this
approach would have to compute (g) F(j1, -+, jr)s, which is computation-
ally too expensive. We shall borrow the idea of forward selection to minimise

F(j1, -+, jr), which is depicted as follows

(I) Let F(j1) be F(j1, -+, jr) when r = 1, and compute F'(j;) for each
possible ji, 1 < j; <gq. Let 31 be the one which minimises F(j1).



(II) For any k < r, when we have {j1, ---, ji}, the way to select a jp,1 from
{1, -+, JrYe, the set {1, ---, ¢} — {j1, ---, Ji}, to add into the set
{71, ---, jr} is as follows: for each possible jj.1, we arrange ji, -+, Jk
and jp41 in ascent order, and denote them by j; < --- < Jjpi1. We
compute F(j1, -+, jre1). The selected jj.; is the one which minimises
F(j1, -+, jre1). We add the selected ji41 into the set {j1, -+, ji}, and
sort the elements in the new set in ascent order. With a little bit abuse of

notation, we denote the new set by {j1, -+, Jxs1}, where j; < -+ < jpy1.

(IIT) Continue (II) until & = . We use the obtained {ji, ---, j,} to approxi-

mate the minimiser of F(j1, ---, jr)-

Substitute {j1, ---, jr} for {j1, ---, jr} in (3.2), and minimise (3.2) with
respect to a; s and bges. Denote the resulting minimiser by éj.ls and bygs. We

take

{517"'737‘}7 éjj? l:17"'7r7 Bk@a k¢{317”'757‘}76:17"'77ﬂ

as a minimiser of (3.2) with respect to {j1, -+, jr}, a;s and bys.

4 Asymptotic properties

In this section we are going to investigate the asymptotic behavior of the pro-
posed estimator of A.

Throughout this paper, A, ~ B, means that there is a constant C' > 1
such that B, /C < A, < B,C with probability tending to 1. “2” and “<” are
similarly defined.

To make the theoretical derivation more neat, we write the minimisation of
(3.2) in matrix form. Specifically, for any given integer k € [1, ¢), when r = k,
the minimisation of (3.2) can be written to the minimisation of the following

objective function

k
L(U,V,Dy; k) = |[Yp, — XU|? + [ Yp: — XUVT|?+ ) " Py (I[Ugllr) (4.1)
/=1

10



with respect to {Dy, U € G(k), V € Rla—F)xkY,
Without loss of generality, we use the (adaptive) lasso type penalty
P
Pr,(1Tell) = > Njelujel,
j=1
see Zou (2006), where Aj, > 0 and uj; are the (7, £)th element of U.

Throughout this section, we assume that each column of X has been nor-

malized to have Ls-norm of n. Furthermore, we denote
Yon = min{)\jg Ay = 0}, Yin = max{)\jg L Qjye 75 0},

where ajy is the (j,£)th entry of A.
In order to establish the asymptotic properties of the proposed methods, we

impose the following technical conditions:

Condition 1 There exist positive constants k and k such that with probability

one kK < )\min(n_IXTX) < )\max(n_IXTX) < K.
Condition 2 For some positive constants C' and K, E{exp(Ce?)} < K for
ji=1--,q.

Condition 3 The elements of A and XA are bounded. The matrix A is sp-

sparse in the sense that maxj<i<, 2521 I(aje # 0) < sp.
Condition 4 rplogp/n — 0 when n — oo.

Condition 5 For any given k € [1,q),

 minpes, o uest XU — XAp|? + tr {(XApe)T (1 - Ho)XApe}]
lim inf
n—o0 max(v/nrplogp, nrspyin)

where Hy = ZU(ZEZU)_lzg and Zy, = n~Y2XU.

— 00,

Remark 1 Condition 1 implies that the predictor matrix has a reasonably
good behavior; this is a type of restricted eigenvalue assumption and is com-
monly used in the literature, e.g., Fan and Peng (2004). Condition 2 requires

that each entry of E is sub-Gaussian, which ensures its tail probability decays

11



exponentially. Condition 3 facilitates our derivation but can be much relaxed
so that the true signal strength depends on n as well. Condition 4 imposes re-
quirement on the diverging rate in order to obtain consistent estimation when
p, r diverges with n. Condition 5 is an identifiability assumption, ensuring that
a true low-rank structure can be recognized.

We start with the establishment of the asymptotic property of the minimiser
A(r) = (U, V) of (4.1) when k = r. As far as the asymptotic properties are
concerned, p, ¢ and r are allowed to depend on n and diverge as n — co. The
reason for us to suppress the subscript n of p, ¢ and r is to make notations neat.

