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Observing physical effects of large quantum stress tensor fluctuations requires knowledge of the

interactions between the probe and the particles of the underlying quantum fields. The quantum stress

tensor operators must first be averaged in time alone or space and time to confer meaningful results, the

details of which may correspond to the physical measurement process. We build on prior results to

characterize the particle frequencies associated with quantum fluctuations of different magnitudes. For the

square of time derivatives of the massless scalar field in a spherical cavity, we find that these frequencies are

bounded above in a power law behavior. Our findings provide a way to identify the largest quantum

fluctuation that may be probed in experiments relying on frequency-dependent interactions.

DOI: 10.1103/PhysRevD.107.036013

I. INTRODUCTION

As the search for a full theory of quantum gravity

continues, extensions to the semiclassical theory of gravity

remain a promising endeavor for understanding quantum

gravitational effects. In the semiclassical theory of gravity,

the stress-energy-momentum tensor is treated as a quantum

operator, related to the classical Einstein tensor by taking an

expectation value [1]. This approach has seen success in a

number of scenarios, ranging from Hawking radiation from

black holes [2] and the resulting gravitational backreaction

[3] to quantum particle creation [4]. Extensions to the

semiclassical theory include the addition of higher order

derivatives in the metric tensor [5], with consequences that

include the production of gravitons in the early Universe

[6,7], and the incorporation of fluctuations of the quantum

stress tensor around its mean value [8]. The latter approach

motivates the study of quantum fluctuations of stress tensor

operators, which have been shown to source a number of

possible effects, such as geodesic focusing [9] and imprints

on power spectra [10,11].

In recent years, focus has shifted to large vacuum

fluctuations due to hints that they may be observable in

experiments. A generic property of normal ordered oper-

ators quadratic in the fields is the divergence of the higher

moments, a problem formally addressed by averaging these

operators in time alone or space and time. Physically, we

may interpret this averaging as encoding the details of

experimental measurements, though the correspondence

between the two remains under investigation. In two-

dimensional conformal field theory with a Gaussian tem-

poral sampling function, the probability PðxÞ of measuring

a fluctuation of magnitude x is a shifted Gamma distribu-

tion [12–14] bounded below by the optimal quantum

inequality bound [15]. In four dimensions, the situation

is qualitatively similar, and studies have been conducted for

time averaging [16,17] and spacetime averaging [18].

These results, numerically verified in Refs. [19,20], suggest

the probability distribution PðxÞ asymptotically falls more

slowly with x than a decaying exponential function. We

will be particularly interested in the conclusions of

Refs. [17,18], as they assume smooth, compactly supported

sampling functions. These are functions that are strictly

zero outside a finite, bounded domain and may better

reflect the reality that physical measurements necessarily

take place in a finite spacetime region.

These findings suggest the probabilities of measuring

large vacuum fluctuations of stress tensor operators may

not be as negligible as one might have expected, spurring

work into possible physical effects such as focusing of

geodesics induced by spacetime curvature fluctuations

[21,22] and enhanced barrier penetration rates of charged
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particles due to radiation pressure fluctuations [23]. Related

phenomena in other systems that emerge from similar

quadratic operators are also expected to occur: false

vacuum decay of a self-interacting scalar field may be

dominated by a pathway [24] different from the usual

instanton approximation [25], Rydberg atoms may exhibit

velocity fluctuations in response to a sequence of short

laser pulses [26], and low-temperature light scattering

experiments may find large variations in the number of

scattered photons [27].

In this paper, we investigate a different but related

question. Models proposing experimental effects inevitably

assume certain interactions between the probe and the

particles of the quantum fields, and these interactions are

often dependent on the particle frequencies. The relation-

ship between the magnitudes of quantum fluctuations and

the angular frequencies of the constituent particles remains

unclear, and better understanding will help produce more

accurate models for future experiments. In Sec. II, we review

a numerical approach for diagonalizing bosonic operators

that are quadratic in the fields, a category that includes stress

tensor operators. In Sec. III, we build on previous results to

investigate the relationship between the frequencies of the

particle contents and the magnitudes of the fluctuations. In

Sec. IV, we discuss numerical simulations that confirm the

analytical calculations and, in doing so, provide estimates of

constants that are not well predicted analytically. In Sec. V,

we briefly describe a physical application as an example

showing how these results may be of interest in experimental

contexts. Finally, in Sec. VI, we summarize our findings and

consider some future investigations.

Units in which the reduced Planck constant ℏ and the

speed of light are set to unity are used throughout this paper.

