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TYPICAL LARGE GRAPHS WITH GIVEN EDGE AND TRIANGLE
DENSITIES

JOE NEEMAN, CHARLES RADIN, AND LORENZO SADUN

ABSTRACT. The analysis of large simple graphs with extreme values of the densities of edges
and triangles has been extended to the statistical structure of typical graphs of fixed inter-
mediate densities, by the use of large deviations of Erdés-Rényi graphs. We prove that the
typical graph exhibits sharp singularities as the constraining densities vary between different
curves of extreme values, and we determine the precise nature of the singularities. The ex-
tension to graphs with fixed densities of edges and k-cycles for odd k > 3 is straightforward
and we note the simple changes in the proof.

1. INTRODUCTION

Our results concern the nature of simple graphs on n vertices, for large n, constrained to
have density ¢ of edges and 7 of triangles. The range of achievable values of the pair (e, 7)
was an old problem in extremal combinatorics initiated by Turdn in 1941 [27]. The extremal
graph theory of these constraints was recently completed by Razborov et alin [20, 23], which
also contain a good history of this problem; see Figure 1. The graphs associated with some
parts of the boundary of this region are not unique, but it is not difficult to characterize
those probabilistically using the graphon formalism of Borgs et al. [3, 1] and Lovéasz et
al. [17, 18, 19, 20]. See Section 4 in [24] for a discussion of those extremal graphs in terms
relevant to this work.

The boundary of the parameter space depicted in Figure 1 falls naturally into three curves:
the upper boundary 7 = £%/2, the line segment on which 7 = 0, and the scalloped curve
completed by Razborov et al. On the upper boundary 7 > 2, while on the latter two curves
7 < €3, The nature of the graphs associated with the points on each curve is similar, but
those associated with different curves are not [24].

In this paper we analyze the statistical structure of ‘typical’ graphs with constraints on
(e,7) in the interior of the parameter space of Figure 1. We use the graphon formalism
to describe asymptotic probabilistic structure, and use the rate function for certain large
deviations of Erdds-Rényi graphs to interpret typicality, a notion central to our analysis.
We give a careful discussion of typicality in Section 2.1, but informally it means ‘all but
exponentially few’ graphs with the given density constraints, exponential in the number of
vertices of the system.
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F1GURE 1. The boundary of the achievable parameters is in solid lines. The
figure is distorted to expose features.

FIGURE 2. Optlmal graphons (not to scale at € > = and at 7 = &%+ 4% on
the left, 7 = &3 in the middle, and 7 = €* — 6 on the right. On the left, the
strip at the bottom has height O(5%); on the right it has height O(J).

Given the known graphons associated with the boundary, we focus on how a typical
density-constrained graph changes as the densities (g,7) move from one of the three basic
components of the boundary to another, in particular as (e, 7) moves between 7 = £3/2 and
each of the other two curves: the line segment and the scallops. The statistical structure of
a graph typical for constraints (e, 7) is easily computed from the ‘entropy-optimal graphon’
associated by large deviations theory with (e,7), but we emphasize that as an element
in any such study one must establish values of (¢,7) at which there is a unique entropy-
optimal graphon, since without uniqueness one cannot really speak of ‘typical’ behavior
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associated with (e,7). In fact, we have found that proving such uniqueness has been the
most difficult part of the analysis, requiring stringent a priori knowledge of the possible
optimal graphons. (There is numerical evidence of constraints (e, 7) supporting multiple
entropy-optimal graphons; see for instance the discussion of discontinuous transitions in [15].
There is also a proof, Theorem 5.1 in [I13], of nonunique entropy-optimal graphons in the
related model with fixed densities of edges and 2-stars.)

Our main result is the explicit determination, for any fixed 1/2 < ¢ < 1, of the unique
entropy-optimizing graphon associated with (g,7) as 7 crosses through 7 = &*, and the
corollary that the behavior is singular at 7 = £3. For a qualitative picture of the singularity
see Figure 2. In terms of large graphs, for these values of (g, 7) we approximately determine
the number of graphs with edge density approximately € and triangle density approximately
7, and we show that most such graphs have a specific structure. For more details about the
connection between entropy-optimizing graphons and large graphs, see Section 2.1.

To describe our results more quantitatively we need some notation (with more detail in
Section 2.1). A graphon g(x,y) on [0,1] x [0, 1] is called bipodal if there is a decomposition
of [0, 1] into 2 intervals (‘vertex clusters’) C; and Cy and constants a, b, d such that

g(x,y) =a if (z,y) € Cy x4
glxz,y) =0b if (x,y) € Cy x Cy
(1) g(x,y) =d if (x,y) € Cy x Cyor (x,y) € Cy x (4.

We denote the length of Cy by c.

It is immediate that graphs with independent edges satisfy 7 = €3; see Figure 1. It was
previously proven [11] for 0 < e < 1/2 and for 1/2 < € < 1, that the entropy-optimal graphon
for 7 slightly greater than € is unique and bipodal and the structure was determined. In this
paper we consider the more difficult case of the graphons with 7 slightly less than 2. For
1/2 < ¢ < 1 we prove that it again is unique and bipodal, and again determine its structure.
We also determine the asymptotic behavior of the entropy as (e,7) approaches the curve
T =¢% 1/2 < e < 1 from above and from below. Our main results can be summarized as
follows, using the function:

(2) H(p) = —[pn(p) + (1 —p)In(1 — p)].

Theorem 1. There is an open subset Oy in the planar set of achievable parameters (e,7),
whose upper boundary is the curve T = 3, 1/2 < e < 1, such that at (¢,7) in Oy there is
a unique entropy-optimizing graphon g .. This graphon is bipodal and for fized (e,7) =
(e,e3 — %), the values of a,b,c,d can be approxvimated to arbitrary accuracy via an explicit
iterative scheme. These parameters can also be expressed via asymptotic power series in o
whose leading terms are:

a = 1l—e—5+0(8)
52 ,
b = 6—26_1—|—20<5)
5 25 ,
= 26—1_262—1+O(5)

(3) d = et+6+ 6;,(6) (H’(e) _ (e - %) H”(e)) + 0.
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Theorem 2. There is an open subset Oy in the planar set of achievable parameters (e,7),
whose lower boundary is the curve 7 = €3, 1/2 < & < 1, such that at each (¢,7) in Oy
there is a unique entropy-optimizing graphon g ry. This graphon is bipodal and for fized
(e,7) = (e, €® + AT) the values of a,b,c,d can be approximated to arbitrary accuracy via an
explicit iterative scheme. These parameters can also be expressed via asymptotic power series
in AT whose leading terms are:

a = CLO+O(AT)

2AT 9
b= ety OB
AT

¢ = Seme—1e TOBT)
(4) d = 1—e+O(AT),
where ag 1s the solution to

! 2 !

(5) H'(ag) = (1 - g) H'(e).

Theorem 3. The entropy function s(e,7) is real analytic in the variables € and T in the
two subsets Oy and Oy of Theorems 1 and 2, which share the boundary curve T = 2. The
entropy s(e,T) is continuous on their common boundary but is not differentiable at any point
of the curve. As T approaches €3 from above and below, the following estimates apply:

o For fired e = e # 1/2, as 7 = €3 + A1 approaches € from above,

2A
sle,*+AT) = H(e) — o q _726) H'(e)
Ar? 2(1-2
Forat ooyt Hlao) = HEO+ ) (3= + 2= (0 43e-2)) )
2AT2H" ()
(6) m + O(ATs).
o For fizede =e € (1/2,1), as 7 = €3 — 6% approaches €3 from below,
s(e,e — 6% = H(e)+ & H'(e) — &
’ a 2e — 1 (26 — 1)2
LT 0
* (3(2e ) P 2eC 1 T eH(0)(2e - 1)2)

(7) +0(5°),
where v = H'(e) — (e — 1) H"(e).

In particular, Os/0T diverges as 6~ as T approaches €3 from below, as previously shown in
[25]. As T approaches €* from above, Os/OT does not diverge, instead approaching the finite
(negative) value 2H'(e)/3e(2e — 1). Furthermore, the second derivative 8?s/01? is negative.

Theorem 1 and the second half of Theorem 3 generalize to models where we fix the densities
of edges and k-cycles, where k is odd, instead of edges and triangles. The problem actually
gets progressively easier as k increases, insofar as our concentration of degree estimates
become sharper. Let 73, denote the density of k-cycles.
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Theorem 4. Let k > 3 be an odd integer and let 1/2 < e < 1.

o For sufficiently small 6 > 0, the entropy-mazimizing graphon subject to the constraints
e =e and 7 = e¥ — 6" is bipodal with parameters

a = 1l—e—56+0(6%)
2
b = e + O(6%)

2 —1 )
5 25 ;
- 26—1_26—1+O(6>

(8) d = e+d+0(5" ).
The entropy is

0 H(e) — 0°v
2e —1 (2e —1)2
41/ H///(e)
9 &5t O0(6%).
(9) * ((26—1)3+3(2e—1))+ (5°)
o When AT is sufficiently small and positive, the optimizing graphon with € = e and
e = e¥ + AT is bipodal with

a = G0+O(AT)
2AT

s(e,ef —6%) = H(e) +

= g—— T Ar?
‘ kek=2(2e — 1) +O(AT)
AT
¢ kek=2(2e — 1)2 +O(AT)
(10) d = 1—e+O(A7),
where ag s the solution to (5). The entropy is
2AT
3 _ 2
(11) s(e, e’ +AT) —H(G)—mH'(e)+O(AT ).
Most of Theorem 2 was already proven in [14]; here we merely sharpen the estimates. The

analysis for Theorem 1, dealing with 7 < €2, is the main part of this paper. A substantial
portion of our analysis is devoted to proving that any optimal graphon for 7 less than but
sufficiently close to €3, with 1/2 < ¢ < 1, is bipodal. Our argument is quite different from
that of [14], which dealt with the case 7 > ®, because two of the main techniques in that
paper do not apply to undersaturated graphs. Specifically, [11] begins with multipodality
for graphs oversaturated with 2-stars, but there are no graphs that are undersaturated with
2-stars. Then [11] repeatedly applies the Euler-Lagrange equations; but besides the fact that
it seems challenging to rigorously establish Euler-Langrange equations without first knowing
multipodality, the Lagrange multipliers for undersaturated graphs are expected to explode
as 0 — 0. Finally, there is evidence of a different nature indicating why the situation for
7 < &3 is more complicated than for 7 > &3. The graphs associated with the boundary curve
7 = £3/2 are all similar, and [14] proves the same is true for 7 just above €3, for all 0 < £ < 1/2
and 1/2 < & < 1. But in [29] it is proven that for ¢ = 1/2 and any 0 < 7 < (1/2)3 there
is a unique optimal graphon, bipodal and similar in kind to those on the boundary curve
where 7 = 0, but quite dissimilar to what we have proven for ¢ > 1/2. In other words,
the two different boundary curves with 7 < &3 — the part with 7 = 0 and the scallops —
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generate qualitatively different paths for crossing 7 = €3, and so far we have found the case
0 < e < 1/2 impervious to our techniques.

In Section 11 we prove Theorem 4. The proof follows the same steps as the proofs of
Theorems 1 and 3, only with sharper bounds on the parameter p. As a result, many of the
most difficult steps in the proof of Theorem 1 can be streamlined or avoided entirely. Instead
of repeating all the calculations, we merely note the changes needed to adapt the proof for
triangles to higher values of k.

One motivation for our study of extremal graphs is an older problem in extremal combi-
natorics, the densest packing of spheres. In two and three dimensional Euclidean space the
densest packing of congruent spheres has been proven, the latter by a celebrated tour de
force by Hales et al [I1]. The densest packings have volume fraction 7/v/12 ~ 0.91 in two
dimensions and 7/y/18 ~ 0.74 in three dimensions and in both cases the optimal packings
are highly ordered. It has been an important open problem for many years to prove that
a typical packing at fixed volume fraction, in both dimensions, loses its order at a sharp
value of volume fraction below the optimum, though this has not yet been proven [21]. The
mathematical setup for sphere packings is similar to the one we are using for graphs, with
typicality defined through the entropy, the rate function of a large deviation variational
principle [16, 10]. In sphere packing the singularity is known as a phase transition.

2. REGULARITY IN THE EDGE/TRIANGLE SYSTEM

2.1. Notation for Asymptotics. We consider a simple graph G (undirected, with no
multiple edges or loops) with a vertex set V(G) of labeled vertices. For a subgraph K of
G, let Tk (G) be the number of maps from V(K) into V(G) that send edges to edges. The
density T (G) of K in G is then defined to be
_ 1Tx(G)]

TK(G) T VE)
where n = |V(G)|. An important special case is where K is a triangle. We use the letters e
and t to denote specific values of the edge density € and the triangle density 7. For a > 0
and T = (e, t) we define Z2* to be the number of graphs G on n vertices satisfying

e(G)e(e—ae+a), 7(G) € (t —a,t+ ).

