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Abstract. The analysis of large simple graphs with extreme values of the densities of edges
and triangles has been extended to the statistical structure of typical graphs of fixed inter-
mediate densities, by the use of large deviations of Erdős-Rényi graphs. We prove that the
typical graph exhibits sharp singularities as the constraining densities vary between different
curves of extreme values, and we determine the precise nature of the singularities. The ex-
tension to graphs with fixed densities of edges and k-cycles for odd k > 3 is straightforward
and we note the simple changes in the proof.

1. Introduction

Our results concern the nature of simple graphs on n vertices, for large n, constrained to
have density ε of edges and τ of triangles. The range of achievable values of the pair (ε, τ)
was an old problem in extremal combinatorics initiated by Turán in 1941 [27]. The extremal
graph theory of these constraints was recently completed by Razborov et al in [26, 23], which
also contain a good history of this problem; see Figure 1. The graphs associated with some
parts of the boundary of this region are not unique, but it is not difficult to characterize
those probabilistically using the graphon formalism of Borgs et al. [3, 4] and Lovász et
al. [17, 18, 19, 20]. See Section 4 in [24] for a discussion of those extremal graphs in terms
relevant to this work.

The boundary of the parameter space depicted in Figure 1 falls naturally into three curves:
the upper boundary τ = ε3/2, the line segment on which τ = 0, and the scalloped curve
completed by Razborov et al. On the upper boundary τ > ε3, while on the latter two curves
τ < ε3. The nature of the graphs associated with the points on each curve is similar, but
those associated with different curves are not [24].

In this paper we analyze the statistical structure of ‘typical’ graphs with constraints on
(ε, τ) in the interior of the parameter space of Figure 1. We use the graphon formalism
to describe asymptotic probabilistic structure, and use the rate function for certain large
deviations of Erdős-Rényi graphs to interpret typicality, a notion central to our analysis.
We give a careful discussion of typicality in Section 2.1, but informally it means ‘all but
exponentially few’ graphs with the given density constraints, exponential in the number of
vertices of the system.
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associated with (ε, τ). In fact, we have found that proving such uniqueness has been the
most difficult part of the analysis, requiring stringent a priori knowledge of the possible
optimal graphons. (There is numerical evidence of constraints (ε, τ) supporting multiple
entropy-optimal graphons; see for instance the discussion of discontinuous transitions in [15].
There is also a proof, Theorem 5.1 in [13], of nonunique entropy-optimal graphons in the
related model with fixed densities of edges and 2-stars.)

Our main result is the explicit determination, for any fixed 1/2 < ε < 1, of the unique
entropy-optimizing graphon associated with (ε, τ) as τ crosses through τ = ε3, and the
corollary that the behavior is singular at τ = ε3. For a qualitative picture of the singularity
see Figure 2. In terms of large graphs, for these values of (ε, τ) we approximately determine
the number of graphs with edge density approximately ε and triangle density approximately
τ , and we show that most such graphs have a specific structure. For more details about the
connection between entropy-optimizing graphons and large graphs, see Section 2.1.

To describe our results more quantitatively we need some notation (with more detail in
Section 2.1). A graphon g(x, y) on [0, 1] × [0, 1] is called bipodal if there is a decomposition
of [0, 1] into 2 intervals (‘vertex clusters’) C1 and C2 and constants a, b, d such that

g(x, y) = a if (x, y) ∈ C1 × C1

g(x, y) = b if (x, y) ∈ C2 × C2

g(x, y) = d if (x, y) ∈ C1 × C2 or (x, y) ∈ C2 × C1.(1)

We denote the length of C1 by c.

It is immediate that graphs with independent edges satisfy τ = ε3; see Figure 1. It was
previously proven [14] for 0 < ε < 1/2 and for 1/2 < ε < 1, that the entropy-optimal graphon
for τ slightly greater than ε3 is unique and bipodal and the structure was determined. In this
paper we consider the more difficult case of the graphons with τ slightly less than ε3. For
1/2 < ε < 1 we prove that it again is unique and bipodal, and again determine its structure.
We also determine the asymptotic behavior of the entropy as (ε, τ) approaches the curve
τ = ε3, 1/2 < ε < 1 from above and from below. Our main results can be summarized as
follows, using the function:

(2) H(p) = −[p ln(p) + (1− p) ln(1− p)].

Theorem 1. There is an open subset O1 in the planar set of achievable parameters (ε, τ),
whose upper boundary is the curve τ = ε3, 1/2 < ε < 1, such that at (ε, τ) in O1 there is
a unique entropy-optimizing graphon g(ε,τ). This graphon is bipodal and for fixed (ε, τ) =
(e, e3 − δ3), the values of a, b, c, d can be approximated to arbitrary accuracy via an explicit
iterative scheme. These parameters can also be expressed via asymptotic power series in δ
whose leading terms are:

a = 1− e− δ +O(δ2)

b = e− δ2

2e− 1
+O(δ3)

c =
δ

2e− 1
− 2δ2

2e− 1
+O(δ3)

d = e+ δ +
δ2

eH ′(e)

(

H ′(e)−
(

e− 1

2

)

H ′′(e)

)

+O(δ3).(3)
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Theorem 2. There is an open subset O2 in the planar set of achievable parameters (ε, τ),
whose lower boundary is the curve τ = ε3, 1/2 < ε < 1, such that at each (ε, τ) in O2

there is a unique entropy-optimizing graphon g(ε,τ). This graphon is bipodal and for fixed
(ε, τ) = (e, e3 +∆τ) the values of a, b, c, d can be approximated to arbitrary accuracy via an
explicit iterative scheme. These parameters can also be expressed via asymptotic power series
in ∆τ whose leading terms are:

a = a0 +O(∆τ)

b = e− 2∆τ

3e(2e− 1)
+O(∆τ 2)

c =
∆τ

3e(2e− 1)2
+O(∆τ 2)

d = 1− e+O(∆τ),(4)

where a0 is the solution to

(5) H ′(a0) =

(

1− 2

e

)

H ′(e).

Theorem 3. The entropy function s(ε, τ) is real analytic in the variables ε and τ in the
two subsets O2 and O1 of Theorems 1 and 2, which share the boundary curve τ = ε3. The
entropy s(ε, τ) is continuous on their common boundary but is not differentiable at any point
of the curve. As τ approaches ε3 from above and below, the following estimates apply:

• For fixed ε = e 6= 1/2, as τ = e3 +∆τ approaches e3 from above,

s(e, e3+∆τ) = H(e)− 2∆τ

3e(1− 2e)
H ′(e)

+
∆τ 2

9e2(1−2e)4

(

H(a0)−H(e)+H ′(e)

(

3(a0−e) +
2(1−2e)

e
(a0+3e−2)

))

+
2∆τ 2H ′′(e)

9e2(1− 2e)2
+O(∆τ 3).(6)

• For fixed ε = e ∈ (1/2, 1), as τ = e3 − δ3 approaches e3 from below,

s(e, e3 − δ3) = H(e) +
δ2

2e− 1
H ′(e)− 2δ3ν

(2e− 1)2

+δ4
(

H ′′′(e)

3(2e− 1)
+

4ν

(2e− 1)3
− 2ν2

eH ′(e)(2e− 1)2

)

+O(δ5),(7)

where ν = H ′(e)−
(

e− 1
2

)

H ′′(e).

In particular, ∂s/∂τ diverges as δ−1 as τ approaches e3 from below, as previously shown in
[25]. As τ approaches e3 from above, ∂s/∂τ does not diverge, instead approaching the finite
(negative) value 2H ′(e)/3e(2e− 1). Furthermore, the second derivative ∂2s/∂τ 2 is negative.

Theorem 1 and the second half of Theorem 3 generalize to models where we fix the densities
of edges and k-cycles, where k is odd, instead of edges and triangles. The problem actually
gets progressively easier as k increases, insofar as our concentration of degree estimates
become sharper. Let τk denote the density of k-cycles.
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Theorem 4. Let k > 3 be an odd integer and let 1/2 < e < 1.

• For sufficiently small δ > 0, the entropy-maximizing graphon subject to the constraints
ε = e and τ = ek − δk is bipodal with parameters

a = 1− e− δ +O(δ2)

b = e− δ2

2e− 1
+O(δ3)

c =
δ

2e− 1
− 2δ2

2e− 1
+O(δ3)

d = e+ δ +O(δk−1).(8)

The entropy is

s(e, ek − δk) = H(e) +
δ2

2e− 1
H ′(e)− 2δ3ν

(2e− 1)2

+δ4
(

4ν

(2e− 1)3
+

H ′′′(e)

3(2e− 1)

)

+O(δ5).(9)

• When ∆τ is sufficiently small and positive, the optimizing graphon with ε = e and
τk = ek +∆τ is bipodal with

a = a0 +O(∆τ)

b = e− 2∆τ

kek−2(2e− 1)
+O(∆τ 2)

c =
∆τ

kek−2(2e− 1)2
+O(∆τ 2)

d = 1− e+O(∆τ),(10)

where a0 is the solution to (5). The entropy is

(11) s(e, e3+∆τ) = H(e)− 2∆τ

kek−2(1− 2e)
H ′(e) +O(∆τ 2).

Most of Theorem 2 was already proven in [14]; here we merely sharpen the estimates. The
analysis for Theorem 1, dealing with τ < ε3, is the main part of this paper. A substantial
portion of our analysis is devoted to proving that any optimal graphon for τ less than but
sufficiently close to ε3, with 1/2 < ε < 1, is bipodal. Our argument is quite different from
that of [14], which dealt with the case τ > ε3, because two of the main techniques in that
paper do not apply to undersaturated graphs. Specifically, [14] begins with multipodality
for graphs oversaturated with 2-stars, but there are no graphs that are undersaturated with
2-stars. Then [14] repeatedly applies the Euler-Lagrange equations; but besides the fact that
it seems challenging to rigorously establish Euler-Langrange equations without first knowing
multipodality, the Lagrange multipliers for undersaturated graphs are expected to explode
as δ → 0. Finally, there is evidence of a different nature indicating why the situation for
τ < ε3 is more complicated than for τ > ε3. The graphs associated with the boundary curve
τ = ε3/2 are all similar, and [14] proves the same is true for τ just above ε3, for all 0 < ε < 1/2
and 1/2 < ε < 1. But in [25] it is proven that for ε = 1/2 and any 0 < τ < (1/2)3 there
is a unique optimal graphon, bipodal and similar in kind to those on the boundary curve
where τ = 0, but quite dissimilar to what we have proven for ε > 1/2. In other words,
the two different boundary curves with τ < ε3 – the part with τ = 0 and the scallops –
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generate qualitatively different paths for crossing τ = ε3, and so far we have found the case
0 < ε < 1/2 impervious to our techniques.

In Section 11 we prove Theorem 4. The proof follows the same steps as the proofs of
Theorems 1 and 3, only with sharper bounds on the parameter µ. As a result, many of the
most difficult steps in the proof of Theorem 1 can be streamlined or avoided entirely. Instead
of repeating all the calculations, we merely note the changes needed to adapt the proof for
triangles to higher values of k.

One motivation for our study of extremal graphs is an older problem in extremal combi-
natorics, the densest packing of spheres. In two and three dimensional Euclidean space the
densest packing of congruent spheres has been proven, the latter by a celebrated tour de
force by Hales et al [11]. The densest packings have volume fraction π/

√
12 ≈ 0.91 in two

dimensions and π/
√
18 ≈ 0.74 in three dimensions and in both cases the optimal packings

are highly ordered. It has been an important open problem for many years to prove that
a typical packing at fixed volume fraction, in both dimensions, loses its order at a sharp
value of volume fraction below the optimum, though this has not yet been proven [21]. The
mathematical setup for sphere packings is similar to the one we are using for graphs, with
typicality defined through the entropy, the rate function of a large deviation variational
principle [16, 10]. In sphere packing the singularity is known as a phase transition.

2. Regularity in the Edge/Triangle System

2.1. Notation for Asymptotics. We consider a simple graph G (undirected, with no
multiple edges or loops) with a vertex set V (G) of labeled vertices. For a subgraph K of
G, let TK(G) be the number of maps from V (K) into V (G) that send edges to edges. The
density τK(G) of K in G is then defined to be

τK(G) :=
|TK(G)|
n|V (K)| ,

where n = |V (G)|. An important special case is where K is a triangle. We use the letters e
and t to denote specific values of the edge density ε and the triangle density τ . For α > 0
and τ̄ = (e, t) we define Zn,α

τ̄ to be the number of graphs G on n vertices satisfying

ε(G) ∈ (e− α, e+ α), τ(G) ∈ (t− α, t+ α).