II. NUMERICAL APPROACH TO SPACETIME-

AVERAGED QUADRATIC OPERATORS

Components of the normal ordered stress-energy-

momentum tensor operator, such as those of the massless

scalar field, may be generally expanded in terms of creation

and annihilation operators as

T ðt; rÞ ¼
1

2

X

kk0

½2a†kak0Fkk0ðt; rÞ þ akak0Gkk0ðt; rÞ

þ a†ka
†

k0G�
kk0ðt; rÞ�; ð1Þ

where

½ak; a
†

k0 � ¼ δkk01 and ½ak; ak0 � ¼ ½a†k; a
†

k0 � ¼ 0: ð2Þ

Here, Fkk0ðt; rÞ and Gkk0ðt; rÞ are matrix elements that

depend on the specific choice of operator, and 1 is the

identity operator. Because physical measurements take

place in a finite region of spacetime, a more meaningful

quantity to consider is the operator T ðt; rÞ averaged in

space and time with compactly supported sampling func-

tions, gðrÞ and fðtÞ, respectively, giving

T̄ ≡

Z

∞

−∞

dtfðtÞ

Z

V

d3rgðrÞT ðt; rÞ: ð3Þ

We further assume the spatial sampling function gðrÞ is

non-negative, spherically symmetric, and real, with unit

integral over all space. Likewise, the temporal sampling

function fðtÞ is non-negative, even, and real, with unit

integral over all time. Although experimental data are

lacking, we expect the details of these functions to correlate

with factors in the measurement process. The Fourier

transforms of these sampling functions are defined as

ĝðkÞ ¼

Z

V

d3rgðrÞe−ik·r ð4Þ

and

f̂ðωÞ ¼

Z

∞

−∞

dtfðtÞe−iωt: ð5Þ

We may write the analogous expression to Eq. (1) for the

spacetime-averaged operator T̄ as

T̄ ¼
1

2

X

kk0

½2a†kak0F̄kk0 þ akak0Ḡkk0 þ a†ka
†

k0Ḡ�
kk0 �: ð6Þ

As we are concerned with vacuum fluctuations of these

quadratic operators, let us consider the Minkowski vacuum

state j0ia, defined as the state where akj0ia ¼ 0 for all k.

We immediately see that the vacuum state is not an

eigenstate of the operator T̄ , so quantum fluctuations will

be present in the vacuum state.

To perform numerical simulations of these vacuum

fluctuations, we need to characterize the eigenstates of

the operator T̄ . We follow a numerical method developed in

Refs. [19,28], briefly summarized here. For the cases we

consider, the matrix elements of F̄ and Ḡ are real, i.e.,

Ḡkk0 ¼ Ḡ�
kk0 . A Bogoliubov transformation [29] relates the

original set of creation and annihilation operators fa†k; akg

to a new set fb†k; bkg. The two sets of operators are related

by the linear transformation

ak ¼
X

k0

ðAkk0bk0 þ Bkk0b†
k0Þ: ð7Þ

The A and B matrices contain the real Bogoliubov

coefficients that transform fa†k; akg to fb†k; bkg. The

new set of creation and annihilation operators fb†k; bkg
acts on the corresponding particle number states

jmib ≡ jmk1
; mk2

; mk3
; � � �ib: ð8Þ
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Note that the physical particles of interest are the a particles

of the Minkowski vacuum state j0ia, not the b particles that

emerge as a consequence of the Bogoliubov transforma-

tion. That is to say, any observable physics arising from

vacuum fluctuations comes from interactions with the real

a particles. Substituting Eq. (7) into Eq. (6), we may rewrite

T̄ in the diagonal form

T̄ ¼
X

k

λkb
†

kbk þ Cshift1; ð9Þ

where 1 is again the identity operator. Here, fλkg and Cshift

are constants that depend on the matrix elements of F̄ and

Ḡ. These constants may be derived by mandating fb†k; bkg
obey the usual commutation relations analogous to those in

Eq. (2), in addition to requiring the diagonalization con-

ditions leading to Eq. (9). Theoretical considerations from

quantum inequalities bound the eigenvalues of T̄ from

below, so λk ≥ 0 for all k and Cshift < 0. We interpret the b
particle number states jmib as the eigenstates of the

operator T̄ . The eigenvalues x are calculated by acting

T̄ on an eigenstate jmib,

T̄ jmib ¼ xðmÞjmib: ð10Þ

Extracting the relevant physics in terms of the physical a
particles may be accomplished by transforming back to

fa†k; akg via the Bogoliubov transformation, Eq. (7).

III. DOMINANT MODE CONTRIBUTIONS TO

FLUCTUATIONS OF DIFFERENT MAGNITUDES

A useful class of operators to consider is the normal

ordered squares of time derivatives of the massless scalar

field φðt; rÞ,

T 2p0þ1ðt; rÞ ¼ ∶τ2p
0þ2

�

∂
p0

∂tp
0 φðt; rÞ

�

2

∶: ð11Þ

Here, τ is a sampling timescale discussed below. The factor

of τ2p
0þ2 ensures T 2p0þ1ðt; rÞ remains dimensionless. We

introduce a more convenient label p, related to the number

of time derivatives p0 via

p ¼ 2p0 þ 1: ð12Þ

Thus, p ¼ 3 corresponds to T 3ðt; rÞ ¼ ∶τ4 _φ2ðt; rÞ∶, p ¼ 5

corresponds to T 5ðt; rÞ ¼ ∶τ6φ̈2ðt; rÞ∶, and so on. These

operators are of interest because they are related to physical

quantities that may be probed experimentally. For example,

the p ¼ 3 case can be used to infer the behavior of

electromagnetic energy density fluctuations [16], electro-

magnetic momentum flux fluctuations [23], and even fluid

density fluctuations [27].

