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Censored quantile regression (CQR) has become a valuable tool to study
the heterogeneous association between a possibly censored outcome and a
set of covariates, yet computation and statistical inference for CQR have re-
mained a challenge for large-scale data with many covariates. In this paper,
we focus on a smoothed martingale-based sequential estimating equations
approach, to which scalable gradient-based algorithms can be applied. Theo-
retically, we provide a unified analysis of the smoothed sequential estimator
and its penalized counterpart in increasing dimensions. When the covariate
dimension grows with the sample size at a sublinear rate, we establish the
uniform convergence rate (over a range of quantile indexes) and provide a
rigorous justification for the validity of a multiplier bootstrap procedure for
inference. In high-dimensional sparse settings, our results considerably im-
prove the existing work on CQR by relaxing an exponential term of sparsity.
We also demonstrate the advantage of the smoothed CQR over existing meth-
ods with both simulated experiments and data applications.

1. Introduction. Censored data are prevalent in many applications where the response
variable of interest is partially observed, mostly due to loss of follow-up. For instance, in
a lung cancer study considered by Shedden et al. [50], 46.6% of the lung cancer patients’
survival time are censored, due to either early withdrawal from the study or death because
of other reasons that are unrelated to lung cancer. Commonly used methods to study the as-
sociation between the censored response and explanatory variables (covariates) are through
the use of Cox proportional hazards model and the accelerated failure time (AFT) model [1,
31]. Both models assume homogeneous covariate effects and are not applicable to cases in
which the lower and upper quantiles of the conditional distribution of the censored response,
potentially with different covariate effects, are of interest. Moreover, in many scientific stud-
ies, higher or lower quantiles of the response variable are more of interest than the mean. To
capture heterogeneous covariate effects and to better predict the response at different quan-
tile levels, various censored quantile regression (CQR) methods have been developed under
different assumptions on the censoring mechanism [6, 9-11, 25, 38, 45, 48, 49, 59, 63, 64].
We refer the reader to Chapters 6 and 7 in [34] as well as [43] for a comprehensive review of
censored quantile regression.

We consider the random right censoring mechanism, in which the censoring points are
unknown for the uncensored observations. Statistical methods for CQR were first proposed
under the stringent assumption that the uncensored response variable (not observable due to
censoring) is marginally independent of the censoring variable; see, for example, [25, 64].
Under a more relaxed conditional independence assumption, conditioned on the covariates,
[45] generalized the Kaplan—Meier estimator for estimating the (univariate) survival function
to the regression setting, based on Efron’s [14] redistribution-of-mass construction. From a
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different perspective, [44] employed a martingale-based approach for fitting CQR, and the
resulting method has been shown to be closely related to [45]’s method [40, 42]. Both [45]’s
and [44]’s methods, along with their variants, involve solving a series of quantile regression
problems that can be reformulated as linear programs, solvable by the simplex or interior
point method [3, 36, 46]. Statistical properties of the aforementioned methods have been
well studied, assuming that the number of covariates, p, is fixed [40, 42, 44, 47]. To this date,
the impact of dimensionality in the increasing-p regime, in which p is allowed to increase
with the number of observations, has remained unclear in the presence of censored outcomes.

In the high-dimensional setting in which p > n, convex and nonconvex penalty functions
are often employed to perform variable selection and to achieve a trade-off between statistical
bias and model complexity. While penalized Cox proportional hazards and AFT models have
been well studied [5, 7, 16, 27], existing work on penalized CQR under the framework of
[45] and [44] in the high-dimensional setting is still lagging. Large-sample properties of
penalized CQR estimators were first derived under the fixed-p setting (p < n), mainly due
to the technical challenges introduced by the sequential nature of the procedure [52, 58,
60]. More recently, [67] studied a penalized CQR estimator, extending the method of [44]
to the high-dimensional setting (p > n). They showed that the estimation error (under £;-
norm) of the £1-penalized CQR estimator is upper bounded by O(exp(Cs)+/slog(p)/n) with
high probability, where C > 0 is a dimension-free constant. Compared to the £1-penalized
QR for uncensored data [4], whose convergence rate is of order O(4/s log(p)/n), there is a
substantial gap in terms of the impact of the sparsity parameter s.

In addition to the above theoretical issues, our study is motivated by the computational
hardness of CQR under the framework of [45] and [44] for problems with large dimension.
Recall that this framework involves fitting a series of quantile regressions sequentially over
a dense grid of quantile indexes, each of which is solvable by the Frisch—-Newton algorithm
with computational complexity that grows as a cubic function of p [46]. Moreover, under the
regime in which p < n, the asymptotic covariance matrix of the estimator is rather compli-
cated, and thus resampling methods are often used to perform statistical inference [44, 45].
A sample-based inference procedure (without resampling) for Peng—Huang’s estimator [44]
is available by adapting the plug-in covariance estimation method from [53]. In the high-
dimensional setting (p > n), computation of the £1-penalized QR is based on either reformu-
lation as linear programs [37] or alternating direction method of multiplier algorithms [22,
65]. These algorithms are generic and applicable to a broad spectrum of problems but lack
scalability. Since the £1-penalized CQR not only requires the estimation of the whole quan-
tile regression process, but also relies on cross-validation to select the sequence of (mostly
different) penalty levels, the state-of-the-art methods [17, 67] can be highly inefficient when
applied to large- p problems.

To illustrate the computational challenge for CQR, we compare the £ -penalized CQR pro-
posed by Zheng et al. [67] and our proposed method by analyzing a gene expression data set
studied in [50]. In this study, 22,283 genes from 442 lung adenocarcinomas are incorporated
to predict the survival time in lung cancer, with 46.6% subjects that are censored. We im-
plement both methods with quantile grid set as {0.1, 0.11, ..., 0.7}, and use a predetermined
sequence of regularization parameters. For Zheng et al. [67], we use the rgPen package to
compute the £1-penalized QR estimator at each quantile level [51]. The computational time
and maximum allocated memory are reported in Table 1. The reference machine for this
experiment is a worker node with 2.5 GHz 32-core processor and 512 GB of memory in a
high-performance computing cluster.

In this paper, we develop a smoothed framework for CQR that is scalable to problems
with large dimension p in both low- and high-dimensional settings. Our proposed method
is motivated by the smoothed estimating equation approach that has surfaced mostly in the
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TABLE 1
Computational runtime and maximum allocated memory for fitting €1 -penalized COR and the proposed method
on the gene expression data with censored response in [50]. One gigabyte (GB) equals 1024 megabytes (MB)

Methods Runtime Allocated memory
£1-penalized CQR 170 hours+ 38 GB
Proposed method 2 minutes 926 MB

econometrics literature [12, 18, 23, 30, 61, 62], which can be applied to the stochastic inte-
gral based sequential estimation procedure proposed by Peng and Huang [44] for CQR. We
show in Section 2.2 that the smoothed sequential estimating equations method can be refor-
mulated as solving a sequence of optimization problems with (at least) twice differentiable
and convex loss functions for which gradient-based algorithms are available. Large-scale sta-
tistical inference can then be performed efficiently via multiplier/weighted bootstrap. In the
high-dimensional setting, we propose and analyze £;-penalized smoothed CQR estimators
obtained by sequentially minimizing smoothed convex loss functions plus £-penalty, which
we solve using a scalable and efficient majorize-minimization-type algorithm, as evidenced
in Table 1.

Theoretically, we provide a unified analysis for the proposed smoothed estimator in both
low- and high-dimensional settings. In the low-dimensional case where the dimension is al-
lowed to increase with the sample size, we establish the uniform rate of convergence and a
uniform Bahadur-type representation for the smoothed CQR estimator. We also provide a rig-
orous justification for the validity of a weighted/multiplier bootstrap procedure with explicit
error bounds as functions of (n, p). To our knowledge, these are the first results for censored
quantile regression in the increasing-p regime with p < n. The main challenges are as fol-
lows. To fit the QR process with censored response variables, the stochastic integral based
approach entails a sequence of estimating equations that correspond to a prespecified grid of
quantile indexes. A sequence of pointwise estimators can then be sequentially obtained by
solving these equations. The sequential nature of this procedure poses technical challenges
because at each quantile level, the objective function (or the estimating equation) depends on
all of the previous estimates. To establish convergence rates for the estimated regression pro-
cess, a delicate analysis beyond what is used in [23] is required to deal with the accumulated
estimation error sequentially. The mesh width of the grid should converge to zero at a proper
rate in order to balance the accumulated estimation error and discretization error. In the high-
dimensional setting, we show that with suitably chosen penalty levels and bandwidth, the
£1-penalized smoothed CQR estimator has a uniform convergence rate of O(y/slog(p)/n),
provided the sample size satisfies n > s> log(p). The technical arguments used in this case
are also very different from those in [67] and subsequent work [17], and as a result, our con-
clusion improves that of Zheng et al. [67] by relaxing the exponential term exp(Cs) in the
convergence rate to a linear term in s. Such an improvement is significant when the effective
model size s is allowed to grow with n and p in the context of censored quantile regression.