We define an index set
M(D)={1<j<p, £eD:ay#0},
and its complement set is denoted by M¢(D). We have the following theorem:

Theorem 1 Under Conditions 1-5, if Yon/\/Tplogp/n — oo and rs,y?, — 0
as n — oo, there exists, with probability tending to one, a local minimiser

{D,,A(r)} of L(U,V,D,;r) satisfying: Ap is full-rank, and

A A 2 \11/2
A,y =0, A() = All = Op({r(sn + @)(logp/n +1,)}/?).
Theorem 1 implies that we can identify a “correct” D, in the sense that Ap
is full rank with an overwhelming probability when n is large. The penalised
estimators of the zero coefficients are exactly zero under some conditions on ~yg,,.
The condition rsn’y%n — 0 together with Condition 4 ensures that the proposed

estimator is consistent. From the proof of this theorem in the Appendix, we

can sce, as a special case, that [|[A(r) — A|| = O,(\/r(p + q)logp/n) when
Yon = Yin = 0. This is in line with the relevant existing results, see, for
example, Negahban and Wainwright (2011).

When the coefficient matrix is sparse, under properly selected tuning pa-
rameters, the proposed penalised estimator would enjoy the “oracle property”.
Specifically, if the adaptive lasso penalty with tuning parameter \;, = )\n&j_gl
is used, where A = (@ji)pxq is the standard least-squares estimator of A,

we can verify that ||A(r) — Al = Op({r(sn + q)(logp/n)}'/?), provided that

12



rqp*logp/n — 0 as n — oo, by setting A, ~ y/log p/n and using the fact that
aje = Op(1) for ajp # 0 and ajp = Oy(y/pglogp/n) for aj; = 0.

As mentioned before, the estimation of the rank r of A plays a very impor-
tant role in the estimation procedure of A. Theorem 2 shows that the proposed

BIC estimator 7, defined by (3.3), is consistent.

Theorem 2 Under the conditions in Theorem 1, if 7/h, — 0 as n — oo, we

have Pr(# =71) — 1 as n — oo.

It is very easy to see Theorem 1 together with Theorem 2 imply the proposed

estimator of A is consistent.

5 Simulation studies

In this section, we use two simulated examples, low and high dimensional ones,
to assess the coefficient matrix estimation, the prediction, and the rank recovery
performance of the proposed method. We assess the proposed method and
consider the rank being estimated by either 5 fold cross-validation (OUR-CV;
Eq.(3.4)) or BIC (OUR-BIC; Eq.(3.3)). Throughout this section, OUR-CV
and OUR-BIC are implemented by the algorithm introduced in Section 3.2
with Py(-) being the L; penalty function. The tuning parameter A is selected
by 5 fold cross-validation.

In the low dimensional example, we compare OUR-CV and OUR-BIC with
the Factor Estimation and Selection method (FES) proposed in Yuan et al.
(2007), the Rank Selection Criterion (RSC) proposed in Bunea et al. (2011),
and the Self-Tuning Rank Selection (STRS) proposed in Bing and Wegkamp
(2019). Besides, we also consider the Ordinary Least Squares estimator (OLS)
and a Low-rank Matrix Decomposition estimator (LMD) as two benchmarks.
Denote Aprs the OLS estimator of A, the LMD estimator of A is obtained

from a rank 7 truncated singular value decomposition of Aprg as

T
Aryvp = UDV' = Zalulvl—r,
=1

13



where D = diag{oi, ..., 07} is a diagonal matrix of 7 largest positive singular
values of Aprg, and U = (uy,...,uz) and V = (vy,...,v;) are corresponding
left and right singular vectors of Aors, respectively. Further, 7 is estimated by
the eigen-ratio method, see Ahn and Horenstein (2013) and references therein.
In the high dimensional example, we only compare OUR-CV and OUR-BIC
with RSC and STRS as FES, OLS and LMD are not applicable.

5.1 Simulation settings

Consider the multivariate linear regression model (2.2). Similar to Bunea et al.
(2011) and Bing and Wegkamp (2019), we consider a data generating process

as follows.

(1) Coefficient matrix A: Let A = bI'oI'y, with b > 0, I'y € RP*", T'; € R™
and 7 < min(p, ¢q). The entries of I’y and I'; are independently drawn
from N(0, 1). The parameter r controls the rank of A. The parameters

b and r together control the signal to noise ratio in (2.2).

(2) Error matrix E: The entries of E are independently drawn from N (0, 1).

The design matrix X is generated with the following two settings to cover the

low and high dimensional cases, respectively.

(3a) Design matrix X when n > p (low dimensional case): X;, i =1, ---, n
are independently drawn from multivariate Normal distribution N, (0, 3).
Fori,j =1, ---, p, the (i,7)th entry of 3 is defined as ;; = nli=il for
some 7 € (0, 1).

