Reliability-Aware Scheduling for Periodic Tasks
Requiring (m,k)-firm Real-Time Data Processing

Linwei Niu
Department of Electrical Engineering and Computer Science
Howard University
Washington, DC, U.S.A.
linwei.niu@howard.edu

Abstract—For real-time systems, reliability and QoS (Quality
of Service) are among the primary design concerns. In this
research, we proposed a reliability-aware scheduling scheme for
periodic tasks requiring (2, k)-firm real-time data processing. The
(m, k)-firm real-time constraint requires that at least m out of any
k consecutive jobs of a periodic task meet their deadlines. To
achieve the dual goals of maximizing the system reliability and
QoS while satisfying the feasibility requirement, we propose to
reserve recovery space for real-time jobs in an adaptive way based
on the mandatory/optional job partitioning strategy. Moreover,
advanced techniques are studied to implement task assignment
without affecting the system feasibility. The evaluation results
demonstrate that the proposed techniques significantly outper-
formed the previous research in maximizing the reliability and
QoS for (m,k)-firm real-time systems while preserving the system
feasibility.

Index Terms—Reliability, QoS, feasibility

I. INTRODUCTION

In traditional hard real-time systems, all task instances are
required to meet their deadlines and any deadline miss will
crash the entire application or system. However, in many prac-
tical real-time applications such as multimedia data processing
and real-time communication systems, occasional deadline
misses can often be tolerated. Some other applications may
have soft deadlines where tasks that do not finish by their
deadlines can still be completed with a reduced value [7] or
they can simply be dropped provided that the user’s perceived
quality of service (QoS) is satisfied.

QoS requirements dictate under what conditions the system
will provide its service to real-time tasks executed in the
system. To quantify the QoS requirements, some statistic
information such as the average deadline miss rate can be
used. However, even a low overall miss rate (e.g., 2%) cannot
prevent such kind of situation that a very large number of
deadline misses (e.g., 20 deadline misses out of 1000 jobs)
occur consecutively in a short period of time, which could
generate undesirable results.

The deterministic QoS model is more appropriate for such
kind of systems. Under the deterministic QoS model, tasks
have both firm deadlines (i.e., task(s) with deadline(s) missed
generate(s) no useful values) and a throughput requirement
(i.e., sufficient task instances must finish before their deadlines

This work is supported in part by NSF under project HRD-1800403.

to provide acceptable QoS levels) [8]. Two well known deter-
ministic QoS models are the (m,k)-model [2] and the window-
constrained model [13]. The (m, k)-model requires that m jobs
out of any sliding window of k consecutive jobs of the task
meet their deadlines, whereas the window-constrained model
requires that m jobs out of each fixed and nonoverlapped
window of k consecutive jobs meet their deadlines. It is not
hard to see that the window-constrained model is weaker than
the (m,k)-model as the latter one is more restrictive.

To ensure the (m,k)-constraints, Ramanathan et al. [12]
proposed a partitioning strategy which divides the the jobs
into mandatory ones and optional ones. The mandatory ones
are jobs that must meet their deadlines in order to satisfy the
(m, k)-constraints. In other words, so long as all the mandatory
jobs can meet their deadlines, the (m,k)-constraints can be
ensured. In [13], West et al. tried to set up a correspond-
ing relationship from the window-constrained model to the
(m, k) model. They also found a method to map the window-
constraints to the (m,k)-constraints.

In recent years, reliability has become increasingly impor-
tant in the design of fault tolerant computer systems as system
fault could occur anytime during the execution cycle of real-
time jobs [19]. In order to satisfy the reliability requirement of
a given job, a widely adopted strategy is to reserve a recovery
job for it. If the job has failed due to transient faults [4], the
recovery job should be invoked for execution to compensate
the failed job.

In the context of reliability assurance, the issue of system
feasibility is especially critical as the recovery job(s) (for
preserving the system reliability) will also occupy part of the
system utilization, which could affect the feasibility of the
system adversely. When the QoS is taken into consideration,
the problem becomes even more challenging as we need to
ensure that the baseline (m,k)-constraints be satisfied all the
time without exception.