Define the (constrained) entropy s(7) to be the exponential rate of growth of Z* as a

function of n:
s(7) = lim lim w
a\,0 n—o0 n

The double limit defining the entropy s(7) is known to exist [24]. To analyze it we make
use of a variational characterization of s(7), and for this we need further notation to analyze
limits of graphs as n — oo. (This work was recently developed in [3, 4, 17, 18, 19]; see also the
recent book [20].) The (symmetric) adjacency matrices of graphs on n vertices are replaced,
in this formalism, by symmetric, measurable functions g : [0,1]*> — [0,1]; the former are
recovered by using a partition of [0, 1] into n consecutive subintervals. The functions g are
called graphons.
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For a graphon ¢ define the degree function d(z) to be d(x fo x,y)dy. The triangle
density of a graphon ¢ is 7(g9) = [ g(z,y)g9(y,2)g(z, ) da: dy dz, and the edge density is
= [g(z,y) dxdy. The entmpy of a graphon ¢ is S(g) = [ [ H(g )) dx dy, where H

is deﬁned as in (2).

The following result is Theorem 3.1 in [21], itself a special case of Theorem 4.1 in [25]:

Theorem 5 (A Variational Principle). For any values T = (e,t) in the parameter space
we have s(T) = max[S(g)], where S is maximized over all graphons g with £(g) = e and

T(g) =t.

The existence of an entropy-maximizing graphon g = g; for any pair 7 of possible densities
was proven in [21], again adapting a proof in [3].

We consider two graphs equivalent if they are obtained from one another by relabeling
the vertices. For graphons, the analogous operation is applying a measure-preserving map
¥ of [0, 1] into itself, replacing g(z,y) with g(¢(x),1(y)), see [20]. The equivalence classes
of graphons under relabeling are called reduced graphons, and graphons are equivalent if and
only if they have the same subgraph densities for all possible finite subgraphs [20]. In the
remaining sections of the paper, whenever we claim that a graphon has a property (e.g.,
uniqueness as an entropy maximizer), the caveat “up to relabeling” is implied.

Density-constrained graphons that maximize S, which we call ‘entropy maximizing graphons’,
were introduced in [24] and have been studied slowly but steadily ever since. They can tell
us what ‘most’ or ‘typical’ large density-constrained graphs are like: if g is the only reduced
graphon maximizing S with 7(g) = 7, then as the number n of vertices diverges and «,, — 0,
all but exponentially few graphs with densities 7;(G) € (1; — @y, 7; + @) will have reduced
graphons close to g; [24]. This is based on large deviations of Erdés-Rényi graphs from [8].
We emphasize that this interpretation requires that the maximizer be unique; this has been
difficult to prove in most cases of interest, is responsible for the slow advance of the study
of ‘typical’ density-constrained graphs, and is an important focus of this work.

2.2. Related work. Recent developments in probabilistic combinatorics have dramatically
expanded the scope of results like Theorem 5 from [24, 25]: the number of graphs with
given edge and subgraph counts can be approximated by the solutions to certain entropic
maximization problems [5, 1, 12,9, 6, 7]. These results are particularly challenging for sparse
graphs (i.e. for graphs with n vertices and m,, = p, (Z) edges for p, — 0). On the other
hand, it is quite rare that these entropic maximization problems can be solved explicitly. We
only know of one other such case where the optimizers are non-constant graphons: for the
upper tail of sparse random graphs, the maximization problem was solved by [2]. Thanks
to even more recent results in the theory of large deviations [5, 1, 12], it is now known that
for 1 > p, > (log>n)/y/n and any fixed v > 0, a random graph G with n vertices and
My = Pn (Z) edges satisfies

Pr <T(G) > (14 u)p® (g)) — exp (-(1 +o(1))n?p? log pln min {%/3 g}) .

Moreover, graphs with bipodal structure saturate the bound on the right hand side ([7]
call them “clique” or “hub” graphs depending on whether u%/? /2 or u/3 is smaller). Some
structural results in the sparse case are also known: [12] show that conditioned on having



8 JOE NEEMAN, CHARLES RADIN, AND LORENZO SADUN

triangle density 7(G) at least (14 w)p3 (3), it is likely that the graph contains a large clique,
a large hub, or both.

3. STRATEGY OF PROOF

As discussed above, the proof of Theorem 1 involves two very different sorts of arguments.
First, we must show that any optimal graphon is bipodal. Then we must solve the finite-
dimensional optimality problem for bipodal graphons. The details are complicated, with
many technical estimates, so we present an overview of the argument here.

We start the proof that the optimal graphon in bipodal in Section 4. We begin by com-
puting an upper bound for the entropy, based on the fact that any graphon with ¢ = e and
T = €3 — §° must have

(12) [ st o dway = 5

and from the maximum possible entropy of any graphon satisfying (12). We then exhibit an
explicit “model” bipodal graphon that comes within O(§%) of achieving the upper bound.
(This is where the assumption that e > 1/2 comes in. The same upper bound applies when
e < 1/2, but isn’t nearly as sharp.) Since (12) is sharp only when g(x,y) — e has rank 1, we
conclude that g — e is close to rank 1 and also that it concentrates mainly on two values.
This shows that g is close in L? to a bipodal graphon: there are well-defined quadrants of
the unit square on which ¢ has L2-small fluctuations.

To show that any optimal graphon is bipodal, we assume that it isn’t and then construct
explicit competitors by first averaging g on each quadrant (which maintains the edge density
while possibly changing the triangle density), and then making small adjustments to some
parameters to recover the original triangle density. We aim to show that if g wasn’t bipodal
to begin with, it would be possible to increase the entropy with such a perturbation.

This step requires estimates on the best bipodal graphon. The space of bipodal graphons
is only 4-dimensional, so maximizing the entropy becomes a problem in 4-variable calculus,
which we tackle in Section 5. We use the constraints on € and 7 to eliminate two of the
variables, writing the entropy as a function of the value a of the graphon in one quadrant and
a parameter p that measures how far the degrees are from being constant. Taking derivatives
of the entropy with respect to a and p, and setting them equal to zero, yields the estimates
in Theorem 1.

This analysis is complicated by the fact that we do not know, a priori, that the parameters
can be expressed as power series in 0. When using a Taylor series to approximate values of
the function H(p) near p =e or p = 1 — e, or when estimating the quantity if‘z in terms of
1, it is not immediately clear which terms must be kept and which can be ignored. We get
around this with a bootstrap, using initial estimates to establish which terms must be kept,
and then using the revised expansions to get more accurate estimates. In particular, we use
the concentration-of-degree estimate from Section 4 to claim that p = O(6%/?), which we
then use to prove that p is in fact O(6%). Aside from that concentration-of-degree estimate,
this part of the proof is completely independent of the proof that the optimizing graphon is

bipodal.
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In Subsection 5.3 we turn to the uniqueness of the optimizing bipodal graphon. We
compute the Hessian of the entropy with respect to a and p, obtaining a matrix of the form

K32 +0(8)  0(8?)
( 0(82) Ky '+ 0(1)) !

for negative constants K7 and Ks (which depend on e but not on ¢). Thus the equations for
critical points of S, subject to the constraints (3), are well-approximated by a non-singular
linear problem, which of course has a unique solution.

Having established the properties of the optimal bipodal graphon, we return in Sections
6 and 7 to showing that the optimal graphon is in fact bipodal. In Section 6 we assume
that the optimizing graphon is not bipodal and we estimate the change in the entropy, and
the change in the triangle count, from averaging the optimal graphon over each quadrant
to obtain a bipodal graphon. In Section 7 we use the results of Section 5 to show that the
parameters of this bipodal graphon can then be perturbed to recover the original triangle
count, with higher than the original entropy. Since the original graphon was assumed to
be optimal, this is a contradiction, implying that the original optimal graphon was in fact
already bipodal.

In other words, the problem of finding the optimal graphon reduces to the finite-dimensional
problem of finding the optimal bipodal graphon, which we already solved in Section 5. The
entropy function S is analytic in the parameters (a,b,c,d) and the constraints (e,7) =
(e,e3 — §3) are analytic (actually algebraic) in (a,b,c,d,e,d). This implies that the set of
critical points is a 2-dimensional analytic variety in R®. Away from singularities, the implicit
function theorem says that (a, b, ¢, d) are analytic functions of (e, d). The analysis of Section
5.3 shows that there are no singularities in the region defined by (3) where the actual opti-
mal graphon lives, so the parameters of the optimal graphon, and the entropy, are analytic
in (e,0), and therefore in (g, 7), for 7 strictly less than, and sufficiently close to, £3. That
completes the proof of Theorem 1.

4. INITIAL APPROXIMATION

4.1. Notation. Working at a specific edge density € = e between % and 1, we write g for
the graphon ¢(z,y) and also g.(y) = g(x,y), and define Ag(z,y) = g(z,y) — e. We consider
7 = e — ¢° for sufficiently small § (depending on €). We take g to be a maximizer of S(g)
subject to £(g) = e and 7(g) = € — §>. In our asymptotic notation, we treat e as fixed and
consider 6 — 0. That is, the hidden constants in O(¢) are allowed to depend on e, but on
nothing else.

Define D(p) = pln(p/e) + (1 — p) In[(1 — p)/(1 — €)]. We will write || - || for either the L?
norm on [0, 1] (with respect to Lebesgue measure) or the L? norm on [0, 1] (with respect to
the Lebesgue measure). It should be clear from the context which of these is the case. For
a function h € L?([0,1]?), we write T}, for the integral operator with kernel h:

(Tyu)(z) = / Wz, y)uly) dy,

which is compact and Hilbert-Schmidt because h € L2
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The first step towards proving that ¢ is bipodal is to show that ¢ is well approximated in
L? by a bipodal graphon of a certain form. Specifically, we show:

Proposition 6. There is a function v : [0,1] — R such that

1) v takes only two values, one of them \/2e — 14+ O(0), and one of them £0O(0);

(

2) [ v(z)de = 0;

(3) [[vll3 =0 + O(6%);

(4) [1Ag(z,y) + v(x)w); = llg(z,y) = (e — v(z)o(y))[; = O(F%);

(5) if Cy = {x :v(x) = O(9)} and C, = [0,1] \ Cy then for every x € Cy,
(13) lge = (1 = e)ll&, = llga — elle, — O(6);

and

(6) for every x € C4,

(14) lgo — (1 =€), < llgz = elle, +O(8%).

The point here is that e — v(x)v(y) is a bipodal graphon with triangle density e — ||v||$ =
e— 302+ 0(8); Proposition 6 shows that g is close to this bipodal graphon in L. The regions
Cs and C are called podes. C] is the small pode and C} is the big pode, and the last two
points of Proposition 6 show that no = € [0, 1] is classified into a clearly wrong pode.

4.2. Entropy cost. Our first step towards Proposition 6 is a pretty good estimate (at least

for small §) for the entropy cost of reducing the triangle density.
Define
(15) Cle) =

lnﬁ
2¢ —1°

The relevance of C'(e) is that it characterizes the optimal trade-off, in some sense, between
entropy and L? mass.

Lemma 7.
D
C(e) = inf —(p)2.
pe0,1] (p — e)
Moreover, the infimum above is uniquely attained at p = 1 — e, and it is a second-order

minimum in the sense that for any e € (0,1) there is a constant c¢(e) > 0 such that for any
p € [0,1],

> Ce) +cle)(p— (1—e))”.

The proof of Lemma 7 can be found in [22].

Recall that H(e) is the entropy of the constant graphon. By the concavity of H, S(g) <
H(e); the following lemma gives a bound on just how much smaller it must be.

Lemma 8.
C(e)d* < Cle)||Agll; < H(e) — S(g) < C(e)d* +0(5°).
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Proof. Note that [ D(g) = H(e) — [ H(g) = H(e) — S(g). By Lemma 7,

[0z G55 [ = celaglt

Moreover, Tr[(Tay)?] = 7(9) —€*—3e [(d(z) —e)? dx < 7(g) —e* = —4°, and Cauchy-Schwarz
implies that 6 < — Tr[(Tay)?] < [|Agl|3. This proves the first two claimed inequalities.

To prove the final inequality, we construct a graphon having triangle density e — §* and
entropy cost C'(e)d?+O(8?), and then the inequality follows from the fact that g has minimal
entropy cost among graphons with triangle density e — §. Let v(x) be a function taking the
value —v/2e — 1 on a set of measure a, and the value v/2¢ — 1a/(1 — a) on a set of measure
1 —a. Then [v=0and [v* = (2¢ — 1)a/(1 — a). For the graphon h(z,y) = e — v(z)v(y)
(which has edge density e), the fact that our perturbation is rank-1 (and orthogonal to
constants) implies that

3

a
7(h) = €* = —[v]|§ = —(2¢ — 1)3m-
Now we fix a so that 7(h) = e* — §3. Then a = §/(2¢ — 1) + O(6?) as § — 0, and
/D D(1—¢)+ (1 — a)2D(e — 6(a?)) + 2a(1 — a)D(c + O(a)).
Since D(e) = D'(e) = 0 and D is twice differentiable, we conclude that

H(e) — S(h) = a*D(1 —e) + O(a®) = a*(2e — 1) In 1 —+ O(a®) = C(e)d* + O(8?).

Recalling that S(g) > S(h), this completes the proof of the claimed upper bound. O

4.3. Closeness to ideal values. We saw that ||Agl||3 = ||g —e]|3 = O(4?), but we can get a
better bound if we look at the distance of g from either e or 1 —e. A useful interpretation of
this is that most of the L? mass of Ag is spent at values near 1 —2e. This notion — that most
of the L? mass of something is spent near some particular value — will be used repeatedly.
We will therefore study some basic properties of this notion.

Let
(16) Vo(z) = min{a?, (z — a)?}.

