
Reliability-Aware Scheduling for Periodic Tasks

Requiring (m,k)-firm Real-Time Data Processing

Linwei Niu

Department of Electrical Engineering and Computer Science

Howard University

Washington, DC, U.S.A.

linwei.niu@howard.edu

Abstract—For real-time systems, reliability and QoS (Quality
of Service) are among the primary design concerns. In this
research, we proposed a reliability-aware scheduling scheme for
periodic tasks requiring (m,k)-firm real-time data processing. The
(m,k)-firm real-time constraint requires that at least m out of any
k consecutive jobs of a periodic task meet their deadlines. To
achieve the dual goals of maximizing the system reliability and
QoS while satisfying the feasibility requirement, we propose to
reserve recovery space for real-time jobs in an adaptive way based
on the mandatory/optional job partitioning strategy. Moreover,
advanced techniques are studied to implement task assignment
without affecting the system feasibility. The evaluation results
demonstrate that the proposed techniques significantly outper-
formed the previous research in maximizing the reliability and
QoS for (m,k)-firm real-time systems while preserving the system
feasibility.

Index Terms—Reliability, QoS, feasibility

I. INTRODUCTION

In traditional hard real-time systems, all task instances are

required to meet their deadlines and any deadline miss will

crash the entire application or system. However, in many prac-

tical real-time applications such as multimedia data processing

and real-time communication systems, occasional deadline

misses can often be tolerated. Some other applications may

have soft deadlines where tasks that do not finish by their

deadlines can still be completed with a reduced value [7] or

they can simply be dropped provided that the user’s perceived

quality of service (QoS) is satisfied.

QoS requirements dictate under what conditions the system

will provide its service to real-time tasks executed in the

system. To quantify the QoS requirements, some statistic

information such as the average deadline miss rate can be

used. However, even a low overall miss rate (e.g., 2%) cannot

prevent such kind of situation that a very large number of

deadline misses (e.g., 20 deadline misses out of 1000 jobs)

occur consecutively in a short period of time, which could

generate undesirable results.

The deterministic QoS model is more appropriate for such

kind of systems. Under the deterministic QoS model, tasks

have both firm deadlines (i.e., task(s) with deadline(s) missed

generate(s) no useful values) and a throughput requirement

(i.e., sufficient task instances must finish before their deadlines

This work is supported in part by NSF under project HRD-1800403.

to provide acceptable QoS levels) [8]. Two well known deter-

ministic QoS models are the (m,k)-model [2] and the window-

constrained model [13]. The (m,k)-model requires that m jobs

out of any sliding window of k consecutive jobs of the task

meet their deadlines, whereas the window-constrained model

requires that m jobs out of each fixed and nonoverlapped

window of k consecutive jobs meet their deadlines. It is not

hard to see that the window-constrained model is weaker than

the (m,k)-model as the latter one is more restrictive.

To ensure the (m,k)-constraints, Ramanathan et al. [12]

proposed a partitioning strategy which divides the the jobs

into mandatory ones and optional ones. The mandatory ones

are jobs that must meet their deadlines in order to satisfy the

(m,k)-constraints. In other words, so long as all the mandatory

jobs can meet their deadlines, the (m,k)-constraints can be

ensured. In [13], West et al. tried to set up a correspond-

ing relationship from the window-constrained model to the

(m,k) model. They also found a method to map the window-

constraints to the (m,k)-constraints.

In recent years, reliability has become increasingly impor-

tant in the design of fault tolerant computer systems as system

fault could occur anytime during the execution cycle of real-

time jobs [19]. In order to satisfy the reliability requirement of

a given job, a widely adopted strategy is to reserve a recovery

job for it. If the job has failed due to transient faults [4], the

recovery job should be invoked for execution to compensate

the failed job.

In the context of reliability assurance, the issue of system

feasibility is especially critical as the recovery job(s) (for

preserving the system reliability) will also occupy part of the

system utilization, which could affect the feasibility of the

system adversely. When the QoS is taken into consideration,

the problem becomes even more challenging as we need to

ensure that the baseline (m,k)-constraints be satisfied all the

time without exception.