In this paper, we study the problem of maximizing the
reliability and QoS for periodic real-time tasks with (m,k)-
constraint in data processing while preserving the system
feasibility.

The rest of the paper is organized as follows. Section II
presents the preliminaries. Section III presents the motivations.
Section IV presents our general scheduling algorithm. In
section V, we present our evaluation results. In section VI

we offer the conclusions.

II. PRELIMINARIES
A. System models

The real-time task set considered in this paper contains n
independent periodic tasks, 7 = {71,T1, - ,T,}, scheduled
according to the earliest deadline first (EDF) policy [6]. Each
task contains an infinite sequence of periodically arriving
instances called jobs. Task 7; is characterized using five param-
eters, i.e., (P, D;, Ci, m;, k;). P;, D; (D; < P;), and C; denote
the period, the deadline and the worst case execution time for
T;, respectively. A pair of integers, i.e., (m;,k;) (0 <m; <k;),
are used to represent the (m,k)-constraint for task T; which
requires that, among any k; consecutive jobs, at least m; jobs
are executed successfully. The j” job of task t; is denoted
as J;; and its arrival time and absolute deadline are denoted
as r;j and d;;, respectively. In addition, if job J;; is used as a
recovery job, it is also represented as J;;(R). The hyper-period
of the task set, represented by H, is defined as H = LCM (k;P;).

We assume the task set is to be executed in a uni-processor
system.

B. Fault and Recovery Models

Similar to [3], [9], we focus on transient faults in this
paper since transient faults occur much more frequently than
permanent faults in modern semi-conductor devices [1]. We
assume that faults can be detected using sanity (or consistency)
checks [10] when a job finishes its execution and the overhead
for detection can be integrated into the job’s worst case
execution time. Moreover, when transient fault occurs and is
detected at the end of a job’s execution, the affected job can be
addressed by re-executing a recovery job with the same worst-
case execution time as the original one [10]. Once released,
the recovery job will be executed like a normal job.

C. Performance Metrics

1) Reliability: Following the fault model in [19], we as-
sume that the transient faults will present Poisson distribu-
tion [15] and the average transient fault rate for systems
running at full speed is ©. Based on it, for any job J;; of
task 7;, the reliability of it, represented by Y(J;;), is defined as
the probability that J;; could be completed successfully at full
speed. According to [19], y(J;;) is given as:

Y(Jij) = e (1)

Under the QoS-constraint (either in the (m,k)-constraint
of (mj,k;), or the window-constraint of m;/k;), the reliability
of the I’ window Wy of task 7;, represented by y(Wj), is
defined as the probability that at least m; jobs in Wj; could be
completed successfully.

Based on it, the reliability of task 7; is defined as,

y(t) = [[v(Wa))

H
kiP;

where z; =

And the reliability of the whole system 7 is defined as,
n
A7) =]]r(xw) (3)
i=1

2) Quality of Service: Based on the above system models,
we define the metrics to measure the quality of service of a task
T;, represented by QoS(;) to be the ratio of the number of jobs
completed successfully and the total number of jobs within
the hyperperiod H. Specifically, QoS(t;) can be calculated as
followed:

S(T; = 4
Qos(w) zi ¥ ki ki Zi @
And the system quality of service is defined as
n
QOSsyx = Z QOS(Ti)wi (5)
i=1

where ; is the user-defined weight for task 7;.

III. MOTIVATIONS

To satisfy the reliability requirement, one essential part is
to reserve recovery jobs for the tasks when applying DVFS
to reduce energy. Prior to that, a key problem for ensuring
the (m,k)-constraints is to judiciously partition the jobs into
mandatory jobs and optional jobs [11]. A well-known parti-
tioning method is called the the evenly distributed pattern (or
E-pattern) [12]. According to E-pattern, the pattern 7;; for job
Jij, ie., the 7 job of a task T;, is defined by:

j=1,2,--

TE,'j = {
(6)

where “1” represents the mandatory job and “0” represents
the optional job. In [5], a variation of E-pattern called ER-
pattern was achieved by reversing the pattern horizontally
to let the optional jobs happen first, which can preserve the
schedulability of E-pattern [5].