The point of this definition is that “most of the L? mass of u is near a” can be encoded as
[ Va(u) < [u?. The basic homogeneity property of V, is that for any a,z € R, V,(z) =
a*Vi(x/a). This means that it mostly suffices to study properties of V;.

Next, we show two stability properties: the notion of mass concentration is stable under
small perturbations of the function u, and also under small changes to the ideal value a.

Lemma 9. For any u,w € La(p), [Vi(u—+w)dp <2 [ Vi(u)dp+ 2||w||%2(#)

Proof. It u*(z) < (u(x) — 1)? then (u(z) + w(x))? < 2u*(z) + 2w?(z) = 2V (u(x)) + 2w?(z).
Similarly, if (u(z)—1)? < u?(z) then (u(z)—1+w(z))?* < 2(u(x)—1)*+2w?(z) = 2V; (u(x))+
2w?(x). Taking the minimum of these two inequalities, Vi (u(z)+w(x)) < 2Vi (u(z))+2uw? (ac),
and the claim follows by integrating.
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Lemma 10. For any u € Ly(p) and any n > 0,
[ Vieodn < [ Viw) di - an(1+ )l

Proof. If u < 1/2 then V14, (u) = Vi(u) = u?. On the other hand, if u > 1/2 then Vi, (u) <
(u—1-n)?2< (u—=12*+n*+n = Vi(u) + n* + n. Markov’s inequality implies that
pfu >1/2} < 4Hu||%2(u), and so

/V1+n(u) dp < /Vl(u) + sy (0 +n) dp < /Vl(u) dpu +4An(1+n)||ul[Z2(,-

U

Our final property of V' will allow us to show that if u(x) + u(y) puts most of its mass
near 1, then the same is true of u.

Lemma 11. Let u be a function on a finite measure space (S, ). If HUH%Q(M) < u(92)/32
and

/Q Vi(ule) + ) dn < K

for some 0 < K < u(2)?/256 then

for some universal constant C'.

Note that the restriction ||u||%2( o < 1(§2)/32 is required to rule out the situation where u
is close to the constant function 1/2, in which case our desired conclusion wouldn’t hold.

Proof. We can assume without loss of generality that p is a probability measure. Let A =
{z : u(z) < 1/4}. By Markov’s inequality and the fact that [,u*du < 1/32, u(A) > 1/2.
On A x A, u(z) + u(y) <1/2 and so Vi (u(z) + u(y)) = (u(x) + u(y))?. Hence,

/A - Valule) + uly) du®? = / () + u(p)? > 2(4) / W2(x) dp.

A
On the other hand,

and so

(17) / Vi(u(a)) du = / ) <

Since K < 1/256, applying Markov’s inequality to ula gives

< K.

1 1
pl{lutal > 3 < 64/ Wy < 64K < T,
A
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meaning that p({|u| < 1/8}) > 1/4; let B = {z : |u(x)| < 1/8}. Fory ¢ A and = € B,
w(x)+u(y) >1/4—1/8 = 1/8, meaning that (u(z)+u(y) —1)* < 64V (u(x) +u(y)). Hence,

/B (o) +uly) = 1) dule) d(y) < 64 / Vi(u() + u(y)) du(z) du(y) < 64K.

OQxQ

On the other hand, Cauchy-Schwarz gives (u(z) +u(y) —1)? > (u(y) — 1)?/2 —u?(z), and so

[ wle)+ uty) = 02 du(o) duly) = 5uB) [ (ulo) = 17 dity) = n(27) [ o) dia)
BxAc c B
> ¢ [ ) =17 duty) - K,

where we used (17) for the last inequality, noting that B C A. Rearranging, we have

1

- / (uly) 1) dy) < 65K

Since Vi (u(y)) < 16(u(y) — 1)? for y & A, this shows that

(18) / Va(u(y)) dity) < 520K

Combined with (17), this completes the proof. O

We return to studying the perturbations of our graphon ¢g. In Lemma 8, we saw that the
most entropy-efficient way to perturb e in L? was to set some of the values of g to 1 — e,
which is equivalent to having Ag equal to 1 — 2e at some points. We strengthen this by
showing that most of the mass of Ag must be spent near 1 — 2e.

Lemma 12.

/Vlze(Ag(x,y)) dx dy = O(6°).

Proof. By the second part of Lemma 7,

e -5 - [ pto) - | =iC) I

(g—e)?
> C(e) / (140((g— (1—e))(g - e

- gl +o ([ o= - —er)

—c@lagl+ 6 ([ Vialse).
On the other hand, Lemma 8 implies that
H(e) = S(g) < C(e)d” + O(0%) < C(e)[|Agll5 + O(8%),

and comparing this to the previous bound proves the claim. 0
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4.4. Concentration of degrees. We define the “degree” of z € [0, 1] to be d(z) = [ g(z,y) dy.
Note that [d(z)dz = e(g) = e. It turns out that having a non-constant degree function
increases the triangle density, so our optimal graphon g must have an almost-constant degree
function.

Lemma 13.

/(d(m) —e)?dx = O(5*)

Recalling that 6* = ©(||Agl|3), this is better than the trivial bound (coming from Jensen’s
inequality) of

[at) - o2 do < gl
Proof. Start by observing that
Tr[(Tay)?] =t — €® + 3¢* — 3e / d*(z)dx = =6 + 3e /(d(x) —e)? du.
Cauchy-Schwarz gives Tr[(Ta,)?] > —[|Ag]l3, and so
& < gl -3¢ [ (d(a) - o) e

By the concavity of the function ¢ + t2/3 if s < ¢ then (t — s)2/3 < ¢2/3 — %t*1/3s. Therefore,
2e [(d(z) —e)*dx

52 S Ag 2
149l 12l

Comparing this to Lemma 8 gives
Cle)lAgllz < H(e) = S(g) < C(e)d” + O(&%)

d(z) —e)?dx
1Ag]l

< () agl - 2y o).

and so we conclude that
[dte) ~ ey ds < O(laglas®) = 06"
OJ
4.5. Rank. In this section, we will prove Proposition 6. We’'ll start by just considering an
eigenfunction (which will not necessarily take only two values). Later, we’ll round it.
Lemma 14. There is a function 0(x) such that
1Ag(2,y) + 0(2)0(y); = O(&).
Proof. Recall that
(19) H(e) = S(g) = C(e)[|Agl3,

and then we used the fact that (if \; are the eigenvalues of Ta,) . A2 > (32, |\[*)?2 to
compare this to 63. We can sharpen this eigenvalue comparison: if we write the eigenvalues \;



TYPICAL LARGE GRAPHS WITH GIVEN EDGE AND TRIANGLE DENSITIES 15

A2 = 6)\2

so that their absolute values are non-increasing, and if € > 0 is chosen so that } ., A?

then
[RYE

AME < Ml lIAZ = [MIIM? <
[Nl < Ao A2 |1m”2—vTIE

and so
1AgI3 = A3 > (1 + )2 [IAlI3.
Recalling from Lemma 13 that |[A[|3 > — Tr[(Ta,)%] = 6® + 3¢e||d — €||3 and that ||d —el|3 =
O(6%), we have
1Agl3 = (1 +€)%(8% — O(8"))** = 6% + Q(ed?) — O(8°).
Combining this estimate with (19) gives
H(e) — S(g) > C(e)d® + Q(ed?) — O(8°).

Compared to Lemma 8, this shows that e = O(d). In other words, we have 3., A7 = O(6A7).

On the other hand, 7, Y = [|Ag||3 = ©(6%), and so A} = ©(6%) and Y., A7 = O(6°). In

particular, if u(x) is an eigenfunction of Ag with eigenvalue A;, normalized so that ||ul|s = 1,
then

1Ag = Aru(z)u(y) |z = O(8%).

Finally, note that A; < 0, because Y , A} = ¢t — ¢ + O(6*) = =6 + O(6*), and since
Sea NP < (Diea A2)*? = 0(6%2), we must have A} = —6% + O(6%). Setting #(x) =
|A1|u(z) completes the proof. O

From now on, we fix a function v satisfying Lemma 14. The following bound just comes
from combining Lemma 14 with Lemma 12 and the triangle inequality (in the form of
Lemma 9).

Corollary 15.

[ Varslot@yita)) de dy = 0°)
Our next goal is to show that we can replace 0(x) by a rounded version. We’ll start by
ignoring the sign of .

Lemma 16. Let v(x) be either 0 or \/2e — 1, whichever is closer to |0(x)|. There is a
unwersal constant C' such that

l6(2)5(y) — [3(2)s@)||E < C / Vaer (8(2)3(y)) da dy.

Proof. Let ¢ = v/2e — 1, and let w(zx,y) be either 0 or ¢, whichever is closer to |0(z)v(y)|.
Since 0(z)v(y) is always either 0 or ¢, we have the pointwise bound

[5(2)3(y)] — wie,y)| < [16@)i0)] - o(2)o(y)|

Our first goal is to show the reverse inequality for most points x and y:

(20) [o(z)o(y)| — v(z)o(y)| < Cllo(@)o(y)] — wlz,y)| = CVaer(0(x)0(y))-
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Let

- 1 _
Ar={z:[o(z)] < 5c} = {v =0}
. 4
Ay ={z:|o(x)] > §c}
If x € Ay then v(z)v(y) = 0 no matter the value of y. Now if x € A; and |0(y)

w(z,y) = 0 and so v(z)v(y) = w(z,y). If x € A; and ¢ < |0(y)| < 4¢/3 then w
but |0(x)0(y)| < 2¢*/3, meaning that

—_—

T,y

To summarize: if x € A; and y € A, then (20) holds with C' = 2. Of course, the same holds
ifye Ay and x € A,.

If 2,y ¢ Ay then v(2)v(y) = ¢* and w(z,y) could be either 0 or ¢*. If w(z,y) = ¢* then
0(x)v(y) = w(x,y) and so (20) holds with C' = 1; while if w(x,y) = 0 then

[0(2)o(y)| — w(z, y)| = |0(x)o(y)]

and so (20) holds with C' = 8.

The only case where we have not shown (20) is when = € A; and y € A, (or vice versa).
In particular, by integrating out (20) on every set where we have proven it, we get

(21) / (19(2)0(y)| = v(2)0(y))* dz dy < C|[o(2)d(y)| — wlf3.
[0,1]2\((A1x A2)U(A2x A1))

Finally, we consider the case x € A;, y € Ay: here the pointwise bound (20) is not
necessarily true, and so we give an integral bound instead. Note that

|||@($)@(y)l—w||§Z/A ., ([o(2)0(y)] — w(,y))* dv dy

= / 172(:1:)272(3/) dx dy
A1 ><A1

_ (/A 172(x)dx>2
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and similarly

1o(2)5(y) — wll2 Z/A vyl = w(w,y))* de dy

:/A ) (Jo(z)o(y)| — ) da dy

> [ (@) - gl ) dedy
> % e % (2)0*(y) dx dy

So then

| @il = @i dedy = [ )i dedy

Al ><A2

_ /A #(x) da /A #(y) dy

< 4flo(x)o(y)| — wllz-

17

Of course, we have the same bound if we replace A; x Ay with Ay x A;. Together with (21),

this shows that

l1o(z)o(y)] = v(@)o(y)ll; < Clllo@)o(y)| — wll3.

This is almost the same as the claim; the difference is that the right hand side above is

c/mMﬁm#@xwwmm—&%m@,

whereas right hand side in the claim has no absolute values. But since ||v(z)v(y)| — ¢*| <

lv(z)v(y) — 2|, the claim follows.

O

Next, we handle the signs. Of course, 0(x) can be negated without changing o(x)v(y), but
the rounding to {0,+/2e — 1} is affected by the sign. Therefore, we may need to replace ©

by —v in order to give bounds for the rounded version.

Lemma 17. After possibly replacing © by —0, the following holds. Let v(x) be either O or

V2e — 1, whichever is closer to v(x). Then

lo(z)v(y) — o(2)o(y)]z < C/V'ze_l(ﬁ(ﬂf)ﬁ(y))dafdy-
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Proof. Let ¢ = v/2e — 1 and recall the definition of v from Lemma 16: o(x) is either 0 or ¢,
whichever is closer to |0(x)|. In particular,

v(@)u(y) = (2)(y) if §(z) > —g and d(y) > _g
v(@)u(y) = (2)(y) =0 if [5(x)| < 5 or [0(y)] < 5
U(‘T)U(y) =0 7é 02 — T)(J;)@(y) if f}(l‘) < —g and |1~)(y)| > g, or vice versa.

Let Ay = {z:9(z) < —¢/2} and Ay = {x: 0(x) > ¢/2}, so that v(z)v(y) # v(z)v(y) only
on Al X Al, Al X AQ, and AQ X Al. Hence,

[5(2)o(y) — v(z)w)II; — 19(2)o(y) — 9(z)v(y) |13

< / (0(2)0(y) — v(x)v(y))* da dy + 2 (0(2)0(y) — v(z)v(y))* da dy
A1 x Ay A1 xAz

_ (/A UQ(x)dx)z—}-Q/Al v2(x)dx/A2 v2(z) dz.

Because 0 is non-negative, |0(x)0(y)—v(z)o(y)| < ‘]ﬁ(m)ﬁ(y)|—z7(:v)z7(y) , and then Lemma 16

implies that

(22) [o(z)o(y) — v(@)v(y)l; < 0/%6_1(@($)@(y))dwdy

+ </A Uz(x)dx)2+2[41 Uz(x)dx/AQ V() da

and it remains to bound the last two terms.
Now, on A; x Ay, we have 0(2)0(y) < —c?/4, meaning that Va1 (v(z)v(y)) = v?(x)v?(y).
Hence,

/ Vaer (0(e)uly)) da dy > / A(x)o?(y) dr dy
[0,1]2

A1 ><A2

_ /A o (z) dx/AQ V2 (y) dy.