In this paper, we study the problem of maximizing the

reliability and QoS for periodic real-time tasks with (m,k)-
constraint in data processing while preserving the system

feasibility.

The rest of the paper is organized as follows. Section II

presents the preliminaries. Section III presents the motivations.

Section IV presents our general scheduling algorithm. In

section V, we present our evaluation results. In section VI

we offer the conclusions.

II. PRELIMINARIES

A. System models

The real-time task set considered in this paper contains n

independent periodic tasks, T = {τ1,τ1, · · · ,τn}, scheduled

according to the earliest deadline first (EDF) policy [6]. Each

task contains an infinite sequence of periodically arriving

instances called jobs. Task τi is characterized using five param-

eters, i.e., (Pi, Di, Ci, mi, ki). Pi, Di (Di ≤ Pi), and Ci denote

the period, the deadline and the worst case execution time for

τi, respectively. A pair of integers, i.e., (mi,ki) (0 < mi ≤ ki),
are used to represent the (m,k)-constraint for task τi which

requires that, among any ki consecutive jobs, at least mi jobs

are executed successfully. The jth job of task τi is denoted

as Ji j and its arrival time and absolute deadline are denoted

as ri j and di j, respectively. In addition, if job Ji j is used as a

recovery job, it is also represented as Ji j(R). The hyper-period

of the task set, represented by H, is defined as H = LCM(kiPi).
We assume the task set is to be executed in a uni-processor

system.

B. Fault and Recovery Models

Similar to [3], [9], we focus on transient faults in this

paper since transient faults occur much more frequently than

permanent faults in modern semi-conductor devices [1]. We

assume that faults can be detected using sanity (or consistency)

checks [10] when a job finishes its execution and the overhead

for detection can be integrated into the job’s worst case

execution time. Moreover, when transient fault occurs and is

detected at the end of a job’s execution, the affected job can be

addressed by re-executing a recovery job with the same worst-

case execution time as the original one [10]. Once released,

the recovery job will be executed like a normal job.

C. Performance Metrics

1) Reliability: Following the fault model in [19], we as-

sume that the transient faults will present Poisson distribu-

tion [15] and the average transient fault rate for systems

running at full speed is σ. Based on it, for any job Ji j of

task τi, the reliability of it, represented by γ(Ji j), is defined as

the probability that Ji j could be completed successfully at full

speed. According to [19], γ(Ji j) is given as:

γ(Ji j) = e−σCi (1)

Under the QoS-constraint (either in the (m,k)-constraint

of (mi,ki), or the window-constraint of mi/ki), the reliability

of the lth window Wil of task τi, represented by γ(Wil), is

defined as the probability that at least mi jobs in Wil could be

completed successfully.

Based on it, the reliability of task τi is defined as,

γ(τi) =
zi

∏
l=1

γ(Wil) (2)

where zi = H
kiPi

.

And the reliability of the whole system T is defined as,

γ(T) =
n

∏
i=1

γ(τi) (3)

2) Quality of Service: Based on the above system models,

we define the metrics to measure the quality of service of a task

τi, represented by QoS(τi) to be the ratio of the number of jobs

completed successfully and the total number of jobs within

the hyperperiod H. Specifically, QoS(τi) can be calculated as

followed:

QoS(τi) =
Σ

zi

l=1(mi × γ(Wil))

zi × ki

=
mi

ki

×
Σ

zi

l=1γ(Wil)

zi

(4)

And the system quality of service is defined as

QoSsys =
n

∑
i=1

QoS(τi)ωi (5)

where ωi is the user-defined weight for task τi.