The rest of the article is organized as follows. In Section 2, we provide a formal formula-
tion of the CQR. We then briefly review the martingale-based estimating equation estimator
proposed by Peng and Huang [44] in Section 2.1. The proposed smoothed CQR is detailed
in Section 2.2, along with the multiplier bootstrap method for large-scale inference in Sec-
tion 2.3. We then provide a comprehensive theoretical analysis for the smoothed CQR esti-
mator in Section 3 and its bootstrap counterpart. In Section 4, we generalize the smoothed
CQR to the high-dimensional setting by incorporating a penalty function to the smoothed
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CQR loss and study the theoretical properties of the regularized estimator. Extensive numer-
ical studies and data applications are in Sections 5 and 6. The R code that implements the
proposed method is available at https://github.com/XiaoouPan/scqr.

Notation. For any two real numbers a and b, we write a A b = min{a, b} and a vV b =
max{a, b}. Given a pair of vectors u,v € R”, we use uTv and (u, v) interchangeably to
denote their inner product. For a positive semidefinite matrix ¥ € R?*?, we define the X-
induced £>-norm |u||s = || ='?u||, for any u € R?. For every r > 0, we use BP (r) = {8
R? :||Bll2 <r}and SP~!(r) = {B € R” : ||B|l2 = r} to denote the Euclidean ball and sphere,
respectively, with radius 7. In particular, we write S”~! = SP~1(1). Given an event/subset .4,
1{A} or 1 4 represents the indicator function of this event/subset. For two nonnegative arrays
{an}n>1 and {b,},>1, we write a,, < b, if a, < Cb,, for some constant C > 0 independent of
n,a, 2 b, if b, < ay, and a, < b, if a, < b, and a,, = b,,.

2. Censored quantile regression. Let z € R be a response variable of interest, and x =
(x1,...,x p)T be a p-vector (p > 2) of random covariates with x; = 1. In this work, we focus
on a global conditional quantile model on z described as follows. Given a closed interval
[tz, Tv] € (0, 1), assume that the Tth conditional quantile of z given x takes the form
€)) Flm)=xTB*(x) for any 7 € 17, Tv/],

z|x

where B*(t) € R?, formulated as a function of 7, is the unknown vector of regression coef-
ficients.

We assume that z is subject to right censoring by C, a random variable that is conditionally
independent of z given the covariates x. Let y = z A C the censored outcome, and A =
1(z < C) be an event indicator. The observed sample {y;, A;, x;};_; consists of independent
and identically distributed (i.i.d.) replicates of the triplet (y, A, x). In addition, we assume
at the outset that the lowest quantile of interest 7; satisfies P{y < xTg*(zz), A =0} = 0.
This condition, interpreted as no censoring below the tzth quantile, is commonly imposed
in the context of CQR; see, for example, Condition C in [45] and Assumption 3.1 in [67].
Moreover, our quantiles of interest are confined up to ty < 1 subject to some identifiability
concerns, which is a subtle issue for CQR problems. Briefly speaking, the model (1) may
become nonidentifiable as T moves toward 1, due to large amount of censored information in
the upper tail. In practice, determining 7y is usually a compromise between inference range
of interest and data censoring rate, and 77 can be chosen to be close to O if censoring occurs
at early stages. Theoretically, the above assumption on t7, helps us simplify the technical
analysis.

The above model is broadly defined, yet it is inspired by approaching survival data with
quantile regression [35]. To briefly illustrate, let 7 be a nonnegative random variable repre-
senting the failure time to an event. The conditional quantile model (1) on z =1og(7") can be
viewed as a generalization of the standard AFT model in the sense that coefficients not only
shift the location but also affect the shape and dispersion of the conditional distributions.

2.1. Martingale-based estimating equation estimator. Under the global linear model (1),
two well-known methods are the recursively reweighted estimator of [45] and the stochastic
integral based estimating equation estimator of [44]. Both methods are grid-based algorithms
that iteratively solve a sequence of (weighted) check function minimization problems over a
predetermined grid of t-values. Motivated by the recent success of smoothing methods for
uncensored quantile regressions [18, 23, 54], we propose a smoothed estimating equation
approach for CQR in the next subsection. We start with a brief introduction of [44]’s method
that is built upon the martingale structure of randomly censored data.
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To this end, denote by A, x(r) = —log{l — P(z < t|x)} the cumulative conditional haz-
ard function of z given x, and define the counting processes N;(t) = 1{y; <t, A; = 1}

and No;(t) = 1{y; <t,A; =0} fori =1,...,n, where A; = 1(z; < C;). Define F;(s) =
o{N;(u), Noi(u) : u < s} as the o-algebra generated by the foregoing processes. Note that
{Fi(s) : s € R} is an increasing family of sub-o -algebras, also known as filtration, and N; (¢)
is an adapted submartingale. By the unique Doob—Meyer decomposition, one can construct an
Fi(t)-martingale M;(t) = N;(t) — Ay x; (yi A1) satisfying E{M;(¢)|x;} = O; see Section 1.3
of [19] for details. Taking t = xiTﬂ*(t) for each i, the martingale property implies

E[Z{N,. (T () = Aae (31 1 xfﬂ*(f))}xi] —o.

i=1
This lays the foundation for the stochastic integral based estimating equation approach. The
monotonicity of the function 7 — xT8*(z), implied by the global linearity in (1), leads to

Az, (vi Ax]B*(T)) = H(t) A H(P(z; < yilxi)) = fo Yy > x; B*w)}dH ()

for T € [rr, ty], where H(u) := —log(l — u) for 0 < u < 1. This motivates Peng and
Huang’s estimator [44], which solves the following estimating equation:

- Z[ (x]B (1)) — f 1{y; = x] Bw)} dH(u):|x,- =0, forevery 1, <t <T1p.

However, the exact solution to the above equation is not directly obtainable. By adapt-
ing Euler’s forward method for an ordinary differential equation, [44] proposed a grid-
based sequential estimating procedure as follows. Let iy =9 <11 <--- <71, =Ty be a
grid of quantile indices. Noting that P{y < xT*(z0), A = 0} = 0, we have E[OIO 1{y; >
xiT,B*(u)} dH (1) = 19, and hence B* () can be eNStimated by solving the usual quantile equa-
tion (1/n) " |{N; (xiTﬂ) —1o}x;i =0. Denote~ﬂ(ro) as the solution to the above equation.

At grid points 1, k =1, ..., m, the estimators B(t) are sequentially obtained by solving
1 T k=l gy T
@ S Nt = 3 [ = TR AH @) — o v =0,
i=1 j=0""%

The resulting estimated function B(-) :[tr, Tv] — RP? is right continuous and piecewise con-
stant that jumps only at each grid point. Computationally, solving the above equation is equiv-
alent to minimizing an £ -type convex objective function after introducing a sufficiently large
pseudo point to the data. The minimizer, however, is not always uniquely defined. To avoid
this lack of uniqueness as well as grid dependence, [28] introduced a more general (popu-
lation) integral equation, and then proposed a Progressive Localized Minimization (PLMIN)
algorithm to solve its empirical version exactly. This algorithm automatically determines the
breakpoints of the solution, and thus is grid-free. Under a continuity condition on the density
functions (see, e.g., condition (C2) in [28]), the estimating functions used in [44] and [28] are
asymptotically equivalent.

2.2. A smoothed estimating equation approach. Due to the discontinuity stemming from
the indicator function in the counting process N;(-), exact solutions to the estimating equa-
tions (2) may not exist. In fact, B(z;) for j =0, ..., m are defined as the general solutions
to generalized estimating equations [20], which correspond to subgradients of some convex
yet nondifferentiable functions. Computationally, one may reformulate these equations as a
sequence of linear programs, solvable by the Frisch—Newton algorithm described in [46]. The
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computation complexity grows rapidly when the dimensionality p increases. To mitigate the
computational burden of the existing methods, we employ a smoothed estimating equation
(SEE) approach for fitting large-scale censored quantile regression models.