The high moments of these operators were analyzed in

Ref. [17] for time averaging alone and in Ref. [18] for

spacetime averaging, which we summarize here. We

consider a class of compactly supported sampling functions

with Fourier transforms that asymptotically approach

f̂ðωÞ ∼ Cfe
−βjωτjα ; jωτj ≫ 1;

ĝðkÞ ∼
Cg

k2−λ
e−ηjklj

λ

; jklj ≫ 1: ð13Þ

The constants are assumed to be constrained by

Cf; Cg; β; η > 0, 0 < λ ≤ α < 1, and lη1=λ < τβ1=α. Here,

τ and l are related to how quickly the sampling functions

switch on and off near the bounds of their compact supports.

In this paper, τ and l are on the order of the sampling times

and lengths, respectively, andmay beviewed as such, though

this need not be true in general. The factor of kλ−2 in the

expression for ĝðkÞ is not necessary but is present in our

numerical constructions later.

For T pðt; rÞ as defined in Eq. (11), after spacetime

averaging in rectangular coordinates, we find the form in

Eq. (6) with

F̄kk0 ¼ τpþ1
ðωω0Þðp−2Þ=2

V
f̂ðω − ω0Þĝðk − k0Þ;

Ḡkk0 ¼ τpþ1
ðωω0Þðp−2Þ=2

V
f̂ðωþ ω0Þĝðkþ k0Þ: ð14Þ

Let us define the dth moment of the spacetime-averaged

T̄ p as

μd ¼ ah0jðT̄ pÞ
dj0ia: ð15Þ

One may show that

μd ≈

(

C1

R

∞
0
dωf̂2ðωÞωdpþ1 worldline limit ðd ≲ d�Þ;

C2

R

d3qqdðp−2Þ
R

d3kkf̂2ðqþ kÞĝ2ðqþ kÞ spacetime-averaged limit ðd≳ d�Þ:
ð16Þ

Here, C1 and C2 are constants that depend on p and the

sampling functions, and k ¼ jkj. Note that the two limits

are distinguished by the absence or presence of the effects

of space averaging. The lower moments are independent of

the space averaging, but the higher moments depend upon

ĝðkÞ. The effect of space averaging is to reduce the rate of
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growth of the moment as d increases. The value d� depends

on the ratio of τβ1=α tolη1=λ in some power law behavior: the

smaller this ratio, the sooner the effects of space averaging

emerge, and the earlier the transition to the spacetime-

averaged limit. We may intuitively understand this behavior

by noting that in the limit of no space averaging, l → 0, we

reduce to d� → ∞. The expression in the worldline limit is

derived in Ref. [17], while the expression in the spacetime-

averaged limit can be easily generalized from thep ¼ 3 case

in Ref. [18] by noting from Eq. (14) that higher p merely

includes more factors of angular frequency.

These moments may be related to those of a probability

distribution PðxÞ,

μd ¼

Z

∞

−∞

dxxdPðxÞ; ð17Þ

from which we may infer [17,18]

PðxÞ ∼ c0x
be−ax

c

; x ≫ 1; ð18Þ

where c ¼ α=p in the worldline limit and c ¼ α=ðp − 2Þ in
the spacetime-averaged limit. We will not be concerned

with the remaining constants, which are predicted in the

worldline limit but are less clear in the spacetime-averaged

limit. Similarly to Eq. (16), the transition from the world-

line limit to the spacetime-averaged limit occurs around

x ≈ x�, depending again on the ratio of τβ1=α to lη1=λ, and

may be generalized from Ref. [18] to be

x� ≈

�

τβ1=α

lη1=λ

�

p

: ð19Þ

We may now see that the transition from worldline to

spacetime-averaged behavior is linked both to the ratio

τ=l and to the relative rates of decay of f̂ðωÞ and of ĝðkÞ
functions of their arguments. If λ ≤ α, and β ≈ η, then we see

from Eq. (13) that f̂ðωÞ decreases more rapidly with

increasingω than does ĝðkÞwith increasing jkjwhen τ > l.

We now wish to estimate the dominant frequency

contributions to μd from Eq. (16) and the dominant

eigenvalue contributions from Eq. (17) by finding the

peaks of the integrands in these equations. Assuming that

d ≫ 1, the integrals in Eq. (16) may be approximated as

μd ≈

(

C1C
2

f

R

∞
0
dωe−2βðωτÞ

α

ωdpþ1 worldline limit ðd ≲ d�Þ;

6π2α−4C2C
2

fC
2
g

R

∞
0
dke−2βðkτÞ

α

kdðp−2Þ spacetime-averaged limit ðd≳ d�Þ:
ð20Þ

Notice that λ and η do not explicitly appear in the

spacetime-averaged limit here despite the presence of

ĝ2ðqþ kÞ in Eq. (16). When d ≫ 1, the integrals may

be approximated by taking k ≫ 1, and in this limit, we have

kα ≫ kλ for α > λ. We may now estimate ωd, the dominant

frequency contribution to the dth moment, as the frequency

that maximizes the integrands, giving

ωd ≈

8

>

>

<

>

>

:

�

dp
2βατα

�

1=α
worldline limit;

�

dðp−2Þ
2βατα

�

1=α
spacetime-averaged limit;

ð21Þ

Similarly, we may estimate xd, the dominant eigenvalue

contribution to the dth moment, as the eigenvalue that

maximizes the integrand in Eq. (17), finding

xd ≈

�

d

ac

�

1=c

: ð22Þ

Here, we recall that in the worldline limit, c ¼ α=p,
whereas in the spacetime-averaged limit, c ¼ α=ðp − 2Þ.
We combine Eqs. (21) and (22) to find

ωd ∝

(

x
1=p
d worldline limit;

x
1=ðp−2Þ
d spacetime-averaged limit:

ð23Þ

As the value of a is not well predicted, we are not interested

in the proportionality constant, which, at any rate, may be

inferred numerically. The crucial behavior here is the power

law behavior. The transition from the worldline to space-

time-averaged limit is expected to be given by Eq. (19),

though we do not have enough data to verify this pre-

diction. Reference [20] suggests the exponent in Eq. (19) is

well predicted but the proportionality constant is not, an

observation that likely holds in our case.

Note that the analytical estimates in this section do not

yet have a clear physical interpretation. Equation (23)

relates the dominant frequency and eigenvalue contribu-

tions, but these dominant contributions have not yet been

shown to have meaningful interpretations. One straightfor-

ward interpretation of xd is to consider it as an estimate of

the magnitudes of large fluctuations, x. However, a sim-

ilarly straightforward interpretation of ωd is less clear, as

we do not yet have a clear understanding of the frequencies

contributing to different fluctuations, the topic of the next

section. We will find that ωd gives an accurate estimate of

the maximum frequency contributing to a fluctuation of

magnitude x ≈ xd, rather than other possibilities such as the
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most likely frequency to contribute to fluctuations of that

magnitude.

IV. NUMERICAL ESTIMATES OF MODE

CONTRIBUTIONS TO LARGE FLUCTUATIONS

In this section, we are primarily concerned with the

characterization of the frequency modes that contribute to

large vacuum fluctuations. We will find for any given

quantum fluctuation a wide range of frequency modes

contribute, necessitating the introduction of some measure

that encodes this information. In doing so, we will show

that Eq. (23) predicts the greatest angular frequency ωd that

substantially contributes to a vacuum fluctuation of mag-

nitude xd.
In the numerical simulations, we work in spherical

coordinates to take advantage of the assumed spherical

symmetry of the spatial sampling function gðrÞ. The

spherical coordinate equivalent of Eq. (14) is [20]

F̄nlm;n0l0m0 ¼
τpþ1ðωnlωn0lÞ

ðp−2Þ=2δl;l0δm;m0

4πR3jlþ1ðωn0lRÞjlþ1ðωnlRÞ
f̂ðωnl − ωn0lÞ

Z

1

−1

dyĝ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2

nl þ ω2

n0l
− 2ωnlωn0ly

q
�

PlðyÞ;

Ḡnlm;n0l0m0 ¼
−τpþ1ðωnlωn0lÞ

ðp−2Þ=2δl;l0δm;−m0

4πR3jlþ1ðωn0lRÞjlþ1ðωnlRÞ
f̂ðωnl þ ωn0lÞ

Z

1

−1

dyĝ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2

nl þ ω2

n0l
− 2ωnlωn0ly

q
�

PlðyÞ: ð24Þ

Here, n is a positive integer, l is a non-negative integer, andm is an integer satisfying jmj ≤ l. The function jlðkrÞ is the lth
spherical Bessel function, the function PlðyÞ is the lth Legendre polynomial, δl;l0 is the Kronecker delta, R is the radius of

the bounding sphere of the quantized system, and

ωnl ¼
znl

R
; ð25Þ

where znl is the nth zero of jlðkrÞ. Reference [20] suggests reliable results may be obtained by setting l ¼ m ¼ 0, giving the

simpler form

F̄nn0 ¼
τpþ1πp−3ðnn0Þðp−2Þ=2

4ð−1Þnþn0Rp−1
f̂

�

ðn − n0Þπ

R

�
Z

ðnþn0Þπ=R

jn−n0jπ=R
dkkĝðkÞ;

Ḡnn0 ¼
−τpþ1πp−3ðnn0Þðp−2Þ=2

4ð−1Þnþn0Rp−1
f̂

�

ðnþ n0Þπ

R

�
Z

ðnþn0Þπ=R

jn−n0jπ=R
dkkĝðkÞ: ð26Þ

Functions f̂ðωÞ and ĝðkÞ with the behavior in Eq. (13) may

be constructed numerically [17,18]. A particular imple-

mentation is detailed in Secs. IVA1 and IVA2 of Ref. [20],

which we continue using here. A choice of τ, α, and the

sampling time specifies f̂ðωÞ, while a choice of l, λ, and

the sampling length specifies ĝðrÞ. We consider the specific

case α ¼ λ ¼ 0.5 in Eq. (13), which is less susceptible to

numerical error. As in Ref. [20], we work in τ ¼ 1 units,

and in these units, the sampling time and radius are 2 and

0.0028, respectively, while the radius of the bounding

sphere, R, is 0.88. In our construction, the parameter l is

equal to the radius of the sampling volume, i.e.,

l ¼ 0.0028. Note that these parameter choices are sub-

optimal given the assumption of flat space: the boundary of

the quantization sphere is detectable by an observer at the

origin, as the light travel time to the boundary and back is

shorter than the sampling time. Numerical instabilities

prevent a more optimal parameter selection, a topic for

future investigation.