Define the (constrained) entropy s(τ̄) to be the exponential rate of growth of Zn,α
τ̄ as a

function of n:

s(τ̄) = lim
α↘0

lim
n→∞

ln(Zn,α
τ̄ )

n2
.

The double limit defining the entropy s(τ̄) is known to exist [24]. To analyze it we make
use of a variational characterization of s(τ̄), and for this we need further notation to analyze
limits of graphs as n→ ∞. (This work was recently developed in [3, 4, 17, 18, 19]; see also the
recent book [20].) The (symmetric) adjacency matrices of graphs on n vertices are replaced,
in this formalism, by symmetric, measurable functions g : [0, 1]2 → [0, 1]; the former are
recovered by using a partition of [0, 1] into n consecutive subintervals. The functions g are
called graphons.
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For a graphon g define the degree function d(x) to be d(x) =
∫ 1

0
g(x, y)dy. The triangle

density of a graphon g is τ(g) =
∫

g(x, y)g(y, z)g(z, x) dx dy dz, and the edge density is
ε(g) =

∫

g(x, y) dx dy. The entropy of a graphon g is S(g) =
∫ ∫

H(g(x, y)) dx dy, where H
is defined as in (2).

The following result is Theorem 3.1 in [24], itself a special case of Theorem 4.1 in [25]:

Theorem 5 (A Variational Principle). For any values τ̄ = (e, t) in the parameter space
we have s(τ̄) = max[S(g)], where S is maximized over all graphons g with ε(g) = e and
τ(g) = t.

The existence of an entropy-maximizing graphon g = gτ̄ for any pair τ̄ of possible densities
was proven in [24], again adapting a proof in [8].

We consider two graphs equivalent if they are obtained from one another by relabeling
the vertices. For graphons, the analogous operation is applying a measure-preserving map
ψ of [0, 1] into itself, replacing g(x, y) with g(ψ(x), ψ(y)), see [20]. The equivalence classes
of graphons under relabeling are called reduced graphons, and graphons are equivalent if and
only if they have the same subgraph densities for all possible finite subgraphs [20]. In the
remaining sections of the paper, whenever we claim that a graphon has a property (e.g.,
uniqueness as an entropy maximizer), the caveat “up to relabeling” is implied.

Density-constrained graphons that maximize S, which we call ‘entropy maximizing graphons’,
were introduced in [24] and have been studied slowly but steadily ever since. They can tell
us what ‘most’ or ‘typical’ large density-constrained graphs are like: if gτ̄ is the only reduced
graphon maximizing S with τ̄(g) = τ̄ , then as the number n of vertices diverges and αn → 0,
all but exponentially few graphs with densities τ̄i(G) ∈ (τi − αn, τi + αn) will have reduced
graphons close to gτ̄ [24]. This is based on large deviations of Erdős-Rényi graphs from [8].
We emphasize that this interpretation requires that the maximizer be unique; this has been
difficult to prove in most cases of interest, is responsible for the slow advance of the study
of ‘typical’ density-constrained graphs, and is an important focus of this work.

2.2. Related work. Recent developments in probabilistic combinatorics have dramatically
expanded the scope of results like Theorem 5 from [24, 25]: the number of graphs with
given edge and subgraph counts can be approximated by the solutions to certain entropic
maximization problems [5, 1, 12, 9, 6, 7]. These results are particularly challenging for sparse
graphs (i.e. for graphs with n vertices and mn = pn

(

n
2

)

edges for pn → 0). On the other
hand, it is quite rare that these entropic maximization problems can be solved explicitly. We
only know of one other such case where the optimizers are non-constant graphons: for the
upper tail of sparse random graphs, the maximization problem was solved by [2]. Thanks
to even more recent results in the theory of large deviations [5, 1, 12], it is now known that
for 1 � pn � (log2 n)/

√
n and any fixed u > 0, a random graph G with n vertices and

mn = pn
(

n
2

)

edges satisfies

Pr

(

τ(G) ≥ (1 + u)p3n

(

n

3

))

= exp

(

−(1 + o(1))n2p2n log
1

pn
min

{

u2/3

2
,
u

3

})

.

Moreover, graphs with bipodal structure saturate the bound on the right hand side ([7]
call them “clique” or “hub” graphs depending on whether u2/3/2 or u/3 is smaller). Some
structural results in the sparse case are also known: [12] show that conditioned on having
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triangle density τ(G) at least (1+u)p3n
(

n
3

)

, it is likely that the graph contains a large clique,
a large hub, or both.

3. Strategy of proof

As discussed above, the proof of Theorem 1 involves two very different sorts of arguments.
First, we must show that any optimal graphon is bipodal. Then we must solve the finite-
dimensional optimality problem for bipodal graphons. The details are complicated, with
many technical estimates, so we present an overview of the argument here.

We start the proof that the optimal graphon in bipodal in Section 4. We begin by com-
puting an upper bound for the entropy, based on the fact that any graphon with ε = e and
τ = e3 − δ3 must have

(12)

∫∫

[g(x, y)− e]2 dx dy ≥ δ2,

and from the maximum possible entropy of any graphon satisfying (12). We then exhibit an
explicit “model” bipodal graphon that comes within O(δ3) of achieving the upper bound.
(This is where the assumption that e > 1/2 comes in. The same upper bound applies when
e < 1/2, but isn’t nearly as sharp.) Since (12) is sharp only when g(x, y)− e has rank 1, we
conclude that g − e is close to rank 1 and also that it concentrates mainly on two values.
This shows that g is close in L2 to a bipodal graphon: there are well-defined quadrants of
the unit square on which g has L2-small fluctuations.

To show that any optimal graphon is bipodal, we assume that it isn’t and then construct
explicit competitors by first averaging g on each quadrant (which maintains the edge density
while possibly changing the triangle density), and then making small adjustments to some
parameters to recover the original triangle density. We aim to show that if g wasn’t bipodal
to begin with, it would be possible to increase the entropy with such a perturbation.

This step requires estimates on the best bipodal graphon. The space of bipodal graphons
is only 4-dimensional, so maximizing the entropy becomes a problem in 4-variable calculus,
which we tackle in Section 5. We use the constraints on ε and τ to eliminate two of the
variables, writing the entropy as a function of the value a of the graphon in one quadrant and
a parameter µ that measures how far the degrees are from being constant. Taking derivatives
of the entropy with respect to a and µ, and setting them equal to zero, yields the estimates
in Theorem 1.

This analysis is complicated by the fact that we do not know, a priori, that the parameters
can be expressed as power series in δ. When using a Taylor series to approximate values of
the function H(p) near p = e or p = 1− e, or when estimating the quantity c∆a

1−c
in terms of

µ, it is not immediately clear which terms must be kept and which can be ignored. We get
around this with a bootstrap, using initial estimates to establish which terms must be kept,
and then using the revised expansions to get more accurate estimates. In particular, we use
the concentration-of-degree estimate from Section 4 to claim that µ = O(δ3/2), which we
then use to prove that µ is in fact O(δ2). Aside from that concentration-of-degree estimate,
this part of the proof is completely independent of the proof that the optimizing graphon is
bipodal.
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In Subsection 5.3 we turn to the uniqueness of the optimizing bipodal graphon. We
compute the Hessian of the entropy with respect to a and µ, obtaining a matrix of the form

(

K1δ
2 +O(δ3) O(δ2)
O(δ2) K2δ

−1 +O(1)

)

,

for negative constants K1 and K2 (which depend on e but not on δ). Thus the equations for
critical points of S, subject to the constraints (3), are well-approximated by a non-singular
linear problem, which of course has a unique solution.

Having established the properties of the optimal bipodal graphon, we return in Sections
6 and 7 to showing that the optimal graphon is in fact bipodal. In Section 6 we assume
that the optimizing graphon is not bipodal and we estimate the change in the entropy, and
the change in the triangle count, from averaging the optimal graphon over each quadrant
to obtain a bipodal graphon. In Section 7 we use the results of Section 5 to show that the
parameters of this bipodal graphon can then be perturbed to recover the original triangle
count, with higher than the original entropy. Since the original graphon was assumed to
be optimal, this is a contradiction, implying that the original optimal graphon was in fact
already bipodal.

In other words, the problem of finding the optimal graphon reduces to the finite-dimensional
problem of finding the optimal bipodal graphon, which we already solved in Section 5. The
entropy function S is analytic in the parameters (a, b, c, d) and the constraints (ε, τ) =
(e, e3 − δ3) are analytic (actually algebraic) in (a, b, c, d, e, δ). This implies that the set of
critical points is a 2-dimensional analytic variety in R

6. Away from singularities, the implicit
function theorem says that (a, b, c, d) are analytic functions of (e, δ). The analysis of Section
5.3 shows that there are no singularities in the region defined by (3) where the actual opti-
mal graphon lives, so the parameters of the optimal graphon, and the entropy, are analytic
in (e, δ), and therefore in (ε, τ), for τ strictly less than, and sufficiently close to, ε3. That
completes the proof of Theorem 1.

4. Initial approximation

4.1. Notation. Working at a specific edge density ε = e between 1
2
and 1, we write g for

the graphon g(x, y) and also gx(y) = g(x, y), and define ∆g(x, y) = g(x, y)− e. We consider
τ = e3 − δ3 for sufficiently small δ (depending on e). We take g to be a maximizer of S(g)
subject to ε(g) = e and τ(g) = e3 − δ3. In our asymptotic notation, we treat e as fixed and
consider δ → 0. That is, the hidden constants in O(δ) are allowed to depend on e, but on
nothing else.

Define D(p) = p ln(p/e) + (1− p) ln[(1− p)/(1− e)]. We will write ‖ · ‖2 for either the L2

norm on [0, 1] (with respect to Lebesgue measure) or the L2 norm on [0, 1]2 (with respect to
the Lebesgue measure). It should be clear from the context which of these is the case. For
a function h ∈ L2([0, 1]2), we write Th for the integral operator with kernel h:

(Thu)(x) =

∫

y

h(x, y)u(y) dy,

which is compact and Hilbert-Schmidt because h ∈ L2.
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The first step towards proving that g is bipodal is to show that g is well approximated in
L2 by a bipodal graphon of a certain form. Specifically, we show:

Proposition 6. There is a function v : [0, 1] → R such that

(1) v takes only two values, one of them
√
2e− 1±O(δ), and one of them ±O(δ);

(2)
∫ 1

0
v(x) dx = 0;

(3) ‖v‖22 = δ +O(δ2);
(4) ‖∆g(x, y) + v(x)v(y)‖22 = ‖g(x, y)− (e− v(x)v(y))‖22 = O(δ3);
(5) if C2 = {x : v(x) = O(δ)} and C1 = [0, 1] \ C2 then for every x ∈ C2,

(13) ‖gx − (1− e)‖2C1
≥ ‖gx − e‖2C1

−O(δ2);

and
(6) for every x ∈ C1,

(14) ‖gx − (1− e)‖2C1
≤ ‖gx − e‖2C1

+O(δ2).

The point here is that e− v(x)v(y) is a bipodal graphon with triangle density e− ‖v‖62 =
e−δ3±O(δ4); Proposition 6 shows that g is close to this bipodal graphon in L2. The regions
C2 and C1 are called podes. C1 is the small pode and C2 is the big pode, and the last two
points of Proposition 6 show that no x ∈ [0, 1] is classified into a clearly wrong pode.

4.2. Entropy cost. Our first step towards Proposition 6 is a pretty good estimate (at least
for small δ) for the entropy cost of reducing the triangle density.

Define

(15) C(e) =
ln e

1−e

2e− 1
.

The relevance of C(e) is that it characterizes the optimal trade-off, in some sense, between
entropy and L2 mass.

Lemma 7.

C(e) = inf
p∈[0,1]

D(p)

(p− e)2
.

Moreover, the infimum above is uniquely attained at p = 1 − e, and it is a second-order
minimum in the sense that for any e ∈ (0, 1) there is a constant c(e) > 0 such that for any
p ∈ [0, 1],

D(p)

(p− e)2
≥ C(e) + c(e)(p− (1− e))2.