(3b) Design matrix X when p > n > ¢ (high dimensional case): Let X =
AgA 122 with Ag € R™Y, and A; € R?*P. The entries of Ag and
A; are independently drawn from N(0, 1). The covariance matrix 3 is

defined as in (3a).

For each case, we generate a testing sample {Y*, X*} of size n* independent
of {Y,X} to assess the prediction performance of each method. To sum up,

the parameters that control the data generating process are listed in Table 1.

14



Table 1: Summary of parameters in data generating process

Parameter Description
n Training sample size
n* Testing sample size
P Dimension of covariate variables
q Dimension of response variables
r Rank of coefficient matrix
b Signal strength parameter
n Correlation level among covariates

5.2 Low dimensional example

In the first example, we examine the performance of OUR-CV, OUR-BIC,
RSC, STRS, FES, OLS and LMD in the low dimensional case. We set n =
100, n* = 50, p = 25 and ¢ = 20. Then, we vary the rank r = 5, 10, 15, the
signal strength parameter b = 0.2, 0.4, and the correlation level n = 0.5, 0.9.
We simulate 200 replications for each scenario.

For each replication, we calculate two re-scaled Frobenius norms as
1, 4 2 1 * *A (12
Ak = fHAk—AH and Fk = = ||Y -X Ak” 5 k= 1, ey, 200, (51)
pq n-q

where Ay is the estimate of A in the kth replication, and {Y*, X"} is a testing
sample of size n*. Then, we calculate the sample mean and sample standard
deviation of A and I'y over 200 replications.

We use 7 to denote the estimated rank of A in the kth replication, k =
1, .-+, 200. The estimation accuracy of the rank r is assessed by the correct

rank recovery rate which is defined as

R= > I(f =), (5.2)

where I(+) is the indicator function.
The simulation results of the low dimensional example with b = 0.2 and

0.4 are presented in Tables 2 and 3, respectively. In most scenarios, OUR-CV

15



performs slightly better than OUR-BIC but pays a price on the computational
cost. When the rank is small (e.g. r =5), OUR-CV, OUR-BIC and STRS
can recovery the correct rank with a rate close to 1 and have small estimation
and prediction errors. RSC struggles when 7 is large and resultes in low correct
recovery rates. LMD suffers when the signal to noise ratio is small. When the
rank is moderate or large (e.g. 7 = 10 or 15), the correct rank recovery rates of
RSC, STRS and LMD drop. As a result, the estimation and prediction errors
of RSC, STRS and LMD are also inflated. Compared with the other methods,
OUR-CV and OUR-BIC are less sensitive to rank, correlation level and the
signal to noise ratio. In general, FES performs similar as RSC in terms of
estimation and prediction, and OLS performs unsatisfactory as it ignores the

low rank structure in A.

5.3 High dimensional example

In the high dimensional example, we examine the performance of OUR-CV and
OUR-BIC and compare them with RSC and STRS. We set n = 40, n* = 40,
p = 100 and ¢ = 25. Then, we vary the rank r = 10, 20, the signal strength
parameter b = 0.2, 0.4, and the correlation level n = 0.5, 0.9. We simulate
200 replications for each scenario. The estimation and prediction errors are
still measured by the sample mean and sample standard deviation of the re-
scaled Frobenius norms defined in (5.1). The estimation accuracy of rank r is
measured by the correct rank recovery rate defined in (5.2).

The simulation results of the high dimensional example with b = 0.2 and
0.4 are presented in Tables 4 and 5, respectively. Similar to the low dimen-
sional case, OUR-CV outperforms OUR-BIC in most scenarios. When both
n and r are large, OUR-CV and OUR-BIC maintains reasonable correct rank
recovery rates while RSC and STRS fail to recovery the correct rank in most

replications.
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Table 2: Results for the low dimensional example with b = (0.2

n=20.5 n=0.9
Rank Method A r R A r R

OUR-CV | 0.013(0.005) 1.121(0.052) 1.00 | 0.040(0.006) 1.130(0.053) 1.00
OUR-BIC | 0.013(0.005)  1.124(0.054) 1.00 | 0.041(0.006) 1.132(0.053) 0.9

RSC 0.017(0.011)  1.130(0.074) 0.87 | 0.062(0.018) 1.249(0.071) 0.59

5 STRS 0.013(0.010)  1.128(0.053)  1.00 | 0.052(0.013) 1.133(0.055) 0.97
FES 0.018(0.015)  1.132(0.045) NA | 0.073(0.022) 1.221(0.048) NA