Let K(-) be a symmetric and nonnegative kernel function and let Ku) = ffoo K (x)dx,
which is a nondecreasing function that is between 0 and 1. The nonsmooth indicator function
1(u > 0) can thus be approximated by K (u/h) for some & > 0 in the sense that as 4 — 0,
Ku/h)— 1 foru>0and K (u/h) — 0 for u < 0. Hereinafter, 4 > 0 will be referred to
as a bandwidth. As aforementioned, let 17, =19 < 71 < --- < T, = Ty be a grid of quantile
indices for some m > 1. Given a kernel function K (-) and a bandwidth & > 0, write

_ _ u/h
K@) =h""K@u/h) and Kn(u)=K@u/h) = K()dv, ucR,

so that K » () = Kp(u). We now propose a smooth SEE approach for CQR.

1. At T = 19, we estimate 8% (1g) by B(‘E()), obtained from solving Qo(ﬂ) =0, where

n

~ 1 _
3) Qo(B) 3=;Z{AiKh(—ri(ﬂ))_TO}xi and r;(B) =y —x; B.

i=I

2. At grid points Tk fork=1,...,m, set ﬁ(t) = B(‘L’k_l) for any t € (tx—1, T¢), and
then obtain estimators B(zx) of B*(tx) by solving Qx(B) =0, where

N 1 n _ k—1 _ N
@) OB = o Z[AiKh(—ri(ﬂ)) =Y Kn(ri(Bap)){H(tj1) — H(tj)} — 770:|xi-

i=1 j=0

Note that the resulting estimator ﬁ(-) : [Tz, Ty] — RP is right continuous and piecewise con-
stant with jumps only at grids. For notational convenience, throughout the remainder of this
paper we write

Bi=pB*(tx) and Br=B(w)., k=0,1,....m.

Before proceeding, it is worth noticing that the above smoothed estimating equations
method is closely related to the convolution smoothing approach studied in [18] and [23].
Consider the check function p;(u) = t{u — 1(u < 0)}, and its convolution smoothed coun-
terpart

o0

Conu) = (pr % Ki) () = f pe()Kn(v —u)dv,

where * denotes the convolution operator. Given censored data {(y;, A;, x;)}!"_,, define the
empirical smoothed loss

n

-~ 1
(5) Lo(B) =~ {Ailwyn(yi —x; B) + 7o(Ai = Dx] B},
i=1

whose gradient and Hessian are
o~ ~ PR 1 n
VLo(B)=0o(B) and VLo(B) =~ AiKi(ri(B))xix;,
i=1

respectively. Hence, the foregoing estimator Bo can be equivalently defined as the solution
to the (unconstrained) optimization problem mingcrr Lo(B). When a nonnegative kernel is
used, the objective function Lg(-) is convex, and thus any minimizer satisfies the first-order
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condition. At subsequent grid points 7 for k =1, ..., m, the estimator Bk can also be viewed
as an M -estimator that solves
. . n k—1 .
(6) ggli@,{Lk(ﬂ) '=Lo(B) — <— YD Ku(yi —x[B){H(xj+1) — H(xp)}xi, /3>}.
i=1;=0

Notably, kernel smoothing produces continuously differentiable estimating functions 0
(k=0,...,m), or equivalently, convex and twice-differentiable loss functions Zk(-), which
have the same positive semidefinite Hessian matrix Vsz(ﬂ) =(1/n) Y7 | AiKy, (x B —
Vi)Xi x . As we shall see, the empirical loss functions Ly () are not only globally convex but
also locally strongly convex (with high probability). This property ensures the existence of
global solutions to the sequential estimation problems, which can be efficiently solved by a
quasi-Newton algorithm described in Section A.1 of the Supplementary Material [24].

2.3. Inference with bootstrapped process. In this subsection, we construct component-
wise confidence intervals for 8*(7) at some quantile index 7 of interest by bootstrappmg the
quantile process. Recall that ﬂ s are the solutions to the equations Ok (B) =0, where 0 ()
(k 0,1,...,m) are defined in (3) and (4). Analogously, we construct bootstrap estimators
,3 By followmg a sequential procedure based on the bootstrapped SEEs obtained by perturbing
Qk( ) with random weights. Independent of the observed data {y;, A;, x;}i_;,let Wy, ..., W,
be exchangeable nonnegative random variables, satisfying E(W;) = 1 and var(W;) > 0. The
bootstrap estimators can be constructed as follows:

1. Set Bz as the solution of QZ(,B) =0, where
—~ 1 _
(7 00(B) := - Y Wil AiKn(—ri(B)) — to}x;  withr;(B) = y; — x| B.
i=1

2. Fork=1,..., m, compute ﬁ,b{ sequentially by solving Q,bc (B) =0, where
()

> 1 n _ k—1 _ .
0,(B) := - dowi |:AiKh (—ri(B)) — Y _ Kn(ri (ﬂ;)){H(T(Z—H — H(tp)} — 70:|xi'
i=1

£=0

3. Define the bootstrap estimate of the coefficient process Bb(-) Crr, ty] = RP as
ﬁb(t) =B,b€_1 forte[n_,w)andk=1,...,m

For a prescribed nominal level, we can construct componentwise percentile or normal-
based confidence intervals for ﬂ’j’f(t) (j =1,..., p). The above multiplier bootstrap estima-

tor ﬁb(~) : [T, tv] — RP? of the coefficient process behaves similarly as E(-), in the sense
that they are both right continuous and piecewise constant with jumps only at the grids. The
multiplier bootstrap method, which dates back at least to [2], is motivated by the follow-
ing simple yet important observation. Let E*(-) be conditional expectation given the data,
that is, B*(-) = E(:|{y;, A, x:}/_,). Since E(W;) = 1, we have E*{Q(B)} = Qo(8) and
E*{Q\Ii(ﬁ)} ~ Qk(ﬂ) for k =1,...,m. This means that in the bootstrap world, Q\i(ﬂ) can

be viewed as an empirical version of Qk (B), and thus Bz can be regarded as the bootstrap
estimator of ;.

We complete this section with a brief discussion of other resampling methods for quan-
tile regression. Given the random weights {W;}7_, independent of data, another available
approach is to minimize the randomly perturbed objective functions [29, 44]. In the current
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setting, it seems more natural to directly bootstrap the estimating equations. In terms of boot-
strapping estimating equations with uncensored data, [41]’s method is based on the assump-
tion that the estimating equation is exactly or asymptotically pivotal, and [26]’s proposal is
based on resampling with replacement. A generalized weighted bootstrap and its asymptotic
theory has been rigorously studied in [8] and [39]. For censored quantile regression, the se-
quential SEEs (4) are not directly formulated as empirical averages of independent random
quantities, nor do they satisfy the required assumptions in the literature; see Section 2 of [41],
Section 2 of [26] and Section 3 of [8]. Hence, the validity of weighted bootstrap for CQR is
of independent interest, and will be examined in Section 3.3.

REMARK 2.1. In practice, random weights {W;}?_, can be generated from one of
the following distributions: (i) (Wy,..., W,) ~ Multinomial(n, 1/n,...,1/n). This leads
to Efron’s nonparametric bootstrap, for which the random weights are exchangeable but
not independent; (i1) Wy, ..., W, ~ Exp(1) are i.i.d. exponentially distributed random vari-
ables; and (iii) W; = e; 4+ 1, where ¢;’s are i.i.d. Rademacher random variables, defined by
P(e; = 1) = P(e; = 0) = 1/2. We refer to this as the Rademacher multiplier bootstrap. Its
theoretical properties will be investigated in Section 3.3.

3. Theoretical analysis.

3.1. Regularity conditions. We first impose some technical assumptions required for the
results in Sections 3.2 and 3.3.

CONDITION 3.1 (Kernel function). Let K(-) be a symmetric, Lipschitz continuous
and nonnegative kernel function, that is, K(#) = K(—u), K(u) > 0 for all u € R and
/%o K(u)du = 1. Moreover, k, = sup,cg K (u) < 00, k; = minj,<c K (u) > 0 for some
¢ > 0. We define its higher-order absolute moments as x; = o |u|*K (u)du for any pos-
itive integer £.

CONDITION 3.2 (Random design). The random covariate vector x = (xq, ..., xp)T €
X C R? is compactly supported with ¢}, :=sup,cy [=~12x|; < 0o, where £ =E(xx7T) is
positive definite.

