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ABSTRACT

Research reproducibility is essential for scientific development. Yet, rates of reproducibility are low. As
increasingly more research relies on computers and software, efforts for improving reproducibility rates
have focused on making research products digitally available, such as publishing analysis workflows as
computer code, and raw and processed data in computer readable form. However, research products
that are digitally available are not necessarily friendly for learners and interested parties with little to
no experience in the field. This renders research products unapproachable, counteracts their availability,
and hinders scientific reproducibility. To improve both short- and long-term adoption of reproducible
scientific practices, research products need to be made approachable for learners, the researchers of the
future. Using a case study within evolutionary biology, we identify aspects of research workflows that
make them unapproachable to the general audience: use of highly specialized language; unclear goals
and high cognitive load; and lack of trouble-shooting examples. We propose principles to improve the
unapproachable aspects of research workflows and illustrate their application using an online teaching
resource. We elaborate on the general application of these principles for documenting research products
and teachingmaterials, to provide present learners and future researcherswith tools for successful scientific
reproducibility. Supplementary materials for this article are available online.
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1. Introduction

Research reproducibility—the extent to which consistent results
are obtained when a scientific experiment or research workflow
is repeated (Curating for Reproducibility Consortium 2017)—
is a key aspect of the advancement of science, as it consti-
tutes a minimum standard that allows understanding research
products, that is, methods, data, analysis, results, etc. (Piwowar
2013), to determine their reliability and generality, and even-
tually build up scientific knowledge and applications based on
those products (King 1995; Peng 2011; Powers and Hampton
2019). In the natural sciences, rates of reproducibility are low
(Ioannidis 2005; Prinz, Schlange, and Asadullah 2011), which
has elicited concerns about a crisis in the field (Baker 2016).

In response, the scientific community has been developing

new principles and standards to incentivize cultural changes

that support a long-term improvement of reproducibility

rates in the natural sciences (Peng 2015; Wilkinson et al.

2016; Miyakawa 2020). A standard for reproducibility that

has received much attention is availability, which we define as

a property denoting that a research product can be reached

(acquired, copied, analyzed, processed and/or reused) at no

financial, legal or technical cost (The Turing Way Community
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2021), andwithout geographic, demographic, social or temporal

barriers for the population (Fecher and Friesike 2014).

In this article, we argue that research products that are digi-

tally available are often unapproachable in practice, because they

are not friendly for learners and interested parties with different

levels of experience in the field. Research products that are unap-

proachable counteract availability, and hinder reproducibility

short and long term. To support long-term adoption of repro-

ducible practices in the natural sciences, research workflows

need to be made approachable for learners, the researchers of

the future (Roland et al. 2002; National Academies of Sciences,

Engineering, and Medicine 2018).
To elaborate on our thesis, we designed a case study within

the research field of phylogenetics, a disciplinewithin evolution-
ary biology. We use our case study to identify barriers that have
made research workflows largely unapproachable to a general
audience in the natural sciences. Then, we propose some princi-
ples for researchers to address these barriers and create research
workflows that are reproducible by a larger audience. The prin-
ciples proposed here can be generalized and integrated into the
undergraduate and graduate school STEM curriculum, either
for courses specialized in reproducibility or within other subject
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areas, as a necessary component of successful and impactful
science.

2. A Case Study from Phylogenetics

Phylogenetics is a key discipline within evolutionary biology
(Dobzhansky 1973). It focuses on investigating the history of
shared ancestry of living and extinct organisms using biological
data and represents this evolutionary history with a diagram
known as a phylogeny or phylogenetic tree (because it grows
through time and appears to have branches; Figure 1). Phyloge-
nies provide the basis to study and understand all biological pro-
cesses in an evolutionary context (Dobzhansky 1973). Hence,
it follows that improving reproducibility rates in phylogenetics
has the potential to positively impact research across the natural
sciences.