The proof of Lemma 7 can be found in [22].

Recall that H(e) is the entropy of the constant graphon. By the concavity of H, S(g) <
H(e); the following lemma gives a bound on just how much smaller it must be.

Lemma 8.

C(e)δ2 ≤ C(e)‖∆g‖22 ≤ H(e)− S(g) ≤ C(e)δ2 +O(δ3).
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Proof. Note that
∫

D(g) = H(e)−
∫

H(g) = H(e)− S(g). By Lemma 7,
∫

D(g) ≥ D(1− e)

(2e− 1)2

∫

(g − e)2 = C(e)‖∆g‖22.

Moreover, Tr[(T∆g)
3] = τ(g)−e3−3e

∫

(d(x)−e)2 dx ≤ τ(g)−e3 = −δ3, and Cauchy-Schwarz
implies that δ3 ≤ −Tr[(T∆g)

3] ≤ ‖∆g‖32. This proves the first two claimed inequalities.

To prove the final inequality, we construct a graphon having triangle density e − δ3 and
entropy cost C(e)δ2+O(δ3), and then the inequality follows from the fact that g has minimal
entropy cost among graphons with triangle density e− δ3. Let v(x) be a function taking the
value −

√
2e− 1 on a set of measure a, and the value

√
2e− 1 a/(1− a) on a set of measure

1 − a. Then
∫

v = 0 and
∫

v2 = (2e − 1)a/(1− a). For the graphon h(x, y) = e − v(x)v(y)
(which has edge density e), the fact that our perturbation is rank-1 (and orthogonal to
constants) implies that

τ(h)− e3 = −‖v‖62 = −(2e− 1)3
a3

(1− a)3
.

Now we fix a so that τ(h) = e3 − δ3. Then a = δ/(2e− 1) +O(δ2) as δ → 0, and

H(e)− S(h) =

∫

D(h) = a2D(1− e) + (1− a)2D(e−Θ(a2)) + 2a(1− a)D(e+Θ(a)).

Since D(e) = D′(e) = 0 and D is twice differentiable, we conclude that

H(e)− S(h) = a2D(1− e) +O(a3) = a2(2e− 1) ln
e

1− e
+O(a3) = C(e)δ2 +O(δ3).

Recalling that S(g) ≥ S(h), this completes the proof of the claimed upper bound. �

4.3. Closeness to ideal values. We saw that ‖∆g‖22 = ‖g− e‖22 = O(δ2), but we can get a
better bound if we look at the distance of g from either e or 1− e. A useful interpretation of
this is that most of the L2 mass of ∆g is spent at values near 1−2e. This notion – that most
of the L2 mass of something is spent near some particular value – will be used repeatedly.
We will therefore study some basic properties of this notion.

Let

(16) Va(x) = min{x2, (x− a)2}.
The point of this definition is that “most of the L2 mass of u is near a” can be encoded as
∫

Va(u) �
∫

u2. The basic homogeneity property of Va is that for any a, x ∈ R, Va(x) =
a2V1(x/a). This means that it mostly suffices to study properties of V1.

Next, we show two stability properties: the notion of mass concentration is stable under
small perturbations of the function u, and also under small changes to the ideal value a.

Lemma 9. For any u, w ∈ L2(µ),
∫

V1(u+ w) dµ ≤ 2
∫

V1(u) dµ+ 2‖w‖2L2(µ).

Proof. If u2(x) ≤ (u(x)− 1)2 then (u(x) + w(x))2 ≤ 2u2(x) + 2w2(x) = 2V1(u(x)) + 2w2(x).
Similarly, if (u(x)−1)2 ≤ u2(x) then (u(x)−1+w(x))2 ≤ 2(u(x)−1)2+2w2(x) = 2V1(u(x))+
2w2(x). Taking the minimum of these two inequalities, V1(u(x)+w(x)) ≤ 2V1(u(x))+2w2(x),
and the claim follows by integrating. �
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Lemma 10. For any u ∈ L2(µ) and any η ≥ 0,
∫

V1+η(u) dµ ≤
∫

V1(u) dµ+ 4η(1 + η)‖u‖2L2(µ).

Proof. If u ≤ 1/2 then V1+η(u) = V1(u) = u2. On the other hand, if u ≥ 1/2 then V1+η(u) ≤
(u − 1 − η)2 ≤ (u − 1)2 + η2 + η = V1(u) + η2 + η. Markov’s inequality implies that
µ{u ≥ 1/2} ≤ 4‖u‖2L2(µ), and so

∫

V1+η(u) dµ ≤
∫

V1(u) + 1{u≥ 1

2
}(η

2 + η) dµ ≤
∫

V1(u) dµ+ 4η(1 + η)‖u‖2L2(µ).

�

Our final property of V will allow us to show that if u(x) + u(y) puts most of its mass
near 1, then the same is true of u.

Lemma 11. Let u be a function on a finite measure space (Ω, µ). If ‖u‖2L2(µ) ≤ µ(Ω)/32

and
∫

Ω×Ω

V1(u(x) + u(y)) dµ⊗2 ≤ K

for some 0 < K < µ(Ω)2/256 then
∫

Ω

V1(u(x)) dµ ≤ CK

µ(Ω)

for some universal constant C.

Note that the restriction ‖u‖2L2(µ) ≤ µ(Ω)/32 is required to rule out the situation where u

is close to the constant function 1/2, in which case our desired conclusion wouldn’t hold.

Proof. We can assume without loss of generality that µ is a probability measure. Let A =
{x : u(x) ≤ 1/4}. By Markov’s inequality and the fact that

∫

Ω
u2 dµ ≤ 1/32, µ(A) ≥ 1/2.

On A× A, u(x) + u(y) ≤ 1/2 and so V1(u(x) + u(y)) = (u(x) + u(y))2. Hence,
∫

A×A

V1(u(x) + u(y)) dµ⊗2 =

∫

A×A

(u(x) + u(y))2 ≥ 2µ(A)

∫

A

u2(x) dµ.

On the other hand,
∫

A×A

V1(u(x) + u(y)) dµ⊗2 ≤ K,

and so

(17)

∫

A

V1(u(x)) dµ =

∫

A

u2(x) dµ ≤ K

2µ(A)
≤ K.

Since K ≤ 1/256, applying Markov’s inequality to u1A gives

µ({|u1A| ≥
1

8
}) ≤ 64

∫

A

u2 dµ ≤ 64K ≤ 1

4
,
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meaning that µ({|u| ≤ 1/8}) ≥ 1/4; let B = {x : |u(x)| ≤ 1/8}. For y 6∈ A and x ∈ B,
u(x)+u(y) ≥ 1/4−1/8 = 1/8, meaning that (u(x)+u(y)−1)2 ≤ 64V1(u(x)+u(y)). Hence,

∫

B×Ac

(u(x) + u(y)− 1)2 dµ(x) dµ(y) ≤ 64

∫

Ω×Ω

V1(u(x) + u(y)) dµ(x) dµ(y) ≤ 64K.

On the other hand, Cauchy-Schwarz gives (u(x)+u(y)− 1)2 ≥ (u(y)− 1)2/2−u2(x), and so
∫

B×Ac

(u(x) + u(y)− 1)2 dµ(x) dµ(y) ≥ 1

2
µ(B)

∫

Ac

(u(y)− 1)2 dµ(y)− µ(Ac)

∫

B

u2(x) dµ(x)

≥ 1

8

∫

Ac

(u(y)− 1)2 dµ(y)−K,

where we used (17) for the last inequality, noting that B ⊆ A. Rearranging, we have

1

8

∫

Ac

(u(y)− 1)2 dµ(y) ≤ 65K.

Since V1(u(y)) ≤ 16(u(y)− 1)2 for y 6∈ A, this shows that

(18)

∫

Ac

V1(u(y)) dµ(y) ≤ 520K.

Combined with (17), this completes the proof. �

We return to studying the perturbations of our graphon g. In Lemma 8, we saw that the
most entropy-efficient way to perturb e in L2 was to set some of the values of g to 1 − e,
which is equivalent to having ∆g equal to 1 − 2e at some points. We strengthen this by
showing that most of the mass of ∆g must be spent near 1− 2e.

Lemma 12.
∫

V1−2e(∆g(x, y)) dx dy = O(δ3).

Proof. By the second part of Lemma 7,

H(e)− S(g) =

∫

D(g) =

∫

D(g)

(g − e)2
(g − e)2

≥ C(e)

∫

(1 + Θ((g − (1− e))2))(g − e)2

= C(e)‖∆g‖22 +Θ

(
∫

(g − (1− e))2(g − e)2
)

= C(e)‖∆g‖22 +Θ

(
∫

V1−2e(∆g)

)

.

On the other hand, Lemma 8 implies that

H(e)− S(g) ≤ C(e)δ2 +O(δ3) ≤ C(e)‖∆g‖22 +O(δ3),

and comparing this to the previous bound proves the claim. �
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4.4. Concentration of degrees. We define the “degree” of x ∈ [0, 1] to be d(x) =
∫

g(x, y) dy.
Note that

∫

d(x) dx = ε(g) = e. It turns out that having a non-constant degree function
increases the triangle density, so our optimal graphon g must have an almost-constant degree
function.

Lemma 13.
∫

(d(x)− e)2 dx = O(δ4)

Recalling that δ4 = Θ(‖∆g‖42), this is better than the trivial bound (coming from Jensen’s
inequality) of

∫

(d(x)− e)2 dx ≤ ‖∆g‖22.

Proof. Start by observing that

Tr[(T∆g)
3] = t− e3 + 3e3 − 3e

∫

d2(x) dx = −δ3 + 3e

∫

(d(x)− e)2 dx.

Cauchy-Schwarz gives Tr[(T∆g)
3] ≥ −‖∆g‖32, and so

δ3 ≤ ‖∆g‖32 − 3e

∫

(d(x)− e)2 dx.

By the concavity of the function t 7→ t2/3, if s < t then (t− s)2/3 ≤ t2/3− 2
3
t−1/3s. Therefore,

δ2 ≤ ‖∆g‖22 −
2e
∫

(d(x)− e)2 dx

‖∆g‖2
.

Comparing this to Lemma 8 gives

C(e)‖∆g‖22 ≤ H(e)− S(g) ≤ C(e)δ2 +O(δ3)

≤ C(e)‖∆g‖22 − 2eC(e)

∫

(d(x)− e)2 dx

‖∆g‖2
+O(δ3),

and so we conclude that
∫

(d(x)− e)2 dx ≤ O(‖∆g‖2δ3) = O(δ4).

�

4.5. Rank. In this section, we will prove Proposition 6. We’ll start by just considering an
eigenfunction (which will not necessarily take only two values). Later, we’ll round it.

Lemma 14. There is a function ṽ(x) such that

‖∆g(x, y) + ṽ(x)ṽ(y)‖22 = O(δ3).

Proof. Recall that

(19) H(e)− S(g) ≥ C(e)‖∆g‖22,
and then we used the fact that (if λi are the eigenvalues of T∆g)

∑

i λ
2
i ≥ (

∑

i |λi|3)2/3 to
compare this to δ3. We can sharpen this eigenvalue comparison: if we write the eigenvalues λi
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so that their absolute values are non-increasing, and if ε > 0 is chosen so that
∑

i≥2 λ
2
i = ελ21,

then

‖λ‖33 ≤ ‖λ‖∞‖λ‖22 = |λ1|‖λ‖22 ≤
‖λ‖32√
1 + ε

and so

‖∆g‖22 = ‖λ‖22 ≥ (1 + ε)1/3‖λ‖23.
Recalling from Lemma 13 that ‖λ‖33 ≥ −Tr[(T∆g)

3] = δ3 + 3e‖d− e‖22 and that ‖d− e‖22 =
O(δ4), we have

‖∆g‖22 ≥ (1 + ε)1/3(δ3 −O(δ4))2/3 = δ2 + Ω(εδ2)−O(δ3).

Combining this estimate with (19) gives

H(e)− S(g) ≥ C(e)δ3 + Ω(εδ2)−O(δ3).

Compared to Lemma 8, this shows that ε = O(δ). In other words, we have
∑

i≥2 λ
2
i = O(δλ21).