CONDITION 3.3 (Conditional densities). Assume (z, x) follows the global conditional
quantile model (1). Define the conditional cumulative distribution functions F,(u|x) =P(z <
ulx), Fy(ulx) =P(y < ulx) and G(ulx) =P(y <u, A =1|x), where y =z A C and C
is independent of z given x. Assume that the conditional densities f;(u|x) = Fz/(u|x),
fy(ulx) = Fy/ (u|x) and g(u|x) = G'(u|x) exist, and satisfy almost surely (over x) that

inf min{ f,(x"B*(D)Ix), £(xTB*(D)Ix)} = f >0,  sup fy(ulx) <7,

€[y, tyl uelR

0<g< inf gulx) < sup g(ulx) <g.

= u—xTg*(0)|<1/2,7elr, Ty ] ueR

Moreover, there exists a constant /; > 0 such that for any u € R,

sup [ fy(xTB* (@) +ulx) — f,,(xTB*(0)Ix)| <l lul,

xeRP,te[t,ty]

sup  |g(xTB* (1) +ulx) — g(x"B*()Ix)| < lilul.

xeR?,te[ty,ty]
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CONDITION 3.4 (Grid size). The grid of quantile levels 17 =g <11 < -+- < T, =Ty
satisfies n~! < §, < §* < n~1/2 where §* = maxj<k<m(Tk — Tk—1) and 8, = ming <k <pm (tx —
Tp—1)-

Condition 3.1 holds for most commonly used kernel functions, including: (a) uniform ker-
nel K (1) = (1/2)L(Ju| < 1), (b) Gaussian kernel K () = (277)~"/2e=%*/2, (c) logistic kernel
K (u) = e /(14 e7*)2, (d) Epanechnikov/parabolic kernel K (1) = (3/4)(1 —u®)1(|lu| < 1)
and (e) triangular kernel K (1) = (1 — |u|)L(Ju| < 1). To simplify the analysis, we take c =1
in Condition 3.1; otherwise, if ¢ < 1 and K(£1) = 0, we can simply use a rescaled kernel
K:(u) :=cK(cu), so that minj,|<i K.(u) = cminj, <. K (u). The compactness of X" in Con-
dition 3.2 is a common requirement for a global linear quantile regression model (quantile
regression process) [32]. If the support of the covariate space—the set of x;’s that occur with
positive probability—is unbounded, at some points there will be “crossings” of the condi-
tional quantile functions, unless these functions are parallel, which corresponds to a pure
location-shift model. The quantity ¢, plays an important role in the theoretical results. Alter-
natively, one may assume || »1/2x loo < Bg (almost surely) as in [67], which in turn implies
¢p < Bo p'/? in the worst-case scenario. In general, it is reasonable to assume that ¢p < pl/2.
In addition to ¢, define the moment parameters

9) mg= sup E(|u"=72x|?) forq=3,4,
ueSp-1
which satisfy the worst case bounds m3 < ¢, and my4 < {1%.
Conditions 3.2 and 3.3 ensure that the coefficient function B*(-) is Lipschitz contin-
uous. Since B*(t) solves the equation E[{r — 1(z < xTﬂ)}x] = 0, we have %,B*(r) =
E{ f.(xTB*(t)|x)xxT}~'E(x). Under Condition 3.2, it holds

d
max |—X28* )| < f7' max |E(=7VE)|, < f7h
e[, wll dt 2 — telr,yl -
which, together with the mean value theorem, implies
(10) 1B (t) — B*(7')|| < i_1|l’ —1'| foranyt, 7' €[ts, ]

By the definitions in Condition 3.3, G(u|x) < F(u|x) for any u > 0. Recall that we have
assumed no censored observations at low quantile levels T < 7. Hence, G(xT,B*(rL)|x) =
F(xTB*(tp)|x) = 1z, and G(xTB*(v)|x) <t < F(xTB*(1)|x) for 11 < v < ty. Condi-
tion 3.4 assures a fine grid by controlling the gap between two contiguous points, so that the
approximation/discretization error does not exceed the statistical error.

3.2. Uniform rate of convergence and Bahadur representation. In this section, we char-
acterize the statistical properties of the SEE estimators for censored quantile regression with
growing dimensions. That is, the dimension p = p, is subject to the growth condition p =< n¢
for some a € (0, 1). Our first result provides the uniform rate of convergence for the estimated
coefficient function ﬁ(-) under mild bandwidth constraints.

THEOREM 3.1 (Uniform consistency). Assume Conditions 3.1-3.4 hold, and choose the
bandwidth h = h,, < {(p + logn)/n}" for some y € [1/4,1/2). Further let n 2, {g“lz,(p +
logn)l/z_y}l/(l_y). Then the SEE estimator B(-) [z, tv] — RP satisfies

. 1 — 1. \Cofle p+logn
ar swp [Bo-p ol s (o) g P
telrr. Tyl -~ n

with probability at least 1 — Cin~", where Cy, C1 > 0 are constants independent of (n, p).
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Since the deviation bound in (11) depends explicitly on n, p as well as other model
parameters, this nonasymptotic result implies the classical asymptotic consistency by let-
ting n — oo with p fixed. From an asymptotic perspective, Theorem 3.1 implies that the
smoothed estimator with a bandwidth h = h,, =< {log(n)/ n}¥ for some y € [1/4,1/2) satis-
fies SUPy, <r<q, ||ﬂ(‘c) — B*(7)|l2 — 0 in probability as n — oo.

Recall that in the sequential estimation procedure described in Section 2.2, the jth estima-
tor B; (j = 1) depends implicitly on its predecessors through the estimating function (4). In
other words, the accumulative estimation errors of ﬂ (7) for 7, <7 < 7; may have a nonneg-
ligible impact on ,B j ﬂ(‘c j). The next result explicitly quantifies this accumulative error.
For 7 € [t, 7], define p x p matrices

(12) J(©) =E{g(x"B*(0)lx)xx"} and H(z) =E{f,(x"B*(1)|x)xx"},

both of which are positive definite under Conditions 3.2 and 3.3. Moreover, define the inte-
grated covariate effect and its estimate

B (1) = J (D) (1) + / H(u)B* (u) dH (u)

and  Bine(r) == J(OB(D) + / H(u)B ) dH (1),

respectively, so that e(t) := Eim(r ) — B () can be interpreted as the accumulated error in
the sequential estimation procedure up to 7. That is,

(13) ) =J@[B@) - B* D))+ / THO[Bw) — B* ()} dH ().

current step

preceding steps

The following theorem provides a uniform Bahadur representation for e(-).

THEOREM 3.2 (Uniform Bahadur representation). Assume that the same set of condi-
tions in Theorem 3.1 hold. Moreover, assume §* < n=1/2+ for some o € (0, 1/2). Then the
SEE estimator ﬁ( ) : [tL, Tyl — RP satisfies

(14) e(0) = Bin(v) — Bl(v) = ZU (T) +ra(7),

i=l1
where

(15)  Uj(o) = {TL + / " Ry — xTB* ) dH (u) — A Ky (x7B*(2) — yi)}xi

satisfies SUPrefr; 7y] IEU;(7)|g-1 S h?, and the remainder process r,(-) : [T, ty] — RP is
such that

12p+logn p+logn p+logn 1
(16) sup ||rn(r)||271§m4/ nhl/f +m3 " S +h, " 81 | 12—
T€lrL, vl

with probability at least 1 — Con™ for some absolute constant C> > 0, where mg (g =3,4)
are given in (9).

REMARK 3.1. Together, the above uniform Bahadur representation and the production
integration theory [21] establish the asymptotic distribution of ,3 (-). Define

0" (1) =J(m)B* (1),  B()=J(0)B(r) and

1
V(r)= ﬁH(r)J(r)*l, T €z, vl
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Then equation (13) reads @(7) = 0(t) — 0*(7) + [ W(u){8 (1) — 67 (u)}du. Combined with
Theorem 3.2, this implies

-~ r o~
n'2{0(v) — 0* (1)} +/ W (u)n'/2{0(u) — 0% (u)} du
7L
(17) Lo
=73 2 \Ui@) —EU:(@)} + 71 (1), T €lT1,70],
i=1

where the rescaled remainder r, (-) satisfies SUPrefr,.ry1 17 (D)2 = op(1), with a properly
chosen bandwidth that will be gl\iscussed in Remark 3.2. Note that equation (17) is a stochastic
differential equation for n'/2{0(t) — 0* (1)} [44]. From the classical production integration
theory ([21] and Section I1.6 of [1]), it follows that

_~ 1 &
(18) n'{0(z) — 0* ()} = ¢(m Y AUi() - EU,-(r)}> +op(1),
i=1
where ¢ is a linear operator from F to F defined as

(19) ¢(g)(r) = Hue[rL,r]{Ip - ‘I’(u)du}g(TL) + /r Hue(s,r]{lp - ‘I’(M)du} dg(s)

for g € F:={f :[tL, tv] — RP| f is left continuous with right limit}, and IT denotes the
product-limit; see Definition 1 in [21]. After careful proofreading, we believe that the above
form of ¢(-) corrects an error (possibly a typo) in the proof of Theorem 2 in [44]; see the
arguments between (B.1) and (B.3) therein. Specifically, the linear operator ¢ in [44] reads

$(8)(0) = Muci,.o1 {1, + W (w)dul g (zr) + / ety {Lp + ¥ (w)du) dg (s).