OLS 0.022(0.026)  1.332(0.066) NA | 0.125(0.027) 1.335(0.069) NA

LMD 0.014(0.008)  1.253(0.195) 0.76 | 0.046(0.015) 1.247(0.075) 0.68
OUR-CV | 0.015(0.006) 1.235(0.058) 0.98 | 0.087(0.010) 1.254(0.060) 0.95
OUR-BIC | 0.015(0.006) 1.236(0.058) 0.96 | 0.089(0.009) 1.257(0.061) 0.92

RSC 0.018(0.017)  1.290(0.087) 0.81 | 0.097(0.019) 1.278(0.068)  0.40

10 STRS 0.016(0.013)  1.244(0.061) 0.90 | 0.093(0.016) 1.254(0.059) 0.65
FES 0.019(0.016)  1.267(0.049) NA | 0.106(0.022) 1.276(0.051) NA

OLS 0.022(0.028)  1.341(0.067) NA | 0.124(0.035) 1.341(0.067) NA

LMD 0.020(0.032)  1.391(0.230) 0.38 | 0.135(0.048) 1.505(0.187) 0.27
OUR-CV | 0.020(0.009) 1.312(0.061) 0.96 | 0.095(0.012) 1.321(0.064) 0.88
OUR-BIC | 0.020(0.009) 1.314(0.063) 0.92 | 0.097(0.012) 1.322(0.064) 0.86

RSC 0.022(0.019)  1.338(0.069) 0.44 | 0.117(0.015) 1.329(0.067) 0.28

15 STRS 0.021(0.012)  1.323(0.067) 0.65 | 0.104(0.013) 1.325(0.064) 0.42
FES 0.022(0.015)  1.326(0.058) NA | 0.117(0.018) 1.332(0.059) NA

OLS 0.024(0.029)  1.337(0.065) NA | 0.124(0.032) 1.338(0.041) NA

LMD 0.029(0.033)  1.373(0.292) 0.15 | 0.136(0.041) 2.012(0.403) 0.12

The columns A and I" report the sample mean and sample standard devi-
ation (in parentheses) of Ay and Ty, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined
in (5.2), over 200 replications.

6 Real data analysis

Particulate matter up to 2.5um (PM2.5) is a complex mixture of solid par-
ticles, chemicals (e.g. sulfates, nitrates) and liquid droplets in the air, which
include inhalable particles that are small enough to penetrate the thoracic re-
gion of the respiratory system. Short term (days) exposure to inhalable PM2.5
can cause an increase in hospital admissions related to respiratory and cardio-
vascular morbidity, such as aggravation of asthma, respiratory symptoms, and

cardiovascular disorders. Long term (years) exposure to inhalable PM2.5 may
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Table 3: Results for the low dimensional example with b = 0.4

n=20.5 n=0.9
Rank Method A r R A r R

OUR-CV | 0.010(0.003) 1.125(0.052) 1.00 | 0.037(0.005) 1.125(0.052) 1.00
OUR-BIC | 0.011(0.003)  1.125(0.052) 0.99 | 0.037(0.005) 1.126(0.052) 0.98

RSC 0.015(0.005)  1.168(0.069) 0.32 | 0.051(0.007) 1.135(0.056) 0.82

5 STRS 0.011(0.003)  1.126(0.052) 1.00 | 0.037(0.006) 1.125(0.052) 1.00
FES 0.015(0.008)  1.154(0.026) NA | 0.054(0.013) 1.139(0.051) NA

OLS 0.023(0.015)  1.332(0.066) NA | 0.125(0.027) 1.332(0.066) NA

LMD 0.011(0.004)  1.171(0.095) 0.99 | 0.041(0.017) 1.280(0.085) 0.86
OUR-CV | 0.014(0.006) 1.231(0.057) 1.00 | 0.078(0.009) 1.238(0.059) 0.97
OUR-BIC | 0.014(0.006) 1.231(0.057) 0.99 | 0.080(0.009) 1.240(0.059) 0.95

RSC 0.019(0.017)  1.309(0.069) 0.86 | 0.093(0.017) 1.292(0.078)  0.66

10 STRS 0.015(0.013)  1.233(0.057) 0.98 | 0.082(0.011) 1.245(0.061) 0.73
FES 0.017(0.016)  1.312(0.055) NA | 0.096(0.012) 1.258(0.060) NA

OLS 0.024(0.021)  1.340(0.027) NA | 0.124(0.025) 1.341(0.067) NA

LMD 0.018(0.016)  1.322(0.067)  0.90 | 0.108(0.035) 1.506(0.109) 0.45
OUR-CV | 0.019(0.009) 1.301(0.061) 0.97 | 0.103(0.011) 1.314(0.065) 0.91
OUR-BIC | 0.020(0.009) 1.303(0.062) 0.95 | 0.104(0.011) 1.315(0.065) 0.88