Moreover, we may assume that [, v*(z)dz < [, v*(y)dy (if not, this becomes true when

we replace v by —v). Then we can remove the last term of (22) at the cost of increasing C
by 3. O

Proof of Proposition 6. Let u be the function that we called v in Lemma 17, and define
v=u— [wdz. Then v trivially satisfies item 2.

By Lemma 17, Lemma 14 and the triangle inequality,
Juau(y) ~ Agl} < € [ Vaurs(3(a)o0)) dody + O = O(F),

with the second inequality coming from Corollary 15. Since ||Agl|3 = 6 +0(6®) by Lemma 8,
we have

1Ag]l2 = llu(z)uly) — Aglle < u(@)u(y)ll2 = llull; < [|Ag]l2 + [[u(z)uly) — Agll2,
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and so ||ul|3 = § & O(6?). Since u only takes 2 values (one of them 0, one of them bounded
away from zero), we have a := [wdz = O(4). Hence |[v||3 = |Jull3 — a® = § £ O(6?), proving
item 3. The bound a = O(9) also proves item 1.

For item 4,

[o(z)o(y) = Aglle < lu(z)uly) — Aglla + [[o(@)v(y) — ulz)u(y) |2
the first term on the right is O(§%/2), while the second term is |a® — 2aul, = O(6%/?) also.

Having proven the first four claims, we will show that the last two claims follow by per-
turbing Cs and C slightly. That is, we are going to redefine v: it will still take two values,
but we will change the sets on which it takes those two values, and then we will recenter it
to maintain the property [v = 0. If we only change the values of v on a set of size O(6?),
the triangle inequality implies that items 1—4 still hold for the modified function v.

Let Ay C C] consist of those x for which

/ (9(z,y) — (1)) dy > / (9(z,y) — ) dy,
C

C
and let A; C Cy consist of those x for which

/ (g(z.y) — (1—€))2dy < / (g(z.y) — ) dy.
Ch

C
Note that for x,y € C; we have g(x,y) = (1 —e) + O(5) + r(z,y), and so if x € Ay then
Jo, r(z,y)* dy = Q(8). Similarly, if z € Cy and y € Cy then g(z,y) = e+0(0)+7(z,y) and so
if # € Ay then [, 7(x,y)*dy = Q(d). Since [|7]|3 = O(5°), it follows that [A; U As| = O(6?).

We now redefine €; as follows: set Cy = Cy U A, \ A; and C,=C,UA, \ Ay. Since g
is bounded and |Q;AQ;| = O(6%), (13) and (14) hold with €; in place of ;. Redefining the
function v to be v/2e — 14 O(8) on Cy and O(8) on C, (with the O(J) terms chosen so that
[ v=0), Proposition 6 holds with this modified function v. O

5. ESTIMATING THE BIPODAL PARAMETERS

At this point, we have only shown that an entropy-optimal triangle-deficient graphon is
approximately bipodal. For this section, we will temporarily switch to studying truly bipodal
graphons. Up to measure-preserving transformations of [0, 1], every bipodal graphon takes
the form

a z,y <c,

g(x,y) =40 z,y>c,
d x<c<yory<c<ux.

That is, the pode sizes are ¢ and 1 — ¢, and without loss of generality we can assume that
¢ <1-—c. We define
cAa

Aa=a—e, Ab=1b—e, Ad=d—e, i

+ Ad.

The main result of this section is that in the class of bipodal graphons with edge density e,
triangle density 7 = €3 — §, and parameters Ab = o(1), ¢ = o(1), Ad = o(1), i = 0(d), and
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|Aa| = €(1), there is a unique entropy-optimal bipodal graphon and we get good estimates
on its parameters.

To be precise, Let G, 5, be the set of bipodal graphons with edge-density e, triangle density
¢® — 8%, and parameters a, b, ¢ and d satisfying |b—e| < V8, c <, |[d—e| <7, |a —e| > n,
and |u| = O(6°%/?).

Proposition 18. For every % < e < 1 there exists n > 0 such that for any 6 < n there is
at most one graphon g € G, s, mazimizing S(g). Moreover, any such optimal graphon has
parameters satisfying

a = 1—e—5+0(8)
52

b= 6_526—1;2)(53)
€= 26—1_2662—1+O(53) 1
(23) d = €+5+6H’(6) (H'(e)—(e—ﬁ) H”(e)>+0(5).

To prove Proposition 18, we first show that the parameters of any optimal graphon must
satisfy the claimed estimates, so assume that ¢ is optimal. We define

A
Aa=a—e, Ab=0b—e, Ad=d—e, ,uzlc a—l—Ad.
—c
The edge density, triangle density and entropy of the graphon are:
(24) e(g) = cfa+2c(l—c)d+ (1—c)%,
(25) 7(9) = c*a®+3(1 - c)ad® + 3c(1 — ¢)*bd® + (1 — ¢)*b?,
(26) S(g) = H(a)+2c(1—c)H(d)+ (1 —c)*H(b).

5.1. Expressing all quantities in terms of ¢ and p. Our constraint on edge count is
then

0=¢—e=c*Aa+2c(1—c)Ad+ (1 —c)*Ab.
Combined with the definition of pu, this gives

(27) Ab=—° (CA“—zu), Ad = - B

l-c\1l-c 1—-c
We then turn to the triangle count. Plugging a = e+ Aa, b = e+ Ab, and d = e + Ad
into equation (25) gives
T—e = 3e*(c*Aa+2c(1 — c)Ad + (1 — c)*Ab)
+3e (c(cAa+ (1 — ¢)Ad)* + (1 — ¢)(cAd + (1 — ¢)Ab)?)

(28) +Aa® + 32 (1 — ¢)AaAd® + 3c*(1 — ¢)*AbAd® + (1 — ¢)>Ab°.
The first line is 3e?(e — e) = 0. The second line works out to

Bele((1 = c)u)* + (1 — ¢)(—cp)’] = Bee(l — c)p*.

The terms in the last line are ;
cAa
1 - 3
(1=c) <1 - c) ’
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cAa\® 5 cAa\? r cAa
1—-c¢c Pl1—¢ P l\1—¢
cAa )\’ cAa \? o [ cAa 3

—4u +ou —2u° |,
1—-c 1-c 1-c
cAa\’ cAa\? o, [ cAa 3

—6u + 12p —8u”| .
1-c 1—-c l1—c

Setting the sum of the second line of (28) and these four terms equal to —§° gives

B = (cAa)3_6CM<cAa)2
1—c¢ 1—-c

(29) +3cu® ((1 + 3c) (fi“c) +e(1— c)) — (6¢* +2¢°) P

3c(1 —¢)?

Y

3c*(1—c)

and

03

The definition of G, implies that = O(6%?). This means that the terms in (29)
involving 1 do not affect 7 — €3 to leading order, so we have

( cAa )3 — 5%+ o(6%).

1—c

In particular, ¢ is of order 4. This in turn implies that the o(6%) terms in (29), which go as
cp and cu? and higher powers of ¢ and pu, are actually O(6%2), so

cAa B 5/2

T = <(55+O(5 ),
_ 2

c = —Aa+0(5).

The leading corrections to the approximation cAa/(1 — ¢) & —d come from the terms

—6¢p (cAa/(1 —¢))* and 3ec(1 — ¢)p? in the expansion of 7 — e3. A priori we don’t know
which is larger, so for now we will keep both. (They will both turn out to be of order §°).
However, all other terms are at least one power of ¢ smaller than one (or both) or these
terms. We can use the approximation ¢ &~ —d/Aa to simplify these higher-order corrections:

cAa \® 3eu?d — 6ud®
_ _53 54 252
(1_C> t—x, T O, p),
cAa ep® — 2u6* 9 9
= 04+ —"" J
where O(ud?, 426?) is shorthand for O(ud*) + O(126?). From that we compute c:
-5 + eu25—AQu52
¢ = 5557 + O 527 ?
Aq — § + 2210 ", 1)
5 + 2ué>%—epu?
(30) = — 8 L O(ud®, 1i?).

0 — Aa
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This then determines Ab and Ad:

c cAa
Ab = 1—c<1—c_2'u)
62 2ud  4ud? — 2ep? 3 9
o~ — pime 2 2
Ad = - .
pot 0 s+ O(ud”, i)

Note that the constraints on ¢ and 7 are algebraic, so we could have expressed b, ¢ and d
as power series in a and pu. However, in a power series the derivative of a term with respect
to u is at most an order p~! larger than the term itself, while the derivative with respect to
a is at most of the same order as the term. We can therefore turn our estimates of (b, ¢, d)
into estimates of (09,b, 0,¢, 0,d) and (9,b, 0,,¢, 0,d). Specifically:

—0%  2ud  4pPe — 8ud?

e AaQ;Acﬂ +2u(5 AZCL;ZG_;M;(MZ(S’M(SB)
R E A v G
duc = gu_;%;zoww/a),
Oud = W+O(u52,u2).
@b::%2+@%§%+om@%,
duc = %;mwx
@d=:1+—3zgﬁ+0@%m.

5.2. Solving 9,5 = 9,5 = 0. We now solve the equations 9,5 = 9,5 = 0 in three passes.
First we solve 0,5 = 0 to lowest order, obtaining a to within O(d). Using this value of a, we
solve 9,5 = 0, showing that u is a specific constant times §2, up to an O(8?) error. Finally,
we solve 9,5 = 0 more precisely, determining a to order §, with an O(§?) error. This then
determines (a, b, ¢,d) to the accuracy specified in Proposition 18.

Since

(31) S =c?H(a) +2c(1 — c)H(d) + (1 — ¢)*H(b),

0,8 = H'(a)+2c(1 — c)H'(d)0,d + (1 — ¢)*H'(b)0,b
+20,c(H(d) — H(b) + ¢(H(a) + H(b) — 2H(d))).
Keeping terms through O(§?), and noting that all discarded terms are of order 6% or higher,
we have

_E%QHﬁg+dey—H®D+O®5

H(a) — H(e)

a—e

0,8 = H'(a) — 2H'(b)

= *(H'(a) + H'(e)) — 2¢? + O(8?).
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Setting this equal to zero and dividing by 2 gives
H(a) — H(e)

H'(a)+ H'(e) — 2 o

= 0(6).

This implies that a is within O(J) of either e or 1 —e. Since a — e is assumed not to be o(1),
this means that we can write
a=1—-e+a,

where a; is O(9). This allows us to expand H(a) and H'(a) a power series in a; with quan-
tified errors and also to quantify how much —1/Aa and 1/(§ — Aa) differ from 1/(2e — 1).
In particular,

H(d) — H(b) + c(H(a) + H(b) — 2H(d)) = H'(e)d + O(u, 6?).
We now evaluate

9,8 = 2c(1—c)H'(d)d,d+ (1 —c)*H'(b)9,b

through order pu, 6%

2%¢(1—c)H'(d),d = 2(265_ : +a(1256:12;2) (H’(e)+5H”(e)> <1+26‘z’2‘6—__2f;) +o(u, 62)

, 26 2a10 — 86% + depu 2H"(€)d6> )
= H
(€) (26—1 T ey ) 2e—1 o),
26 —20 46 —dep — 2a,0
N2y — / _ 2
(=P H'B)dh = H'(e) (1 26_1) (26_1 e >+0(M,5)

, —26 852 — dep — 2a,0
H'(e) (26 1T T ey

) + o(p, 6%).

2ep — 262 , 9

Adding up the terms in 9,5 and setting the total equal to zero, we have
4H'(e)(pe — 6%)  2H"(e)d?

20,c(H(d) — H(b) + c(H(a) + H(b) — 2H(d))) = 2 (

(2¢ —1)? o1 = ),
e — 0% = A (62)2,((25 —b +o(p, 0%),
(32) po= % (1 — %2({;—1)) +0(6%, ).

Now that we have established that p = O(6?), we can check the order of the error terms in
our estimate of 9,S. They are all O(6%), not just o(u, §%), so we have actually estimated p
to within O(8%).

Using our known value of 1, we can restate our estimates for the derivatives of (b, ¢, d) as
—0%  2ué

- 4
b = Aa® | Ad? —21—0((5 )
= 20 "
(1 —¢)2 2e—1+0(5)’
de = ——— +0(5%)

6 — Aa
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2

= S+0(),
Dud = O(8°).
We then compute the first three terms in 9,5 :
¢H'(a) = (=H'(e)+a;H"(e)) + O(3"),
(1= PODH(b) = —~CH(e) — 5P H'(e) + O("),
.

2¢(1 — ¢)0,dH'(d) = O(5%).
The last term, namely 20,¢(H (d) — H(b) + ¢(H(a) + H(b) — 2H(d))), works out to
2% (H”(26)5 + H'(e) (6 + 265_ Tt c(—a; — 2(5))) +0(6%)

_ (H”<;>5 )6+ = clar + 6)) Lo,

Adding everything together, we have

SO
a = —6+ 0(5%).

Applying this value, and the computed value of y, to our expressions for (a, b, ¢, d), we obtain

the estimates of Proposition 18.