A. Frequency spectra of a particles

in eigenstates of the operator

Recall that the physical particles of interest are the a
particles associated with the Minkowski vacuum state j0ia,
but the magnitudes of the quantum fluctuations, x, are more

easily expressed in the eigenstates given by the b particle

number states jmib. We would like to construct the

frequency spectra of a particles in the eigenstates jmib
to better understand the frequencies of a particles that

contribute to various quantum fluctuations. To do so, let us

consider the mean number of a particles with frequency

ω ¼ k in some eigenstate jmib. We may calculate this

quantity by evaluating

bhmja†kakjmib ¼
X

k0

½A2

kk0mk0 þ B2

kk0ðmk0 þ 1Þ�; ð27Þ

where the Bogoliubov transformation, Eq. (7), has been

used. Here, mk labels the particle content of the eigenstates
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jmib with the convention shown in Eq. (8). This result

describes the relation between the b particle content, which

is encoded in the eigenstates jmib, and the a particle

content, which are the physically interesting particles.

Figure 1 shows an example of an eigenstate with two b
particles, i.e.,

P

k mk ¼ 2. There is some indication that

the total mean number of a particles may be equal to the

total number of b particles, but more analysis is needed to

confirm this. The frequency spectrum displays complex

structure that eludes straightforward interpretation, though

the higher frequency modes have diminishing contribu-

tions, a behavior that is generic to the spectra that we will

investigate in more detail. While the mean numbers of a
particles fall sharply to negligible values at small and high

frequencies, we cannot rule out limitations in our simula-

tions, so we leave further discussion of the consequences for

future work. Eigenstates with more than two b particles do

not display different behavior, so we will consider only the

two-particle sector in our simulations. The higher particle

sectors aregenerally less probable, as argued inRef. [20], and

should not significantly affect our conclusions.

B. Characteristic frequencies of frequency spectra

Because the frequency spectra are too complex to

analyze directly, we would like to extract a single character-

istic frequency from each spectrum. Here, we proceed with

the simplest characterization,

ωc ¼

P

kðbhmja†kakjmibωkÞ
P

kbhmja†kakjmib
; ð28Þ

which is merely an average of all frequencies, weighted by

the mean number of a particles at different frequencies. The
denominator normalizes the total mean number to unity.

For our case with l ¼ m ¼ 0 and n ¼ 1 ∼ N, we get

ωc ¼
π

R

P

N
n¼1

ðbhmja†nanjmibnÞ
P

N
n¼1 bhmja†nanjmib

: ð29Þ

Wewill find it convenient to look at the frequencies scaled

by R=π because 1 ≤ ωcR=π ≤ N, where N is the total

number of modes in the simulation. In Fig. 2, we show

plots of the characteristic frequencies against the eigenvalues

on log-log scales. Observe that there is clear structure to the

datasets, suggesting the weighted average ωc encodes

sufficient information to draw broad conclusions about the

frequency content of quantum fluctuations. For any given

fluctuation of magnitude roughly x, we find a wide range of
frequencies that contribute to that fluctuation. Interestingly,

except forp ¼ 3, the envelopes of the datasets are given by a

specific subset of eigenstates, thosewhere bothb particles are
in the same frequency mode. The anomalous behavior of

p ¼ 3 remains under investigation, and it remains unclear

why there is a region (12 < ln x < 13 in the top panel of

Fig. 2)where the envelope is not givenby this subset of states.

Regardless, in this region, the upper and lower bounds on the

characteristic frequencies almost coincide, so our numerical

results should still suffice for rough estimates.

However, given the complex behavior of the spectra, we

may be concerned whether a finite-mode computation can

be used in physical applications, which are better described

by the N → ∞ limit. We first recall our observation from

Fig. 1: generically, higher frequency modes have diminish-

ing contributions. We supplement this observation with a

simple argument. As higher frequency modes are included,

the characteristic frequency ωc, a weighted average of all

frequencies, increases. If ωc is not bounded above, then in

the N → ∞ limit, we have ωc → ∞ for all quantum

fluctuations, a nonsensical result. We thus expect that for

any given fluctuation, only some frequency modes have

substantial contributions.

We may also draw this conclusion numerically in the

following manner. The aforementioned argument suggests

that as N increases, ωc will converge to some stable value.

We confirm this behavior in Fig. 3 for both ωc and x. These
results suggest that our numerical analysis of finite-mode

systems can be applied to any physical system of interest,

provided we limit our analysis to the region that has

converged. Recalling that we can identify the states that

give the envelope, we focus our analysis on the envelope of

the datasets. In doing so, wewill find in Sec. IV C thatωd in

Eq. (23) may be interpreted as setting an upper bound on

the characteristic frequencies ωc. Note that the end of the

converged region may be visually distinguished by the kink

in the slopes at large x in Fig. 2.