RSC 0.021(0.019)  1.331(0.071) 0.63 | 0.119(0.014) 1.339(0.071) 0.35

15 STRS 0.021(0.012)  1.322(0.069) 0.81 | 0.107(0.011) 1.323(0.067) 0.54
FES 0.021(0.015)  1.327(0.063) NA | 0.110(0.013) 1.327(0.066) NA

OLS 0.022(0.023)  1.335(0.065) NA | 0.125(0.025) 1.342(0.065) NA

LMD 0.028(0.037)  1.414(0.165) 0.36 | 0.175(0.097) 1.949(0.269) 0.17

The columns A and I" report the sample mean and sample standard devi-
ation (in parentheses) of Ay and Ty, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined
n (5.2), over 200 replications.

lead to an increase in mortality from cardiovascular and respiratory diseases,
like lung cancer. The hazardous effects of inhalable PM2.5 on human health
have been well-documented, see Riediker et al. (2004), Polichetti et al. (2009),
Franck et al. (2011), Xing et al. (2016), Pun et al. (2017) and references therein.

In this section, we investigate the relationship between concentration of
PM2.5 and four air pollutants: ozone, sulfur dioxide (SO2), carbon monoxide

(CO), and nitrogen dioxide (NO2). The dataset for us to study is available at

https://www.epa.gov/outdoor-air-quality-data,
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Table 4: Results for the high dimensional example with b = (.2

n=0.5 n=0.9
Rank Method A r R A T R

OUR-CV | 0.225(0.030) 1.468(0.142) 1.00 | 0.273(0.034)  1.508(0.146) 0.96

10 | OUR-BIC | 0.226(0.031) 1.471(0.146) 0.99 | 0.273(0.034)  1.511(0.146)  0.96
RSC 0.299(0.036)  2.165(0.185) 0.85 | 0.351(0.085)  2.392(0.203) 0.38

STRS 0.226(0.031)  1.470(0.144) 0.97 | 0.2857(0.039) 1.522(0.151) 0.94

OUR-CV | 0.402(0.047) 1.679(0.183) 0.93 | 0.502(0.046)  1.790(0.208) 0.85

20 OUR-BIC | 0.406(0.049) 1.685(0.184) 0.91 | 0.508(0.048)  1.794(0.210) 0.84
RSC 0.618(0.072)  2.602(0.471) 0.15 | 0.758(0.091)  2.627(0.616) 0.06

STRS 0.449(0.058)  2.052(0.235) 0.62 | 0.561(0.062)  2.156(0.273) 0.51

The columns A and T’ report the sample mean and sample standard devi-
ation (in parentheses) of Ay and I'y, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined
in (5.2), over 200 replications.

Table 5: Results for the high dimensional example with b = 0.4

n=20.5 n=0.9
Rank Method A r R A r R

OUR-CV | 0.949(0.102) 1.526(0.148) 1.00 | 0.977(0.122) 1.560(0.151) 0.99

10 OUR-BIC | 0.951(0.104) 1.527(0.148) 0.98 | 0.979(0.123) 1.568(0.153)  0.98
RSC 1.198(0.124)  2.392(0.188) 0.74 | 1.201(0.159) 2.548(0.195) 0.50

STRS 0.954(0.107)  1.528(0.150) 1.00 | 0.982(0.126) 1.570(0.156) 0.98

OUR-CV | 1.021(0.152) 1.770(0.201) 0.95 | 1.181(0.184) 1.838(0.211) 0.88

20 OUR-BIC | 1.025(0.155) 1.774(0.202) 0.92 | 1.183(0.188) 1.841(0.214) 0.87
RSC 1.808(0.406)  2.656(0.482) 0.35 | 2.059(0.685)  2.744(0.658) 0.13

STRS 1.457(0.189)  2.104(0.262)  0.78 | 1.513(0.197) 2.210(0.285) 0.67

The columns A and T’ report the sample mean and sample standard devi-
ation (in parentheses) of Ay and Ty, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined

in (5.2), over 200 replications.

it was collected from 37 outdoor monitoring sites across the United States.
Specifically, the concentration of each of the 4 pollutants was measured and
collected daily from the 37 sites between January 2017 to April 2019, and it

has 729 observations in total. The concentration of PM2.5 was collected in the
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same manner.