5.3. Uniqueness. Having proven that any optimizing bipodal graphon must have certain
parameter estimates, we now show that it is unique. We compute the Hessian of S with
respect to a and 1 in a neighborhood of the optimal graphon, specifically in the neighborhood
defined by the estimates in Proposition 18, and show that is is well-approximated by a fixed
non-degenerate matrix. That is, the equations 9,5 = 9,5 = 0 are approximately linear and

non-degenerate in this region, and so have a unique solution.

The partial derivatives of b, ¢, and d are, to leading order,
(52

0= oy + O, db =2 +0(),
52 b:i+0(53) 82 b= %+ 0() 8262_—25"‘0(52)
@t (2 —1)3 ’ (2e-1)? T (26 — 1)2 '
) e
0,c = e 1) +0(8%), e = g(;e 2162 + 0(6?),
25 dep — 462
9 c = TEE +O0(8), e =5y +0(1), Pe= - +O(8).
ep? — 2ud? 4
1= D=0, Bd=1+00)
2 _ 2 — 242
o, = 2T L O, Rd = s+ O(1) dhd = 22 L o),

5(2e — 1)2
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We compute 92,5 to order §2. Four terms contribute to that order, namely

202, c(H(d) — H(b)) ~ % dcducH' (a) ~ _(;f—]i()i)
9 , N _2(52Hl(6) 2 Y 52H”( )
Wb O e MO g

Adding up these terms gives

52 2H'(e)

——— | H"(e) — 5.

(2¢ — 1)2 ( (€) 26—1) +00)

In the expansion of 97,5, the unique O(6~") term is 2(1 — 2¢)07,dH’(d), giving us
4deH'(e)
6(2e — 1)
Finally, in computing 92,5 there are two O(0) terms, namely (1 — ¢)?07,bH’(b) and

2(1 — 2¢)0,¢0,dH'(d). The first gives —20H'(e)/(2e — 1)* + O(6?) while the second gives
+25H'(e)/(2e — 1)? + O(6?), so

92,5 =

9.8 = + O(1).

92,5 = 0(8%).

Since the Hessian of S takes the form
K162+ 0(6%) 0(6?)
0(6%) Kyd~ 1 +0(1)

for negative constants K7 and Ks, the entropy has a unique maximizer, and indeed a unique
critical point, in the region governed by the estimates of Proposition 18. At first glance, the
off-diagonal terms appear as big as the 92,5 term. However, replacing the variable 1 with
632 would convert the Hessian to the form

<K152+O(53) 0(57/2) )
O(672) K8+ 0(5%)

in which the known diagonal terms more manifestly dominate the error terms.

This completes the proof of Proposition 18.

6. AVERAGING

We now return to the study of entropy-optimal graphons that are not necessarily bipodal:
let g be a graphon maximizing S(g) subject to e(g) = e, 7(g) = €* — §2, and recall from
Proposition 6 that we can partition [0, 1] into podes C; and Cy so that g is approximately
bipodal with respect to these podes. Recall also the definition of v from Proposition 6, and
that g(z,y) ~ e — v(z)v(y). Let h be the graphon obtained by averaging g on the podes
C; x Cj. We will write h = g + Ah.

In this section we show that g must be exactly bipodal. Specifically, we show that if g # h
then we can get a contradiction by constructing a h with 7(h) = 7(g) but S(h) > S(g). This
argument comes in four parts:

(1) we give a lower bound on S(h) —S(g), and we show that if the bound is almost sharp
then Ah has a particular structure;
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(2) we give an upper bound on 7(h) — 7(g), and we show that if the bound is almost
sharp then Ah has a particular structure;

(3) we find a perturbation h of h that trades off entropy for triangles at essentially the
best possible ratio of the preceding two bounds, and it follows that if ¢g is optimal
then both of the preceding two bounds must be almost sharp; and finally,

(4) we show that the structure of Ah implied by the first two parts is incompatible with
Proposition 6.

One basic observation before we start is that because v(z)v(y) is constant on Q; x €,
and because the mean of any function is the constant with the smallest L? distance to that
function,

(33) IAR]3 < llg = v(z)v(y)ll; = O,

where the last inequality follows from Proposition 6.

6.1. The entropy change. Let’s compute the change in entropy that results from replacing
each pode in g by its average in h. Recall that Cy C [0, 1] is the set on which v(x) ~ 0 and

Cy = [0,1] \ Cy is the set on which v(x) ~ v/2e — 1. By Proposition 6 and the fact that
|Ch| = ©(9),

h11:1—6+0((51/2) on C’1><C'1
h(z,y) =< hiz2 = e+ O(9) on Cy x C1 and C7 x Cy
h22 =e+ O(53/2) on CQ X CQ

In terms of the notation of Section 5, hyy = a, h1s = d, hey = b, and |C4| = c.

Because h is obtained by averaging g, it has larger entropy. Our first bound shows that it
must be larger by at least about the “optimal entropy-L? tradeoff constant,” C/(e).

Lemma 19.

S(g) < 5(h) = C(e)(1 — O(Vd))llg — hll:.

Proof. Let D(p,q) = pln§ +(1—p)ln }%f]’, and note that for any set A C [0, 1]?,

| Dlata.q)dedy = H@IAI = [ Higto.) de iy
In particular, if we apply this to A = ; x Q; then

| ) - By dedy = [ Digla,y).hy) dudy.
Q,L'XQJ' A

Recalling the definition of C(e) from (15), we have
(34) | Dlatv).h)dady =€) [ (960.9) = i) oy

Since C(e) = C(1 —e) and C is continuous and differentiable at e, C'(hy;) = C(e) + O(6'/?)
for every ¢ and j. Hence,

/A D(g(,y), hiy) de dy > C(e)(1 — O(V3)) / (9(z,y) — Wz, y))? dzdy,

A
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and summing over ¢ and j gives

S(9) < S(h) = C(e)(1 = O(V9))llg — hll3. m

Next, we show that unless g approximately takes the value e and 1 — e, the entropy gain
of h is even larger than in Lemma 19. The argument here is similar to that of Lemma 8; the
difference is that the cost here is measured in terms of ||AR||3, instead of in terms of ||Ag||3
(which is much larger).

Lemma 20. Fizn > 0. For sufficiently small 6 (depending on n), if

/ Vaeor(—AR) dady > n]| A2
Cl ><Cl
or

/ Vaeor(AR) dz dy > ]| A2
(01 ><C'1)C

then
S(g) < S(h) = C(e)(1 + Qn))|| AR5

Proof. We follow the same argument as in Lemma 19, but in (34) we use the improved bound
of Lemma 7 to obtain

/Q 0 D(g(x7y>7hij> drdy > /Q o (O(hij) + Q((g -1+ hij)Q)(g - hij)2 dx dy.

In particular, compared to (34), the right hand side is increased by

Q(/ min{|g—1—|—hij|,|g—hij|}2dxdy> :Q</ Vl_ghij(Ah)dxdy> :
Q; xQ; Qi xQ;

Recalling that hey =1 — e+ 0(1), and h;; = e + o(1) otherwise, Lemma 10 implies that
/ D(g( ), han) dx dy > C(h)| G + / Vaer(—AR) da dy — o | ARJ2),
Cl><C1 Cl><01
and
/ D(g(,y), hij) dedy > C(hiy)|%]|] + / Vae 1 (AR) dardy — o | AKIE),
QiXQj QiXQj

for (i,7) # (2,2). Now we simply sum over i, j as in the proof of Lemma 19: under our as-
sumptions, at least one of the fﬂxn Voe—1(£AhR) dx dy terms gives an additional contribution
i X345

of Q(n||Ah||2) compared to Lemma 19. O

6.2. The triangle change. In this section we will control the triangle change between g
and h. Recall that Ty : L?([0,1]) — L*([0, 1]) denotes the integral operator with kernel Ah.
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Recall that
T(h) —71(g9) = 3/h(x,y)Ah(y,z)Ah(z,x) + 3/h(a:,y)h(y, 2)Ah(z, )

—i—/Ah(m,y)Ah(y,z)Ah(Z,x)

~3 / Wz, y)Ah(y, 2)Ah(z,2) + O(|| AR|)
(35) > 3| Tanoll? + O ARJ).

where the last line follows because (by Proposition 6) h = e — v(x)v(y) — 7(x,y) for some
|7]]2 < 6%2, and the term [ eAh(y, 2)Ah(z,z) dx dy dz is non-negative.

Lemma 21.

(v, Tapv) =0

Proof. We can write
(0. Tan0) = [ bt g)olo)oty) dody

recall that v(z)v(y) is constant on every pode and Ah(x,y) integrates to zero on each pode.
U

Now define u = |[v]|5*Tanv, define w(z,y) by Ah(z,y) = u(@)v(y) + u(y)v(z) + w(x,y),

and write T, for the integral operator with kernel w. By Lemma 21, (u,v) = 0. Then

u = Tarpv =u+ T,v, and so T,,v = 0. It follows that

| Tanvll3
[vll3

Since [|wl]|3 > 0, || Tanv]3 < £[|AR|3]|v]|3, and then (35) gives the following bound:

I Tanllz = IARIE = 2[[ull3]lv]I3 + llw]l = 2 + [lwll3-

Lemma 22.

3
7(h) < 7(9) + SIARIZIIE = llwlZ]lvl]3 + O(6* | AR]3).

We should interpret Lemma 22 as saying that 7(h) < 7(g)-+3 || Ah|3||v||3, with approximate
tightness only if ||w]|3 is small compared to ||Ah||3.

Let’s also note that ||u||2 must be small:

Lemma 23.

[ull; = O(5%).
Proof.
2[ull2llv]lz < 1AR]Z = O,
where the second inequality follows from (33). Finally, ||v||3 = ©(d). O

In order for Lemma 22 to be sharp, ||w||; must be small compared to ||Ah||s. On the other
hand, Lemma 20 implies that if the entropy change inequality of Lemma 19 is sharp then
Ah must spend most of its L? mass at particular values. Combining these two pieces of tells
us that v must spend most of its L? mass at particular values.
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Lemma 24. Fizn > § > 0 and suppose that |wl]|5 < n||Ah||3.
If Jo, xo, Vaemr (= AR) d dy < | AR3 then

| Vo) < ol
1
If iy werye Vae1(Ah) ddy < nl| AR|3 then

; V. ge=1(u) < O(n)||ull3-

Proof. Let vy = y/2e — 1 + O(0) be the value that v takes on C;. On C; x Cj, we have
Ah = vy(u(r) +u(y)) +w(z,y). I [ o Voer(—AR) dwdy < n||Ah|3 then (by Lemma 9)

/CIXC1 Vaeo1(—v2(u(z) +u(y))) dz dy < O(n)|AR]; + O([lwllz) = O(n) | Ahll3.
Since (2e — 1) /vy = /2e — 1 + O(§), Lemma 10 implies that

/Clxcl Visemi(—u(@) — u(y)) dz dy < O(n)l|Ah][5 + O07||ull3) < O() | AR5
We apply Lemma 11 with K = O(n)||AR||3, Q = C}, and p the Lebesgue measure on €.
(Note that the hypotheses of Lemma 11 are satisfied when ¢ is small, because |C| = ©(9),

while [|u]|3 = O(6%) and ||Ah||3 = O(6?)). Since |Cy| = O(4), this gives

Vaei(—u()) dv = O(n]| Ah|2/6) = O(llull3),

as claimed.

Now we prove the second claim. For (z,y) € Cy x Cy, Ah(z,y) = vou(x) + w(z,y) +
O(0u(y)). Since [lou(y)[3 = 0*[lull3 = O(S[|AR]3), if we set @ (z,y) = w(x,y) £ O(du(y))
then Ah(z,y) = vau(x) + @ (z,y), and [[@[5 < (1 + O(3))[|AL|5 = O(n)[[AL[|3. Assuming
that

/ Voeor(AR) d dy < nl| A1,
CQXCl

Lemma 9 implies that
/ Vaer (vpu(a)) dedy < O(n)]| A2,
CzXCl

and since |C| = ©(0), we have

/C Viseoty oy (u(2)) d < O@n)[|ARJE = O(][ull2).

The second claim follows from Lemma 10 and the fact that vy = v/2e — 1 4 O(0). O
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7. THE IMPROVEMENT LEMMA

The goal of this section is to show that if we have a bipodal graphon with approximately the
expected parameter values, then we can trade off triangle density for entropy at a prescribed
rate. The idea behind the perturbation is simple: we lower the triangle density by increasing
the size of the small pode, and tweaking the other parameters to keep the edge density
constant.

Recall that (up to measure-preserving transformations), a bipodal graphon h may be
parametrized as

a x,y<c,
hz,y)=<b x,y>c,
d r<c<yory<c<u,

and we may assume that ¢ <1 —c.

Recall that G, 5, is the set of bipodal graphons with edge-density e, triangle density e*— 4§,
and parameters a, b, ¢ and d satisfying |b — e| < V98, ¢ < n, |d —e| <7, |a —e| > 7, and
|| = O(6%/%). The point of this definition is that our earlier estimates imply that for any
e, some 1 > 0 depending on e, and all sufficiently small 6 > 0 depending on e, the bipodal
graphon h obtained by starting with an optimal graphon ¢ and averaging on podes belongs

to Qe@n.