III. MOTIVATIONS

To satisfy the reliability requirement, one essential part is

to reserve recovery jobs for the tasks when applying DVFS

to reduce energy. Prior to that, a key problem for ensuring

the (m,k)-constraints is to judiciously partition the jobs into

mandatory jobs and optional jobs [11]. A well-known parti-

tioning method is called the the evenly distributed pattern (or

E-pattern) [12]. According to E-pattern, the pattern πi j for job

Ji j, i.e., the jth job of a task τi, is defined by:

πi j =

{

“1” if j = bd (j−1)×mi

ki
e× ki

mi
c+1

“0” otherwise j = 1,2, · · ·
(6)

where “1” represents the mandatory job and “0” represents

the optional job. In [5], a variation of E-pattern called ER-

pattern was achieved by reversing the pattern horizontally

to let the optional jobs happen first, which can preserve the

schedulability of E-pattern [5].

Note that based on the E-pattern given in Equation (6),

without energy management, i.e., all mandatory jobs to be

executed at full speed without recovery, the reliability of any

window Wil of ki jobs could be calculated as:

γ(Wil) =
(l−1)×ki+ki

∏
p=(l−1)×ki+1

{γ(Jip) | πip = 1} (7)

It is also noted that the job patterns defined with E-pattern

have the property that they define a minimal set of mandatory

jobs that “just” satisfies the given (m,k)-constraint in each

sliding window. Due to this property, before the speed for any

task is scaled to save energy, a popular approach is to reserve

a recovery job for each mandatory job of the task to satisfy

the reliability of the same task. Conversely, under window-

constraint, this requirement could be greatly relaxed as we only

need to reserve one recovery job within each separate window

so long as the reliability of the window under consideration

is not lower than that calculated with Equation (7). However,

16
 96
80
64
48
32

96
72
24

T1

T2

48

80
40

T3

0

112
 192
176
160
144
128

192
168
120
 144

200
160
120

(b)

208
 224
 240

216

240

240

T1

T2

T3

0

(c)

recovery job

J
34
(R)

J
18
(R)
J
14
(R)
 J
1C
(R)

16
 96
80
64
48
32
 112
 192
176
160
144
128
 208
 224
 240

96
72
24
 48
 192
168
120
 144
 216
 240

80
40
 200
160
120
 240

J
24
(R)
 J
28
(R)

16
 96
80
64
48
32

96
72
24

T1

T2

48

80
40

T3

0

112
 192
176
160
144
128

192
168
120
 144

200
160
120

(a)

208
 224
 240

216

240

240

Fig. 1. (a) The schedule for task set {τ1 = (16,16,6,3,5); τ2 = (24,24,8,3,5); τ3 = (40,40,6,2,8)} with no recovery jobs reserved; (b)
The schedule for the same task set with the state-of-the-art recovery job reservation strategy based on E-pattern (can only accommodate
recovery jobs for task τ1); (c) The schedule with recovery jobs reserved based on window-constraints that could be transferred to their
original (m,k)-constraints.

the problem is, since window-constraint is weaker than (m,k)-
constraint, a task τi satisfying the window-constraint of mi/ki

does not necessarily satisfy the (m,k)-constraint of (mi,ki).
Fortunately, in [13] it is shown that the window-constraint of

mi/ki can be transferred to the (m,k)-constraint of (mi,2ki −
mi). That means if we can reserve recovery jobs for the tasks

such that it could satisfy the window constraint of mi/ki, it

will satisfy the (m,k)-constraint of (mi,2ki−mi) automatically.

Since in this case we only need to reserve one recovery job for

each separate window of ki jobs, it could leave us more space

to keep the energy under control than reserving recovery jobs

for all mandatory jobs under E-pattern for tasks with (m,k)-
constraints of (mi,2ki −mi), which could be illustrated using

the following example.

Consider a task set of three tasks, i.e., τ1 = (16,16,6,3,5),
τ2 = (24,24,8,3,5), and τ3 = (40,40,6,2,8). Figure 1(a)

shows the schedule for the mandatory jobs based on E-

pattern. If we assume the probability of transient fault at full

speed to be 10−6, without reliability management, based on

Equation (7), the reliability of each window in τ1, τ2, and

τ3 will be 0.9999820002, 0.9999760003, and 0.9999880001,

respectively. Based on Equation (3), the corresponding system

reliability will be 0.9999460015. Meanwhile, if we assume all

tasks in Equation (5) have equal weights, i.e., ωi = 1
n

for all

tasks in T , the QoS of the whole system based on Equation

(5) will be 0.48332393344.