To explore barriers to approachable phylogenetics, we
develop a case study that touches on three common problems
within the field: standardizing organism names in phylogenies,
obtaining current phylogenetic knowledge for a group of
organisms, and summarizing this phylogenetic knowledge in
a meaningful way. To address these problems, we propose
a research workflow that relies on resources from the Open
Tree of Life (OpenTree), an open source project that provides
digital availability of phylogenetic results from published, peer-
reviewed research, which is considered to be vetted and state-of-
the-art knowledge in the field. OpenTree phylogenies are stored
in a public database, the Phylesystem (McTavish et al. 2015),
and are downloadable as various computer-readable file types,
which is key for reusable and reproducible workflows (Wilson
et al. 2017). OpenTree also provides access to a single standard
for organism names (taxonomic standard) that is applied to the
stored phylogenies (Rees and Cranston 2017), which are then

Figure 1. A phylogenetic tree from our tutorial. It was extracted using OpenTree
of Life resources (Open Tree Of Life et al. 2019) wrapped in the rotl R package
(Michonneau, Brown, and Winter 2016).

used to summarize a single phylogenetic tree encompassing all
life (Open Tree Of Life et al. 2019).

All of these resources are available for download and use
from OpenTree, free of financial cost to any user. One way
to access OpenTree resources is manually, through its Graph-
ical User Interface (GUI; aka, a website or application that
allows users to access and use functionalities with mouse or
keyboard clicks). However, reducing as many manual steps as
possible in research workflows is key for reproducibility, as
manual data manipulation scales poorly and is prone to error
(Bakken 2019). OpenTree’s resources are also programmatically
available through its Application Programming Interface ser-
vices (APIs; aka, computer code that automatically implements
functionalities, that is usually used by programmers to build
different or tailored functionalities). While APIs provide data
processing scalability and reproducibility (Open Tree Of Life
et al. 2016), they come at a high technical and cognitive cost
for the user, whom requires considerably more computer pro-
gramming experience and literacy to be able to successfully
use APIs. OpenTree’s API services have been wrapped by the
rotl R package (Michonneau, Brown, and Winter 2016) and
the opentree Pythonmodule (McTavish, Sánchez Reyes, and
Holder 2021). R and Python programming languages are open
source and free of cost and represent two of the most widely
used programming languages in the sciences today (Eglen 2009;
Baker 2017). As such, rotl and opentree software packages
are contributing to approachability of OpenTree’s resources to R
and Python users, increasing availability to a wider user base.

However, while learners in the natural sciences have been
engaging independently with R and Python programming lan-
guages, computer programming is not traditionally a core skill
formally taught to biologists and naturalists (Sayres et al. 2018;
Wright et al. 2019; Williams et al. 2019). As computers con-
tinue to play a larger role in most scientific disciplines (Piccolo
and Frampton 2016), higher baseline computational skills are
required across all natural sciences not only to develop an orig-
inal research workflow, but to be able to follow and reproduce
researchworkflows fromother researchers (NationalAcademies
of Sciences, Engineering, and Medicine 2019).

Thus, efforts to increase reproducibility rates long term in the
natural sciences would benefit from addressing specific barriers
for learners in the field, to support them in acquiring the skills
needed to reproduce research workflows that rely heavily on
computer code (Peng 2011; Sandve et al. 2013; Powers and
Hampton 2019).

In the next section, we describe (in no particular order) three
barriers to approachable research workflows that we identify
using our case study. Then we develop a set of principles to
address these barriers and apply the latter to a set of teaching
materials that are available at https://mctavishlab.github.io/R_
OpenTree_tutorials/.

3. Identifying Barriers to Approachable Research

Workflows

The main goal of our case study is to obtain a single phylogeny
summarizing data from a set of published phylogenies for the
canids (the family of dogs, coyotes, wolves, etc.), our organisms
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of study. All analysis for our case study can be completely
accomplished using functions from the R package rotl or
the Python module opentree. If a researcher were to use
the proposed analysis workflow in a publication, they would
typically describe it in the methodology section as “The canid
summary phylogenywas obtained using functions fromXpack-
age, details are available as supplementary materials.” This is
usual practice, mainly because journals do not have space to
publish all code used for an analysis in the methods section. Yet,
supplementary materials and data have the misfortune to not be
peer-reviewed as thoroughly (or at all) as the main manuscript
(Pop and Salzberg 2015). They are also prone to the dreaded
promise “available upon request,” which has very low rates of
fulfillment (Krawczyk and Reuben 2012; Gabelica, Bojčić, and
Puljak 2022). Without the primary data and code that was
used to perform an analysis, it is impossible to reproduce said
analysis (Miyakawa 2020). When the code is available, other
issues can complicate reproduction of the analysis, to the point
of completely obstructing reproducibility. For example, some
questions that are often unaddressed in research workflows are:
What software do I need to read the code files? What software can
I use to actually run the code? Do I need additional software that
the analysis depends on?What software versions were used?What
does the code even mean?