Proposition 25. For any graphon h € G5, and for any T(h) >t > 7(h) — 63, there is a
bipodal graphon h with edge density e, triangle density t, and entropy

; 2(r(h) — 1)

S(h) = S(h) - Ce) =2 a1+ O(n))

Out of the four parameters a, b, ¢, and d, the edge-density constraint €(h) = e can be used
to eliminate one. Defining

cAa
1—c¢
we can change parameters to express everything in terms of Aa, ¢, and p; and in (29) we
showed that the triangle deficit can be expressed as

(36) — 0% = c*a® — 6 e’ + 3cp® (1 + 3¢)a + e(1 — ¢)) — (6¢* + 2¢%) i,

where a = Aa/(1 — ¢). To prove Proposition 25 we will simply increase ¢ while keeping Aa
and p constant. In terms of the original parameters, this is equivalent to setting

Aa=a—e, Ad=d—e, W=

+ Ad,

c(s)=c+s

a(s) =a

d(s)=e+p— %

b(s) = e — 2¢(s)(1 — c(s))d(s) + *(s)a(s)

(1—c(s))?

In particular, everything is a rational function of s and is smooth for s < 1 —¢. Let hg be
the bipodal graphon with these parameters.
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If = O(6%?), we see immediately from (36) that

d%T(hs) = 3c*(s)a” + O(0°) = 36*(2e — 1) + O(6° + &%s).

Moreover, the O(§3) term is uniform over 0 < s < §/(2e — 1), because p is constant in s
and |c(s)] < (14 (2e — 1)71)6 for s in this range. Since —d¢® is continuous in s, for any
t € [t(h) —nd3,7(h)) there is an

T(h) —t

= e =71+ 0

Sx

such that 7(hs,) = t.

Next, we consider the change in entropy as a function of s. Recall that if [h = e then
[ H(h) = H(e) — [ D(h). Therefore, the change in entropy is the same as the change in
— [ D(h); that is,

d d
—S(hs) = —— [ D(hs(x, :
5-S00) =~ [ Dibuta,y) de dy

We can write

/D(hs(l‘,y)) dz dy = ¢*(s)D(a) + 2c(s)(1 — c(s)) D(d(s)) + (1 — c(s))* D(b(s)).
Now, D is differentiable with D(e) = 0, and D is locally quadratic around e. That is,
D'(e +¢€) = O(e), D(e +€) = O(e?), and D(1 — e +¢€) = D(1 —¢e) + O(e). In particular,
because |b(s) — e| = O(nV/d) and |d(s) — e| = O(n), the derivative in s is bounded by the

contribution of the first term:

L[ Do) dwdy = 2e(5)¢ ) D) + O0) = 25

e —

1D(l —e)+ O(6n),

where the second equality holds for s < O(nd). Plugging in s = s, and applying the
Fundamental Theorem of Calculus, we obtain

~ 26D(1—e)
2e —1
completing the proof of Proposition 25.

2(7(h) — 1)

D(h,.) = (1 35

(1+0(n))s. = D(h) = C(e) (1+0(),

8. COMPLETING THE PROOF OF BIPODALITY

Recall that h was obtained by averaging g on podes. Define € = ||g — h|3, and recall that
e = O(6%). We assume for a contradiction that g is optimal but not bipodal, and hence
e > 0.

First, note that Proposition 6 and Lemma 13 imply that for any 7, > 0, if § > 0 is
sufficiently small then ¢ € G.s,,. Indeed, part (3) of Proposition 6 implies the required
estimates on the parameters a, b, ¢, and d, while Lemma 13 implies the required estimate on
. In particular, we may apply Proposition 25 to construct a graphon h with T(il) =7(9g).
Lemma 22 implies that 7(h) < 7(g) + (3/2)ed + o(€d), and so Proposition 25 with ¢t = 7(g)
gives a graphon h with 7(h) = 7(g) and

~ 2 T(h)

S(9) 2 5(5) = 5(h) — 200D 0()) > S(0) — CE)el1 + Om))
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In particular, for any fixed n > 0 we can find 7; > 0 small enough so that the conclusion of
Lemma 20 fails to hold for all sufficiently small ¢.

On the other hand, for any fixed n > 0, if ||w||3 > n||Ah||3 then Lemma 22 gives the
improved bound 7(h) < 7(g) + (3/2)ed(1 — ©(n)), meaning that (by Proposition 25, if n; is
small compared to 7)

S(g) = 5(h) = Cle)e(1 = Q(n)),
which contradicts Lemma 19 (for ¢ sufficiently small). We conclude that
(37) lwi3 < nllARJ,

and that the conclusion of Lemma 20 fails, meaning that
(38) max {/ Voe—1(—Ah) dx dy,/ Voe_1(Ah) dx dy} < ne.
C1xCq (01 ><01)C

Finally, we will show that (37) and (38) together contradict Proposition 6. Fix = € C}.
Recall that v : [0,1] — R takes two values; let v; &~ v/2¢ — 1 be the value v takes on C; and
let vy = ©(J) be the value v takes on Cy. Then Ah, = viu+u(z)v+w, and g, = h, — Ahy,
where h,(y) = (1 —e) 4+ o(1) for y € C;. Note that h, and v are constant on C}, with
hy =1—e+o0(l) and v = v/2¢ — 1 + o(1). Recalling that u = ||v||5*Tanv, note that if
u(xr) = —y/2e — 1 then h, — u(x)v ~ e on C (and is constant on C7). To be precise, we
consider two cases.

If u(z) < —(1/2)(v/2e —1 + n) then h, — u(x)v > 1/2 + Q(n) on C;. In particular,
h, —u(x)v is closer to e than it is to 1 —e, and so item 6 of Proposition 6 implies that w, will
need to be large to compensate: we have g, = h, —u(x)v —viu—w, > 1/24+Q(n) —viu—w,
and so by the triangle inequality,

(/Cl(gx(y) —e)? dy)l/2 <le— % — Q)| + |lvru + weo

1
(39) <le— §—Q(n)| + [|we |2 + O(0).
On the other hand,

1/2 1
([ @ —-a2ay) = h—e— -0~ o+ wl
(40) > [1—e— 5 = Q)| ~ Julls — O6).

Item 6 of Proposition 6 implies that (39) can be at most O(6%) smaller than (40). Since
e > 1/2, for n > 0 sufficiently small (and § > 0 sufficiently small depending on 7),

[well2 > Q(n) = O(0) = Q(n) = Qnfu(z)))-
For the other case, if u(x) > —(1/2)(v/2e — 1 + 1) then (for n sufficiently small) u is
bounded away from —v/2e — 1 and so V, 5= (—u(x)) > Q(uv?*(z)).

Let A ={z € Cy : u(zx) < —(1/2)(v/2e — 1 + 1)} (i.e. the set of = for which the first
case happens), and let B = C; \ A. Then |w,|3 > Q(n*u?(x)) for x € A and u?(x) <
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O(V ge=i(—u(w))) for v € B. If [, u*(v)dr > (1/2) [, u*(x)dz then

(41) [l e 2 00) [ 0wy
and if [ u*(z)de > (1/2) [, u*(z)dr then
(42) /C Vo (—u(z)) de > Q(1) /C W2(z) dz.

We will give a similar argument for Cs: fix x € Cy and note that g, = h, —u(z)v—vou—1w,,
where h, =~ e on C; and v ~ /2¢e —1 on C}, and vy = O(d). This time, if u(z) >
(1/2)(v/2e — 1+n), item 5 of Proposition 6 will imply that ||w,|| is large, while in the other
case we will have V, 5= (u(x)) bounded below by u?(z).

Let A={x € Cy:u(x) > (1/2)(v2e —1+n)} and let B = Cy \ A. Analogously to (39)
and (40), if x € A then h, — u(x)v takes a constant value of at most 1/2 — Q(n), which is
Q(n) closer to 1 — e than it is to e. Then g, < 1/2 — Q(n) — vou — w,, and so

1/2
([ = a=epar) " <li=e= 40000+ sl +06)
C
and
1/2 1
([t =erar) < le 540000 =l — 06
C1

and it follows from item 5 of Proposition 6 that

[wzll2 = Qnlu(z)]).

On the other hand, if € B then V 5= (u(z)) > Q(u*(x)) (for n sufficiently small). As
before, depending on whether [, u® or [, u? is larger, we have either

(43) [ Il e > 2 /C () de
(44) /c Vse—t(u(z)) dz > Q(l)/c u?(x) dz.

Finally, we consider whether f02 u?dx or fC1 u?dx is larger. In the former case, we
apply (43) or (44); in the latter case, we apply (41) or (42). We conclude that either
[wll3 = Q(n*)[|ull3, in which case [|AR[|Z = [Jull3]|v]]3 + [lw]3 and [[v]]3 = ©(5) imply that

lwll3 > Q(e),
or else at least one of fcg V. se—1(u(x)) dx or fC1 V. ze=1(u(x)) dz is Q(||ul|3), which by Lemma 24

implies that
max {/ V(AhR) dz dy,/ V(AR) dx dy} > Q(e).
C1xCq (Clxcl)c

The first case contradicts (37); the second contradicts (38). In either case, this contradiction
implies that e = 0 and so ¢ is bipodal. This concludes the proof of Theorem 1.
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9. THE REGION O,

Having established the properties of the region O, where 7 is slightly less than %, we
turn our attention to the region where the triangle density 7 is slightly greater than &2, the
region O,. In this region, the optimizing graphon was already proven to be bipodal in [14].
To complete the proof of Theorem 2, we must determine the parameters of that optimal
bipodal graphon.

Remark 26. The results of [11] apply when 0 < e < 1/2 as well as when 1/2 < e < 1, as
do all the computations in this section. However, they do not apply at € = 1/2, insofar as
many quantities go as negative powers of 1 — 2. By contrast, our results for T < €3 only
apply when & > 1/2. The situation when ¢ < 1/2 and T < &3 is qualitatively different and is
the subject of ongoing work.

Our analysis of O is qualitatively similar to that of Oy, with one very important difference.
Instead of everything being a power series in §, where (g,7) = (e, e® — 6®), everything is a
power series in A7, where (g,7) = (e, 3 + A7). We use the constraint € = e to express b in
terms of a, ¢, and d, and then use the value of 7 to express ¢ in terms of a, d and A7. We
then solve the equations 035 = 0 and 9,5 = 0 iteratively. Knowing a and d to a given order
allows us to compute ¢ to a certain order, which then allows us to compute a and d to one
more power of A7 than before, which allows us to compute ¢ to one more power of A7, and
the process repeats. We will exhibit the first few steps in this process, enough to compute
the entropy up to an O(A7?) error.

Extended to all orders, the result would be a set of asymptotic series for (a,b, ¢, d), and
thus for the entropy S. However, the analyticity of of parameters only implies that we have
convergent Taylor series expansions around points in the interior of @y. Our expansion in
powers of At is around a point (¢,7) = (e, €®) on the boundary of Oy, so convergence of our
series is not guaranteed.

We therefore need a separate iterative method to use at fixed (non-infinitesimal) values
of A1. As before, we linearize the equations 9,5 = 9;5 = 0. As long as the Hessian of S
is well-approximated by a fixed matrix My in a neighborhood of the approximate values of
(a,b,c,d) that we have derived for (g,7) = (e, €3 + A7), then the iteration

Apew Aold -1 aCLS(CL()l(i; dold)
45 = - M
( ) (dnew) <dold) 0 <ads<aold7 dold)
is guaranteed to converge to the solution to 9,5 = 9,8 = 0. !

9.1. Expressing quantities in terms of ¢ and d. As before, we begin with the two
identities:

(46) Ab——(lic>2Aa—2<1ic>Ad

and

C

2
AT = 3ec(l —c) (1 Aa + Ad)

—C

1Using the fixed matrix My is less efficient, but more robust, than applying Newton’s method.
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(47) +Aa® + 32 (1 — ¢)AaAd® + 3¢(1 — ¢)*?AbAd® + (1 — ¢)>Ab°.

The difference is that now Ad is of order 1, so the first term in the expansion of A7, which
is Q(c), dominates the remaining terms, which are O(c?). Using (46), we have

3c(1—c)?AbAd® = —3cAalAd® — 6c%(1 — c)Ad?,
L 5 6
(1—PAF = —8EAd — 2 AaAd— 07 Aa?Ad——5— Ad®
1—c (1—c)? (1—c)3
2 2
3ec [ S AatAd = 3ec | Ad® 4 cAd(2Aa — Ad) + _° _A&? :
1—c (1—c)?

which in turn gives

AT = 3ecAd?
¢ (6eAaAd — 3eAd” + 3AaAd® — 6Ad”)

A 2
NE (36 4 AG — 6AaAd — 2Ad3)

1—c
12¢ 6c° 6

—AaAd — o Ad*Ad —
11— (1 —c)? (1—1c)?
This expression is exact. Given estimates of Ad to order A7F and Aa to order A7?, it
determines ¢ to order ATFT! or A7*2, whichever is larger. As long as the estimates of Aa
and Ad only involve integer powers of A7, so will the estimates of c.

(48) Aa®.