If we apply the state-of-the-art reliability management

strategy, i.e., reserve a recovery job for each mandatory job

whenever possible to do so, Figure 1(b) shows the schedule

for the mandatory jobs based on E-pattern for the original

given (m,k)-constraints, with a recovery job reserved for

each mandatory job of task τ1. Note that in this case after

reserving recovery jobs for task τ1, there is not enough room

for reserving recovery jobs for task τ2 or task τ3 any more.

Therefore, only the reliability of each window in τ1 could

be improved to 0.99999999996 while the reliability of each

window in task τ2 and τ3 did not change. As a result, the

reliability of the whole system based on Equation (3) is now

0.99996400056. And the QoS of the whole system in this case

based on Equation (5) is 0.48332753339. Compared with the

above schedule in Figure 1(a) without reliability management,

there is some improvement in the system reliability and very

slight improvement in system QoS.

However, if we follow a different way of managing the relia-

bility, the system performance could be improved substantially.

As shown in Figure 1(c), different from the above schedule, if

we reserve the recovery jobs to satisfy the window-constraints

first, we can still meet the original (m,k)-constraints with

opportunities to have more tasks managed with recovery jobs,

thereby improving the system reliability further. As illustrated

in Figure 1(c), in this case the mandatory jobs of τ1, τ1, and τ3

are determined to satisfy the window constraints of 3/4, 3/4,

and 2/5 first. Then according to the aforementioned mapping

relationship they can meet their original (m,k)-constraints of

(3,5), (3,5), and (2,8), respectively. Based on the above

configuration, with the aforementioned flexibility of window-

constraints in preserving reliability in each separate window,

we only need to reserve one recovery job for each window

under consideration. For ease of presentation here we assume

the next optional job following the last mandatory job in the

same window is reserved as recovery job for each separate

window, as shown in Figure 1(c). Under the new schedule, the

reliability of each window Wil of task τi should be calculated

as:

γ(Wil) =
(l−1)ki+ki

∏
p=(l−1)ki+1

{γ(Jip) | πip = 1}

+
(l−1)ki+ki

∑
p=(l−1)ki+1

{
(l−1)ki+ki

∏
q=(l−1)ki+1

{γ(Jiq) | πiq = 1, q 6= p}

× (1− γ(Jip))× γ(Jip)} (8)

Based on Equation (8), the reliability of each window in

task τ1, τ2, and τ3 will be calculated as 0.99999999978,

0.9999999996, and 0.99999999989, respectively. Based on

Equation (3), the corresponding system reliability will be

improved to 0.99999999927, which is much higher than that

under the state-of-the-art reliability management strategy. In

addition, the system QoS based on Equation (5) in this case

is improved to 0.63333333316, which is 20.7% higher than

that in Figure 1(b) (and that in Figure 1(a) without reliability

management as well).

From the above example, it is not hard to see that it is very

promising to determine the job/recovery patterns in such a way

that the task set satisfies the window-constraint first which

could be transferred to the corresponding original (m,k)-
constraint automatically. However, since the system might not

be able to accommodate recovery jobs for all tasks, how to

select the subset of tasks that can be managed with recovery

jobs will be an important issue. Regarding that, in this paper

a method based on “branch-and-bound” is proposed to solve

this issue systematically.

IV. THE GENERAL ALGORITHM

In this section, we will introduce our general scheduling

algorithm. Our algorithm consists of two phases: an off-line

phase and an on-line phase.