0 100 200 300 400 500 600

0.00

0.01

0.02

0.03

0.04

FIG. 1. Plotted is a frequency spectrum for an eigenstate of the

p ¼ 5 operator with n ¼ 1; 2;…; 600 in the b two-particle sector.

The vertical dashed lined denotes the location of ωc defined in

Eq. (29). The observed behavior does not change drastically with

the parameter choices nor with higher b particle sectors. The

shapes of the spectra are roughly consistent for different

eigenstates, qualitatively differing by translations along the

horizontal axis, an effect that will be further discussed in

Sec. IV B.
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At this point, it may be worth pointing out some

subtleties to our interpretation of the theoretical prediction

in Eq. (23). Note that ωc is a weighted average, and thus

frequencies greater than ωc still contribute, so it is more

precise to say that ωd sets upper bounds on the frequencies

that contribute substantially, with the understanding that

higher frequency modes may have smaller, and eventually

negligible, contributions. We should also note that for any

fluctuation of magnitude x, there appears to be exactly one

corresponding eigenstate and thus one or two correspond-

ing b-mode frequencies, in the two-particle sector.

However, there can be a wide range of a-mode frequencies,

which is the focus of our discussion. Thus, Eq. (23) predicts

upper bounds on the a-mode frequencies that contribute

significantly to fluctuations with magnitudes of order x.

FIG. 2. Plotted are the datasets for, from the top to bottom

panel, p ¼ 3; 5, and 7, respectively, that will be used for detailed

numerical analysis later in Sec. IV C. Highlighted in red is the

subset of eigenstates where only one frequency mode has nonzero

particle content. The data shown are strictly in the b two-particle

sector.
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FIG. 3. Plotted are the eigenvalues and characteristic frequen-

cies as a function of the total number of modes N, where the

mode selection is n ¼ 1 ∼ N, l ¼ m ¼ 0, for the case p ¼ 3 and

l ¼ 0.0028, identical to the choices later in Sec. IV. At

sufficiently high N, both x and ωc converge, a behavior that

generically holds for arbitrary parameters and eigenstates.
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C. Numerical fits to the envelope

Let us now analyze the numerical data to confirm the

theoretical predictions, Eq. (23). As we are primarily

concerned with the power law behavior, we take natural

logarithms to find

lnðωdR=πÞ ≈

(

1

p
lnðxdÞ worldline limit;

1

p−2
lnðxdÞ spacetime-averaged limit;

ð30Þ

Note that we have neglected a nonzero additive constant

that emerges from the proportionality constant in Eq. (23)

and our choice to rescale by a factor of R=π. An adequate

dataset must contain sufficient data in both the worldline

and spacetime-averaged limits to perform numerical fits.

Given computational constraints, we must make a com-

promise to get enough data in both regions. Preliminary

analysis following the method in Sec. IV B suggests that

the convergence rates as functions of N increase as p
increases. Consequently, for similar amounts of data points,

we must go to higher N for smaller values of p. We further

recall that the transition from the worldline to spacetime-

averaged limits scales as τ=l raised to some power, so

smaller values of l give us more data in the worldline limit.

These two observations underlie our parameter choices for

our datasets.

We interpret ωd as the envelope of the characteristic

frequencies ωc and xd as the fluctuation magnitudes x.
For the three datasets shown in Fig. 2, we perform least

squares linear regressions to the envelopes of the converged

regions of the worldline and spacetime-averaged limits,

which we may easily determine by eye as the two distinct

slopes in each plot. The transition location, Eq. (19), may be

analyzed following the method in Sec. IV B of Ref. [20],

which we do not consider here due to the lack of data. The

linear fits are shown in Fig. 4, and the best fit values and

statistical errors are compiled in Table I. We find fairly good

consistency between the predictions and numerical results,

verifying our interpretation of Eq. (23) as setting upper

bounds on the frequencies that substantially contribute to

fluctuations of varying magnitudes. Note that full consis-

tency in the spacetime-averaged limit can be obtained by

increasing l, at the expense of the worldline data. Full

consistency in the worldline limit has not been theoretically

explored in much depth, and in particular the l dependence

of the onset of the worldline limit is unknown. Reducing l is

thus not guaranteed to provide more data in the worldline

limit, and a reliablemethod to procure better data in this limit

is a topic for future work. As a final comment, note that in

FIG. 4. Plotted are the linear fits to the datasets for, from the top

to bottom panel, p ¼ 3; 5, and 7, respectively. Here, we only

show the envelopes in Fig. 2.
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choosing to fit strictly to the converged region, our numerical

results are not dependent on N and by extension the higher

frequency modes that are omitted from our finite-mode

computation. Our numerical verification of the theoretical

prediction, Eq. (23), is thus mode independent and may be

applied to systems with higher degrees of freedom.