The asymptotic distribution of nl/ 2{5(1) — (7))} or its linear functional is thus deter-
mined by that of

j - T
¢<m Z{Ui(f)—EUi(T)}> and WZ{UI'(T)—EU;'(T)}.
i=l i=l

REMARK 3.2 (Order of bandwidth). We further discuss the order of bandwidth 4, as
a function of (n, p), required in Theorem 3.2 and Remark 3.1. Following (17), if the mo-
ment parameters m3 (absolute skewness) and m4 (kurtosis) are dimension-free, the Bahadur
linearization remainder 7, (-) satisfies with high probability that sup, ¢, 7,1 [IFn(T)lI5-1 <
n'2h? + (p 4 logn)/(nh)'/?> + n=*. Set the bandwidth & =< {(p + logn)/n}? for some
y €[1/4,1/2), this implies
< (p+logm)®  (p+logm)'~7/

“u ool + — =op(1),
rE[ILP;U]“ n( )”2 L T 2y-172 nl/2=y/2 n“ p(l)

provided that p = o(n' =/ A n(=v)/C=¥)) 1In particular, letting 1 — 1/(4y) = (1 —
¥)/(2 —y) yields y = 2/5. We therefore choose the bandwidth & = {(p + logn)/n}?*/3, so
that all the asymptotic results (from uniform rate of convergence to Bahadur representation)
hold under the growth condition p = o(n3/8) of dimensionality p in sample size n.

Theorem 3.2 explicitly characterizes the leading term of the integrated estimation error
(13), along with a high probability bound on the remainder process. As discussed in Re-
mark 3.1, the asymptotic distributions of nl/ 2{;3(1') — B* (1)} or its linear functional can be
established based on the stochastic integral representation (18), which further depends on the
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centered random process n—1/2 AU () —EU,(-)}. Let {a,}72 | be a sequence of deter-
ministic vectors in R?, and define

1 n
(20) Gn(0) = —73 Z;<an/||an Is. Ui(r) —EU;(0)), €l wl.
1=
The asymptotic behavior of {G,(7) : T € [t1, Ty]} is provided in the following result.
THEOREM 3.3 (Weak convergence). Assume Conditions 3.1-3.4 hold with §* =<

n= 1249 for some « € (0, 1/2). Moreover, assume h < {(p +logn)/n}*> and p = o(n>'?)
as n — 00. For any deterministic sequence of vectors {a,},>1, if the following limit

1) H(z,7'):= VE{U;(DUi(7) }ay

lim
n—00 IIanII2
exists for any T, 1’ € [t1, ty] with U;(-) defined in (15), then
(22) Gn ()~ G() int>([tL, Tv]),

where G, (+) is given in (20), and G(-) is a tight zero-mean Gaussian process with covariance
function H (-, -) and has almost surely continuous sample paths.

Regarding the relative efficiency of the proposed SEE estimator compared to its nons-
moothed counterpart [44], note that the (integrated) kernel Kp,(u) converges to 1(u > 0) as
h — 0. Hence, the smoothed process n~1/2 _1 Ui(r) with U;(7) given in (15) has the
same asymptotic distribution as

= Z{u + [ 202 218 @) dH @) — Aty <] B o)}

As a result, the covariance function H (-, -) defined in (21) coincides with that in [44]; see
the proof of Theorem 2 therein. In other words, the SEE estimator and Peng and Huang’s
estimator converge to the same Gaussian process as n — oo with p fixed, and thence the
asymptotic relative efficiency is 1. The technical devices required to deal with the fixed-p
and growing-p cases are quite different. For the former, the consistency follows from the
Glivenko—Cantelli theorem, and the weak convergence is a consequence of Donsker’s theo-
rem. To establish nonasymptotic results, we rely on a localized analysis as well as a (local)
restricted strong convexity of the smoothed objective function that holds with high probabil-
ity. The weak convergence is based on the nonasymptotic uniform Bahadur representation
(Theorem 3.2), complemented by showing the convergence of finite-dimensional marginals
and the asymptotic tightness.

3.3. Rademacher multiplier bootstrap inference. In this section, we establish the theo-
retical guarantees of the Rademacher multiplier/weighted bootstrap for censored quantile re-
gression as described in Section 2.3. In this case, W; = ¢; + 1 and ¢;’s are i.i.d. Rademacher
random variables. For the random covaviate vector x € R?, we assume that the moment
parameters m3 and m4 defined in (9) are dimension-free. We first present the (conditional)

uniform consistency of the bootstrapped process {ﬁb(r) 117 € [tr, Ty]} given the observed
data D, = {(y;, A, x;}7_ ;. Let P*(-) = P(-|D,,) be the conditional probability given ID,.

THEOREM 3.4 (Conditional uniform consistency). Assume Conditions 3.1-3.4 hold, and
let the bandwidth satisfy h = h,, < {(p + logn)/n}¥ for some y € [1/4,1/2). Then there
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exists an event £ = E(Dy,) with P(E) > 1 — C3n~! such that conditional on &, the bound (11)
holds, and the bootstrapped process B b(-) [T, Tyl — RP? satisfies

—~ ~ +logn
23) sup |B'(0) - By < | 20,
te[tr, vl n

with P*-probability at least 1 — C3n™', provided g'l%(p + logn)!277 (plogn)/? < nl-v.
Here, C3 > 0 is an absolute constant.

Analogously to (13), define the bootstrapped integrated error as
(24) @@ =10 ®-Bo)+ [ Hw{E W -Bw)dHw.

where J(-) and H(-) are given in (12). We then develop a linear representation for (1),
which can be viewed as a parallel version of Theorem 3.2 in the bootstrap world.

THEOREM 3.5 (Conditional uniform Bahadur representation). Assume the conditions in
Theorem 3.4 hold, and that the kernel K (-) in Condition 3.1 is Lipschitz continuous. More-
over, assume §* < n— /24 for some a > 0. Then there exists an event F = F(D,) with
P(F) > 1 — C4n~" such that conditional on F, (14)—(16) hold, and the bootstrapped process

Bb(') :[tr, tv] = RP? satisfies

(25) (1) = %ZU?(I) +r0 (1),
i=1

where U?(‘L’) =¢;U;(t) with U;(t) defined in (15), and

b
sup  [[r, (D)5
telrr,tyl

1/2
1/2p +logn |p+logn 5 (p+logn)(plogn) Ry
(26) 51’)’14 W—i_h T—i‘{p 1321 +n “

with P*-probability at least 1 — Cqn™".

Theorem 3.5 shows that the bootstrap integrated error €”(-) can be approximated, up
to a higher order remainder, by the linear process {(1/n)}7_,e;U;(t) : T € [t1, Ty},
where ¢;’s are independent Rademacher random variables, and E*U ?(r) = 0. Provided that
h =< {(p+log n)/n}2/5 and p satisfies the growth condition p = o(n?/8) as in Theorem 3.3,
then applying the same analysis in Remark 3.1 gives us the following stochastic integral rep-

resentation: with probability (over ID,,) approaching one, SUPre[r; . 1y] ||rf,(r)||2_1 =op+(1),
and
— . 1 &
@7) n'2J() (B’ () — B(1)} = ¢<m > U?(r)) + op+ (1),
i=1

where ¢ is the linear operator defined in (19). Note that E*{U?(S)UI;([)T} =U;(s)U; ()T
for any s, ¢ € [t, Ty]. It can be shown that on [, Ty/], n-1/2 " {U;i(-) —EU;(-)} has the
same asymptotic distribution as n~1/2 U ?(-) conditionally on the data D, ; see Theo-

rem 3.3 and Theorem 3.6 below. This, together with (18) and (27), validates to some level the
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use of the bootstrap process ﬁb(-) in the inference. To illustrate this, consider the following
bootstrap counterpart of the process G, () defined in (20):

1 n
(28) G (D) =73 ;w/nanuz, U(m), telmu,wl

THEOREM 3.6 (Validation of bootstrap process). Assume Conditions 3.1-3.4 hold with
§* <n~U/2HD fora € (0, 1/2), h < {(p+logn)/n}Y*> and p = o(n>'®). In addition, assume
the kernel K (-) is Lipschitz continuous. Then, for any sequence of (deterministic) vectors
{an};2 . there exists a sequence of events {F, = F,(D,)};2, such that P(Fn) — 1, and

conditional on {F,};2, (25) holds and the conditional distribution of Gn() given I, is
asymptotically equivalent to the unconditional distribution of G, (-) established in (22).