What we are interested in is the association between the concentrations of
PM2.5 and the concentrations of the four air pollutants at the 37 monitor sites.
As the concentrations of the four air pollutants at one site may also contribute
the concentrations of PM2.5 at other sites, we include the concentrations of the
four air pollutants at all 37 sites in the explanatory variables for the concentra-
tion of PM2.5 at each site of the 37 sites, this gives us 148 explanatory variables
for the concentration of PM2.5 at each site. In Figure 1, we plot the sample
means of the concentrations of PM2.5 and of the four air pollutants against the
geological locations where they were collected.

We take the first-order difference for each column of the dataset to remove
the non-stationarity, and standardize it to make it have mean 0 and variance
L Let Y = (Y!, -+, Y37) € R™®37 he the matrix of the 728 observations
of the response variable which contains the concentrations of PM2.5 collected
by the 37 sites, and X = (X!, ... XM8) ¢ R™®*!48 he matrix of the 728
observations of predictor which contains the 148 explanatory variables. We
apply the multivariate linear regression model (2.2) to fit the dataset, where
E € R™®*37 is the matrix of random errors, and A € IR'8*37 ig the coefficient
matrix of interest.

We compare the prediction performance of our method with rank esti-
mated by the 5-fold cross-validation (OUR-CV), the Self-Tuning Rank Selec-
tion (STRS) proposed in Bing and Wegkamp (2019), and the Ordinary Least
Squares estimator (OLS). For each method, we use the first 600 observations as
the training set and predict the remaining 128 observations (the test set). Let
Yot and Ytest be the matrices respectively of true and predicted values (ob-
tained by one of the three methods listed above) of the response variable in the
test set. The prediction accuracy is measured by the mean squared Frobenius

norm of the difference between Yies: and Y iest, which is defined as
1 .
Prediction Error = —||Yiest — Ytest\|2,
nyq

where ¢ = 37 and ny; = 128, which are the number of columns and the number

of rows of Yy, respectively.
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co NO2

Figure 1: Sample means of the concentrations of PM2.5 and of the four air

pollutants

We report in Table 6 the prediction error as well as the estimated rank
of the coefficient matrix for each method concerned. According to Table 6,
OUR-CV achieves the smallest prediction error among the three competitors.
Besides, the rank estimated by OUR-CV is 3 which is more parsimonious than
the one estimated by STRS. To justify the rank estimation results, we apply
eigen-decomposition to the coefficient matrix estimated by the OLS method,
and draw the scree plot with the top 20 eigenvalues in Figure 2. The scree plot

shows a clear elbow shape at the third eigenvalue.
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Table 6: Prediction error and estimated rank of the coefficient matrix.

Methods OUR-CV STRS OLS
Prediction error 0.7692 0.8551 1.0394
Estimated rank 3 10 NA

Scree plot of the coefficient matrix estimated by OLS

0.12

0.08 0.10

0.06
Eigenvalues

Proportion of variance explained

0.04

0.02

1

{01 i e

Top 20 principle components

0.00

Figure 2: Scree plot of the coefficient matrix estimated by the OLS method.
The solid dotted line denotes the leading eigenvalues in descending order. The

grey bars denote the proporation of variance explained by each eigenvector.

The coefficient matrix estimated by OUR-CV unveils a parsimonious yet
interpretable relationship between PM2.5 and the other four air pollutants.
Among the four pollutants, CO has the largest positive contribution to the
concentration of PM2.5. As we know, CO is usually produced in the incomplete
combustion of carbon-containing fuels, such as gasoline, natural gas, coal, and
wood. Two major anthropogenic sources of CO in the United States are vehicle
emissions and heating. We find that monitors located in California and around
New York City have high CO coefficients which are caused by the dense vehicle
population. Also, we notice that the monitors with higher latitudes have higher

CO coefficients which may reflect the impact of heating. Further, the attributes
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of each pollutant tend to cluster into three geological areas in the United States:

west coast, central and east coast.

Appendix

Appendix: proofs

Given Dy, the objective function (with respect to (U, V)) is

k p
L(U,V;Dy) =[Yp, — XU|* + | Ypr = XUVTZ+ 0> > Ajglujy
=1 j=1
k p
=L1(U;Dy) + L2(U, VD) + 0 > Njelugl.
=1 j=1

We present three useful lemmas.

Lemma 1 Suppose Conditions 1-4 are satisfied. The following result holds
uniformly for D, such that Ap, is full-rank: With probability tending to one,
there exists a local minimiser A(r) of L(U,V;D,) such that |A(r) — Al =
Op(an), where a, = \/T(p+ q)logp/n + /T80 in.