In particular, given values of Aa and Ad, we have
AT 2Aa Aa — 2Ad 3
“3aEC (m—”T) +O(AT)

The fact that ¢ can be expanded as a polynomial in ¢ whose coefficients are rational functions
of a and d means that we can compute d,c and d;c to within O(A73) by taking the derivative
of this expression. Differentiating implicitly, we have

0 = 0uc(3eAd® + 6c(2eAald — eAd” + AaAd® — 2A%) + O(c?))
+c?(6eAd + 3Ad?) + O(AT?),

which gives

O,c = —c* (AQd 1)+O(A7)

0 = 0Oy (3eAd” + 6¢(2eAald — eAd® + AaAd* — 2A77) + O(c?))
+6ecAd + 6¢*(eAa — eAd + AaAd — 3Ad*) + O(AT?).
After a little algebra, this yields
2c Aa  Aa Ad
- 1 132t =20, 2d AT,
Oac = Ad( +c< 3Ad T €)>+O( 7°)
Taking the derivative of (46) with respect to a and d then gives

0.b = ¢ (3+ 2%) + O(ATY),

Aa Aa Ad 3
dab = 2c (1+c<5—4m—27+2—)> + O(AT?).

Similarly,
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9.2. Solving 0,5 = 035 = 0. We now compute the partial derivatives of S, beginning with
045 to order AT, obtaining:

4
048 = 2¢H'(d) + 2cH'(b) — A—(;(H(d) — H(b)) + O(AT?),
Setting this equal to zero and dividing by 2c¢ gives
2
H'(d) + H'(b) — £ (H(d) = H(b)) = O(A7),

implying that

d=1-b+0O(AT)=1—e+ O(AT).
We therefore write

d=1—-e+d, Ad=1-2e+d,
where d; is a quantity of order A7. This allows us to express quantities like H(d), H'(d),
H"(d), Ab, H(b), H'(b) and H"(b) in terms of d;.

We next compute 9,5 to order A72.
0,8 = cH'(a)+ (1 —¢)?0,bH'(b)
+20,c(H(d) — H(b) + c¢(H(a) + H(b) —2H(d)))
2Ad

= H'(a) + (3 + —) H'(b) + O(AT?).
e

Setting 0,5 equal to zero gives
2Ad
H'(a) = — (3 + —) H'(b) + O(ArT)

= — (3 + @) H'(e) + O(AT)
- (1 - 2) H'(e) + O(AT).

e
2
Hl((lo 1 —)
e

v (6
We then have a = ag + O(AT).

To complete the proof of Theorem 2, we must show that there is an iterative scheme for
approximating (a, b, ¢,d), and therefore S, for fixed values of (e, A7) with A7 sufficiently
small. As with our analysis of Oy, we do this by computing the Hessian of S.

Let ag be the solution to

H'(e),
which happens to be
2_q -1

e
1—e

~
v

Our previously computed first derivatives of b and ¢ are, to leading order:

b = (3+—2€d) + O(AT?),
2 1

_ 2 = - 3

Ouc = c( d+e>+O(AT),

adb = 2c+ O(AT2),
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_ 2c 2
8dC = _Ad+O<AT )

Our second partials are:

o2b = O(AT?),

2 2

2 ¢ ¢ 3
= —6— — 12— A
054b 6€C Ad+0( ),
oib = _4Ez + O(AT?),
Gfac = O(AT3),
c? 4Ad
ade = m <10 + 7) + O(ATg),
c
8C2ldc = 6A_d2 + O(AT2)

Next we compute the partial derivatives of S = ¢*H(a) + 2¢(1 — ¢)H(d) + (1 — ¢)*H(b).

Since 9,b and d,c are O(AT?), we have
045 = 0,bH'(b) + 20,¢(H (d) — H(b)) 4+ *H'(a) + O(AT?).
Taking another derivative with respect to a, only one term contributes at order Ar?:
02,8 = *H"(ag) + O(AT?).
If instead we take a derivative of 9,5 with respect to d, three terms contribute at order A7r2:
92,8 = 2086120[-[’(@) + 02,bH' (b) + 204cH' (d) + O(AT?)
4c 1 2

= —A—dH’(a) — 6c? (g + A_d> H'(b) - 2¢ <% + Aid> H'(d) + O(AT?).

Using the fact that H'(b) ~ H'(e), H'(d) ~ —H'(e) and H'(a) ~ (1 —2/e) H'(e), this
simplifies to
4¢*(1 —e)

2 —
OuiS = e(1 — 2e)

H'(e) + O(ATY).

Finally, we compute 93,S. We have
04S = OgbH'(b) + 2cH'(d) + 204c(H (d) — H(b)) + O(AT?).
93,5 OpbH' (b) + 404cH' (d) + 2cH" (d) + 205,c(H (d) — H (b)) + O(AT?)

— 4c ! _E U " 2
= _AdH(b) AdH(d)+2cH (d) + O(AT7)

= 2 (H”(e) +

H O(AT?).
) +0(ar)
The upshot is that 92,5 and 92,S are nonzero constants times ¢* plus O(A7?), while 97,9 is
a nonzero constant times ¢ plus O(A7?). Replacing ¢ with A7/(3e(1 — 2¢)?) and throwing
away the error terms, we obtain a non-singular matrix M, with no explicit dependence on

a or d, that comes within

O(AT3) O(AT3)

O(AT3) O(AT?)
of the actual Hessian for all (a,d) within O(AT) of (ag,1 — €). In particular the iteration
(45), beginning at (a,d) = (ag, 1 — e), converges to the unique solution to 9,5 = 945 = 0 for
all sufficiently small values of A7. This completes the proof of Theorem 2.
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10. ENTROPY ESTIMATES
Having established the properties of the optimizing graphons in O; and O, we now consider

the asymptotic values of the the entropy function as 7 approaches €3, both from above and
from below.

10.1. The O, region with ¢ = ¢, 7 > €3, ¢ # 1/2. Let

AT
g = ———
! 3e(1 — 2e¢)?
c1d; 5 (2(ag—e) — (1 —2e) apg—e—2(1—2e)
4 — 9 _ .
(49) “ 1-2¢ cl( 1-2¢ * e

By our previous estimates, we have
c=~c1+c+ O(AT?))
We estimate the terms in (31) using

Hl/( )

H(b) = H(e)+ H'(e)Ab+ ——LAb? + O(AT?)

I
=

(e) — H'(e) (120 (1 —2e+dl)+ czAa> +2c*(1 — 2¢)*H"(e)

= H(e) — 2c(1 —2e)H'(e) — 2cd H'(e) + 2(2H" (e)(1 — 2¢)?
—H'(e)(ap — e+ 2(1 — 2¢))) + O(AT?)

(1 —e)dy, — H'(e)Ab + O(AT?)

"(€)(2¢(1 — 2¢) — dy) + O(AT?)

(a) — H(e) + O(AT).

|
AjSvise

H(a)+ H(b) —2H(d) =

Plugging these terms into (31) yields

(
S = H( ) —2(c1+co)(1 —2e+dy)H'(e) — 2¢1d1 H' ()
et (H(ao) = H(e) + H'(€)(2(1 = 2¢) — (a9 — €)) + 2H"(e) (1 = 2¢)°) + O(AT")

Substituting for ¢y from (49), we find that the ¢;d; terms cancel, leaving us with

(1—2e)(ag—e—2(1—2¢))

S = H(e)—2ci(1—2e)H'(e) + 2¢1H' (e) (Z(ao—e) —(1—2e¢) + .
+ci (H(ag) — H(e) + H'(e)(2(1 — 2¢) — (ap — €)) + 2H"(e)(1 — 2¢)*) + O(AT?)
= H(e) —2c ( —2¢)H'(e)
vt () = 1)+ 11(0) (3000 - 0+ 2022 a4 30 -2 4 21701 - 200
O(ATg) A
= He) 36(? —7-2€> )
AT? , 2(1—2e
902 (1—2¢ H(aog)—H(e)+H'(e) <3(a0— )+ (ap+3e — 2)))
2AT?H" ()



TYPICAL LARGE GRAPHS WITH GIVEN EDGE AND TRIANGLE DENSITIES 39

The linear coefficient is of course negative, since H'(e) is positive for e < 1/2 and is
negative for e > 1/2. The quadratic coefficient is more complicated but is also negative,
diverging as e ®In(e) as e — 0 and as (e — 1)~! as e — 1. See Figure 3.

0 T T T T

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
e

F1GURE 3. The coefficient of A72 as a function of e.

10.2. The region O; with ¢ = ¢, 7 < €3, e > 1/2. As before, we express the parameters
(b, ¢, d) using the coordinates (a, 1). For convenience, we repeat the key identities:

c cAa
Ab = -2
1—c<1—c N)’
A
Ad - M—C a’
1—02 )
cAa 2110° — e 4
l—c o (2e — 1)6 +00),
5+ue—2u52
_ (2e=1)0 4
(50) c = 26—1+(5—a1+0(5)’

wherea =1—¢e+ a;.

Since S = H(b) + 2c¢(H(d) — H(b)) + ¢*(H(a) + H(b) — 2H(d)), we need to evaluate H(b)
through O(6*), H(d) through O(6%) and H(a) through O(5?):

H) = H(e)+ H(e)Ab+ SH' ()M +0()

(
H(d) = H(e)+ H'(e)Ad + 1H”<6)Ad2 + %H”’(e)Ad3 + 05"
H(a) = H(l—e)+H'(1—e)ay + ;H”(l a2+ 0(5)

(

) = H'(e)ar + 5 H'(€)a? + O(F)
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This makes
S = H(e)+ H'(e) (1 —¢)*?Ab+2¢(1 — ¢)Ad — c*ay)
+$ (1= ¢)?Ab* + 2¢(1 — ) Ad® + Pa?)
(51) L) oad + 0(%),

3
The coefficient of H'(e) is

c(l—c¢) (chac - 2,u) +2¢(1 —¢) (u - féac) —c%a; = (2 — 1 — 2ay).

Squaring and expanding the formula for ¢ in (50) gives

52 +2 n2e—2pu62

2 _ 2e—1 5
¢ (26—1+5—a1)2+0<5)
2 952(8 — 205 — a)2 9126 — 282
_ J _20°(0 — 1) N 30%(6 — ay) n (ue — 2ud*) L O().
(2e — 1)? (2e — 1)3 (2e — 1)* (2e — 1)3

Multiplying by (2¢ — 1 — 2a4), and using the fact that a; = —& + O(6?), the coefficient of
H'(e) becomes
52 263 461 2(pPe — 2u6?)

(2e — 1) a (2e —1)2 + (2e —1)3 T (2e — 1)? +0(8%).

Next we consider the coefficient of (1/2)H"(e), namely

A ’ Aa\?
(1 —c)Ab* +2¢(1 — c)Ad* + fal = ¢ (f_ac - QM) +2¢(1—¢) (,u - ac) + c*a?

1—
A 2

= (A +2c(1—-¢)) (16 ¢ ) —ductAa + a3,

—c

Using the third identity of (50), this reduces to
(2c — 6% + 4pc?(2e — 1) + a2 + O(8°).

But a; =~ —¢ and
20 52

_ 3
2e — 1 5(26— 1)2 + 00,

2 — =

so this becomes
253 4% 462

_ 5
2¢ — 1 (26—1)2+2e—1+0(5>'

Combining everything gives

S = H(e)+ o H’(e)+63<H”(e) 2H,<€))

% — 1 2 —1 (2e—1)2
+54( 4H'(e) 2H" (e) H"(e) >

(2e — 1) (2e—1)2  3(2¢e—1)

, (2H"(e) 4H'(e) 2u2eH' (e) 5
(52 tHo (26—1 _(26—1)2)+ 2e—1p 00
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This is a quadratic function of p that is maximized at
52
~ eH'(e)

o v+ 0(8%),

where
v= i) (e 3) 1

in agreement with (32). Our final total, involving only the parameters e and J, is then

6 / 203V
S = H(e)+2€_1H(e)—m
. H”'(e) Ay 9,2 5
+0 (3(26 - 1) + (2e — 1)3 - eH'(e)(2e — 1)2) + O(6°).

Although this formula for the entropy describes a smooth function of ¢ at § = 0, it is not
a smooth function of 7 = €* — ¢%. The first and second derivatives of s(e,7) with respect to
7 are positive and diverge as ! and 6, respectively, as § — 0.

Comparing the entropy functions in the regions O; and O,, we see that the entropy is
continuous in 7 at 7 = &3, but the first derivative is not. The first derivative approaches a
finite value as 7 approaches €3 from above, as does the second derivative, but these quantities
diverge as 7 approaches € from below. This completes the proof of Theorem 3.

11. LONGER CYCLES

Finally, we turn to the edge-k-cycle problem for odd k > 3 and prove Theorem 4. The
strategy is essentially the same as in the proof of Theorems 1-3. The part of the proof
concerning 73, < e follows these steps:

(1) We show that, for any graphon, 73, is bounded below by e* — ||dgl|5, with equality
only when dg has rank 1 with eigenvalue —¢ and the degree function is constant.
Combined with our existing estimates of a graphon with ||0g||2 of fixed size, this
gives upper bounds on the entropy of any graphon with the given values of e and 4.
These bounds, as a function of e and 9§, are identical to those obtained for triangles.

(2) A bipodal graphon with a = 1—¢ and d = 1+¢ comes within O(§?) of achieving that
upper bound. This bounds the extent to which an optimal graphon can differ from
our model graphon. These bounds are sharper than in the edge-triangle model. In
the edge-triangle model, we had the a priori estimate fol dd(x)?* dz = O(6*), but with
k-cycles we have fol dd(x)? dx = O(6%1). When dealing with bipodal graphons, this
means that the parameter y is a priori O(6%/?) instead of O(§%?). (The p parameter
will eventually turn out to be O(6*7!).) We also obtain bounds on how far dg is (in
an L? sense) from having rank one. These bounds are qualitatively similar to those
derived for the edge-triangle model.

