Scaling of the Non-Phononic Spectrum of Two-Dimensional Glasses
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Low-frequency vibrational harmonic modes of glasses are frequently used to rationalize their
universal low-temperature properties. One well studied feature is the excess low-frequency density
of states over the Debye model prediction. Here we examine the system size dependence of the
density of states for two-dimensional glasses. For systems of fewer than 100 particles, the density
of states scales with the system size as if all the modes were plane-wave-like. However, for systems
greater than 100 particles we find a different system-size scaling of the cumulative density of states
below the first transverse sound mode frequency, which can be derived from the assumption that
these modes are quasi-localized. Moreover, for systems greater than 100 particles, we find that the
cumulative density of states scales with frequency as a power law with the exponent that leads
to the exponent 8 = 3.5 for the density of states. For systems sizes investigated we do not see a

size-dependence of exponent (.

A striking feature of glasses is the excess of low-
frequency vibrational harmonic modes over that pre-
dicted by Debye theory. Many computational studies
analyzed low-frequency vibrational modes in glasses [TH4]
with the goal to characterize the excess harmonic modes,
which are frequently referred to as non-phononic modes.
Since the same low-temperature properties are found in
different glasses, one is naturally tempted to look for
universal features of the excess modes, independent of
the model and the glass formation protocol. Impor-
tantly, these features should hold in the thermodynamic
limit. In many studies the implicit hypothesis is that
the excess modes density D.,(w) follows a power law,
Dep(w) = Acpw?.

Different methods in the literature are employed to de-
termine 5. One approach is to separate modes by their
participation ratio with the assumption that the low-
frequency excess modes have a significantly smaller par-
ticipation ratio than the extended, plane-wave-like modes
[5HT]. This method was used to argue that 8 = 4 in three
dimensions [6], [7]. However, this method fails in two di-
mensions since it is impossible to choose a suitable par-
ticipation ratio cutoff to differentiate between the excess
modes and the plane-wave-like modes in two dimensions.

A second method is to study small systems [8HI0]. In
d spatial dimensions the frequency range of the first band
of plane-wave-like modes scales as L~%2 where L is the
simulation box size. The assumption is that the modes
below this band of plane-wave-like modes represent the
excess modes and one can determine the scaling of D, (w)
from studying the harmonic mode spectrum for frequen-
cies significantly below those of the first band. While
conceptually straight forward, there are some subtle is-
sues that must be kept in mind. First, every simulated
glass has a slightly different shear modulus that results in
a slightly different frequency expected for the first plane-
wave-like mode, wri, for an ideal elastic body. In addi-
tion, the modes are not pure plane waves and there is

a distribution of frequencies around wy; for each glass.
For these reasons one can have a rather large range of
frequencies where the first plane-wave-like modes exist.
If one does not separate the plane-wave-like modes (like
in the first method), one has to be careful to infer D, (w)
using only modes that do not correspond to plane-wave-
like modes.

Another difficulty is that there is a reported finite size
effect influencing the exponent § in three-dimensional
glasses [10]. It has been reported that 8 < 4 for small sys-
tems and 3 equals 4 for large enough systems [10]. Recall
that the plane-wave-like modes move to lower frequencies
with increasing system size, and thus there is a smaller
frequency range where the excess modes spectrum is
found. In addition, in two dimensions there are very few
excess modes [7, [IT] and a very large number of glass re-
alizations are needed to obtain good enough statistics to
determine an accurate value for 3. Analysis of § in two
dimensions is also complicated by a reported finite size
effect in the pre-factor A, Aex ~ (log N)(B'H)/2 with V
the number of particles in the system [9].

Finally, several groups attempted to disentangle or
de-hybridize observed harmonic modes into plane-wave
or phonon-like modes and localized modes [I2HI9]. For
three-dimensional systems [12] [I4], these methods result
in 8 = 4, and thus agree with what has been found in
studying small systems and from separating the modes
by participation ratio. De-hybridization procedures also
suggest that 8 = 4 for two-dimensional systems [I8] [19].
Wang et al. [11] examined the scaling of the excess modes
above wry by subtracting the Debye contribution from
the total cumulative density of states and found that the
excess modes appeared to scale as w?, which suggests a
change of scaling of excess modes when quasi-localized
modes and plane-wave modes hybridize. A change of the
scaling of excess modes above wpy with hybridization was
also suggested by Shiraishi et al. [19], resulting in the ex-
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FIG. 1: (a) The density of states of small two-dimensional
glasses with N paticles. There is a distinct system size
dependence with a shoulder at low frequencies and peaks
showing up at N dependent frequencies. (b) The density of
states versus W\/N . The shoulder is shown to correspond
to wr1 = y/G/p(2w/L) and the first peak corresponds to
(G+ K)/p(2m/L). The shaded regions represent
the range of wr1 and wr1 due to the range of bulk modulus
and shear modulus calculated for the different glasses.

wr1 =

cess modes scaling as w?. In contrast, excess modes above
wr1 in three dimensions scale as w* [6] [7, [11].