V. PHYSICAL APPLICATIONS

In most models proposing physical effects arising from

large vacuum fluctuations, an interaction between a probe

and the particles of quantum field is assumed. The details of

these interactions often depend crucially on the frequencies

of the quantum particles because the eigenstates of space-

time-averaged quadratic operators are multimode squeezed

vacuum states with nonzero particle content, and it is the

effects of these particles that are potentially observable. We

have discovered that we may characterize the particle

frequencies of fluctuations of various magnitudes, which

may aid the development of better experimental proposals.

Let us consider a brief example of how one may take

advantage of the results in prior sections. The case p ¼ 3 is

particularly interesting due to its broad applicability, and

here we explore which photons arising from energy density

fluctuations may be trapped in a metal cavity. Let u be the

energy density of the massless scalar field averaged in some

region of spacetime. The moments of u are expected to

behave similarly to those of _φ2,
1
so in our notation, the

dimensionless measures of the fluctuation magnitudes, x,
are related to the actual energy density measurements via

x ¼ τ4u: ð31Þ

Recall that the parameter τ may be considered as an

estimate of the sampling duration, so we now reintroduce

τ to account for variable measurement times. In Sec. IV C,

we found numerical estimates for the exponents in Eq. (23)

from the slopes of the data in Fig. 4, assuming τ ¼ 1. The

proportionality constant, which is not well predicted

theoretically, may also be numerically estimated from

the vertical intercepts of the data in those figures.

Accounting for the scaling factor R=π, we find

ωdτ ≈

	

5.0x0.34d worldline limit ðx≲ x�Þ;

0.00051x1.1d spacetime-averaged limit ðx≳ x�Þ:

ð32Þ

Here, we recall that ωd predicts the upper bound on the set

of characteristic frequencies ωc that contribute to a fluc-

tuation of magnitude xd ≈ x. We may estimate the transition

between the two limits, x�, by the intersection of the

worldline and spacetime-averaged limits,

5.0x0.34� ¼ 0.00051x1.1� ; ð33Þ

from which we deduce

x� ≈ 1.8 × 105: ð34Þ

This rough estimate of the transition between the two limits

gives lnðx�Þ ≈ 12, consistent with the data for p ¼ 3 in

Fig. 2. We may rewrite Eq. (32) in terms of the ratio ud=u�,
finding

ωdτ ≈

	

300ðud=u�Þ
0.34 ud ≲ u�;

300ðud=u�Þ
1.1 ud ≳ u�:

ð35Þ

Here, we follow Eq. (31) and define u� ¼ x�τ
−4, and we

have used the numerical estimate of x� given by Eq. (34).

Here, we wish to point out a subtlety regarding our

interpretation of τ. In general, our numerical procedure

for construction of the temporal sampling function does not

require the switch-on time τ and the sampling duration, say

t0, to be approximately equal. However, the specific

functions used in this paper have τ ≈ t0. A set of two

timescale functions where t0 ≫ τ is possible was discussed

in Sec. II D in Ref. [26], where the dependence of both

f̂ðωÞ and PðxÞ upon the ratio t0=τ was considered.

However, no numerical studies using these more general

functions have yet been performed.

TABLE I. Fit results of the least squares linear regressions in the worldline and spacetime-averaged limits. In all

datasets, we have l ¼ 0.0028 whereas N has been increased for p ¼ 3 due to the slower convergence of the

eigenvalues and characteristic frequencies. The number of points in each fit ranges from 14 to 101, with fewer points

for smaller p due to slower convergence.

Case Value of N Limit Predicted slope Fitted slope Standard error

p ¼ 3 2000 Worldline 0.3333 0.3436 0.0005

Spacetime averaged 1.00 1.10 0.003

p ¼ 5 1400 Worldline 0.2000 0.2037 0.0002

Spacetime averaged 0.3333 0.3249 0.0001

p ¼ 7 1400 Worldline 0.14286 0.14447 0.00007

Spacetime averaged 0.20000 0.18493 0.00001

1
In fact, for the case of time averaging alone, the relationship

between the moments of the energy density and the moments of
the square of the time derivative of the massless scalar field is
found analytically in Ref. [16].
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Note that the value of t0=τ is independent of the choice of
units for τ itself. The latter is simply a choice of scale which

does not alter the physical description. The meaningful

quantities are the dimensionless variables, such as ωτ of

x ¼ τ4u. We argue that our focus on a subset of temporal

sampling functions should not be a source of worry and

may in fact be necessary in certain cases. The correspon-

dence between the measurement process and the sampling

functions is not always clear, though we expect some

relationship between the two.

We now return to the question of reflection in a metal

cavity. Such reflection requires the angular frequencies of

the photons to be less than the plasma frequency of the

metal, ωp. From Eq. (35), we may then find a constraint on

the sampling time given a fluctuation of magnitude u.
Requiring ωc < ωp, we find

τ ≳

	

300ω−1
p ðud=u�Þ

0.34 ud ≲ u�;

300ω−1
p ðud=u�Þ

1.1 ud ≳ u�:
ð36Þ

For fixed u=u�, the constraint ωc < ωp thus implies that an

increased τ results in a decreased ωc. That is to say, a

measurement over longer timescales will observe contri-

butions from smaller frequencies, consistent with our

intuition that higher frequency modes are suppressed in

these cases. We end our discussion with a specific example.