4. Regularized censored quantile regression. We extend the proposed SEE approach
to high-dimensional sparse QR models with random censoring. The goal is to identify the set
of relevant predictors, defined as

(29) S*= |J supp(B*(1)),

telry,tyl

assuming that its cardinality s := |S*| is much smaller than the ambient dimension p—the
total number of predictors, but may grow with sample size n. Recall the sequentially defined
smoothed loss functions Zk(-) (k=0,1,...,m)in (5) and (6). When p < n, finding the solu-
tion to the SEE Qk (B) = 01is equivalent to solving the optimization problem mingcr» L (B).
For fitting sparse models in high dimensions, we start with the ¢;-penalized approach [4, 57].
At quantileAleveli TL=T<T] <--<Ty =Ty, we define £;-penalized smoothed CQR
estimators f; := B(tx) sequentially as

(30) B(xi) € argmin{Ly(B) + At - 1BIl1},
BeRP
for k € {0,...,m}, where 0 < j <--- < A, are regularization parameters. Define ,B(t)

ﬂ(tk 1) for T € (T, ). It i is Worth notlcmg that for each k > 1, Lk() is essentlally a
shifted or perturbed version of Lo(+), that is, Lk(ﬂ) Lo(ﬂ) —(I/n) 37 1Z] —o Kn(yi —
x; ﬂj){H(er) — H(tj)}xiTﬂ, where H (1) = —log(1 —u). All of these empirical loss func-
tions are convex, and have the same Hessian matrix.

CONDITION 4.1 (Random design in high dimensions). The (random) covariate vector
x = (xl,...,xp)T € X CR? (x; =1) is compactly supported with max;<;j<, |x;| < By
almost surely for some By > 1. For convenience, assume By = 1. The normalized vector
>~ 1/2x has uniformly bounded kurtosis, that is, m4 defined in (9) is a dimension-free con-
stant, where ¥ = E(xx7T) is positive definite.

THEOREM 4.1. Assume Conditions 3.1, 3.3, 3.4 and Condition 4.1 hold. Under
the sample size scaling n > s3log p, let the bandwidth h and penalty levels \;’s sat-

isfy Svlog(p)/n < h < (slog(p)/m) 4 and ay = {1 + log(1=2)}/Tog(p)/n for k =

0,1,...,m. Then there exist constants Co, C1, C2 > 0 independent of (s, p, n) such that
2 -1 Cofls 1—1g slogp
sup ||ﬁ(f) B* (T)||2§C1< ) g 1log( )
L <Tt<Ty — Ty 1—1y yn

1

with probability at least 1 — Cop™", where y = Amin(X) is the minimal eigenvalue of X.



CENSORED QUANTILE REGRESSION IN HIGH DIMENSIONS 2913

Theorem 4.1 provides the rate of convergence for the £;-penalized smoothed CQR es-
timator ﬁ(-) uniformly in the set of quantile indices T € [t7, Ty]. Under a similar set of as-
sumptions, [67] established the uniform convergence rate for the £;-penalized (nonsmoothed)
CQR estimator, which is of order exp(Cs)+/s log(p Vv n)/n. We conjecture that the additional
exponential term exp(Cs) is a consequence of the marginal smoothness condition posed in
[67] (see Condition (C4) therein), and can be relaxed as in our Theorem 4.1. In fact, our
analysis relies on the global Lipschitz property (10), which follows directly from the model
assumption (1) and a lower bound on the conditional density.

REMARK 4.1 (Comments on the tuning parameters & and {Ax};" ). To achieve the
same convergence rate /s log(p)/n for the £1-penalized QR estimator with noncensored
data [4], the bandwidth £ is required to be in the range specified in Theorem 4.1; for ex-
ample, one may choose & =< {slog(p)/n}'/*. Since such a choice depends on the unknown
sparsity, in practice we simply choose 4 to be of order {log(p)/n}'/*. Since the numeri-
cal performance is rather insensitive to the choice of bandwidth, we use the default value
h = max{0.05, 0.5{log(p)/n}1/4} as suggested in [54] although it can also be tuned by cross-
validation.

The penalty levels A;’s play a more pivotal role in obtaining a reasonable fit for the whole
CQR process. Our theoretical analysis suggests that {A}]_, should be chosen as a slowly
growing sequence along the 7-grid. Numerical results also confirm that a single A value, even
after proper tuning, cannot guarantee a quality estimation of the entire regression process. On
the other hand, it is computationally prohibitive to determine each A (k =0, 1,...,m) via
cross-validation. By examining the proof of Theorem 4.1, we see that once A is specified, the
subsequent Ax’s satisfy Ay = {1 + log(1 TL)}AO for k =1, ..., m. Therefore, to implement
the proposed sequential procedure, we only treat Ao as a tunlng parameter, and use the above
formula to determine the rest of A;’s.

REMARK 4.2 (Adaptive £1-penalization). It has been recognized that the ¢;-penalized
estimator, with the penalty level determined via cross-validation, typically has small pre-
diction error but has a nonnegligible estimation bias and tends to overfit with many false
discoveries. To reduce the estimation error and false positives, a popular strategy is to use
reweighted ¢1-penalization via either adaptive Lasso [68] or the local linear approximation
(LLA) method for folded-concave penalties [15, 54, 69]. Let w(-) be a nonincreasing and

nonnegative function defined on [0, c0). Fix £, let ﬁ,go) = B(rk) be the £1-penalized censored
QR estimator at quantile level tz. For t =1, ..., T, we iteratively update the previous esti-

mate /B,(;_l) by solving

)4
B =B BT cargmin) Li(B) + hc- Y w(lBYS ”\/xk)w,w}.

BeRr j=1

When 7 =1 and w(u) = u~! for u > 0 (or (u + €)~! for a small constant € > 0), this
corresponds to an adaptive Lasso-type estimator [68]; when w(u) =1(u < 1) + %]l(u >
1) for u > 0 and some a > 2, this corresponds to the LLA method using the smoothly clipped
absolute deviation (SCAD) penalty [15]; when w(u) = (1 —u/a)4 foru > 0 and some a > 1,
this corresponds to the LLLA method using the minimax concave penalty (MCP) [66].

5. Numerical studies. We apply the proposed methods in Sections 2 and 4 on simulated
data sets and compare to that of Peng and Huang [44] and Zheng et al. [67] for both low-
and high-dimensional settings in Sections 5.1 and 5.2, respectively. The proposed method
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involves selecting a smoothing parameter /: for p < n, we set h = {(p +logn)/n}*/> v 0.05;
for p > n, guided by Remark 4.1, we set & = {0.05 v 0.5{log(p)/n}'/*}. We found that
the performance of our proposed method is insensitive to the choice of bandwidth, as also
observed in [18] and [23]. We implemented Peng and Huang [44] using the crg function
with method = "PengHuang" from the quantreg package [33]. On the other hand,
Zheng et al. [67] is implemented using the barebones function LASSO. fit from rgPen
[51] instead of the function rg (..., method = "lasso") inthe package quantreg.
This is because the function rg (..., method = "lasso") reports some numerical
issues (e.g., singular design error) frequently in our numerical studies. All of the numerical
studies are performed on a worker node with 32 CPUs, 2.5 GHz processor and 512 GB of
memory in a high-performance computing cluster.

5.1. Censored quantile regression: Estimation and inference. We assess the performance
of our proposed method in the low-dimensional setting with n = 5000 and p = 100. We start
with generating the random covariates ¥; € R” from a mixture of different distributions to
represent different types of variables commonly encountered in many data sets. In particular,
we generate the first 45 covariates from N (0, = = (0jk)1<j k<45), Wwhere o = 0.5kl for
1 < j, k <45, the second 45 covariates from a multivariate uniform distribution on the cube
[—2,2]* with the same covariance matrix ¥ using the R package MultiRNG, and the last
10 covariates from a Bernoulli distribution. Note that the three blocks of covariates generated
are independent across the blocks. The response variables z; € R are then generated from the

following models, both of which satisfy the global assumption in (1).