Note that based on the E-pattern given in Equation (6),
without energy management, ie., all mandatory jobs to be
executed at full speed without recovery, the reliability of any
window Wj; of k; jobs could be calculated as:

“ln lfj: |_|‘(j71k>l><m,~| « YI:T,IJ +1
“0” otherwise

(I=1) xki+k;

[1

p:(lfl)xk,drl

Y(Wa) = {YUip) | mip =1})

It is also noted that the job patterns defined with E-pattern
have the property that they define a minimal set of mandatory
jobs that “just” satisfies the given (m,k)-constraint in each
sliding window. Due to this property, before the speed for any
task is scaled to save energy, a popular approach is to reserve
a recovery job for each mandatory job of the task to satisfy
the reliability of the same task. Conversely, under window-
constraint, this requirement could be greatly relaxed as we only
need to reserve one recovery job within each separate window
so long as the reliability of the window under consideration
is not lower than that calculated with Equation (7). However,

[] recovery job

T T O~ O T~ T T~ I T A

16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

L lem = - N

24 48 72 96

Pm | l

T3

144 168 192 216 240

| m | ,

0 40 80

(a)

160 200 240

o em| emew] e wew] e |

16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

o mml sml bm - m |

24 48 72 96 144 168 192 216 240
3 m | | m | .
0 40 80 160 200 240
Ji4(R) J18(R) J1c(R)
T1
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
J24(R) J28(R)
T2
24 48 72 96 144 168 192 216 240
J34(R)
JLonm | | m - | =] L,
40 80 160 200 240

(c)

Fig. 1. (a) The schedule for task set {t; = (16,16,6,3,5); 1o = (24,24,8,3,5); 13 = (40,40,6,2,8)} with no recovery jobs reserved; (b)
The schedule for the same task set with the state-of-the-art recovery job reservation strategy based on E-pattern (can only accommodate
recovery jobs for task T;); (c) The schedule with recovery jobs reserved based on window-constraints that could be transferred to their

original (m,k)-constraints.

the problem is, since window-constraint is weaker than (m, k)-
constraint, a task T; satisfying the window-constraint of m; /k;
does not necessarily satisfy the (m,k)-constraint of (m;,k;).
Fortunately, in [13] it is shown that the window-constraint of
m;/k; can be transferred to the (m,k)-constraint of (m;,2k; —
m;). That means if we can reserve recovery jobs for the tasks
such that it could satisfy the window constraint of m;/k;, it
will satisfy the (m, k)-constraint of (m;,2k; —m;) automatically.
Since in this case we only need to reserve one recovery job for
each separate window of k; jobs, it could leave us more space
to keep the energy under control than reserving recovery jobs
for all mandatory jobs under E-pattern for tasks with (m,k)-
constraints of (m;,2k; —m;), which could be illustrated using
the following example.

Consider a task set of three tasks, i.e., T| = (16,16,6,3,5),
T, = (24,24,8,3,5), and T3 = (40,40,6,2,8). Figure 1(a)
shows the schedule for the mandatory jobs based on E-
pattern. If we assume the probability of transient fault at full
speed to be 107°, without reliability management, based on
Equation (7), the reliability of each window in T, T, and
T3 will be 0.9999820002, 0.9999760003, and 0.9999880001,
respectively. Based on Equation (3), the corresponding system

reliability will be 0.9999460015. Meanwhile, if we assume all
tasks in Equation (5) have equal weights, i.e., ®; = % for all
tasks in 7, the QoS of the whole system based on Equation
(5) will be 0.48332393344.