Some of these questions can be answered by referring to
the software documentation, which is usually publicly available
and can be accessed by any potential user. As opposed to code,
software documentation is written in natural language (i.e., any
known human language, e.g., English, Spanish, Chinese) and
is considered a key element for successful adoption of soft-
ware by target users (Karimzadeh and Hoffman 2018). This
might explain why documentation for software addressed to
academic users is also usually written using highly specialized
computational language or jargon (i.e., computationally specific
concepts, words, and phrases) as well as formal scientific and
academic language.We identify this as barrier 1 to approachable
research workflows—Specialized language is intimidating.While
scientific jargon might have an important role for formal accep-
tance of software by the scientific and academic community, it
can be perceived as cold and/or intimidating language that often
slows down or even obstructs examination, application, and
adoption of code by a wider audience (Ball 2017). In contrast,
introducing information without the use of jargon supports
learner’s conceptual understanding of new ideas and concepts
(McDonnell, Barker, and Wieman 2016; Pan et al. 2019).

Another element of good software documentation is that it
has to be thorough (Karimzadeh and Hoffman 2018), meaning
that it should describe general usage of individual functions,
as well as arguments and variables that said function can take
(Karimzadeh and Hoffman 2018). Individual documentation
for each function is usually presented in alphabetic order and
does not have a specific analysis goal. Moreover, most soft-
ware has numerous functions, so documentation is usually very
lengthy and it is hard to navigate. This can have the effect of
increasing the amount of information that needs to be simul-
taneously processed by the users, which can lead to overload of
the finite amount of workingmemory any one possesses, known
as cognitive load (Sweller 1988). In this context, identifying
connections across functions that aremeant towork on the same

analysis workflow can become a very difficult task.We recognize
this as barrier 2—Lack of specific goals leading to high cognitive
load. High cognitive load is know to have a negative effect in
learning software (Chandler and Sweller 1996; VanMerriënboer
and Ayres 2005; Lambert, Kalyuga, and Capan 2009).

A third important aspect of software documentation are
examples that demonstrate usage of individual functions
(Karimzadeh and Hoffman 2018). Examples presented in
software documentation are usually worked to perfection, as
they are intended to showcase the ideal orminimal case inwhich
a function works well. Perfectly worked examples ignore the
user experience by maintaining focus on the software content
and fail to provide users with expert and clear advice on how
to troubleshoot if needed. We identify this as barrier 3—Lack
of trouble-shooting examples. Error management training is an
approach that focuses on framing mistakes as beneficial to
learning complex tasks, to give learners the opportunity to
actively explore a task with a positive mindset (Frese 1995).
Providing examples that showcase potential errors, supports
user’s performance (Steele-Johnson and Kalinoski 2014), and
can greatly improve learner’s ability to troubleshoot outside the
classroom (Shannon and Summet 2015; Nederbragt et al. 2020).

In sum, best practices for good software documentation are
not enough to promote reproducibility of published research
workflows that rely heavily on code. In the following section, we
describe some principles that can help to reduce or remove the
identified barriers, to create research workflows that are more
approachable and hencemore reproducible by a larger audience.

4. Principles for Approachable ResearchWorkflows

4.1. Principle 1. Use Friendly, Relatable and Respectful

Language

Avoiding formal language, and incorporating elements of pop
culture, such as picture character icons known as “emojis,” make
the language more familiar to a broader target audience (Fig-
ure 2). We made an effort to specifically complement the pri-
mary documentation by identifying computational concepts
that were assumed or were not explained in depth. We vetted
the tutorials through feedback from workshop participants as
well as individual users to identify such specialized concepts.