For aluminum, the plasma frequency is ωp ≈ 15 eV [30].

Recalling that in units where the reduced Planck constant is

set to unity, 1 eV−1 ¼ 0.66 fs, we find

τ ≳

(

13ð15 eV=ωpÞðud=u�Þ
0.34 fs ud ≲ u�;

13ð15 eV=ωpÞðud=u�Þ
1.1 fs ud ≳ u�:

ð37Þ

This result may be used to estimate the timescales in which

the most of the contributing particle frequencies are small

enough to allow reflection from boundaries of an aluminum

cavity. Note that because ωd in Eq. (35) is an upper bound

on the characteristic frequencies, timescales shorter than

the bounds in Eq. (37) may still allow reduced levels of

reflection. Practical application of these results will require

an estimate of u=u� and may depend on the particular

context of the experiment. Here, we merely note that,

because u and x differ only by a scaling constant, Eq. (31),

the ratios u=u� and x=x� are equivalent, so numerical

simulations of the sort explored in this paper may be used

directly for these estimates. Although our numerical

calculations were performed assuming quantization in a

spherical cavity, the analytic arguments given in Sec. III

suggest that ωd is independent of the cavity geometry.

A different physical application of the characteristic

frequencies involves the effects of vacuum radiation pres-

sure fluctuations on Rydberg atoms [26]. These fluctua-

tions involve an operator with p ¼ 7, as shown in Ref. [23].

The model proposed in Ref. [26] involves the excitation of

an atom to a highly excited Rydberg state by a laser pulse

and its subsequent deexcitation by a second pulse. The

combined effect can be viewed as a measurement of the

p ¼ 7 operator with a two-timescale temporal sampling

function, resulting in velocity fluctuations of the atom.

Upper bounds on the characteristic frequency ωc associated

with a fluctuation of magnitude x is predicted by Eq. (30) to

scale as x1=7 in the worldline limit. Ideally, we would like to

have ωc small compared to the energy level separations of

the atom, for which a low upper bound is a sufficient but

not necessary condition. Whether this is the case will

require a more detailed analysis of involving a two-

timescale sampling function, which will be a topic for

future research.

VI. CONCLUSION

Phenomena associated with a full theory of quantum

gravity may be explored through extensions to the semi-

classical theory of gravity. Many such phenomena have

been proposed over the years, including geodesic focusing

[9,21,22], impacts on power spectra [10,11], increased

barrier penetration rates of charged particles [23], alter-

native false vacuum decay pathways for self-coupled scalar

fields [24], velocity fluctuations of Rydberg atoms [26],

and large variations in scattered photons in low-temperature

light scattering experiments [27]. Many of these effects are

not gravitational and may be interesting in their own right.

Thus far, experiments searching for these effects remain

lacking. To provide future proposals with the machinery for

more accurate calculations, we investigated the particle

frequencies driving large vacuum quantum fluctuations of

the normal ordered square of time derivatives of the

massless scalar field. We focused on the case where these

fluctuations are observed in a finite duration of time and

finite region of space, which we speculate is more relevant

for experimental purposes. We discovered that these

quantum fluctuations are composed of a variety of particles

at different angular frequencies, and the corresponding

frequency spectra display complex behavior that remains to

be understood. We extracted a characteristic frequency

from each spectra to assign to each quantum state, assumed

to be representative of the particle frequencies contributing

to the fluctuation associated with that state. In doing so, we

found that the characteristic frequencies and fluctuation

magnitudes are related by a power law behavior with two

distinct limits, the worldline and spacetime-averaged limits.

Furthermore, the numerical results obtained here are in

good agreement with the analytic predictions, as illustrated

in Table I. These results allow us to describe the particle

frequencies that substantially contribute to different fluc-

tuations. We described a simple physical application with

photons arising from energy density fluctuations reflecting

off the boundary of an aluminum cavity. We showed that

the measurement duration for which a majority photons are

reflected is bounded below. Such constraints may be used
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to infer the viability of experiments probing large quantum

fluctuations.

Further investigations in this direction may be of interest,

some of which we briefly outline here. The qualitatively

different behavior of the characteristic frequencies for the

p ¼ 3 case remains to be addressed. Perhaps the effects of

other frequency modes, such as those where l ≠ 0 and

m ≠ 0, are more crucial. Missing in our analysis is also any

notion of probabilities; there is no guarantee that the upper

bound on the characteristic frequencies is approximately

equal to the most likely characteristic frequency, and the

latter may also be of theoretical interest. Analysis of the

most likely frequency can be done by revising the method

in Secs. IV B and IV C to incorporate the probabilities PðxÞ
of measuring a fluctuation of magnitude x. The connection
to the probability distribution may run deeper than we

considered in this paper. The transition from the worldline

to spacetime-averaged limit, Eq. (19), is expected to be

identical for both the probability distribution, Eq. (18), and

the envelope of the characteristic frequencies, Eq. (23).

This equivalence is not guaranteed, and any discrepancies

between the probability and frequency data could provide

promising avenues to further understand the physics behind

large quantum fluctuations.
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