Proof. For notational simplicity, in what follows we suppress the dependence
of D on r and write L(U, V;D,) as L(U). It is easy to verify that for a given
U, by minimising the function £2(U, V; D, ) with respect to V, we obtain that

L5(U) = £(U,V;D,) = tr {ch(x - HU)YDC} . (A1)
We will show that there exists a large constant C' > 0 such that

Pr{ inf L(Ap + apw) < L(Ap), VD € HT(T)} — 0, (A.2)

WERPXT||W]||=C
which implies with probability tending to one that there exists a local minimum

in the ball {Ap + a,w : ||w|| < C} uniformly in D. Hence, there exists a local
minimiser of £(U) such that [|[U — Apl|| = Op(an).
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Write

L(Ap + apw) — L(Ap)
={L1(Ap + ay,w) — L1(Ap)} + {L2(Ap + anw) — L2(AD)}
+1Y > Nellaje + anwjel — |ajel)
€D j=1

=A1 4+ Ao + As.

Observe that A; = na2tr{w' (n !XT X)w}—2a,tr(E5Xw). By Condition
1, we have tr{w ' (n"'XTX)w} > |/w]||?. It follows then, that the first term
of A1 is uniformly larger than C2?kna?2, which is quadratic in C.
For the second term of Ay, using Cauchy-Schwartz inequality, we have
1/2

2antr(EXw) < 2a,C ZZ (X, EY?
LeD j=1

By Condition 2 and tail probability of sub-Gaussian variables, we have

pq Pr (\XJ-TE£| > canogp) —0 (A.3)

for a sufficiently large ¢ > 0, and thus X]-TEZ = O,(v/nlog p) uniformly in j and
(. Consequently, the second term is uniformly of order O,(y/rnplogpa,C),
which is linear in C. Therefore, by the definition of «,, as long as the constant
C is sufficiently large, the first term dominates the second term with arbitrarily
large probability.

Next, we deal with As. To facilitate the presentation, denote Ap=Ap+
anw, Z =n"'?XAp, Hp,, =H and Hy = H.

By Ype = XApV*" + Epe and Z(I — H) = 0, simple algebra yields that

Ay = a2tr { XwV*T)T(1 = B)(XwV*T) | + 2a,tr {Bp. (1 - H)(Xwv*T)}
+tr {E;C(H - ﬁ)EDC} , (A.4)

where V* € R(@-7)%" guch that ApV*T = Ape.
Following the same arguments as in Aq, it can be shown that as long as

the constant C' is sufficiently large, the first term on the right side of (A.4) will
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always dominate the second term with arbitrarily large probability. Consider

the third term on the right side of (A.4). By Condition 1 again, we get

|Z — 2|l < &l Ap — Ap| = O(aC).
1Z'Z — Z7Z|| = O(anC),
(Z'2) —(272) 7Y = O(anC),

and accordingly |[H — H|| = O(a,C). By (A.3), we have that

tr {Egc(H - f{)EDC}

— tr [n—lEgcx {AD(ZTZ)_l(AD)T - AD(ZTZ)—lA;} XTEDC}

—tr [n‘l/zEch {AD(ZTZ)—l(AD)T - AD<ZTZ)—1A£} n_l/QXTEDc}
< O(anO)|In " Y2ELX|?

= Op(a,Crplog p)

holds uniformly in D, which is of smaller order of A;.

For Ag, observe that

Az = Az + Az

=n Z Z Aje (laje + anwie — |ajel) + Asa,
JLEM(D)

where Azy > 0. By the definition of o, and s, [Azi| < \/rspnoyyi,||w|| which

is dominated by the A;. Hence, by choosing a sufficiently large C, (A.2) holds.
By similar arguments, we can verify that |V — V*|| = O,(a), and accord-

ingly ||A(r) — A = Op(an) follows. O
The next lemma establishes the sparsity property of A(r)

Lemma 2 Suppose the conditions given in Lemma 1 all hold. Ifnl/Q’an/ rplogp —
00, then the following result holds uniformly for D, such that Ap, is full-rank:
For any Ap, satisfying ||Ap, — Ap, || = Op(aw,), Pr(a;p = 0,Y5,£ € M°(D,)) —

1, where A = (Gje)pxq-
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Proof. The objective function can be written as
LU) = tr:(YLYp + Yh Ype) — 2tr(YLXU + Y. XUV')

r oD
+tr(UTXTXU + UTXTXUVTV) + 0 ) > " Njglugel.
=1 j=1
The IAJE, the ¢th column of U, satisfies the KKT optimality condition

aL(U)
aujg |AD

= 2(X");(XAp — Yp)! +2(XT);(XApV' — Ype)V*
+ nAjesgn(aze) = 0. (A.5)
Firstly, consider the first term of (A.5). Note that
n~VA(XT)j(XAp — Yp)' = —n*(XT);Ep = Oy(V/logp)
holds uniformly in j and D. By |[|[Ap — Ap|| = Op(ay,), we have
n~A(XT);(XAp — Yp)*
=nA(XT);(XAp ~ Yp)' +n V3 (XT);X(Ap — Ap)

= 0p(v/logp) + n™*(XT); X0, (an)
~ O (viion). (A56)

Next, for the second term of (A.5), observe that
nY2(XT);(XApVT — Ype)
= —n VHXT)Epe + n VX T);X(ApVT — ApV*T)
and consequently,
n V(XY (XApVT — Ype)VE = O,(vnay,) (A7)

holds uniformly in j and D.