If we apply the state-of-the-art reliability management
strategy, i.e., reserve a recovery job for each mandatory job
whenever possible to do so, Figure 1(b) shows the schedule
for the mandatory jobs based on E-pattern for the original
given (m,k)-constraints, with a recovery job reserved for
each mandatory job of task 7;. Note that in this case after
reserving recovery jobs for task 7, there is not enough room
for reserving recovery jobs for task T, or task T3 any more.
Therefore, only the reliability of each window in T; could
be improved to 0.99999999996 while the reliability of each
window in task T, and 73 did not change. As a result, the
reliability of the whole system based on Equation (3) is now
0.99996400056. And the QoS of the whole system in this case
based on Equation (5) is 0.48332753339. Compared with the
above schedule in Figure 1(a) without reliability management,
there is some improvement in the system reliability and very
slight improvement in system QoS.

However, if we follow a different way of managing the relia-
bility, the system performance could be improved substantially.

As shown in Figure 1(c), different from the above schedule, if
we reserve the recovery jobs to satisfy the window-constraints
first, we can still meet the original (m,k)-constraints with
opportunities to have more tasks managed with recovery jobs,
thereby improving the system reliability further. As illustrated
in Figure 1(c), in this case the mandatory jobs of 71, 71, and T3
are determined to satisfy the window constraints of 3/4, 3/4,
and 2/5 first. Then according to the aforementioned mapping
relationship they can meet their original (m,k)-constraints of
(3,5), (3,5), and (2,8), respectively. Based on the above
configuration, with the aforementioned flexibility of window-
constraints in preserving reliability in each separate window,
we only need to reserve one recovery job for each window
under consideration. For ease of presentation here we assume
the next optional job following the last mandatory job in the
same window is reserved as recovery job for each separate
window, as shown in Figure 1(c). Under the new schedule, the
reliability of each window Wj; of task t; should be calculated
as:

(1= 1)ki+k;

YWa) = {YUip) | mip =1}
p=(I—1)ki+1
(I—Dki+ki (I—1D)ki+k;

+ Y {11

p=(—Dki+1 g=(I—1)ki+1
(1 =v(Jip)) x¥(Jip) } (8)

Based on Equation (8), the reliability of each window in
task T;, Tp, and T3 will be calculated as 0.99999999978,
0.9999999996, and 0.99999999989, respectively. Based on
Equation (3), the corresponding system reliability will be
improved to 0.99999999927, which is much higher than that
under the state-of-the-art reliability management strategy. In
addition, the system QoS based on Equation (5) in this case
is improved to 0.63333333316, which is 20.7% higher than
that in Figure 1(b) (and that in Figure 1(a) without reliability
management as well).

From the above example, it is not hard to see that it is very
promising to determine the job/recovery patterns in such a way
that the task set satisfies the window-constraint first which
could be transferred to the corresponding original (m,k)-
constraint automatically. However, since the system might not
be able to accommodate recovery jobs for all tasks, how to
select the subset of tasks that can be managed with recovery
jobs will be an important issue. Regarding that, in this paper
a method based on “branch-and-bound” is proposed to solve
this issue systematically.

{vUig) [mig =1, ¢ # p}

X

IV. THE GENERAL ALGORITHM

In this section, we will introduce our general scheduling
algorithm. Our algorithm consists of two phases: an off-line
phase and an on-line phase.

A. The Off-Line Phase

The goal for the off-line phase is to determine the (shared)
recovery jobs for the tasks such that the expected reliability
and QoS of the system are maximized while the feasibility of

Algorithm 1 Reserving recovery jobs for the task set

1: Input: task set 7 with mandatory jobs determined by E-pattern
(with no recovery job(s) reserved for any task yet);

2: Output: task set '=QU®O, where Q is the subset of tasks in 7’

with recovery jobs reserved for each task and @ is the subset of

tasks in 7" with no recovery jobs;

Q=0

: © = all tasks in 7T

/I no recovery jobs is reserved yet;

I'=Quo;

: Compute the system reliability and QoS, i.e., ¥(7) and Qo0Ssy;s
of the task set 7 under original (m,k)-constraints based on
Equations (3) and (5);