A. The Off-Line Phase

The goal for the off-line phase is to determine the (shared)

recovery jobs for the tasks such that the expected reliability

and QoS of the system are maximized while the feasibility of

Algorithm 1 Reserving recovery jobs for the task set

1: Input: task set T with mandatory jobs determined by E-pattern
(with no recovery job(s) reserved for any task yet);

2: Output: task set Γ=Ω∪Θ, where Ω is the subset of tasks in T

with recovery jobs reserved for each task and Θ is the subset of
tasks in T with no recovery jobs;

3: Ω = /0;
4: Θ = all tasks in T ;
5: // no recovery jobs is reserved yet;
6: Γ=Ω∪Θ;
7: Compute the system reliability and QoS, i.e., γ(T) and QoSsys

of the task set T under original (m,k)-constraints based on
Equations (3) and (5);

8: Bound = γ(T)×QoSsys;
9: Recovery-Reservation (Ω, Θ, Bound, Γ);

10: output (Γ);
11:

12: FUNCTION Recovery-Reservation(Ω, Θ, Bound, Γ)
13: for each task τi ∈ Θ do
14: Re-determine the mandatory jobs of τi using E-pattern based

on the window-constraint that can be transferred to its original
(m,k)-constraint;

15: Remove τi from Θ;
16: Add τi to Ω;
17: In each separate window of task τi, reserve the next optional

job following the last mandatory job in the same window as
recovery job;

18: Apply the LPEDF algorithm from [14] to the task set Ω∪Θ;
19: if Ω∪Θ is feasible with LPEDF then
20: Compute the system reliability and QoS, i.e., γ(T) and

QoSsys of the updated task set Ω∪Θ based on Equations
(3) and (5);

21: newBound = γ(T)×QoSsys;
22: if newBound > Bound then
23: Bound = newBound;
24: Γ=Ω∪Θ;
25: end if
26: Recovery-Reservation (Ω, Θ, Bound, Γ);
27: else
28: Restore the mandatory jobs of τi to the original ones based

on E-pattern (with no recovery job(s)) and put it back to
Θ;

29: end if
30: end for

the task set is preserved. One essential part of it is to determine

the mandatory jobs for the tasks and reserve recovery jobs for

them based on the window-constraints (that can be transferred

to the corresponding original (m,k)-constraints) if possible.

However, since the system might not be able to accommodate

recovery jobs for all tasks, how to select the subset of tasks that

can be managed with recovery jobs is not a trivial problem.

Then the problem becomes how to select the subset of tasks

to be managed with recovery jobs to achieve the best system

reliability and QoS. In [18], it is shown that even without

consideration of reliability and QoS this problem is NP-hard.

Although some heuristics [18] are proposed for hard real-

time systems regarding the selection of tasks, they are not

applicable any more for soft real-time systems with (m,k)-
constraints. In order to solve the problem, in this section, we

propose a “branch-and-bound” method to divide the task set

T into two parts: the subset Ω in which the tasks will be

managed with recovery jobs and the subset Θ in which the

tasks will not be managed with recovery jobs. The details are

presented in Algorithm 1.

As can be seen in Algorithm 1, by applying the branch-and-

bound strategy, our approach determines task by task if the

mandatory jobs of each task should be based on the original

(m,k)-constraint (with no recovery jobs reserved) or based on

the window-constraint (with recovery jobs reserved according

to Line 17). When Algorithm 1 is finished, it is possible

to reach certain hybrid configuration in which the tasks in

Ω are partitioned based on window-constraints with recovery

jobs reserved in each separate window, while the tasks in Θ
are still partitioned based on the original (m,k)-constraints

with no recovery jobs reserved for them. And the resulting

configuration should be the one that can maximize the system

reliability-QoS product while preserving the overall task set

feasibility.

Note that in lines 18-19 of Algorithm 1, Yao’s LPEDF

Algorithm [14] is applied to check the feasibility of the

mandatory jobs in each iteration.

Algorithm 2 Online algorithm

1: Upon job arrival:
2: Run jobs in the ready queue according to EDF scheme with their

predetermined speed;
3:

4: Upon job completion:
5: if the execution of Ji is found to have failed then
6: if Ji ∈ Θ and Ji has a recovery job reserved for it then
7: Invoke Ji’s recovery job immediately;
8: else
9: if Ji ∈ Ω and Ji is not a recovery job then

10: Invoke Ji’s recovery job in the same window at its arrival
time;

11: end if
12: end if
13: else
14: if Ji ∈ Ω and the window which Ji belongs to has got enough

number of jobs completed successfully then
15: Drop the recovery job of the window which Ji belongs to;
16: end if
17: end if

Based on the task assignment output by Algorithm 1, the

mandatory jobs of each task can be scheduled according to

the EDF scheme during the online phase.