On the other hand,
∑

i≥1 λ
2
i = ‖∆g‖22 = Θ(δ2), and so λ21 = Θ(δ2) and

∑

i≥2 λ
2
i = O(δ3). In

particular, if u(x) is an eigenfunction of ∆g with eigenvalue λ1, normalized so that ‖u‖2 = 1,
then

‖∆g − λ1u(x)u(y)‖22 = O(δ3).

Finally, note that λ1 < 0, because
∑

i λ
3
i = t − e3 + O(δ4) = −δ3 + O(δ4), and since

∑

i≥2 |λi|3 ≤
(
∑

i≥2 λ
2
i

)3/2
= O(δ9/2), we must have λ31 = −δ3 + O(δ4). Setting ṽ(x) =

√

|λ1|u(x) completes the proof. �

From now on, we fix a function ṽ satisfying Lemma 14. The following bound just comes
from combining Lemma 14 with Lemma 12 and the triangle inequality (in the form of
Lemma 9).

Corollary 15.
∫

V2e−1(ṽ(x)ṽ(y)) dx dy = O(δ3).

Our next goal is to show that we can replace ṽ(x) by a rounded version. We’ll start by
ignoring the sign of ṽ.

Lemma 16. Let v̄(x) be either 0 or
√
2e− 1, whichever is closer to |ṽ(x)|. There is a

universal constant C such that

‖v̄(x)v̄(y)− |ṽ(x)ṽ(y)|‖22 ≤ C

∫

V2e−1(ṽ(x)ṽ(y)) dx dy.

Proof. Let c =
√
2e− 1, and let w(x, y) be either 0 or c2, whichever is closer to |ṽ(x)ṽ(y)|.

Since v̄(x)v̄(y) is always either 0 or c2, we have the pointwise bound
∣

∣

∣
|ṽ(x)ṽ(y)| − w(x, y)

∣

∣

∣
≤
∣

∣

∣
|ṽ(x)ṽ(y)| − v̄(x)v̄(y)

∣

∣

∣
.

Our first goal is to show the reverse inequality for most points x and y:

(20)
∣

∣

∣
|ṽ(x)ṽ(y)| − v̄(x)v̄(y)

∣

∣

∣
≤ C

∣

∣

∣
|ṽ(x)ṽ(y)| − w(x, y)

∣

∣

∣
= CV2e−1(ṽ(x)ṽ(y)).
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Let

A1 = {x : |ṽ(x)| ≤ 1

2
c} = {v̄ = 0}

A2 = {x : |ṽ(x)| ≥ 4

3
c}.

If x ∈ A1 then v̄(x)v̄(y) = 0 no matter the value of y. Now if x ∈ A1 and |ṽ(y)| ≤ c then
w(x, y) = 0 and so v̄(x)v̄(y) = w(x, y). If x ∈ A1 and c < |ṽ(y)| ≤ 4c/3 then w(x, y) = c2

but |ṽ(x)ṽ(y)| ≤ 2c2/3, meaning that

∣

∣

∣
|ṽ(x)ṽ(y)| − w(x, y)

∣

∣

∣
≥ c2

3
≥ 1

2
|ṽ(x)ṽ(y)| = 1

2

∣

∣

∣
v̄(x)v̄(y)− |ṽ(x)ṽ(y)|

∣

∣

∣

To summarize: if x ∈ A1 and y 6∈ A2 then (20) holds with C = 2. Of course, the same holds
if y ∈ A1 and x 6∈ A2.

If x, y 6∈ A1 then v̄(x)v̄(y) = c2 and w(x, y) could be either 0 or c2. If w(x, y) = c2 then
v̄(x)v̄(y) = w(x, y) and so (20) holds with C = 1; while if w(x, y) = 0 then

∣

∣

∣
|ṽ(x)ṽ(y)| − w(x, y)

∣

∣

∣
= |ṽ(x)ṽ(y)|

≥ 1

8
(|ṽ(x)ṽ(y)|+ c2)) ≥ 1

8

∣

∣

∣
|ṽ(x)ṽ(y)| − v̄(x)v̄(y)

∣

∣

∣
,

and so (20) holds with C = 8.

The only case where we have not shown (20) is when x ∈ A1 and y ∈ A2 (or vice versa).
In particular, by integrating out (20) on every set where we have proven it, we get

(21)

∫

[0,1]2\((A1×A2)∪(A2×A1))

(|ṽ(x)ṽ(y)| − v̄(x)v̄(y))2 dx dy ≤ C‖|ṽ(x)ṽ(y)| − w‖22.

Finally, we consider the case x ∈ A1, y ∈ A2: here the pointwise bound (20) is not
necessarily true, and so we give an integral bound instead. Note that

‖|ṽ(x)ṽ(y)| − w‖22 ≥
∫

A1×A1

(|ṽ(x)ṽ(y)| − w(x, y))2 dx dy

=

∫

A1×A1

ṽ2(x)ṽ2(y) dx dy

=

(
∫

A1

ṽ2(x) dx

)2
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and similarly

‖|ṽ(x)ṽ(y)− w‖22 ≥
∫

A2×A2

(|ṽ(x)ṽ(y)| − w(x, y))2 dx dy

=

∫

A2×A2

(|ṽ(x)ṽ(y)| − c2)2 dx dy

≥
∫

A2×A2

(|ṽ(x)ṽ(y)| − 9

16
|ṽ(x)||ṽ(y)|)2 dx dy

≥ 1

16

∫

A2×A2

ṽ2(x)ṽ2(y) dx dy

=

(

1

4

∫

A2

ṽ2(x) dx

)2

.

So then

∫

A1×A2

(|ṽ(x)ṽ(y)| − v̄(x)v̄(y))2 dx dy =

∫

A1×A2

ṽ2(x)ṽ2(y) dx dy

=

∫

A1

ṽ2(x) dx

∫

A2

ṽ2(y) dy

≤ 4‖|ṽ(x)ṽ(y)| − w‖22.

Of course, we have the same bound if we replace A1 ×A2 with A2 ×A1. Together with (21),
this shows that

‖|ṽ(x)ṽ(y)| − v̄(x)v̄(y)‖22 ≤ C‖|ṽ(x)ṽ(y)| − w‖22.

This is almost the same as the claim; the difference is that the right hand side above is

C

∫

min{ṽ2(x)ṽ2(y), (|ṽ(x)ṽ(y)| − c2)2} dx dy,

whereas right hand side in the claim has no absolute values. But since
∣

∣

∣
|v(x)v(y)| − c2

∣

∣

∣
≤

|v(x)v(y)− c2|, the claim follows. �

Next, we handle the signs. Of course, ṽ(x) can be negated without changing ṽ(x)ṽ(y), but
the rounding to {0,

√
2e− 1} is affected by the sign. Therefore, we may need to replace ṽ

by −ṽ in order to give bounds for the rounded version.

Lemma 17. After possibly replacing ṽ by −ṽ, the following holds. Let v(x) be either 0 or√
2e− 1, whichever is closer to ṽ(x). Then

‖v(x)v(y)− ṽ(x)ṽ(y)‖22 ≤ C

∫

V2e−1(ṽ(x)ṽ(y)) dx dy.
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Proof. Let c =
√
2e− 1 and recall the definition of v̄ from Lemma 16: v̄(x) is either 0 or c,

whichever is closer to |ṽ(x)|. In particular,

v(x)v(y) = v̄(x)v̄(y) if ṽ(x) ≥ − c
2
and ṽ(y) ≥ − c

2

v(x)v(y) = v̄(x)v̄(y) = 0 if |ṽ(x)| ≤ c

2
or |ṽ(y)| ≤ c

2

v(x)v(y) = 0 6= c2 = v̄(x)v̄(y) if ṽ(x) < − c
2
and |ṽ(y)| > c

2
, or vice versa.

Let A1 = {x : ṽ(x) < −c/2} and A2 = {x : ṽ(x) > c/2}, so that v(x)v(y) 6= v̄(x)v̄(y) only
on A1 × A1, A1 × A2, and A2 × A1. Hence,

‖ṽ(x)ṽ(y)− v(x)v(y)‖22 − ‖ṽ(x)ṽ(y)− v̄(x)v̄(y)‖22

≤
∫

A1×A1

(ṽ(x)ṽ(y)− v(x)v(y))2 dx dy + 2

∫

A1×A2

(ṽ(x)ṽ(y)− v(x)v(y))2 dx dy

=

(
∫

A1

v2(x) dx

)2

+ 2

∫

A1

v2(x) dx

∫

A2

v2(x) dx.

Because v̄ is non-negative, |ṽ(x)ṽ(y)−v̄(x)v̄(y)| ≤
∣

∣

∣
|ṽ(x)ṽ(y)|−v̄(x)v̄(y)

∣

∣

∣
, and then Lemma 16

implies that

(22) ‖ṽ(x)ṽ(y)− v(x)v(y)‖22 ≤ C

∫

V2e−1(ṽ(x)ṽ(y)) dx dy

+

(
∫

A1

v2(x) dx

)2

+ 2

∫

A1

v2(x) dx

∫

A2

v2(x) dx

and it remains to bound the last two terms.

Now, on A1 ×A2, we have ṽ(x)ṽ(y) ≤ −c2/4, meaning that V2e−1(v(x)v(y)) = v2(x)v2(y).
Hence,

∫

[0,1]2
V2e−1(v(x)v(y)) dx dy ≥

∫

A1×A2

v2(x)v2(y) dx dy

=

∫

A1

v2(x) dx

∫

A2

v2(y) dy.

Moreover, we may assume that
∫

A1

v2(x) dx ≤
∫

A2

v2(y) dy (if not, this becomes true when

we replace v by −v). Then we can remove the last term of (22) at the cost of increasing C
by 3. �

Proof of Proposition 6. Let u be the function that we called v in Lemma 17, and define
v = u−

∫

u dx. Then v trivially satisfies item 2.

By Lemma 17, Lemma 14 and the triangle inequality,

‖u(x)u(y)−∆g‖22 ≤ C

∫

V2e−1(ṽ(x)ṽ(y)) dx dy +O(δ3) = O(δ3),

with the second inequality coming from Corollary 15. Since ‖∆g‖22 = δ2±O(δ3) by Lemma 8,
we have

‖∆g‖2 − ‖u(x)u(y)−∆g‖2 ≤ ‖u(x)u(y)‖2 = ‖u‖22 ≤ ‖∆g‖2 + ‖u(x)u(y)−∆g‖2,
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and so ‖u‖22 = δ ± O(δ2). Since u only takes 2 values (one of them 0, one of them bounded
away from zero), we have a :=

∫

u dx = O(δ). Hence ‖v‖22 = ‖u‖22 − a2 = δ±O(δ2), proving
item 3. The bound a = O(δ) also proves item 1.

For item 4,

‖v(x)v(y)−∆g‖2 ≤ ‖u(x)u(y)−∆g‖2 + ‖v(x)v(y)− u(x)u(y)‖2;
the first term on the right is O(δ3/2), while the second term is ‖a2 − 2au‖2 = O(δ3/2) also.

Having proven the first four claims, we will show that the last two claims follow by per-
turbing C2 and C1 slightly. That is, we are going to redefine v: it will still take two values,
but we will change the sets on which it takes those two values, and then we will recenter it
to maintain the property

∫

v = 0. If we only change the values of v on a set of size O(δ2),
the triangle inequality implies that items 1–4 still hold for the modified function v.

Let A2 ⊂ C1 consist of those x for which
∫

C1

(g(x, y)− (1− e))2 dy >

∫

C1

(g(x, y)− e)2 dy,

and let A1 ⊂ C2 consist of those x for which
∫

C1

(g(x, y)− (1− e))2 dy <

∫

C1

(g(x, y)− e)2 dy.

Note that for x, y ∈ C1 we have g(x, y) = (1 − e) + Θ(δ) + r(x, y), and so if x ∈ A2 then
∫

C1

r(x, y)2 dy = Ω(δ). Similarly, if x ∈ C2 and y ∈ C1 then g(x, y) = e+Θ(δ)+r(x, y) and so

if x ∈ A1 then
∫

C1

r(x, y)2 dy = Ω(δ). Since ‖r‖22 = O(δ3), it follows that |A1 ∪ A2| = O(δ2).