8: Bound =Y(T) x Q0Sqys;
9: Recovery-Reservation (2, ®, Bound, I');

10: output (I');

11:

12: FUNCTION Recovery-Reservation(Q, ®, Bound, I')

13: for each task 1; € © do

14: Re-determine the mandatory jobs of T; using E-pattern based
on the window-constraint that can be transferred to its original
(m, ky-constraint;

15: Remove 1; from ©;

16: Add t; to Q;

17: In each separate window of task T;, reserve the next optional
job following the last mandatory job in the same window as
recovery job;

18: Apply the LPEDF algorithm from [14] to the task set QU®;

19: if QUO is feasible with LPEDF then

A A

20: Compute the system reliability and QoS, i.e., Y(7) and
QoS,ys of the updated task set QU® based on Equations
(3) and (5);

21: newBound = Y(T) x Q0Syys;

22: if newBound > Bound then

23: Bound = newBound,

24: I'=Que;

25: end if

26: Recovery-Reservation (Q, ®, Bound, I');

27: else

28: Restore the mandatory jobs of T; to the original ones based
on E-pattern (with no recovery job(s)) and put it back to
0;

29: end if

30: end for

the task set is preserved. One essential part of it is to determine
the mandatory jobs for the tasks and reserve recovery jobs for
them based on the window-constraints (that can be transferred
to the corresponding original (m,k)-constraints) if possible.
However, since the system might not be able to accommodate
recovery jobs for all tasks, how to select the subset of tasks that
can be managed with recovery jobs is not a trivial problem.
Then the problem becomes how to select the subset of tasks
to be managed with recovery jobs to achieve the best system
reliability and QoS. In [18], it is shown that even without
consideration of reliability and QoS this problem is NP-hard.
Although some heuristics [18] are proposed for hard real-
time systems regarding the selection of tasks, they are not
applicable any more for soft real-time systems with (m,k)-
constraints. In order to solve the problem, in this section, we
propose a “branch-and-bound” method to divide the task set
T into two parts: the subset Q in which the tasks will be

managed with recovery jobs and the subset ® in which the
tasks will not be managed with recovery jobs. The details are
presented in Algorithm 1.

As can be seen in Algorithm 1, by applying the branch-and-
bound strategy, our approach determines task by task if the
mandatory jobs of each task should be based on the original
(m, k)-constraint (with no recovery jobs reserved) or based on
the window-constraint (with recovery jobs reserved according
to Line 17). When Algorithm 1 is finished, it is possible
to reach certain hybrid configuration in which the tasks in
Q are partitioned based on window-constraints with recovery
jobs reserved in each separate window, while the tasks in ®
are still partitioned based on the original (m,k)-constraints
with no recovery jobs reserved for them. And the resulting
configuration should be the one that can maximize the system
reliability-QoS product while preserving the overall task set
feasibility.

Note that in lines 18-19 of Algorithm 1, Yao’s LPEDF
Algorithm [14] is applied to check the feasibility of the
mandatory jobs in each iteration.

Algorithm 2 Online algorithm
1: Upon job arrival:
2: Run jobs in the ready queue according to EDF scheme with their
predetermined speed;

Upon job completion:
if the execution of J; is found to have failed then
if J; € ® and J; has a recovery job reserved for it then
Invoke J;’s recovery job immediately;
else
if J; € Q and J; is not a recovery job then
Invoke J;’s recovery job in the same window at its arrival
time;
11: end if
12: end if
13: else
14: if J; € Q and the window which J; belongs to has got enough
number of jobs completed successfully then

VRN k@

—

15: Drop the recovery job of the window which J; belongs to;
16: end if
17: end if

Based on the task assignment output by Algorithm 1, the
mandatory jobs of each task can be scheduled according to
the EDF scheme during the online phase.