4.2. Principle 2. Reduce Cognitive Load by Providing

Specific and Clear Goals with Literate Programming

Cognitive load can be greatly reduced for learners by applying
an active learning strategy such as linking usage to a “real world”
or “human” application (Felder and Brent 2009). Programming
computer languages are by themselves quite abstract and repre-
sent a learning subject with a potentially high cognitive load for
most learners. Pedagogical research shows that active learning
practices are one of the most effective ways to take on abstract
subjects (Freeman et al. 2014). A story-like narrative that links
code usage in an integrative example, invites learners to try
the code, which can lead them to remember what they are
doing and why they are doing it. This “literate programming”
paradigm (Knuth 1984; Fritzson, Gunnarsson, and Jirstrand
2002) makes code more approachable, as it integrates narratives
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Figure 2. Snapshot of a section of the tutorial website, where we demonstrate a
common error.

with computer code in the same document, supporting learners
in actively following the code usage, supporting memory and
understanding (Piccolo and Frampton 2016).

We propose that documents developed with “literate pro-
gramming” can bemademore accessible by choosing narratives
that are relatable to a more general audience. An easy way to
do this in biology is choosing a charismatic taxon as a model
organism. For a research group, this can be the biological group
they are studying. For the general audience, a highly charismatic
group—such as dinosaurs, shouldworkwell. For example, when
we presented our tutorial to the Amphibia Web Organization
(van der Meijden et al. 2002) in January 2020, we tailored all
examples to frogs and their allies.

We examined available software documentation for the pack-
age rotl and designed a narrative that requires the usage of as
many functions as possible. We demonstrate code applications
that are commonly requested by OpenTree users, but that are
not demonstrated in the documentation of the package. By
framing the function workflow using highly requested uses, the
documentation acquires a narrative arc that is easier to follow
and remember by users. This can also facilitate translating the
code application to other use cases of interest for learners in
biology.

4.3. Principle 3. Provide Examples That Are User-focused

by Demonstrating Errors andWarnings

An activity that has become increasingly widespread in
programming-language education is live programming. During
live programming, an instructor writes code and executes it in
a way that is visible to learners through a screen (Guzdial and
Barr 2013; Selvaraj et al. 2021). One benefit of this practice is
that typos and mistakes occur, normalizing them for learners.
Watching an instructor handling errors, demonstrates learners
on how to solve them when they are outside the classroom

(Shannon and Summet 2015; Nederbragt et al. 2020). When
coauthor McTavish was a postdoc, teaching an introductory
programming workshop as a volunteer with the Carpentries
(a nonprofit group that teaches foundational coding and data
science skills to researchers worldwide; Wilson 2006, 2022), a
senior faculty member taking the workshop complained that
the typos were slowing things down and interfering with the
pedagogy. McTavish replied “the typos ARE the pedagogy.”
This has become a slogan of sorts at the Carpentries, capturing
the idea that embracing and discussing mistakes is essential to
teaching programming (Wilson 2019). Yet, working through
mistakes is rarely done on written pedagogical materials.
Software documentation focuses on demonstrating usage
function with examples that work seamlessly, without errors.
We argue that the opposite is needed to support adoption of
reproducible workflows and support long term independence
in learner’s and user’s performance (Gaspar and Langevin 2007;
Steele-Johnson and Kalinoski 2014).

In our tutorials, we apply this principle by demonstrating
examples that do not work as expected, and exemplifying ways
to address issues (Figure 2). For example, we identified inputs
that would give a wide range of warnings and errors. We then
focus on providing explanations for these errors and warning
messages. We believe this supports users and learners to be
less intimidated by the messages, and to practice taking useful
information out of them.

We also demonstrate ways to evaluate inputs to determine if
they will trigger an error or warning, and design and demon-
strate alternative analysis routes on what to do when faced
with an error or warning. One of the most essential skills in
programming is interpreting and moving forward from errors.
This has two pedagogical benefits. First, it provides users and
learners with themeans to troubleshoot their ownwarnings and
errors. Second, it allows them to understand with more depth
what the code is doing.