B. The Online Phase

During the online phase, as shown in Algorithm 2, a job

ready queue will be maintained. Upon arrival, a mandatory job

determined during the off-line phase is inserted into the ready

queue. Note that a recovery job needs to be executed only

if some mandatory job within the same window has failed.

Otherwise the recovery job will simply be dropped. All jobs

in the ready queue will be executed following the EDF scheme.

If the current job Ji is found to have failed at its completion

time, its recovery job in the same window needs to be invoked

and inserted into the ready queue at its arrival time (line 10).

If the execution of Ji is successful, Algorithm 2 determines

whether its shared recovery job in the window it belongs to, if

any, should be dropped depending on the number of successful

jobs so far in that window (lines 13-15).

The complexity of Algorithm 2 mainly come from schedul-

ing the mandatory/recovery jobs in the ready queue, which is

O(N).

V. EVALUATION

In this section, we evaluate the performance of our ap-

proach by comparing with the existing approaches in literature.

Specifically, the performance of three different approaches

were studied:

• MKNR The task sets are partitioned with E-pattern, and

all mandatory jobs are executed without recovery jobs

reserved for them.

• MKR The task sets are partitioned with E-pattern to

satisfy the given (m,k)-constraints. Then the mandatory

jobs are scheduled with recovery job reserved for them

with the approach similar to that in [18], i.e., reserving

recovery jobs (for all mandatory jobs of the same task)

for as many tasks as possible.

• WCMKR This is our newly proposed approach in Section

IV based on window transferring.

The periods of the real-time task sets were randomly chosen

in the range of [30ms, 100ms]. The worst case execution time

(WCET) was set to be uniformly distributed and the mi and

ki for the user defined (m,k)-constraints were also randomly

generated such that ki is uniformly distributed between 2 to

10, and mi < ki. To investigate the performance of the different

approaches under different workload, we divided the total

(m,k)-utilization, i.e., ∑i
miCi
kiPi

, into intervals of length 0.1. To

reduce the statistical errors, we required that each interval

contain at least 20 task sets schedulable with E-pattern, or

until at least 5000 task sets within each interval had been

generated.

For the fault and recovery model we adopted the same

model as used in [19], i.e., the transient faults are assumed

to follow the Poisson distribution with an average fault rate of

σ = 10−6 at full speed.

Firstly, we inspected the system reliability by the different

approaches. Here in order to reflect the system reliability in

a more straightforward way, we checked the probability of

dynamic failure (denoted as PoDF) of the different approaches.

The PoDF is defined as the probability for any window of ki

consecutive jobs to have less than mi jobs out of it completed

successfully. The result is shown in Figure 2(a).

As seen, in most utilization intervals, the PoDF of MKR is

lower than that by MKNR. The effect is especially obvious

when the utilization is relatively low. That conforms to the

conclusion in [17] that the reservation of recovery jobs could

generally help reduce the probability of job failure. The

average PoDFs of WCMKR is still much lower than that by

MKR when the utilization is not very low or not very high.

This is mainly because, by reserving shared recovery jobs

based on window-constraints (that can be transferred to the

corresponding original (m,k)-constraints) first, the mandatory

(a)
 (b)

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

(m,k)-Utilizatoin

P
ro

b
a
b

il
it

y
 o

f
D

y
n

a
m

ic
 F

a
il
u

re

MKNR
 MKR
 WCMKR

50

60

70

80

90

100

110

120

130

140

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 Q
o

S

L

e
v
e
ls

 (
%

)

MKNR
 MKR
 WCMKR

Fig. 2. (a) The comparison on the probability of dynamic failure (PoDF) for the different approaches; (b) The comparison on the QoS for
the different approaches.

jobs of more tasks could have recovery jobs reserved for them

when compared with MKR.