B. The Online Phase

During the online phase, as shown in Algorithm 2, a job
ready queue will be maintained. Upon arrival, a mandatory job
determined during the off-line phase is inserted into the ready
queue. Note that a recovery job needs to be executed only
if some mandatory job within the same window has failed.
Otherwise the recovery job will simply be dropped. All jobs
in the ready queue will be executed following the EDF scheme.
If the current job J; is found to have failed at its completion
time, its recovery job in the same window needs to be invoked
and inserted into the ready queue at its arrival time (line 10).

If the execution of J; is successful, Algorithm 2 determines
whether its shared recovery job in the window it belongs to, if

any, should be dropped depending on the number of successful
jobs so far in that window (lines 13-15).

The complexity of Algorithm 2 mainly come from schedul-
ing the mandatory/recovery jobs in the ready queue, which is
O(N).

V. EVALUATION

In this section, we evaluate the performance of our ap-
proach by comparing with the existing approaches in literature.
Specifically, the performance of three different approaches
were studied:

e MKNR The task sets are partitioned with E-pattern, and
all mandatory jobs are executed without recovery jobs
reserved for them.

e MKR The task sets are partitioned with E-pattern to
satisfy the given (m,k)-constraints. Then the mandatory
jobs are scheduled with recovery job reserved for them
with the approach similar to that in [18], i.e., reserving
recovery jobs (for all mandatory jobs of the same task)
for as many tasks as possible.

o WCMKR This is our newly proposed approach in Section
IV based on window transferring.

The periods of the real-time task sets were randomly chosen
in the range of [30ms, 100ms]. The worst case execution time
(WCET) was set to be uniformly distributed and the m; and
k; for the user defined (m,k)-constraints were also randomly
generated such that k; is uniformly distributed between 2 to
10, and m; < k;. To investigate the performance of the different
approaches under different workload, we divided the total
(m, k)-utilization, i.e., Y, ’,’{’i‘g’, into intervals of length 0.1. To
reduce the statistical errors, we required that each interval
contain at least 20 task sets schedulable with E-pattern, or
until at least 5000 task sets within each interval had been
generated.

For the fault and recovery model we adopted the same
model as used in [19], i.e., the transient faults are assumed
to follow the Poisson distribution with an average fault rate of
6 =107° at full speed.

Firstly, we inspected the system reliability by the different
approaches. Here in order to reflect the system reliability in
a more straightforward way, we checked the probability of
dynamic failure (denoted as PoDF) of the different approaches.
The PoDF is defined as the probability for any window of k;
consecutive jobs to have less than m; jobs out of it completed
successfully. The result is shown in Figure 2(a).

As seen, in most utilization intervals, the PODF of MKR is
lower than that by MKNR. The effect is especially obvious
when the utilization is relatively low. That conforms to the
conclusion in [17] that the reservation of recovery jobs could
generally help reduce the probability of job failure. The
average PoDFs of WCMKR is still much lower than that by
MKR when the utilization is not very low or not very high.
This is mainly because, by reserving shared recovery jobs
based on window-constraints (that can be transferred to the
corresponding original (m,k)-constraints) first, the mandatory

’ —8— MKNR —*— MKR —— WCMKR

1.00E-04

1.00E-05

1
L~
/
/|

0.0-0.1-0.2-03-04-05- 06-0.7- 0.8- 0.9-
01 02 03 04 05 06 07 08 09 1.0
(m,k)-Utilizatoin

1.00E-06

1.00E-07

Probability of Dynamic Failure

1.00E-08

(a)

OMKNR O MKR @ WCMKR

140

130

120

110
100 I a

90 H [[FH FHH [FH H H
80 H [[B FHH [FH H H
70 H (I [EH FH TRH H H

60 + [[B LI [FH H H

Normalized QoS Levels (%)

50 T T T T T T T T T 1
00- 0.1- 0.2- 03- 04- 05- 06- 0.7- 0.8- 0.9-
01 02 03 04 05 06 07 08 09 1.0

(m,k)-Untilization

(b)

Fig. 2. (a) The comparison on the probability of dynamic failure (PoDF) for the different approaches; (b) The comparison on the QoS for

the different approaches.

jobs of more tasks could have recovery jobs reserved for them
when compared with MKR.