We now redefine Ωi as follows: set C̃2 = C2 ∪ A2 \ A1 and C̃1 = C1 ∪ A1 \ A2. Since g
is bounded and |Ωi∆Ω̃i| = O(δ2), (13) and (14) hold with Ω̃i in place of Ωi. Redefining the
function v to be

√
2e− 1+O(δ) on C̃1 and O(δ) on C̃2 (with the O(δ) terms chosen so that

∫

v = 0), Proposition 6 holds with this modified function v. �

5. Estimating the bipodal parameters

At this point, we have only shown that an entropy-optimal triangle-deficient graphon is
approximately bipodal. For this section, we will temporarily switch to studying truly bipodal
graphons. Up to measure-preserving transformations of [0, 1], every bipodal graphon takes
the form

g(x, y) =











a x, y < c,

b x, y > c,

d x < c < y or y < c < x.

That is, the pode sizes are c and 1 − c, and without loss of generality we can assume that
c ≤ 1− c. We define

∆a = a− e, ∆b = b− e, ∆d = d− e, µ =
c∆a

1− c
+∆d.

The main result of this section is that in the class of bipodal graphons with edge density e,
triangle density τ = e3 − δ3, and parameters ∆b = o(1), c = o(1), ∆d = o(1), µ = o(δ), and
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|∆a| = Ω(1), there is a unique entropy-optimal bipodal graphon and we get good estimates
on its parameters.

To be precise, Let Ge,δ,η be the set of bipodal graphons with edge-density e, triangle density

e3 − δ3, and parameters a, b, c and d satisfying |b− e| < η
√
δ, c < η, |d− e| < η, |a− e| > η,

and |µ| = O(δ3/2).

Proposition 18. For every 1
2
< e < 1 there exists η > 0 such that for any δ < η there is

at most one graphon g ∈ Ge,δ,η maximizing S(g). Moreover, any such optimal graphon has
parameters satisfying

a = 1− e− δ +O(δ2)

b = e− δ2

2e− 1
+O(δ3)

c =
δ

2e− 1
− 2δ2

2e− 1
+O(δ3)

d = e+ δ +
δ2

eH ′(e)

(

H ′(e)−
(

e− 1

2

)

H ′′(e)

)

+O(δ3).(23)

To prove Proposition 18, we first show that the parameters of any optimal graphon must
satisfy the claimed estimates, so assume that g is optimal. We define

∆a = a− e, ∆b = b− e, ∆d = d− e, µ =
c∆a

1− c
+∆d.

The edge density, triangle density and entropy of the graphon are:

ε(g) = c2a+ 2c(1− c)d+ (1− c)2b,(24)

τ(g) = c3a3 + 3c2(1− c)ad2 + 3c(1− c)2bd2 + (1− c)3b3,(25)

S(g) = c2H(a) + 2c(1− c)H(d) + (1− c)2H(b).(26)

5.1. Expressing all quantities in terms of a and µ. Our constraint on edge count is
then

0 = ε− e = c2∆a+ 2c(1− c)∆d+ (1− c)2∆b.

Combined with the definition of µ, this gives

(27) ∆b =
c

1− c

(

c∆a

1− c
− 2µ

)

, ∆d = µ− c∆a

1− c
.

We then turn to the triangle count. Plugging a = e + ∆a, b = e + ∆b, and d = e + ∆d
into equation (25) gives

τ − e3 = 3e2(c2∆a+ 2c(1− c)∆d+ (1− c)2∆b)
+3e

(

c(c∆a+ (1− c)∆d)2 + (1− c)(c∆d+ (1− c)∆b)2
)

+c3∆a3 + 3c2(1− c)∆a∆d2 + 3c2(1− c)2∆b∆d2 + (1− c)3∆b3.(28)

The first line is 3e2(ε− e) = 0. The second line works out to

3e[c((1− c)µ)2 + (1− c)(−cµ)2] = 3ec(1− c)µ2.

The terms in the last line are

(1− c)3
(

c∆a

1− c

)3

,
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3c(1− c)2

[

(

c∆a

1− c

)3

− 2µ

(

c∆a

1− c

)2

+ µ2

(

c∆a

1− c

)

]

,

3c2(1− c)

[

(

c∆a

1− c

)3

− 4µ

(

c∆a

1− c

)2

+ 5µ2

(

c∆a

1− c

)

− 2µ3

]

,

and

c3

[

(

c∆a

1− c

)3

− 6µ

(

c∆a

1− c

)2

+ 12µ2

(

c∆a

1− c

)

− 8µ3

]

.

Setting the sum of the second line of (28) and these four terms equal to −δ3 gives

−δ3 =

(

c∆a

1− c

)3

− 6cµ

(

c∆a

1− c

)2

+3cµ2

(

(1 + 3c)

(

c∆a

1− c

)

+ e(1− c)

)

− (6c2 + 2c3)µ3.(29)

The definition of Ge,δ,η implies that µ = O(δ3/2). This means that the terms in (29)
involving µ do not affect τ − e3 to leading order, so we have

(

c∆a

1− c

)3

= −δ3 + o(δ3).

In particular, c is of order δ. This in turn implies that the o(δ3) terms in (29), which go as
c3µ and cµ2 and higher powers of c and µ, are actually O(δ9/2), so

c∆a

1− c
= −δ +O(δ5/2),

c =
−δ
∆a

+O(δ2).

The leading corrections to the approximation c∆a/(1− c) ≈ −δ come from the terms

−6cµ (c∆a/(1− c))2 and 3ec(1 − c)µ2 in the expansion of τ − e3. A priori we don’t know
which is larger, so for now we will keep both. (They will both turn out to be of order δ5).
However, all other terms are at least one power of δ smaller than one (or both) or these
terms. We can use the approximation c ≈ −δ/∆a to simplify these higher-order corrections:

(

c∆a

1− c

)3

= −δ3 + 3eµ2δ − 6µδ3

∆a
+O(µδ4, µ2δ2),

c∆a

1− c
= −δ + eµ2 − 2µδ2

δ∆a
+O(µδ2, µ2),

where O(µδ4, µ2δ2) is shorthand for O(µδ4) +O(µ2δ2). From that we compute c:

c =
−δ + eµ2−2µδ2

δ∆a

∆a− δ + eµ2−2µδ2

δ∆a

+O(µδ2, µ2)

=
δ + 2µδ2−eµ2

δ∆a

δ −∆a
+O(µδ2, µ2).(30)
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This then determines ∆b and ∆d:

∆b =
c

1− c

(

c∆a

1− c
− 2µ

)

=
δ2

∆a
+

2µδ

∆a
+

4µδ2 − 2eµ2

∆a
+O(µδ3, µ2δ),

∆d = µ+ δ +
2µδ2 − µ2e

δ∆a
+O(µδ2, µ2).

Note that the constraints on ε and τ are algebraic, so we could have expressed b, c and d
as power series in a and µ. However, in a power series the derivative of a term with respect
to µ is at most an order µ−1 larger than the term itself, while the derivative with respect to
a is at most of the same order as the term. We can therefore turn our estimates of (b, c, d)
into estimates of (∂ab, ∂ac, ∂ad) and (∂µb, ∂µc, ∂µd). Specifically:

∂ab =
−δ2
∆a2

− 2µδ

∆a2
+

4µ2e− 8µδ2

∆a3
+O(µ2δ, µδ3)

= − c2

(1− c)2
− 2µδ

∆a2
+

2µ2e− 8µδ2

∆a3
+O(µ2δ, µδ3),

∂ac =
c

δ −∆a
+O(µδ, µ2/δ),

∂ad =
eµ2 − 2µδ2

δ∆a2
+O(µδ2, µ2).

∂µb =
2δ

∆a
+

4δ2 − 4eµ

∆a2
+O(µδ, δ3),

∂µc =
2µe− 2δ2

δ∆a2
+O(µ, δ2),

∂ad = 1 +
2δ2 − 2eµ

δ∆a
+O(δ2, µ).

5.2. Solving ∂aS = ∂µS = 0. We now solve the equations ∂aS = ∂µS = 0 in three passes.
First we solve ∂aS = 0 to lowest order, obtaining a to within O(δ). Using this value of a, we
solve ∂µS = 0, showing that µ is a specific constant times δ2, up to an O(δ3) error. Finally,
we solve ∂aS = 0 more precisely, determining a to order δ, with an O(δ2) error. This then
determines (a, b, c, d) to the accuracy specified in Proposition 18.

Since

(31) S = c2H(a) + 2c(1− c)H(d) + (1− c)2H(b),

∂aS = c2H ′(a) + 2c(1− c)H ′(d)∂ad+ (1− c)2H ′(b)∂ab
+2∂ac(H(d)−H(b) + c(H(a) +H(b)− 2H(d))).

Keeping terms through O(δ2), and noting that all discarded terms are of order δ3 or higher,
we have

∂aS = c2H ′(a)− c2H ′(b)− 2c

∆a
(δH ′(e) + c(H(a)−H(e)) +O(δ3)

= c2(H ′(a) +H ′(e))− 2c2
H(a)−H(e)

a− e
+O(δ3).
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Setting this equal to zero and dividing by δ2 gives

H ′(a) +H ′(e)− 2
H(a)−H(e)

a− e
= O(δ).

This implies that a is within O(δ) of either e or 1− e. Since a− e is assumed not to be o(1),
this means that we can write

a = 1− e+ a1,

where a1 is O(δ). This allows us to expand H(a) and H ′(a) a power series in a1 with quan-
tified errors and also to quantify how much −1/∆a and 1/(δ −∆a) differ from 1/(2e− 1).
In particular,

H(d)−H(b) + c(H(a) +H(b)− 2H(d)) = H ′(e)δ +O(µ, δ2).

We now evaluate

∂µS = 2c(1− c)H ′(d)∂µd+ (1− c)2H ′(b)∂µb
+2∂µc(H(d)−H(b) + c(H(a) +H(b)− 2H(d)))

through order µ, δ2:

2c(1−c)H ′(d)∂µd = 2

(

δ

2e−1
+
a1δ − 2δ2

(2e−1)2

)

(

H ′(e)+δH ′′(e)
)

(

1+
2eµ−2δ2

δ(2e−1)

)

+o(µ, δ2)

= H ′(e)

(

2δ

2e− 1
+

2a1δ − 8δ2 + 4eµ

(2e− 1)2

)

+
2H ′′(e)δ2

2e− 1
+ o(µ, δ2),

(1−c)2H ′(b)∂µb = H ′(e)

(

1− 2δ

2e− 1

)( −2δ

2e− 1
+

4δ2 − 4eµ− 2a1δ

(2e− 1)2

)

+ o(µ, δ2)

= H ′(e)

( −2δ

2e− 1
+

8δ2 − 4eµ− 2a1δ

(2e− 1)2

)

+ o(µ, δ2).

2∂µc(H(d)−H(b) + c(H(a) +H(b)− 2H(d))) = 2

(

2eµ− 2δ2

δ(2e− 1)2

)

H ′(e)δ + o(µ, δ2).

Adding up the terms in ∂µS and setting the total equal to zero, we have

4H ′(e)(µe− δ2)

(2e− 1)2
+

2H ′′(e)δ2

2e− 1
= o(µ, δ2),

eµ− δ2 = −H
′′(e)δ2(2e− 1)

2H ′(e)
+ o(µ, δ2),

µ =
δ2

e

(

1− H ′′(e)(2e− 1)

2H ′(e)

)

+ o(δ2, µ).(32)

Now that we have established that µ = O(δ2), we can check the order of the error terms in
our estimate of ∂µS. They are all O(δ3), not just o(µ, δ2), so we have actually estimated µ
to within O(δ3).

Using our known value of µ, we can restate our estimates for the derivatives of (b, c, d) as

∂ab =
−δ2
∆a2

− 2µδ

∆a2
+O(δ4)

=
−c2

(1− c)2
− 2cµ

2e− 1
+O(δ4),

∂ac =
c

δ −∆a
+O(δ3)
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=
c2

δ
+O(δ3),

∂ad = O(δ3).

We then compute the first three terms in ∂aS :

c2H ′(a) = c2(−H ′(e) + a1H
′′(e)) +O(δ4),

(1− c)2∂abH
′(b) = −c2H ′(e)− 2cµ

2e− 1
H ′(e) +O(δ4),

2c(1− c)∂adH
′(d) = O(δ4).

The last term, namely 2∂ac(H(d)−H(b) + c(H(a) +H(b)− 2H(d))), works out to

2c2

δ

(

H ′′(e)δ2

2
+H ′(e)

(

δ + µ+
δ2

2e− 1
+ c(−a1 − 2δ)

))

+O(δ4)

=
2c2

δ

(

H ′′(e)δ2

2
+H ′(e)(δ + µ− c(a1 + δ)

)

+O(δ4).