(i) Homoscedastic model: z; = (¥;, y)+¢; fori =1, ..., n, where y; ~ Uniform(—2, 2) for
Jj=1,..., p.Let Q4 (7) be the T-quantile of the #,-distribution, and let x; = (1, 351.T)T.

Then the above model can be equivalently formulated as

(31) zi=xi, B (v)), i=1,...,n, whereﬂ*(r)z(Qtz(r),yT)TeR”“.

Under the above model, the covariate effects remain the same across all quantile levels.

(i) Heteroscedastic model: z; = (¥;, y) + |xj 1| - &; fori =1, ..., n, where y; =0 and y; ~
Uniform(=2,2) for j =2,..., p. Let x; = (1, [Xi.1], X} _)T, where ¥; _; € RP™! is
obtained by removing the first element of ¥;. The model is equivalent to

zi=xi,B* (D), i=1,...n,
where *(7) = (0, Q1 (1), y2, ..., ¥p) | € RPTL.

In this model, the first covariate has varying marginal effects for different quantile levels.
Specifically, the effect of |X]| on the tth quantile of z is F,z_l(r), which is negligible
when 7 % (.5, but grows stronger as T moves toward O or 1.

(32)

For both types of models, the random censoring variables are generated from a Gaussian
mixture distribution, that is,

(33) C; ~ L{w; = IN(0, 16) + L{w; = 2)N'(5, 1) + L{w; = 3IN (10, 0.25)

fori =1,...,n, where w; is sampled from {1, 2, 3} with equal probability, and y; = z; A C;
is the censored outcome. The corresponding censoring rate varies from 25% to 50%.

We implement both methods with a quantile grid of {rk}Z’ZO =1{0.05,0.1,...,0.75,0.8}.
At each quantile level ti, we use the estimation error under the £, norm, ||B(rk) — B* (i) l2,
as a general measure of accuracy. We also calculate the run-time in seconds for both meth-
ods. Results, averaged across 500 independent replications, are reported in Figure 1. Fig-
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FI1G. 1. Numerical comparisons among CQOR and our smoothed CQR for models (31)—(32) along the quantile
grid. The left panels (a) and (d) display the {y-induced estimation errors ||]§(‘L'k) — B*(ti)|l2. The middle panels
(b) and (e) present the estimated quantile effects, which are Bo(tk) in model (31) and 31 (t) in model (32)
accordingly. The blue dashed lines in the middle panels represent the true quantile effects Qy,(t). The right
panels (c) and (f) record the empirical running time of the processes along the grid points.

ures 1(a) and (d) contain the estimation error under the £, norm across all quantile levels;
Figures 1(b) and (d) contains the regression coefficient that varies across quantile levels, that
is, {Bo(tx) Yy for model (31) and {B; (%)} for model (32); and Figures 1(c) and (f) con-
tain the computation time for fitting the entire QR process. We see that the two methods
perform very closely at low quantile levels, and the smoothed approach is particularly advan-
tageous at high quantile levels. Computationally, our implementation of the smoothed method
is about 10 to 20 times faster than Peng and Huang [44]’s method, implemented by the crg
function in quantreg. The numerical results on smaller-scale data sets are presented in
Appendix F.1 of the Supplementary Material.

Next, we consider both the proposed multiplier bootstrap detailed in Section 2.3 and the
classical paired bootstrap for performing statistical inference at T = 0.5. Three types of 95%
confidence intervals (Cls) are constructed with B = 1000 bootstrap samples: the percentile
CI, the pivotal CI and the normal CI. Coverage proportions for all of the covariates, confi-
dence interval width for the first covariate, and computational time for the entire bootstrap
process, averaged over 500 replications, are plotted in Figure 2. Under the homogeneous
setting (31), all types of confidence intervals produced by multiplier bootstrap maintain the
nominal level, while the normal intervals by pair resampling suffer from under coverage. In
the heterogeneous setting (32), although outliers that correspond to the confidence intervals
for the first covariate exist for both methods, multiplier bootstrap manages to mitigate this
issue. Furthermore, compared to pair resampling, multiplier bootstrap constructs narrower
confidence intervals with slightly smaller standard deviations. Finally, the computational ad-
vantage of multiplier bootstrap for smoothed CQR is evident in Figures 2(c) and (f).
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To better appreciate the computational advantage of smoothed CQR, we further consider
large-scale simulation settings by setting n € {1000, 2000, ..., 20,000} and p = n/100. We
use the same data generating processes as in (31)—(33), except that the covariates X; are now
generated from N 0,, %) with £ = (0.5 lj _k|)15 j.k<p- The censoring rate varies from 30%
to 45%. In this case, we restrict attention to the estimation error and runtime of the two
methods when t = 0.7. The results, averaged over 500 repetitions, are presented in Figure 3.
We see from Figure 3 that the computation gain of the proposed method over Peng and Huang
[44] is dramatic, without compromising the statistical accuracy. The estimation errors at T €
{0.3, 0.5}, as functions of the sample size, are displayed in Figure F.3 in the Supplementary
Material.

5.2. High-dimensional censored quantile regression. In this section, we examine the
numerical performance of the regularized smoothed CQR method with different penalties,
which will also be compared with its nonsmoothed counterpart [67]. For the smoothed
method, we consider both the ¢; and folded-concave penalties (SCAD and MCP). The latter
is implemented by the LLA algorithm as described in Remark 4.2. The computational details
are described in Section A.2 of the Supplementary Material.

Penalized CQR involves selecting a sequence of regularization parameters {A;};_, that
correspond to the predetermined 7-grid {7 };"_. Guided by Theorem 4.1 and Remark 4.1, we
adopt a sequence of dilating Ax’s with A = {1 + log( ll:fri Vho fork=1,..., m, where Aq is
chosen via the K-fold cross-validation (K = 3 in our studies). To accommodate censoring,
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the cross-validation criterion is based on the the empirical mean of deviance residuals [55],

(34) R(.) = %%ﬂ éé\/—z{m (T, 1) + A log(A; — M; (1, 1))}
on the validation set, where
Mi (e 3) = 1y < xRz 1), Ay = 1} — fok 1{yi > xTBw, 1)} dH @) — 1
for k =0, ..., m are the martingale residuals and B(‘L’, M) refers to the estimated B(t) with a

dilating A ’s starting with Ao = A. The deviance (34) produces a more symmetric distribution
through a transformation on the skewed martingale residuals, and is also used in [67] and
[17]. In our simulations, we choose Ag from 50 candidates equally spaced on the interval
[0.01,0.2].

In all of our numerical studies, we generate covariates X; € R? from N (0, ), where X
is as defined in Section 5.1, and the random errors &; ~ t». The response variables z; are
generated from models (31)—(32), but with different y. For model (31), we consider a sparse
y with global sparsity s = 10 by setting y; ~ Uniform(1, 1.5) for j =1, ..., 10, and the rest
to be zero. For model (32), y is generated similarly except with y; = 0. The random censoring
variables are generated from (33), with overall censoring rates approximately 25%—-30%.

Since the estimated active set depends on the entire quantile process, all numerical experi-
ments are conducted via an estimation-after-selection procedure [67]. That is, in stage one, we
perform regularized smoothed CQR to obtain the set S= Uzefr.....7, Supp(B(7)). In stage
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two, we perform smoothed CQR using the covariates in S. Recall that S is the true active set
defined in (29), and let S¢ be its complement. To assess the numerical performance of our pro-
posed method, we report (1) the true positive rate (TPR), TPR = |SN S [/|S] ; (2) the false dis-
covery rate (FDR), FDR = |S° ﬂ§|/|§|; (3) average £»-error, (1/m) > IB(tx) — B(tk) |23
and (4) elapsed time for running the estimation-after-selection process, including cross-
validation.

Results for the proposed method using different penalty functions, averaged over 500
replications when (n, p) = (400, 1000), are reported in Figure 4. As expected, £1-penalized
method tends to select larger models with many spurious variables, and thus has higher false
discovery rates than SCAD and MCP. Under the heterogeneous model, both SCAD and MCP
sometimes miss the first true signal and have lower TPR than Lasso. This is due to the fact
that the first signal corresponds to the evolving quantile effect Qy,(7) that vanishes as
approaches 0.5 and, therefore, is more likely to be missed by folded concave regulariza-
tion.