A clear picture of the scaling of harmonic modes has
not emerged in two-dimensional systems. In this work, in
order to clarify the picture of harmonic vibrations in two-
dimensional glasses we examine in detail the spectrum
of harmonic modes below w7 and explore its finite size
effects.

We present analysis of our results of the cumulative
density of states I(w) = [7 D(w')dw’, where D(w) is the
full density of states. We emphasize that to avoid any
binning algorithm-related issues we evaluate the cumula-
tive distribution I(w) directly, by counting the number of
eigenfrequencies less than w. We find power-law behavior
implying 8 ~ 3.5 for systems greater than 100 particles.
We also study in detail some finite size effects of the den-
sity of states observed in two-dimensional glasses and find
different behavior for systems less than 100 particles and
greater than 100 particles. In contrast to a recent paper
[20], we do not see a system size dependence of exponent
0, at least for the range of system sizes investigated.

For an ideal elastic body, the frequency of the first
transverse wave is given by wr = \/(G/p)(2w/L), where
G is the shear modulus, p is the mass density, and L is
the linear size of the sample. The frequency of the first
longitudinal wave is given by w1 = /(G + K)/p(27/L),
where K is the bulk modulus. We start our analysis of
the TPL-10 system quenched from configurations equi-
librated at parent temperature 7, = 2.0 that are dis-
cussed in Ref. [II]. Shown in Fig. [1] is the density of
states D(w) = (2N —2)7' 3" §(w — w,,) for N = 36, 64,
and 100. The frequencies w,, are obtained by diagonaliz-
ing the Hessian matrix. For these system sizes there are
two distinct features at low frequencies, a shoulder and
a peak. In Fig. (b) we scale the frequency by VN ~ L
and find that the two low frequency features align. The
shaded regions represent the range of frequencies of ideal
plane waves, wry (red) and wyy (blue), which is derived
from the range of values for G and K. Fig.[[[b) suggests
that the shoulder is associated with the first transverse
wave and the peak is associated with the first longitudi-
nal wave.

To determine the scaling exponent of the density of
states, B, we examine the cumulative density of states
I(w). Since the hypothesis is that the modes corre-
sponding to the lowest frequencies below wy; are quasi-
localized and contribute to D, (w), we should be able to
infer De;(w) from the low frequency behavior of I(w).

We examined the scaling of I(w) for very small systems
of N < 100 particles. Shown in Fig. [[a) is I(w) versus
wy/log N, which is a scaling predicted from continuum
elasticity due to a 7~ ! decay of the non-phononic modes
at large distances r [9, [I5]. There is a systematic devia-
tion from this scaling. In contrast, we find nearly perfect
data collapse of I(w)[2N — 2] versus wv/'N, Fig. b),
which is a scaling motivated by the system size depen-
dence of Debye theory. We are counting the average num-
ber of modes up to wv/N and seeing how many fall below
wr1VN. For an ideal elastic body, I(w)[2N — 2] = 4 at
wriV'N. The shaded area in Fig. b) represents the
range of wpy given the range of values for G. For these
very small systems we do not find any evidence that there
are more modes in excess of the Debye theory, and we
do not believe that the excess mode scaling can be in-
ferred from systems less than 100 particles. This analysis
also highlights the difficulty in determining the frequency
range to use to study excess (non-phononic) modes. We
emphasize that while the observed scaling of the cumu-
lative density of states with N agrees with the Debye
theory, this fact does not imply that the modes are plane-
wave-like. For these very small systems it is difficult to
distinguish between plane-wave-like and quasi-localized
modes.

We fit I(w)[2N — 2] versus wvN for 3 < wv/N < 6
for N = 36, 64 and 100 to a(wv/N)?+1. We find that 3
varies from 3.38 for N = 36 to 3.61 for N = 64, and that
B = 3.48 for N = 100. We show the fits for N = 36 and
N = 64 in Fig. b). It is impossible to determine from
the fits if one value of 8 should be preferred over another.
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FIG. 2: (a) Scaling of the cumulative density of states pro-
posed in Ref. [I5]. There are small deviations from this
scaling for these small system sizes. (b) Expected scal-
ing of the cumulative density of states if all the modes are
plane-wave-like. This scaling results in better data collapse
than the scaling proposed in Ref. [15] for these small system
sizes. The red shaded area is the typical range of frequencies
wrivVN expected for an ideal transverse wave for the differ-
ent glass configurations. For an ideal amorphous elastic body,
I(w)(2N —2) = 4 at wri. The dotted green line is a fit to the
N = 36 particle results and the dashed green line is a fit to
the N = 64 particle results; the corresponding S in the fitting
function I(w)[2N —2] ~ (wv/N)?*1 is indicated in the legend.
Both fits are from 3 < wv/N < 6.