Adding everything together, we have

∂aS = c2(a1 + δ)

(

H ′′(e)− 2H ′(e)

2e− 1

)

+O(δ4),

so
a1 = −δ +O(δ2).

Applying this value, and the computed value of µ, to our expressions for (a, b, c, d), we obtain
the estimates of Proposition 18.

5.3. Uniqueness. Having proven that any optimizing bipodal graphon must have certain
parameter estimates, we now show that it is unique. We compute the Hessian of S with
respect to a and µ in a neighborhood of the optimal graphon, specifically in the neighborhood
defined by the estimates in Proposition 18, and show that is is well-approximated by a fixed
non-degenerate matrix. That is, the equations ∂aS = ∂µS = 0 are approximately linear and
non-degenerate in this region, and so have a unique solution.

The partial derivatives of b, c, and d are, to leading order,

∂ab =
−δ2

(2e− 1)2
+O(δ3), ∂µb =

−2δ
2e−1

+O(δ2),

∂2aab =
−2δ2

(2e− 1)3
+O(δ3), ∂2µµb =

−4e
(2e−1)2

+O(δ), ∂2aµb =
−2δ

(2e− 1)2
+O(δ2).

∂ac =
δ

(2e− 1)2
+O(δ2), ∂µc =

2eµ−2δ2

δ(2e−1)2
+O(δ2),

∂2aac =
2δ

(2e− 1)3
+O(δ2), ∂2µµc =

2e
δ(2e−1)

+O(1), ∂2aµc =
4eµ− 4δ2

δ(2e− 1)
+O(δ2).

∂ad =
eµ2 − 2µδ2

δ(2e− 1)2
+O(δ4), ∂µd = 1 +O(δ),

∂2aad =
2eµ2 − 4µδ2

δ(2e− 1)3
+O(δ4), ∂2µµd = 2e

δ(2e−1)
+O(1) ∂2aµd =

2eµ− 2δ2

δ(2e− 1)2
+O(δ2).
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We compute ∂2aaS to order δ2. Four terms contribute to that order, namely

2∂2aac(H(d)−H(b)) ≈ 4δ2H ′(e)

(2e− 1)3
, 4c∂acH

′(a) ≈ −4δ2H ′(e)

(2e− 1)3
,

∂2aabH
′(b) ≈ −2δ2H ′(e)

(2e− 1)3
, c2H ′′(a) ≈ δ2H ′′(e)

(2e− 1)2
.

Adding up these terms gives

∂2aaS =
δ2

(2e− 1)2

(

H ′′(e)− 2H ′(e)

2e− 1

)

+O(δ3).

In the expansion of ∂2µµS, the unique O(δ−1) term is 2(1− 2c)∂2µµdH
′(d), giving us

∂2µµS =
4eH ′(e)

δ(2e− 1)
+O(1).

Finally, in computing ∂2aµS there are two O(δ) terms, namely (1− c)2∂2aµbH
′(b) and

2(1 − 2c)∂ac∂µdH
′(d). The first gives −2δH ′(e)/(2e− 1)2 + O(δ2) while the second gives

+2δH ′(e)/(2e− 1)2 +O(δ2), so
∂2aµS = O(δ2).

Since the Hessian of S takes the form
(

K1δ
2 +O(δ3) O(δ2)
O(δ2) K2δ

−1 +O(1)

)

,

for negative constants K1 and K2, the entropy has a unique maximizer, and indeed a unique
critical point, in the region governed by the estimates of Proposition 18. At first glance, the
off-diagonal terms appear as big as the ∂2aaS term. However, replacing the variable µ with
µδ−3/2 would convert the Hessian to the form

(

K1δ
2 +O(δ3) O(δ7/2)
O(δ7/2) K2δ

2 +O(δ3)

)

,

in which the known diagonal terms more manifestly dominate the error terms.

This completes the proof of Proposition 18.

6. Averaging

We now return to the study of entropy-optimal graphons that are not necessarily bipodal:
let g be a graphon maximizing S(g) subject to ε(g) = e, τ(g) = e3 − δ3, and recall from
Proposition 6 that we can partition [0, 1] into podes C1 and C2 so that g is approximately
bipodal with respect to these podes. Recall also the definition of v from Proposition 6, and
that g(x, y) ≈ e − v(x)v(y). Let h be the graphon obtained by averaging g on the podes
Ci × Cj. We will write h = g +∆h.

In this section we show that g must be exactly bipodal. Specifically, we show that if g 6= h
then we can get a contradiction by constructing a h̃ with τ(h̃) = τ(g) but S(h̃) > S(g). This
argument comes in four parts:

(1) we give a lower bound on S(h)−S(g), and we show that if the bound is almost sharp
then ∆h has a particular structure;
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(2) we give an upper bound on τ(h) − τ(g), and we show that if the bound is almost
sharp then ∆h has a particular structure;

(3) we find a perturbation h̃ of h that trades off entropy for triangles at essentially the
best possible ratio of the preceding two bounds, and it follows that if g is optimal
then both of the preceding two bounds must be almost sharp; and finally,

(4) we show that the structure of ∆h implied by the first two parts is incompatible with
Proposition 6.

One basic observation before we start is that because v(x)v(y) is constant on Ωi × Ωj,
and because the mean of any function is the constant with the smallest L2 distance to that
function,

(33) ‖∆h‖22 ≤ ‖g − v(x)v(y)‖22 = O(δ3),

where the last inequality follows from Proposition 6.

6.1. The entropy change. Let’s compute the change in entropy that results from replacing
each pode in g by its average in h. Recall that C2 ⊂ [0, 1] is the set on which v(x) ≈ 0 and
C1 = [0, 1] \ C2 is the set on which v(x) ≈

√
2e− 1. By Proposition 6 and the fact that

|C1| = Θ(δ),

h(x, y) =











h11 = 1− e+O(δ1/2) on C1 × C1

h12 = e+O(δ) on C2 × C1 and C1 × C2

h22 = e+O(δ3/2) on C2 × C2

In terms of the notation of Section 5, h11 = a, h12 = d, h22 = b, and |C1| = c.

Because h is obtained by averaging g, it has larger entropy. Our first bound shows that it
must be larger by at least about the “optimal entropy-L2 tradeoff constant,” C(e).

Lemma 19.

S(g) ≤ S(h)− C(e)(1−O(
√
δ))‖g − h‖22.

Proof. Let D(p, q) = p ln p
q
+ (1− p) ln 1−p

1−q
, and note that for any set A ⊂ [0, 1]2,

∫

A

D(g(x, y), q) dx dy = H(q)|A| −
∫

A

H(g(x, y)) dx dy.

In particular, if we apply this to A = Ωi × Ωj then
∫

Ωi×Ωj

H(h(x, y))−H(g(x, y)) dx dy =

∫

A

D(g(x, y), hij) dx dy.

Recalling the definition of C(e) from (15), we have

(34)

∫

A

D(g(x, y), hij) dx dy ≥ C(hij)

∫

A

(g(x, y)− hij)
2 dx dy.

Since C(e) = C(1− e) and C is continuous and differentiable at e, C(hij) = C(e) +O(δ1/2)
for every i and j. Hence,

∫

A

D(g(x, y), hij) dx dy ≥ C(e)(1−O(
√
δ))

∫

A

(g(x, y)− h(x, y))2 dx dy,
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and summing over i and j gives

S(g) ≤ S(h)− C(e)(1−O(
√
δ))‖g − h‖22. �

Next, we show that unless g approximately takes the value e and 1− e, the entropy gain
of h is even larger than in Lemma 19. The argument here is similar to that of Lemma 8; the
difference is that the cost here is measured in terms of ‖∆h‖22, instead of in terms of ‖∆g‖22
(which is much larger).

Lemma 20. Fix η > 0. For sufficiently small δ (depending on η), if
∫

C1×C1

V2e−1(−∆h) dx dy ≥ η‖∆h‖22

or
∫

(C1×C1)c
V2e−1(∆h) dx dy ≥ η‖∆h‖22

then

S(g) ≤ S(h)− C(e)(1 + Ω(η))‖∆h‖22.

Proof. We follow the same argument as in Lemma 19, but in (34) we use the improved bound
of Lemma 7 to obtain

∫

Ωi×Ωj

D(g(x, y), hij) dx dy ≥
∫

Ωi×Ωj

(C(hij) + Ω((g − 1 + hij)
2)(g − hij)

2 dx dy.

In particular, compared to (34), the right hand side is increased by

Ω

(

∫

Ωi×Ωj

min{|g − 1 + hij|, |g − hij|}2 dx dy
)

= Ω

(

∫

Ωi×Ωj

V1−2hij
(∆h) dx dy

)

.

Recalling that h22 = 1− e+ o(1), and hij = e+ o(1) otherwise, Lemma 10 implies that
∫

C1×C1

D(g(x, y), h22) dx dy ≥ C(h22)|C1|2 +
∫

C1×C1

V2e−1(−∆h) dx dy − o(‖∆h‖22),

and
∫

Ωi×Ωj

D(g(x, y), hij) dx dy ≥ C(hij)|Ωi||Ωj|+
∫

Ωi×Ωj

V2e−1(∆h) dx dy − o(‖∆h‖22),

for (i, j) 6= (2, 2). Now we simply sum over i, j as in the proof of Lemma 19: under our as-
sumptions, at least one of the

∫

Ωi×Ωj
V2e−1(±∆h) dx dy terms gives an additional contribution

of Ω(η‖∆h‖22) compared to Lemma 19. �

6.2. The triangle change. In this section we will control the triangle change between g
and h. Recall that T∆h : L2([0, 1]) → L2([0, 1]) denotes the integral operator with kernel ∆h.
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Recall that

τ(h)− τ(g) = 3

∫

h(x, y)∆h(y, z)∆h(z, x) + 3

∫

h(x, y)h(y, z)∆h(z, x)

+

∫

∆h(x, y)∆h(y, z)∆h(z, x)

= 3

∫

h(x, y)∆h(y, z)∆h(z, x) +O(‖∆h‖32)

≥ −3‖T∆hv‖22 +O(δ3/2‖∆h‖22),(35)

where the last line follows because (by Proposition 6) h = e − v(x)v(y) − r̃(x, y) for some
‖r̃‖2 ≤ δ3/2, and the term

∫

e∆h(y, z)∆h(z, x) dx dy dz is non-negative.

Lemma 21.

〈v, T∆hv〉 = 0

Proof. We can write

〈v, T∆hv〉 =
∫

∆h(x, y)v(x)v(y) dx dy;

recall that v(x)v(y) is constant on every pode and ∆h(x, y) integrates to zero on each pode.
�

Now define u = ‖v‖−2
2 T∆hv, define w(x, y) by ∆h(x, y) = u(x)v(y) + u(y)v(x) + w(x, y),

and write Tw for the integral operator with kernel w. By Lemma 21, 〈u, v〉 = 0. Then
u = T∆hv = u+ Twv, and so Twv = 0. It follows that

‖T∆h‖22 = ‖∆h‖22 = 2‖u‖22‖v‖22 + ‖w‖22 = 2
‖T∆hv‖22
‖v‖22

+ ‖w‖22.

Since ‖w‖22 ≥ 0, ‖T∆hv‖22 ≤ 1
2
‖∆h‖22‖v‖22, and then (35) gives the following bound:

Lemma 22.

τ(h) ≤ τ(g) +
3

2
‖∆h‖22‖v‖22 − 3‖w‖22‖v‖22 +O(δ3/2‖∆h‖22).

We should interpret Lemma 22 as saying that τ(h) . τ(g)+ 3
2
‖∆h‖22‖v‖22, with approximate

tightness only if ‖w‖22 is small compared to ‖∆h‖22.
Let’s also note that ‖u‖2 must be small:

Lemma 23.

‖u‖22 = O(δ2).

Proof.
2‖u‖22‖v‖22 ≤ ‖∆h‖22 = O(δ3),

where the second inequality follows from (33). Finally, ‖v‖22 = Θ(δ). �

In order for Lemma 22 to be sharp, ‖w‖2 must be small compared to ‖∆h‖2. On the other
hand, Lemma 20 implies that if the entropy change inequality of Lemma 19 is sharp then
∆h must spend most of its L2 mass at particular values. Combining these two pieces of tells
us that u must spend most of its L2 mass at particular values.
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Lemma 24. Fix η ≥ δ > 0 and suppose that ‖w‖22 ≤ η‖∆h‖22.
If
∫

C1×C1

V2e−1(−∆h) dx dy ≤ η‖∆h‖22 then

∫

C1

V√2e−1(−u) ≤ O(η)‖u‖22.