Next, we inspect the system QoS levels each approach can
provide. For simplicity, we assumed all tasks in Equation (5)
were assigned the equal weights, ie., ®; = % for any task
T; € 7. The results (normalized to that by MKNR) are shown
in Figure 2(b). From Figure 2(b), we can see that the newly
proposed approach, i.e., WCMKR can achieve much better
QoS levels than the previous approaches. Compared with
MKR and MKNR, the maximal QoS improvement could be
nearly 30%. This is because, different from MKR and MKNR
which could only provide a minimum set of jobs that “just”
satisfied the (m,k)-constraints, WCMKR, by adopting more
adaptive recovery job reservation techniques, could utilize
the time space more efficiently. Therefore it could generally
accommodate more valid jobs in its schedule, generating better
QoS levels.

VI. CONCLUSIONS

In this paper, we explored maximizing the reliability and
QoS for periodic real-time tasks with (m,k)-constraint in
data processing, which requires that at least m out of any
k consecutive jobs of a task meet their deadlines. Regarding
that, we proposed a reliability-aware scheduling scheme which
reserved recovery space for periodic real-time tasks in an
adaptive way based on the mandatory/optional job partitioning
strategy. Moreover, advanced techniques are studied to imple-
ment task assignment without affecting the system feasibility.
Through extensive simulations, our evaluation results demon-
strate that the proposed techniques significantly outperformed
the previous research in reliability and QoS performance while
preserving the system feasibility.

REFERENCES

[1] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner. Razor: circuit-level correction of timing errors for
low-power operation. Micro, IEEE, 24(6):10-20, 2004.

[2] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment
technique for streams with (m,k)-firm deadlines. [EEE Transactions
on Computes, 44:1443-1451, Dec 1995.

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

Q. Han, L. Niu, G. Quan, S. Ren, and S. Ren. Energy efficient fault-
tolerant earliest deadline first scheduling for hard real-time systems.
Real-Time Syst., 50(5-6):592-619, Nov. 2014.

B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu. Ramp: A model
for reliability aware microprocessor design. [IBM Research Report,
RC23048, 2003.

Linwei Niu and Gang Quan. Energy minimization for real-time
systems with (m,k)-guarantee. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 14(7):717-729, July 2006.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM, 17(2):46-61,
1973.

J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.

L. Niu and G. Quan. Peripheral-conscious energy-efficient scheduling
for weakly hard realctime systems. International Journal of Embedded
Systems, 7(1):11-25, 2015.

L. Niu and J. Xu. Improving schedulability and energy efficiency
for window-constrained real-time systems with reliability requirement.
Journal of Systems Architecture, 61(5):210-226, May 2015.

D. K. Pradhan, editor. Fault-tolerant Computing: Theory and Tech-
niques; Vol. 2. Prentice-Hall, Inc., USA, 1986.

G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm
guarantee. In RTSS, pages 79-88, 2000.

P. Ramanathan. Overload management in real-time control applications
using (m,k)-firm guarantee. [EEE Trans. on Paral. and Dist. Sys.,
10(6):549-559, Jun 1999.

R. West, Y. Zhang, K. Schwan, and C. Poellabauer. Dynamic window-
constrained scheduling of real-time streams in media servers. [EEE
Trans. on Computers, 53(6):744-759, June 2004.

F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
cpu energy. In AFCS, pages 374-382, 1995.

Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault
tolerance in fixed-priority real-time embedded systems. In ICCAD, 2003.
D. Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. ACM Trans. Embed. Comput. Syst.,
10:26:1-26:27, January 2011.

D. Zhu and H. Aydin. Energy management for real-time embedded
systems with reliability requirements. In /CCAD, 2006.

D. Zhu and H. Aydin. Reliability-aware energy management for periodic
real-time tasks. Computers, IEEE Transactions on, 58(10):1382-1397,
20009.

D. Zhu, R. Melhem, and D. Mosse. The effects of energy management
on reliability in real-time embedded systems. In ICCAD, 2004.