To better demonstrate the computational efficiency of the proposed SEE method on large-
scale data, we consider the £;-penalized CQR (CQR-Lasso) method [67] as a benchmark.
As discussed in [67], CQR-Lasso can be reformulated as a sequence of ¢-penalized median
regressions with two pseudo observations, to which existing packages for penalized QR can
be applied. Moreover, [67] used cross-validation to choose Ag (the initial penalty level) and
the increment ¢ > 0 by a two-dimensional grid search. In principle, we can apply this tuning
scheme to both CQR-Lasso and its smoothed counterpart to achieve better variable selec-
tion performance. From a computational point of view, we apply a simpler tuning method
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by only choosing Ao via cross-validation and focus on speed comparisons. To be specific,
we first compute the cross-validated £ -penalized smoothed CQR (SCQR-Lasso) and record
its runtime, and then compute the CQR-Lasso estimator using the same selected A-sequence
and record the runtime. For SCQR-Lasso, we apply the LAMM algorithm, described in Ap-
pendix A.2 of the Supplementary Material, to compute each E(fk) defined in (30); for CQR-
Lasso, we use the LASSO. fit function in rgPen to fit the penalized median regression
at each quantile level. The box plots of running time (in second) over 500 replications are
displayed in Figure 5. On average, our implementation of the cross-validated SCQR-Lasso is
more than 10 times faster than the CQR-Lasso implementation without cross-validation (18
seconds versus 250 seconds). The box plots of false discovery rates are shown in Figure F.4
in the Supplementary Material. The code for the proposed method and our implementation
of [67]’s method is available at https://github.com/XiaoouPan/scqr.

6. Data applications. As stated in the Introduction, the data applications are conducted
on a worker node with 2.5 GHz 32-core processor and 512 GB of RAM in a high-performance
computing cluster.

6.1. Primary biliary cirrhosis data. We apply the proposed method to the Mayo primary
biliary cirrhosis data set [13], a double-blinded randomized trial conducted by Mayo Clinic
between 1974 and 1984. Primary biliary cirrhosis is a rare but fatal chronic liver disease. Our
response of interest is the survival time on logarithmic scale, and an observation is censored
if the patient stays alive by the end of the research. Five variables are included into our mod-
eling: age in days, the presence of edema, serum bilirubin in mg/dl, albumin in gm/dl and
prothrombin time in seconds, with logarithmic transformations applied to the last three vari-
ables. These features are statistically significant in a multivariate Cox proportional hazards
model [13]. After removing data with missing covariates, the data set contains 416 patients
and a censoring rate of 61.5%.

We apply both the classical and the proposed smoothed CQR methods to this data set. The
former is implemented by crg(..., method = "PengHuang") in the quantreg
package over the quantile grid {0.01,0.02,...,0.90}. The bandwidth parameter of our
method is set to be & = max{0.05, {(p + logn)/n}*/>}. The estimated regression coefficients
are plotted in Figure 6 as functions of quantile levels. It is worth noting that our method leads
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FI1G. 6. Estimated regression coefficients over T € [0.01,0.9] for five variables in the Mayo primary biliary
cirrhosis data. Specifically, “age” stands for age in days, “edema” indicates the presence of edema, “bili” rep-
resents serum bilirubin in mg/dl, “albumin” means albumin in gm/dl and “protime” refers to prothrombin time in
seconds. Peng and Huang’s estimators are obtained via crq function in the quantreg package withmethod =
"PengHuang."

to a fairly smooth estimated coefficient process, while there is much higher variability in the
usual CQR estimator [44]. Arguably, this could be an advantage of the smoothed method
because it produces more interpretable results.

Among the five covariates, age exhibits modest effects along the process, while albumin
and prothrombin time possess varying effects with opposite signs, especially for short sur-
vivors. Our findings echo the conclusions made in [28], and offer an alternative perspective to
this data set apart from [56], in which the regression coefficients are assumed to be different
across the quantile levels.

6.2. Microarray data for lung adenocarcinoma. We now apply the proposed regularized
smoothed CQR method to a gene expression-based data from a large retrospective study
for survival prediction in lung cancer [50]. The data set provides gene expression profiling
using microarray technologies, and has been briefly introduced in Section 1. After removing
observations with missing values, we have 22,283 genes from 442 lung adenocarcinomas
samples, with a censoring proportion of 46.6%.

To demonstrate the scalability of our method, we first run regularized CQR on the whole
data set without any processing steps. Then, to roughly denoise the large data set and to
better interpret the results, we follow the preprocessing procedure carried out in [67] by
selecting 3000 genes with the largest variances, and further investigate the impact of these
genes on lung cancer survival time. For both analysis strategies, the quantile grid is set to
be {0.1,0.11, ..., 0.7}, the bandwidth is set as # = {0.05 \V 0.5{log(p)/n}'/*} and the tuning
parameter is gradually dilating with A, = {1 + log(=2£)}rg for k = 1,...,m, where Ag

1—1
ranges over 50 reasonable candidates. Figure 7 contains the number of detected genes across




CENSORED QUANTILE REGRESSION IN HIGH DIMENSIONS 2921

60
Lasso
8 8
2 500 SCAD g
& s
k=] MCP = 40
o) o}
5] k3]
é 200 —;
3 ks
a 20
~§ 100 —E
i B
Z Z
0 0
0.14 0.12 0.10 0.08 0.06 012 011 010 009 008 007
Ao for the lowest quantile 7, Ao for the lowest quantile 7,
(a) Selected genes from the full (b) Selected genes from the pre-
data with p = 22,283 processed data with p = 3,000

FIG. 7. Number of selected genes from regularized smoothed CQR with Lasso, SCAD and MCP penalties, when
Ao gradually decreases over a reasonable range. The left and right panels contain results for the entire data with
p = 22,283 and the preprocessed data with p = 3000, respectively.

various values of Lg. Moreover, we report the first ten identified genes (denoted by their
Affymetrix probe IDs) in Table 2.

Our proposed method is computationally scalable and takes only 2 to 4 minutes for fitting
the large microarray data set with p = 22,283. As a reference, it takes 10.82 hours to run the
£1-penalized CQR even on the preprocessed data with p = 3000. In addition, with the same
data, the genes detected by Lasso and nonconvex penalties substantially overlap, and some
are commonly identified regardless of the preprocessing step, for example, “201250_s_at”
and “200750_s_at.” These genes may be potentially revealing and enlightening for survival
prediction in lung cancer, and the intrinsic biological explanation can be a gripping topic for
genetics research.

TABLE 2
The leading 10 identified genes (presented by their Affymetrix probe IDs) using regularized smoothed CQOR with
Lasso, SCAD and MCP penalties, as Ly gradually diminishes. The methods are applied to the whole data with
p = 22,283, and the preprocessed data with p = 3000. The last row indicates the average running time for each
Ao, and is recorded in minutes. The running time of {1-penalized CQR for a single A is more than 7 days on the
whole data, and 10.82 hours on the preprocessed data

Whole data (p = 22,283) Preprocessed data (p = 3000)
Lasso SCAD MCP Lasso SCAD MCP

205394 _at 205394 _at 205394_at  213911_s_at 213911_s_at 213911_s_at
220658_s_at  220658_s_at 220658_s_at 217938_s_at 217938_s_at 217938_s_at
221249_s_at  221249_s_at 221249_s_at  201890_at 201890_at 201890_at
209825_s_at  201250_s_at 201250_s_at 201250_s_at 201250_s_at 201250_s_at

Identified 217938_s_at  40093_at 40093_at 200750_s_at  200750_s_at  200750_s_at
genes 201250_s_at  204728_s_at 200750_s_at 212951 _at 201761 _at 201761 _at
40093_at 200750_s_at 204728_s_at 202503_s_at 202503_s_at 202503_s_at
203967_at 218193_s_at 209825_s_at 209773_s_at 212951 _at 200786_at
210052_s_at  203967_at 203967_at 201761 _at 200786_at  209773_s_at
218193_s_at 219787_s_at 219787_s_at 204170_s_at 209773_s_at 212951 _at

Time (in minutes) 2.00 4.10 4.06 0.25 0.35 0.36
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SUPPLEMENTARY MATERIAL

Supplementary material for ‘‘Scalable estimation and inference for censored quantile
regression process” (DOI: 10.1214/22-A0S2214SUPP; .pdf). This supplementary material
contains the proofs of all theoretical results in Sections 3 and 4, along with the optimization
algorithms and additional simulation studies.
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