If
∫

(C1×C1)c
V2e−1(∆h) dx dy ≤ η‖∆h‖22 then

∫

C2

V√2e−1(u) ≤ O(η)‖u‖22.

Proof. Let v2 =
√
2e− 1 ± O(δ) be the value that v takes on C1. On C1 × C1, we have

∆h = v2(u(x) + u(y)) + w(x, y). If
∫

C1×C1

V2e−1(−∆h) dx dy ≤ η‖∆h‖22 then (by Lemma 9)

∫

C1×C1

V2e−1(−v2(u(x) + u(y))) dx dy ≤ O(η)‖∆h‖22 +O(‖w‖22) = O(η)‖∆h‖22.

Since (2e− 1)/v2 =
√
2e− 1 +O(δ), Lemma 10 implies that

∫

C1×C1

V√2e−1(−u(x)− u(y)) dx dy ≤ O(η)‖∆h‖22 +O(δ2‖u‖22) ≤ O(η)‖∆h‖22.

We apply Lemma 11 with K = O(η)‖∆h‖22, Ω = C1, and µ the Lebesgue measure on Ω.
(Note that the hypotheses of Lemma 11 are satisfied when δ is small, because |C1| = Θ(δ),
while ‖u‖22 = O(δ2) and ‖∆h‖22 = O(δ3)). Since |C1| = Θ(δ), this gives

∫

C1

V√2e−1(−u(x)) dx = O(η‖∆h‖22/δ) = O(η‖u‖22),

as claimed.

Now we prove the second claim. For (x, y) ∈ C2 × C1, ∆h(x, y) = v2u(x) + w(x, y) ±
O(δu(y)). Since ‖δu(y)‖22 = δ2‖u‖22 = Θ(δ‖∆h‖22), if we set w̃(x, y) = w(x, y) ± O(δu(y))
then ∆h(x, y) = v2u(x) + w̃(x, y), and ‖w̃‖22 ≤ (η + O(δ))‖∆h‖22 = O(η)‖∆h‖22. Assuming
that

∫

C2×C1

V2e−1(∆h) dx dy ≤ η‖∆h‖22,

Lemma 9 implies that
∫

C2×C1

V2e−1(v2u(x)) dx dy ≤ O(η)‖∆h‖22,

and since |C1| = Θ(δ), we have
∫

C2

V(2e−1)/v2(u(x)) dx ≤ O(δη)‖∆h‖22 = O(η‖u‖22).

The second claim follows from Lemma 10 and the fact that v2 =
√
2e− 1 +O(δ). �
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7. The improvement lemma

The goal of this section is to show that if we have a bipodal graphon with approximately the
expected parameter values, then we can trade off triangle density for entropy at a prescribed
rate. The idea behind the perturbation is simple: we lower the triangle density by increasing
the size of the small pode, and tweaking the other parameters to keep the edge density
constant.

Recall that (up to measure-preserving transformations), a bipodal graphon h may be
parametrized as

h(x, y) =











a x, y < c,

b x, y > c,

d x < c < y or y < c < x,

and we may assume that c ≤ 1− c.

Recall that Ge,δ,η is the set of bipodal graphons with edge-density e, triangle density e3−δ3,
and parameters a, b, c and d satisfying |b − e| < η

√
δ, c < η, |d − e| < η, |a − e| > η, and

|µ| = O(δ3/2). The point of this definition is that our earlier estimates imply that for any
e, some η > 0 depending on e, and all sufficiently small δ > 0 depending on e, the bipodal
graphon h obtained by starting with an optimal graphon g and averaging on podes belongs
to Ge,δ,η.

Proposition 25. For any graphon h ∈ Ge,δ,η and for any τ(h) > t ≥ τ(h) − δ3, there is a

bipodal graphon h̃ with edge density e, triangle density t, and entropy

S(h̃) ≥ S(h)− C(e)
2(τ(h)− t)

3δ
(1 +O(η)).

Out of the four parameters a, b, c, and d, the edge-density constraint ε(h) = e can be used
to eliminate one. Defining

∆a = a− e, ∆d = d− e, µ =
c∆a

1− c
+∆d,

we can change parameters to express everything in terms of ∆a, c, and µ; and in (29) we
showed that the triangle deficit can be expressed as

(36) − δ3 = c3α3 − 6c3µα2 + 3cµ2((1 + 3c)α + e(1− c))− (6c2 + 2c3)µ3,

where α = ∆a/(1− c). To prove Proposition 25 we will simply increase c while keeping ∆a
and µ constant. In terms of the original parameters, this is equivalent to setting

c(s) = c+ s

a(s) = a

d(s) = e+ µ− c(s)∆a

1− c(s)

b(s) = e− 2c(s)(1− c(s))d(s) + c2(s)a(s)

(1− c(s))2
.

In particular, everything is a rational function of s and is smooth for s < 1 − c. Let hs be
the bipodal graphon with these parameters.
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If µ = O(δ3/2), we see immediately from (36) that

d

ds
τ(hs) = 3c2(s)α3 +O(δ3) = 3δ2(2e− 1) +O(δ3 + δ2s).

Moreover, the O(δ3) term is uniform over 0 ≤ s ≤ δ/(2e− 1), because µ is constant in s
and |c(s)| ≤ (1 + (2e − 1)−1)δ for s in this range. Since −δ3 is continuous in s, for any
t ∈ [τ(h)− ηδ3, τ(h)) there is an

s∗ =
τ(h)− t

3δ2(2e− 1)
(1 +O(η))

such that τ(hs∗) = t.

Next, we consider the change in entropy as a function of s. Recall that if
∫

h = e then
∫

H(h) = H(e) −
∫

D(h). Therefore, the change in entropy is the same as the change in
−
∫

D(h); that is,
d

ds
S(hs) = − d

ds

∫

D(hs(x, y)) dx dy.

We can write
∫

D(hs(x, y)) dx dy = c2(s)D(a) + 2c(s)(1− c(s))D(d(s)) + (1− c(s))2D(b(s)).

Now, D is differentiable with D(e) = 0, and D is locally quadratic around e. That is,
D′(e + ε) = O(ε), D(e + ε) = O(ε2), and D(1 − e + ε) = D(1 − e) + O(ε). In particular,

because |b(s) − e| = O(η
√
δ) and |d(s) − e| = O(η), the derivative in s is bounded by the

contribution of the first term:

d

ds

∫

D(hs(x, y)) dx dy = 2c(s)c′(s)D(a) +O(δη) = 2
δ

2e− 1
D(1− e) +O(δη),

where the second equality holds for s ≤ O(ηδ). Plugging in s = s∗ and applying the
Fundamental Theorem of Calculus, we obtain

D(hs∗) = D(h)− 2δD(1− e)

2e− 1
(1 +O(η))s∗ = D(h)− C(e)

2(τ(h)− t)

3δ
(1 +O(η)),

completing the proof of Proposition 25.

8. Completing the proof of bipodality

Recall that h was obtained by averaging g on podes. Define ε = ‖g − h‖22, and recall that
ε = O(δ3). We assume for a contradiction that g is optimal but not bipodal, and hence
ε > 0.

First, note that Proposition 6 and Lemma 13 imply that for any η1 > 0, if δ > 0 is
sufficiently small then g ∈ Ge,δ,η1 . Indeed, part (3) of Proposition 6 implies the required
estimates on the parameters a, b, c, and d, while Lemma 13 implies the required estimate on
µ. In particular, we may apply Proposition 25 to construct a graphon h̃ with τ(h̃) = τ(g).
Lemma 22 implies that τ(h) ≤ τ(g) + (3/2)εδ + o(εδ), and so Proposition 25 with t = τ(g)

gives a graphon h̃ with τ(h̃) = τ(g) and

S(g) ≥ S(h̃) = S(h)− 2

3
C(e)

τ(h)− τ(g)

δ
(1−O(η1)) ≥ S(h)− C(e)ε(1 +O(η1)).
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In particular, for any fixed η > 0 we can find η1 > 0 small enough so that the conclusion of
Lemma 20 fails to hold for all sufficiently small δ.

On the other hand, for any fixed η > 0, if ‖w‖22 ≥ η‖∆h‖22 then Lemma 22 gives the
improved bound τ(h) ≤ τ(g) + (3/2)εδ(1− Ω(η)), meaning that (by Proposition 25, if η1 is
small compared to η)

S(g) ≥ S(h)− C(e)ε(1− Ω(η)),

which contradicts Lemma 19 (for δ sufficiently small). We conclude that

(37) ‖w‖22 ≤ η‖∆h‖22,
and that the conclusion of Lemma 20 fails, meaning that

(38) max

{
∫

C1×C1

V2e−1(−∆h) dx dy,

∫

(C1×C1)c
V2e−1(∆h) dx dy

}

≤ ηε.

Finally, we will show that (37) and (38) together contradict Proposition 6. Fix x ∈ C1.
Recall that v : [0, 1] → R takes two values; let v1 ≈

√
2e− 1 be the value v takes on C1 and

let v2 = Θ(δ) be the value v takes on C2. Then ∆hx = v1u+u(x)v+wx and gx = hx−∆hx,
where hx(y) = (1 − e) + o(1) for y ∈ C1. Note that hx and v are constant on C1, with
hx = 1 − e + o(1) and v =

√
2e− 1 + o(1). Recalling that u = ‖v‖−2

2 T∆hv, note that if
u(x) ≈ −

√
2e− 1 then hx − u(x)v ≈ e on C1 (and is constant on C1). To be precise, we

consider two cases.

If u(x) ≤ −(1/2)(
√
2e− 1 + η) then hx − u(x)v ≥ 1/2 + Ω(η) on C1. In particular,

hx−u(x)v is closer to e than it is to 1−e, and so item 6 of Proposition 6 implies that wx will
need to be large to compensate: we have gx = hx−u(x)v−v1u−wx ≥ 1/2+Ω(η)−v1u−wx

and so by the triangle inequality,
(
∫

C1

(gx(y)− e)2 dy

)1/2

≤ |e− 1

2
− Ω(η)|+ ‖v1u+ wx‖2

≤ |e− 1

2
− Ω(η)|+ ‖wx‖2 +O(δ).(39)

On the other hand,
(
∫

C1

(gx(y)− (1− e))2 dy

)1/2

≥ |1− e− 1

2
− Ω(η)| − ‖v1u+ wx‖2

≥ |1− e− 1

2
− Ω(η)| − ‖wx‖2 −O(δ).(40)

Item 6 of Proposition 6 implies that (39) can be at most O(δ2) smaller than (40). Since
e > 1/2, for η > 0 sufficiently small (and δ > 0 sufficiently small depending on η),

‖wx‖2 ≥ Ω(η)−O(δ) = Ω(η) = Ω(η|u(x)|).

For the other case, if u(x) ≥ −(1/2)(
√
2e− 1 + η) then (for η sufficiently small) u is

bounded away from −
√
2e− 1 and so V√2e−1(−u(x)) ≥ Ω(u2(x)).

Let A = {x ∈ C1 : u(x) ≤ −(1/2)(
√
2e− 1 + η)} (i.e. the set of x for which the first

case happens), and let B = C1 \ A. Then ‖wx‖22 ≥ Ω(η2u2(x)) for x ∈ A and u2(x) ≤
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O(V√2e−1(−u(x))) for x ∈ B. If
∫

A
u2(x) dx ≥ (1/2)

∫

C1

u2(x) dx then

(41)

∫

C1

‖wx‖22 dx ≥ Ω(η2)

∫

C1

u2(x) dx;

and if
∫

B
u2(x) dx ≥ (1/2)

∫

C1

u2(x) dx then

(42)

∫

C1

V√2e−1(−u(x)) dx ≥ Ω(1)

∫

C1

u2(x) dx.

We will give a similar argument for C2: fix x ∈ C2 and note that gx = hx−u(x)v−v2u−wx,
where hx ≈ e on C1 and v ≈

√
2e− 1 on C1, and v2 = O(δ). This time, if u(x) ≥

(1/2)(
√
2e− 1+η), item 5 of Proposition 6 will imply that ‖wx‖2 is large, while in the other

case we will have V√2e−1(u(x)) bounded below by u2(x).