We find that this range of 3 is also consistent with the
results of Ref. [20]. Ideally, we would want to greatly
expand the fitting range to include at least one decade
along each axis (i.e. at least one decade of w and I(w))
to claim a specific power law, but finding a large range
of frequencies in which a power law is obeyed requires
many more independent configurations, that we cannot
generate with our present computational resources. Here
we are assuming a power law down to w = 0 and inferring
[ with the available data.

In contrast to our result for smaller systems, in
Fig. (a) we show that the I(w) = f(wy/log N) scaling is
obeyed for 100 < N < 30000 [24]. Since the f(w+/log N)
scaling is derived from continuum elasticity [9, 5], it
is unsurprising that this scaling breaks down for small
systems, see Fig. a). This is also consistent with the
work by Wittmer et al. [21] and Tanguy et al. [22] which
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FIG. 3: (a) Scaling plot of the cumulative density of states
for system sizes 196 < N < 30000 for the IPL-10 system [11].
Unlike for smaller systems, the I(w) = f(w+/log N) scaling
produces reasonable data collapse at small frequencies. There
is some deviation at low frequencies, but this cannot be sta-
tistically ruled out. (b) Direct comparison for systems of N =
1600 and N = 30000. We fit the N = 1600 particle system
from 0.2 < wy/log N < 0.8 to I(wy/ITog N) ~ (wy/Tog N)?*L.
The dotted orange line corresponds to a fit with 8 = 4 fixed,
while the dashed orange line corresponds to a fit with 8 = 3.5
fixed.

concluded that continuum elasticity breaks down below
about 30 particle diameters for 2D systems. There are
some deviations from scaling at the smallest frequencies,
but we believe that better statistics would improve the
overlap. In Fig. b) we show only the N = 1600 and
N = 30000 results. We fit the N = 1600 results for
0.2 < wylogN < 0.8 to I(wy/logN) ~ (wy/TogN)#+1
where we fixed 8 = 4 (orange dotted line) and 8 = 3.5
(orange dashed line). The 8 = 3.5 fit provides a better
description of the N = 30000 results. Note that we can-
not statistically rule out 5 = 4 on this analysis alone,
but we will show that § = 3.5 is consistent with all our
results for systems over 100 particles.

To investigate the effect of annealing on the value of g
we studied systems of N = 1600 and N = 30000 parti-
cles. To anneal the samples we simulated each configura-
tion for 10° time steps with a time step of 0.01 at T = 0.5
before quenching to T = 0, as was done in Ref. [20].
Shown in Fig. is I(w) versus wy/log N for these annealed
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FIG. 4: Scaling plot of the cumulative density of states for
annealed IPL-10 systems of N = 1600 and N = 30000. We
fit the N = 1600 particle system to all the available data up to
wyTog N = 0.8 to I(wy/Tog N) ~ (wy/log N)?*1. The dotted
orange line corresponds to a fit with § = 4 fixed, while the
dashed orange line corresponds to a fit with g = 3.5 fixed.

systems. Again we find the I(w) = f(wy/log N) scaling
is obeyed. We fit the N = 1600 particle system using all
the available data up to w+/log N = 0.8 where we fixed
B = 4 (orange dotted line) and 8 = 3.5 (orange dashed
line). We find that the g = 3.5 fit provides a better de-
scription of the data over a larger range of w+/log N for
the N = 1600 particle systems. The g = 3.5 fit describes
I(w) for the N = 30000 particle system for a range of
w, whereas the § = 4 fit does not. We conclude that the
[ = 3.5 provides a better description of the results for
the annealed system also.

We recall that there was an outlier in the results shown
in Ref. [II]. Figure |5 is a reproduction of Fig. 2(b)
of the supplemental material of Ref. [11], which shows
I(w) /w5 (corresponding to 3 = 3.5) for the IPL-10 sys-
tem for different system sizes. The low frequency data
suggests that 8 = 3.5 for every system size except for
N = 786. As pointed out in Ref. [20], the N = 786 parti-
cle result shows an upturn at small frequencies suggesting
a [ different than the other system sizes.

To address this result we increased the number of glass
samples for this interaction potential and system size
from the 0.79 million samples used in Ref. [I1] to 2.4 mil-
lion samples. Shown in Fig. [6] is I(w)/w> for N = 786
with the improved statistics. We can see that the up-
turn starts at lower w, where the statistics are poor, and
there is a larger range of w where 5 =~ 3.5 is a reasonable
description of the data. With the improved statistics we
thus find that N = 786 system is consistent with other
results.