Next, we inspect the system QoS levels each approach can

provide. For simplicity, we assumed all tasks in Equation (5)

were assigned the equal weights, i.e., ωi = 1
n

for any task

τi ∈ T . The results (normalized to that by MKNR) are shown

in Figure 2(b). From Figure 2(b), we can see that the newly

proposed approach, i.e., WCMKR can achieve much better

QoS levels than the previous approaches. Compared with

MKR and MKNR, the maximal QoS improvement could be

nearly 30%. This is because, different from MKR and MKNR

which could only provide a minimum set of jobs that “just”

satisfied the (m,k)-constraints, WCMKR, by adopting more

adaptive recovery job reservation techniques, could utilize

the time space more efficiently. Therefore it could generally

accommodate more valid jobs in its schedule, generating better

QoS levels.

VI. CONCLUSIONS

In this paper, we explored maximizing the reliability and

QoS for periodic real-time tasks with (m,k)-constraint in

data processing, which requires that at least m out of any

k consecutive jobs of a task meet their deadlines. Regarding

that, we proposed a reliability-aware scheduling scheme which

reserved recovery space for periodic real-time tasks in an

adaptive way based on the mandatory/optional job partitioning

strategy. Moreover, advanced techniques are studied to imple-

ment task assignment without affecting the system feasibility.

Through extensive simulations, our evaluation results demon-

strate that the proposed techniques significantly outperformed

the previous research in reliability and QoS performance while

preserving the system feasibility.

REFERENCES

[1] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner. Razor: circuit-level correction of timing errors for
low-power operation. Micro, IEEE, 24(6):10–20, 2004.

[2] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment
technique for streams with (m,k)-firm deadlines. IEEE Transactions

on Computes, 44:1443–1451, Dec 1995.

[3] Q. Han, L. Niu, G. Quan, S. Ren, and S. Ren. Energy efficient fault-
tolerant earliest deadline first scheduling for hard real-time systems.
Real-Time Syst., 50(5-6):592–619, Nov. 2014.

[4] B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu. Ramp: A model
for reliability aware microprocessor design. IBM Research Report,

RC23048, 2003.
[5] Linwei Niu and Gang Quan. Energy minimization for real-time

systems with (m,k)-guarantee. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 14(7):717–729, July 2006.
[6] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-

ming in a hard real-time environment. Journal of the ACM, 17(2):46–61,
1973.

[7] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.
[8] L. Niu and G. Quan. Peripheral-conscious energy-efficient scheduling

for weakly hard realctime systems. International Journal of Embedded

Systems, 7(1):11–25, 2015.
[9] L. Niu and J. Xu. Improving schedulability and energy efficiency

for window-constrained real-time systems with reliability requirement.
Journal of Systems Architecture, 61(5):210–226, May 2015.

[10] D. K. Pradhan, editor. Fault-tolerant Computing: Theory and Tech-

niques; Vol. 2. Prentice-Hall, Inc., USA, 1986.
[11] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm

guarantee. In RTSS, pages 79–88, 2000.
[12] P. Ramanathan. Overload management in real-time control applications

using (m,k)-firm guarantee. IEEE Trans. on Paral. and Dist. Sys.,
10(6):549–559, Jun 1999.

[13] R. West, Y. Zhang, K. Schwan, and C. Poellabauer. Dynamic window-
constrained scheduling of real-time streams in media servers. IEEE

Trans. on Computers, 53(6):744–759, June 2004.
[14] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced

cpu energy. In AFCS, pages 374–382, 1995.
[15] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault

tolerance in fixed-priority real-time embedded systems. In ICCAD, 2003.
[16] D. Zhu. Reliability-aware dynamic energy management in dependable

embedded real-time systems. ACM Trans. Embed. Comput. Syst.,
10:26:1–26:27, January 2011.

[17] D. Zhu and H. Aydin. Energy management for real-time embedded
systems with reliability requirements. In ICCAD, 2006.

[18] D. Zhu and H. Aydin. Reliability-aware energy management for periodic
real-time tasks. Computers, IEEE Transactions on, 58(10):1382–1397,
2009.

[19] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management
on reliability in real-time embedded systems. In ICCAD, 2004.