(3) The argument that g is approximately bipodal, taking on values that are close to e
or 1 — e, proceeds exactly as before.

(4) The averaging argument is similar to before. If the optimal graphon weren’t already
bipodal, we could average its value over each quadrant to get a bipodal graphon with
the same value of €, and a quantifiable trade-off between 7, and entropy. Moreover,
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a sharp trade-off would imply the same structural properties of ¢ that we had in
Section 6.

(5) If we knew that the optimal graphon were bipodal, we could maximize the entropy as
in Section 10, expressing all parameters in terms of Aa and p. There is a positive term
proportional to §%y, as in the edge-triangle model, and a negative term proportional
to u283~*. The optimal value of y is then O(6*~1), implying that d = e+ + O(5%71)
and the contribution of y to the entropy is O(6%1). This shows that there is at most
one possiblity for a bipodal optimizer, and gives good estimates for its parameters.

(6) Combining the last two steps, if the original graphon were not optimal, we could
replace it with the averaged graphon of Step 3, then perturb the bipodal parameters
using the estimates from Step 4 to construct a graphon with the same ¢ and 7, but
larger entropy.

In the limit as k& — oo, our problem reduces to finding a graphon of the form g(z,y) =
e—dv(x)v(y), where fol v(z)dz = 0 and fol v(z)? dr = 1, that maximizes the entropy for fixed
e and 6. This graphon is bipodal, with d and —cAa/(1 — ¢) exactly equal to . Theorem 4
only gives a = 1 — e — § + O(6?) to first order in §, but there is no obstacle to computing
higher coefficients. The parameters for the optimal graphon for any fixed k£ are all within
O(6%1) of the parameters for this limiting graphon.

We now begin the proof.

Step 1: Writing g(x,y) = e + d¢g(z,y), we have
7 = Tr(g") = Tr((e + 69)F).

Expanding this out gives ef +Tr(5g*) plus a number of cross terms. Some of the cross terms
are of the form e~ (1, Ts,m1), where 1 denotes the constant function in L?([0,1]). Others
are powers of e times the product of several (1,T5,m1) expressions.

The expression (1,Ts,m1) is zero if m = 1, is fol dd(z)? dz if m = 2, and is bounded by
10gllm—> fol dd(x)?dzx if m > 2. Since dg (viewed as an integral operator) is self-adjoint, its
operator norm is the size of its largest eigenvalue, which is bounded by its L? norm, which is

small compared to 1. Of course, the product of two or more expressions of the form (1, T5ym1)
is smaller still.

The upshot is that
1
7 = e+ Tr(5g") + k:ek_2/ 5d(z)* do+
0

1
+terms small compared to / 5d(x)? dx
0

/0 1 5d(x)? dz.

The last term is of course positive-definite. This implies that ||dg|lo > 0, with equality (if
and) only if dg is rank-1 with eigenvalue —4 and fol dd(z)*dz = 0.

fek—2
> e+ Tr(5g%) + <

We have previously shown that any graphon with ||dg|| > ¢ has entropy at most

Hie) + —525(61) +0(8%),
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so this is also an upper bound on the entropy of any graphon with 7, = e* — 6*.

Step 2: Consider the bipodal graphon witha = 1—e, b = e—§2/(2e — 1), ¢ = §/(2¢ — 1 + §)
and d = e + . This graphon has edge density e, k-cycle density e — 6%, and entropy
H(e) + 6*H'(e)/(2e — 1) + O(8%). That is, it comes within O(4?) of saturating the upper
bound.

This means that the errors in step 1, both those involving fol dd(x)? dz being nonzero
and those from comparing Tr(dg*) to ||dg]||%, cannot cost us more than O(§?) in entropy, or
equivalently cannot cause ||dg||3 to be greater than 62 + O(46%).

In particular, since an O(§%) change in ||dg||3 corresponds to an O(6**!) change in ||dg]|5,
we must have

/ sd(x)? de = O(5F),

Furthermore, the contribution of the small eigenvalues of dg to ||dg||3 is at most O(§?). That
is, 6g is within O(6%/?), in an L?-sense, of being rank-1.

Step 3: Approximate bipodality (i.e., Proposition 6) proceeds exactly as in the k = 3 case,
because the only ingredients in the proof of Proposition 6 were the estimates from Step 1.
The error terms in Proposition 6 are the same order in ¢ for every k.

Step 4: Let h be the graphon obtained by averaging g on podes, and write g = h + Ah.
We need to estimate the changes to entropy and 74 in going from ¢ to h, as was done in
Section 6 for k£ = 3. The change in entropy follows exactly as in Lemma 20:

S(g) < S(h) = Cle)|Anllz,

and the inequality is sharp if and only if the non-zero values of Ah are close to 1 — 2e on
Ch x C1 and 2e — 1 elsewhere.

To bound the change in 7%, note that h (being bipodal) has rank two, and that its eigenval-
ues are approximately A\;(h) ~ e and A\g(h) &~ —4. Since Ah integrates to zero on each pode,
(w, Tapw) = 0 for every non-trivial eigenfunction w of h. It follows that the eigenvalues of
g =h+ Ah are

) |<U’17T§hu2>|2(

Ai(g) = Ai(h) + 1+0(6)) > A (h)

(1+00) = xa(t) - 12021 4 09,

Mlg) = o) - [-Tara)

where u; and wus are the non-trivial (normalized) eigenfunctions of h. Moreover, the second
inequality is sharp if and only if Ah(z,y) = us(x)Tapus(y) + ue(y)Tanus(x) + w(zx,y) for
some remainder w with [|w||s = o(||Ahll2). All other eigenvalues of h are zero, and so all
other eigenvalues of g are bounded in absolute value by || Ah|y = O(6%?), and also the sum of
their squares is at most [|Ah||2. In particular, >4 [Xi(g)|® < [|AR|572Y2, [Ni(g)[? < || AR5,
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Since 7 (h) = Mf(h) + N5(h) and 73,(h) = >, \F(g), we have

2 k
n(h) < 3400) + (o) + 1506 ) + T Il
< )\]f(g)—i-)\g(g)—kw 14+0(5 +Z\A
k—2 2
<milo) ~ K2 1 1 o)),

and the bound is sharp if and only if Ah ~ us(x)Tapuz(y) + uz(y)Tarus(x). This is the
analogue of Lemma 22 for general k.

Step 5: When considering bipodal graphons, we can compute the two eigenvalues of g from
the trace and the Hilbert-Schmidt norm:

AM+X = et+cAa+ (1—c)Ab
dAa
= e+
1—-c
M+A = Pa®+2c¢(1 —c)d® + (1 — )b
= 2+ AAd® 4 2¢(1 — o) Ad® + (1 — ¢)2AV?

Aa\? Aa
= €2+(1C_ac) —4cu(1c_ )—|—2u (c+c?).

From this we compute the two eigenvalues

1 A A 4p2e(1 —
A2 == e—i—c a—2uc:|:(e—c a ) 14 el ‘) 5 |-

These work out to

— 2uc

2
pre(l — ¢ 452
53 A= ——— + 06
(53 L= e e o
cAa ,uc(l—c) 4
54 Ay = —2pc — ————=+ 06
( ) 2 1—¢ ue e+ 20 — CAa+ (:u )

Note that if 4 = 0, then our eigenvalues are exactly e and if‘é, so we have e — 5% = \F+ \b =

ek + (CA“) , SO % = —¢§. We are quantifying how much they differ from these values when

1 is nonzero. However, we know that = O(6*/2), so these corrections are small.

Setting the full expressions for A\¥ + A% equal to e* — 6% and using the fact that ¢ =
§/(2e — 1) + O(6?), gives

Aa\"* kek=2p25  2kpdt
(C a) N O 4 H 0262, pot ).

1-c 2e — 1 2e —1
Taking kth roots, we then have

cAa — s+ 2110 plek=2

(55) 1—c 2¢—1 (2e—1)6k2

+ O (pd?, 1i26°7%),
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which in turn implies that
5 + ;u'2ek_262_k72115

_ Ze—1 2 253k
(56) = S T T1i5—a + O(ud*, p=6°7").

We now expand the entropy, using Taylor series around e and 1 — e, exactly as in Section
10. As before, the coefficient of H'(e) is ¢*(2e — 1 — 2a;). Substituting for ¢ using (56), the
leading order contribution of y to our H'(e) term becomes

2u2ek—253F _ 41,62
(2e —1)2

H'(e).

The coefficient of (1/2)H"(e) is

(2¢ — c*) (

exactly as before. The leading contribution of p is the second term. Finally, all contributions
of i to the coefficients of higher derivatives of H are higher order. Thus, to leading order,
the contribution of u to the entropy is

2ud*H"(e)  4pd*H'(e)  2p°e"H'(e)  4pe* 26 *H'(e) — 0%

cAa
1—c

2
) — 4uc*Aa + *a?,

o7 =
(57) 2e —1 (2e —1)2 6k 3(2e—1)2 (2e — 1)?
Setting the derivative with respect to p equal to zero then gives
V5k71
K= k2 H'(e)’

That is, p = O(6%~!) and only contributes to the entropy at order 6***. For all computa-
tions at lower order, and in particular for computing a, b, ¢, and d through order 62, we
can simply set ¢ = 0. That is, to this order the computations for the edge-k-cycle model are
identical to the limiting problem where Ad and —cAa/(1 — ¢) are set exactly equal to 6. In
that limiting problem, a = 1 — e — § + O(6?). This then determines ¢ and b. The entropy
then follows from (51), or equivalently from (52) with p set equal to zero.

Finally, we consider the Hessian of the entropy. The coefficient of y? in expression (57)
is large and negative, much larger than when £ = 3. However, the linear term is the same
as when k = 3, as are the contributions to S that don’t involve p. The upshot is that 8}2”“9
is more negative than when k = 3, while 02,5 and 02,5 are essentially the same. Thus the
Hessian is negative definite and any optimizing bipodal graphon is unique.

Step 6: Starting from the bipodal graphon obtained from averaging in Step 4, we can
parametrize it in terms of ¢, Aa, and p as in Step 5. Then we construct a perturbation by
increasing ¢ while holding Aa and p constant. From (53) and (54), we see that

d\

58 —— =0
(58) == 0(),
d)y
59 — =A 0(9).
(59) = Aa+0()
It follows that
dTy _ RO k1 A2 _ k—1 k—1
< = kA = + kXS o= k6" (2e — 1) + o(6" 1),
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where the last equality follows from Aa ~ 1 — 2e, Ay ~ —d, and pu? = O(6%).

On the other hand, the change in entropy is dS/dc = [26/(2e — 1)]D(1 — e)(1 + o(1)),
exactly as in Section 7. That is, starting from the averaged graphon h we can trade off
entropy for k-cycles at the rate

ds 2D(1 —e¢) 2C(e)

dr, (1+ 0(1))%’“*2(26 —1)2 (1+0(1)) kok—2"
The rest of the proof of Theorem 4 for 73, < e* follows exactly as in the k = 3 case: if the per-
turbation of the averaged graphon h does not contradict the optimality of g, both the k-cycle
change and entropy change inequalities of Step 4 must be sharp. It follows that Ah approx-
imately takes the prescribed values and that Ah & us(x)Tapuz(y) + us(y)Tanus(x); but as
in Section 7 these two properties contradict the definitions of C'; and C5 in Proposition 6.
The rest of the proof of Theorem 4 for 7, < €* continues as in the case k = 3.

We now turn to 7, > e*. A graph is said to be 2-star-like if all of its vertices have degree
1 or 2. In particular, all k-cycles are 2-star-like. Theorem 1.1 of [I1] then states that the
optimizing graphon for 7, slightly above e is bipodal with the parameters (a, b, ¢, d) taking
the approximate forms indicated in Theorem 4, only with errors that are o(1) or o(AT)
instead of the O(AT) or O(A7?) errors claimed in Theorem 4.

All that remains is to sharpen the estimates and compute the entropy. We follow the same
procedure as in Section 9, only with the expressions (47) and (48) for At replaced with

A, = (1 ¢ ) keF =212 + kek_3c2,u2(Aa + Ab — 2Ad)

+he" 1P p? (c(Aa — Ad)? + (1 — ¢)(Ad — Ab)?)

k(k —5)eF4c2ut
O(c?).
di—c2 (<)
The first three terms are the multiples of (1,T5s,21), (1,Ts.s1) and (1,7s,41), respectively,
discussed in Step 1 of the proof for 7 < e*. The last term involves the product of two factors
of (1,T5,21) and only occurs when k > 7. All other terms in the expansion of A7y, including
Tr(dg*), are of higher order.

The upshot is that the calculation is the same as for triangles, only with a coefficient of
keF=2 instead of 3e in the leading term, and with different O(c?) terms. Adjusting the O(c?)
terms does not affect the computation of (a, b, ¢, d) to the order specified in Theorem 4. The
change from 3e to ke*~2 in the leading term does change the O(A7) terms in the expansions
of ¢ and b, but does not affect the leading expressions for d or a, or the fact that the errors
are indeed O(A7)?) for b and ¢ and are O(AT) for a and d. Plugging these values of (a, b, c, d)

into the formula for the entropy then yields the estimate (11).

Data availability statement: Data sharing not applicable to this article as no datasets
were generated or analysed during the current study.
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