We now turn to the analysis of exponents [ for all
the systems. To determine the exponent [ for systems of
more than 100 particles we fit log[I(w)] = (8+1) log(w)+
a. For each system size we fit three to four frequency
ranges to obtain § and average [ obtained from these
fits. The uncertainty is chosen to include each value of
0 for a given interaction potential and system size. We
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FIG. 5: The cumulative density of states for the IPL-10 sys-
tem for different system sizes studied in Ref. [II]. Note that

this figure is a reproduction of Fig. 2(b) of the supplemental
material of Ref. [11].
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FIG. 6: Comparison of the scaled cumulative density of states
for the IPL-10 system with N=786 for ensemble sizes of 0.79
million configurations (open symbols) and 2.4 million config-
urations (closed symbols).

exclude the results for the Lennard-Jones systems pre-
sented in Ref. [II] since there is a systematic downturn
at small w for each system size that is not seen for the
other interaction potentials. Shown in Fig. [7] are the re-
sults for the remaining interaction potentials analyzed in
Ref. [II] (closed symbols).

Figure |Z| does not show any clear, systematic system
size dependence of the exponent 3, in contrast to the sys-
tematic change with system size suggested by the authors
in Ref. [20]. For the harmonic sphere system (HARM),
B does appear to grow with system size, but the growth
is within the uncertainty of the calculation. The two
inverse-power-law systems (IPL-10 and IPL-12) show no
systematic change in 8 with system size.

We note that there are two values of 8 in Fig. [7] for
the IPL-10 system with 786 particles. The filled circle
was obtained from the original, smaller sample shown
in Figs. [5] and [} The open circle was obtained from
the larger sample shown in Fig. [6] We note that with
the improved statistics the value of exponent 8 is con-
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FIG. 7: The exponent 8 obtained from fits of the cumulative
density of states I(w) for the systems studied by Wang et al.
in Ref. [II]. The horizontal line is the average value of .

sistent with results for other system sizes. The change
of B with increasing the number of glass samples high-
lights the difficulty of obtaining an accurate value of
for two-dimensional systems. There are so few excess
modes that many glass samples are needed to obtain ac-
curate results to do a direct calculation of the density of
states. This was pointed out in Ref. [I8] where the au-
thors utilized non-linear mode analysis [16} [I7] to analyze
two-dimensional systems.

We find that all systems where N > 100 result in 5 ~
3.5 for all our systems and we cannot rule out 8 ~ 3.5
for N < 100 with our data alone. We note that we do
not believe that one can obtain the scaling of the non-
phononic density of states for N < 100. We also find
that 8 ~ 3.5 for systems greater than 100 particles is
consistent with the data presented in Ref. [20].

All the systems discussed here are fairly small, and
it is possible to study much larger systems. The diffi-
culty with larger systems is that the first plane-wave-
like modes get pushed to lower frequencies and the fre-
quency range where only excess modes are expected to be
found becomes smaller. This difficulty is combined with
the very limited number of non-plane-wave-like modes
in two-dimensions. We examined a 30000 particle sys-
tem for the same IPL-10 model as used in Ref. [II] and
found inconclusive results for the value of 5 at the lowest
frequencies examined, see Fig. b). These results were

similar to those for three-dimensional systems in Ref. [23]
in that 8 was smaller than 3.5 at lower frequencies. This
puzzling result persisted despite having about 0.23 mil-
lion configurations of 30000 particles. Examination of
these large systems deserves more work.

Here, as with much previous work, we are assuming
that a power law is a good description of the low fre-
quency modes despite not having several decades of fre-
quency to verify that a power law does indeed exist. Hav-
ing ensemble sizes large enough for a direct verification is
a daunting task, especially for two-dimensional systems
that have so few quasi-localized modes.

Two-dimensional solids and liquids have characteristics
different than their three-dimensional counterparts [11]
25]. One characteristic for two-dimensional glasses is the
very small density of excess modes, which makes study-
ing the excess modes difficult. There is evidence that the
density of the excess modes scales as w? for excess modes
above wpy for two-dimensional glasses [I1], but the ex-
cess modes scale as w* for three-dimensional glasses [11].
Two-dimensional glasses may be different than three or
higher dimensions. Furthermore, since wyr; — 0 in the
thermodynamic limit, it is unclear that the scaling of
the modes below wp; is important in the understanding
of the behavior of two-dimensional glasses. Future work
needs to focus on the influence of the scaling of excess
harmonic modes on properties of glasses.
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