Finally, notice that if aj, # 0 for j,¢ € M(D,), then sgn(a;;) # 0. Com-
bining (A.6) and (A.7), and the assumption that n'/?vy,/v/rplogp — oo, then
(A.5) will not hold for any j,¢ € M¢(D,). This is a contradiction, which yields

the assertion of this lemma. O
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Lemma 3 Suppose Conditions 1-4 are satisfied. The following result holds
uniformly for D, such that Ap, is full-rank: With probability tending to one,
there exists a local minimiser A of L(U,V;D,) such that AMC(DT) =0, and
1A — Al = Op(Bu), where Bux = /150 + a)logp/n+11,)-

Proof. By Lemma 2, with probability tending to one, A Mme(p,) = 0. Hence, it

suffices to show that there exists a large constant C' > 0 such that

Pr{ inf L(Ap + Boiw) < L(Ap), VD € HT(T)} ~0, (A8)

Iwi=C
where W ye(p) = 0. The proof of (A.8) follows similarly from the arguments in

the proof of Lemma 1, except for the second term of A;. Notice that

2Bn,ktr(E£Xw) = Op(C B\ 108y logp),

where we use (A.3) again. Therefore, all the other arguments in the proof of

Lemma 1 follows with «,, replaced with 3,. O

Lemma 4 Suppose Conditions 1-5 are satisfied. With probability tending to
one, Ap s full-rank, where (ﬁr,ﬂ,V) is the minimiser of L(U,V,D,;r).
Proof. 1t suffices to show that there exists some K, € H,.,
Pr{ min min £(U;D,) < E(A;CT;ICT)} — 0. (A.9)
DreH, U

Consider D € H,. Firstly, by the proof of Lemma 1, we see that

L(U) =tr(Y5Yp) — 2tr(YL,XU) + tr(UTXTXU)

p
+ £2(U) + nz Z )\jg|u]'g‘.

(€D j=1
Accordingly,
min £(U) ~ £(Ax)
> min [HXU — XApl? +tr {(XADC)T(I - HU)XADCH
~max (21X Ep|l|Ap — Ul| + 2| EpHuX Ape| + rnsnyinC)

- {2HE£CXADCH Ftr (E,ECHA,CE,CC)} = Ar 4+ Ao + As,
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where C' > 0 is a constant.

Denote ¢, = y/nrplogp. Observe that |X Ep|| = Oy(cn), |[Ep-XApe| =
Op(cn), |Ep-HyXApe|| = Op(cy) and tr(Ef.Ha, Exe) = Op(rplogp).

By Condition 5, we know that

¢ 'mingy [HXU ~ XAp|?+ tr {(XADC)T(I - HU)XADCH = o0,

we have either ¢, | XU —XAp||? = oo or ¢, tr {(XApe) " (I - Hy)XApe } —
0.

Consider the former one. Note that | XU — XAp|? < n&||Ap — UJ|? and
thus |Ap — U||/y/ca/n — oco. In this case, the Ay > ming||XU — XAp|?
which dominates As and Asz. Under the situation that the later one holds, it

can be similarly shown that the Ay will dominate the other terms. O

Proof of Theorem 1

Theorem 1 follows immediately from Lemmas 3-4. (]

Proof of Theorem 2

Consider k < r firstly. Using the same arguments in the proof of Lemma 4, it

can be seen that

mkin BIC(k) — BIC(r) > /nrplogp — \/rplog phy,.

It follows immediately that Pr(min; BIC(k) > BIC(r)) — 1 as n — oo, provided
that h,//n — 0.

For the case k > r, we firstly notice that using the same procedure in the

proof of Lemma 1, it can be shown that ||A (k) — A|| = Op(Bn,k). Accordingly,

min BIC(k) — BIC(r) 2 O,(v/kplogp) + (Vk = V= 1)v/plog phs
> 0,(v/Fplogp) + 3k~ \/plogphn,

which implies that with probability tending to one the case of k£ > r would not
happen as long as k/h,, — 0.
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Combining the two cases together implies that any k failing to identify the
true low-rank structure cannot be selected as the optimal rank. That is to say,
the model associated with the optimal k£ must be the true one. This completes

the proof. I
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