5. Conclusion

Response from the community has been invaluable in gauging
success of our teaching materials. Senior researchers often com-
ment on the usefulness of the tutorials for their research, as well
as how they have supported students in using the demonstrated
Rpackagesmore independently.Wenote thatmaking approach-
able research workflows has all the advantages of reproducible
research workflows. It saves time during explanation and train-
ing, when analyses are run by new collaborators and students. It
can also save research time for yourself, when analyses are run
again withmore data, a different dataset, a different organism or
biological model. It contributes to making scientific efforts that
can build off of each other.

When developing our tutorials, we not only applied the
principles elaborated here to make them more approachable,
but we followed basic recommendations for successful repro-
ducibility (Sandve et al. 2013). Applying all these principles in
a tutorial not only teaches reproducibility, but also makes the
teaching process itself reproducible (Dogucu and Cetinkaya-
Rundel 2022). For example, we published the tutorials on a
persistent and public website (Sánchez Reyes, McTavish, and
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Figure 3. Snapshot of the home to our tutorial website, showing part of the sched-
ule. Our tutorial website was constructed using the software workshop template
from the Carpentries (Wilson 2016).

Holder 2021) that adheres to the four r’s of openness, by being
free license, free of cost, and thus free for use, reuse, redistribute,
revise and remix (Hilton III et al. 2010). To make the website
persistent, any updates to the tutorial are published as new
versions. Versions presented at workshops are a copy from the
original repository, and constitute a temporally stable snapshot
of functions and workflows presented during a live workshop
(Wilson 2006, 2022). This ensures that the tutorials are available
for the users to return to any time they need it, and to be shared
with other users and learners (Figure 3). Finally, we dedicate a
section of the tutorial to document the software versions that
are demonstrated throughout. A common issue in open source
software packages written in R and Python is the deprecation of
functions (i.e., functions that are no longer reccommended or
maintained, and that are in the process of being phased out and
replaced by new ones; Marks et al. 2017; Vadlamani, Kalicheti,
and Chimalakonda 2021). Running code that has fallen victim
to deprecation require considerable programming savvy, and it
is a task that is hard even for experienced programmers (Vad-
lamani, Kalicheti, and Chimalakonda 2021). Yet, old versions
of open source software packages remain digitally accessible,
and persist in time. If a package version is known, an analysis
can be reproduced without investing additional resources in
finding the appropriate functions to run it, even long time after
a function had been deprecated.

Incorporating the principles described here into teaching
resources not only improves reproducibility practices, but it
should facilitate adoption of software and analysis workflows
in the natural sciences, among researchers at different aca-
demic levels, from undergrads to established researchers. It can
also help close the academic gap that is generated by uneven
access to computational resources across students belonging to
different groups (KewalRamani et al. 2018), where the most
affected learners usually belong to underrepresented minorities
and rural areas (Warner et al. 2021). Differences in access can
also be due to gender-biased parental and community pressures,

in which male identifying individuals are more likely to be
encouraged to perform activities related to computers (Google
Inc. and Gallup Inc. 2016), while female identifying individuals
are discouraged, starting from as early as elementray school
(Master, Meltzoff, and Cheryan 2021).

Some universities and academic groups have started to
incorporate reproducibility as a subject into their curriculum
(NIGMS Career Curriculum Development 2015; Debruine and
Taylor 2019; University of Washington Libraries 2022). The
focus of these resources has been for students to acquire and
practice skills to document their work. The principles identified
and outlined here can be used to set learning goals and outcomes
for new reproducibility syllabi. Ultimately, the long term
improvement of reproducibility rates in science will depend on
our ability to intentionally integrate best practices for achieving
reproducibility into the educational framework of future data
scientists (National Academies of Sciences, Engineering, and
Medicine 2018). Inclusion of reproducibility into the data
acumen of undergraduate curriculum will provide college
learners and future researchers with the tools to develop the
fundamental skills needed to successfully create reproducible
scientific workflows and research products.

Supplementary Materials

Title: Website and GitHub repository containing the complete teaching
materials developed and demonstrated here.

GitHub repository link: https://github.com/McTavishLab/R_OpenTree_
tutorials

Website link: https://mctavishlab.github.io/R_OpenTree_tutorials
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