Let A = {x ∈ C2 : u(x) ≥ (1/2)(
√
2e− 1 + η)} and let B = C2 \ A. Analogously to (39)

and (40), if x ∈ A then hx − u(x)v takes a constant value of at most 1/2 − Ω(η), which is
Ω(η) closer to 1− e than it is to e. Then gx ≤ 1/2− Ω(η)− v2u− wx, and so

(
∫

C1

(gx(y)− (1− e))2 dy

)1/2

≤ |1− e− 1

2
+ Ω(η)|+ ‖wx‖2 +O(δ)

and
(
∫

C1

(gx(y)− e)2 dy

)1/2

≤ |e− 1

2
+ Ω(η)| − ‖wx‖2 −O(δ),

and it follows from item 5 of Proposition 6 that

‖wx‖2 ≥ Ω(η|u(x)|).
On the other hand, if x ∈ B then V√2e−1(u(x)) ≥ Ω(u2(x)) (for η sufficiently small). As
before, depending on whether

∫

A
u2 or

∫

B
u2 is larger, we have either

(43)

∫

C2

‖wx‖22 dx ≥ Ω(η2)

∫

C2

u2(x) dx;

or

(44)

∫

C2

V√2e−1(u(x)) dx ≥ Ω(1)

∫

C2

u2(x) dx.

Finally, we consider whether
∫

C2

u2 dx or
∫

C1

u2 dx is larger. In the former case, we

apply (43) or (44); in the latter case, we apply (41) or (42). We conclude that either
‖w‖22 ≥ Ω(η2)‖u‖22, in which case ‖∆h‖22 = ‖u‖22‖v‖22 + ‖w‖22 and ‖v‖22 = Θ(δ) imply that

‖w‖22 ≥ Ω(ε),

or else at least one of
∫

C2

V√2e−1(u(x)) dx or
∫

C1

V√2e−1(u(x)) dx is Ω(‖u‖22), which by Lemma 24
implies that

max

{
∫

C1×C1

V (∆h) dx dy,

∫

(C1×C1)c
V (∆h) dx dy

}

≥ Ω(ε).

The first case contradicts (37); the second contradicts (38). In either case, this contradiction
implies that ε = 0 and so g is bipodal. This concludes the proof of Theorem 1.
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9. The region O2

Having established the properties of the region O1, where τ is slightly less than ε3, we
turn our attention to the region where the triangle density τ is slightly greater than ε3, the
region O2. In this region, the optimizing graphon was already proven to be bipodal in [14].
To complete the proof of Theorem 2, we must determine the parameters of that optimal
bipodal graphon.

Remark 26. The results of [14] apply when 0 < ε < 1/2 as well as when 1/2 < ε < 1, as
do all the computations in this section. However, they do not apply at ε = 1/2, insofar as
many quantities go as negative powers of 1 − 2ε. By contrast, our results for τ < ε3 only
apply when ε > 1/2. The situation when ε < 1/2 and τ < ε3 is qualitatively different and is
the subject of ongoing work.

Our analysis ofO2 is qualitatively similar to that ofO1, with one very important difference.
Instead of everything being a power series in δ, where (ε, τ) = (e, e3 − δ3), everything is a
power series in ∆τ , where (ε, τ) = (e, e3 +∆τ). We use the constraint ε = e to express b in
terms of a, c, and d, and then use the value of τ to express c in terms of a, d and ∆τ . We
then solve the equations ∂dS = 0 and ∂aS = 0 iteratively. Knowing a and d to a given order
allows us to compute c to a certain order, which then allows us to compute a and d to one
more power of ∆τ than before, which allows us to compute c to one more power of ∆τ , and
the process repeats. We will exhibit the first few steps in this process, enough to compute
the entropy up to an O(∆τ 3) error.

Extended to all orders, the result would be a set of asymptotic series for (a, b, c, d), and
thus for the entropy S. However, the analyticity of of parameters only implies that we have
convergent Taylor series expansions around points in the interior of O2. Our expansion in
powers of ∆τ is around a point (ε, τ) = (e, e3) on the boundary of O2, so convergence of our
series is not guaranteed.

We therefore need a separate iterative method to use at fixed (non-infinitesimal) values
of ∆τ . As before, we linearize the equations ∂aS = ∂dS = 0. As long as the Hessian of S
is well-approximated by a fixed matrix M0 in a neighborhood of the approximate values of
(a, b, c, d) that we have derived for (ε, τ) = (e, e3 +∆τ), then the iteration

(45)

(

anew
dnew

)

=

(

aold
dold

)

−M−1
0

(

∂aS(aold, dold)
∂dS(aold, dold)

)

is guaranteed to converge to the solution to ∂aS = ∂dS = 0. 1

9.1. Expressing quantities in terms of a and d. As before, we begin with the two
identities:

(46) ∆b = −
(

c

1− c

)2

∆a− 2

(

c

1− c

)

∆d

and

∆τ = 3ec(1− c)

(

c

1− c
∆a+∆d

)2

1Using the fixed matrix M0 is less efficient, but more robust, than applying Newton’s method.
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+c3∆a3 + 3c2(1− c)∆a∆d2 + 3c(1− c)2∆b∆d2 + (1− c)3∆b3.(47)

The difference is that now ∆d is of order 1, so the first term in the expansion of ∆τ , which
is Ω(c), dominates the remaining terms, which are O(c2). Using (46), we have

3c(1−c)2∆b∆d2 = −3c3∆a∆d2 − 6c2(1− c)∆d3,

(1−c)3∆b3 = −8c3∆d3 − 12c4

1−c∆a∆d
2− 6c5

(1−c)2∆a
2∆d− c6

(1−c)3∆a
3

3ec

(

c

1−c∆a+∆d

)2

= 3ec

(

∆d2 + c∆d(2∆a−∆d) +
c2

(1− c)2
∆a2

)

,

which in turn gives

∆τ = 3ec∆d2

+c2
(

6e∆a∆d− 3e∆d2 + 3∆a∆d2 − 6∆d3
)

+c3
(

3e∆a2

1− c
+∆a3 − 6∆a∆d2 − 2∆d3

)

− 12c4

1− c
∆a∆d2 − 6c5

(1− c)2
∆a2∆d− c6

(1− c)3
∆a3.(48)

This expression is exact. Given estimates of ∆d to order ∆τ k and ∆a to order ∆τ `, it
determines c to order ∆τ k+1 or ∆τ `+2, whichever is larger. As long as the estimates of ∆a
and ∆d only involve integer powers of ∆τ , so will the estimates of c.

In particular, given values of ∆a and ∆d, we have

c =
∆τ

3d∆d2
− c2

(

2∆a

∆d
− 1 +

∆a− 2∆d

e

)

+O(∆τ 3)

The fact that c can be expanded as a polynomial in c whose coefficients are rational functions
of a and d means that we can compute ∂ac and ∂dc to within O(∆τ

3) by taking the derivative
of this expression. Differentiating implicitly, we have

0 = ∂ac
(

3e∆d2 + 6c(2e∆a∆d− e∆d2 +∆a∆d2 − 2∆2) +O(c2)
)

+c2(6e∆d+ 3∆d2) +O(∆τ 3),

which gives

∂ac = −c2
(

2

∆d
+

1

e

)

+O(∆τ 3).

Similarly,

0 = ∂dc
(

3e∆d2 + 6c(2e∆a∆d− e∆d2 +∆a∆d2 − 2∆τ 2) +O(c2)
)

+6ec∆d+ 6c2(e∆a− e∆d+∆a∆d− 3∆d3) +O(∆τ 3).

After a little algebra, this yields

∂dc =
−2c

∆d

(

1 + c

(

1− 3
∆a

∆d
− ∆a

e
+

∆d

e

))

+O(∆τ 3).

Taking the derivative of (46) with respect to a and d then gives

∂ab = c2
(

3 + 2
∆d

e

)

+O(∆τ 3),

∂db = 2c

(

1 + c

(

5− 4
∆a

∆d
− 2

∆a

e
+ 2

∆d

e

))

+O(∆τ 3).
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9.2. Solving ∂aS = ∂dS = 0. We now compute the partial derivatives of S, beginning with
∂dS to order ∆τ , obtaining:

∂dS = 2cH ′(d) + 2cH ′(b)− 4c

∆d
(H(d)−H(b)) +O(∆τ 2),

Setting this equal to zero and dividing by 2c gives

H ′(d) +H ′(b)− 2

∆d
(H(d)−H(b)) = O(∆τ),

implying that
d = 1− b+O(∆τ) = 1− e+O(∆τ).

We therefore write
d = 1− e+ d1, ∆d = 1− 2e+ d1,

where d1 is a quantity of order ∆τ . This allows us to express quantities like H(d), H ′(d),
H ′′(d), ∆b, H(b), H ′(b) and H ′′(b) in terms of d1.

We next compute ∂aS to order ∆τ 2.

∂aS = c2H ′(a) + (1− c)2∂abH
′(b)

+2∂ac(H(d)−H(b) + c(H(a) +H(b)− 2H(d)))

= c2H ′(a) + c2
(

3 +
2∆d

e

)

H ′(b) +O(∆τ 3).

Setting ∂aS equal to zero gives

H ′(a) = −
(

3 +
2∆d

e

)

H ′(b) +O(∆τ)

= −
(

3 +
2(1− 2e)

e

)

H ′(e) +O(∆τ)

=

(

1− 2

e

)

H ′(e) +O(∆τ).

Let a0 be the solution to

H ′(a0) =

(

1− 2

e

)

H ′(e),

which happens to be

a0 =

(

1 +

(

e

1− e

)
2

e
−1
)−1

.

We then have a = a0 +O(∆τ).

To complete the proof of Theorem 2, we must show that there is an iterative scheme for
approximating (a, b, c, d), and therefore S, for fixed values of (e,∆τ) with ∆τ sufficiently
small. As with our analysis of O1, we do this by computing the Hessian of S.

Our previously computed first derivatives of b and c are, to leading order:

∂ab = c2
(

3 +
2∆d

e

)

+O(∆τ 3),

∂ac = −c2
(

2

∆d
+

1

e

)

+O(∆τ 3),

∂db = 2c+O(∆τ 2),
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∂dc = − 2c

∆d
+O(∆τ 2).

Our second partials are:

∂2aab = O(∆τ 3),

∂2adb = −6
c2

e
− 12

c2

∆d
+O(∆τ 3),

∂2ddb = −4
c

∆d
+O(∆τ 2),

∂2aac = O(∆τ 3),

∂2adc =
c2

∆d2

(

10 +
4∆d

e

)

+O(∆τ 3),

∂2ddc = 6
c

∆d2
+O(∆τ 2).

Next we compute the partial derivatives of S = c2H(a) + 2c(1 − c)H(d) + (1 − c)2H(b).
Since ∂ab and ∂ac are O(∆τ

2), we have

∂aS = ∂abH
′(b) + 2∂ac(H(d)−H(b)) + c2H ′(a) +O(∆τ 3).

Taking another derivative with respect to a, only one term contributes at order ∆τ 2:

∂2aaS = c2H ′′(a0) +O(∆τ 3).

If instead we take a derivative of ∂aS with respect to d, three terms contribute at order ∆τ 2:

∂2adS = 2c∂dcH
′(a) + ∂2adbH

′(b) + 2∂dcH
′(d) +O(∆τ 3)

= −4c2

∆d
H ′(a)− 6c2

(

1

e
+

2

∆d

)

H ′(b)− 2c2
(

1

e
+

2

∆d

)

H ′(d) +O(∆τ 3).

Using the fact that H ′(b) ≈ H ′(e), H ′(d) ≈ −H ′(e) and H ′(a) ≈ (1− 2/e)H ′(e), this
simplifies to

∂2adS =
4c2(1− e)

e(1− 2e)
H ′(e) +O(∆τ 3).

Finally, we compute ∂2ddS. We have

∂dS = ∂dbH
′(b) + 2cH ′(d) + 2∂dc(H(d)−H(b)) +O(∆τ 2).

∂2ddS = ∂2bbbH
′(b) + 4∂dcH

′(d) + 2cH ′′(d) + 2∂2ddc(H(d)−H(b)) +O(∆τ 2)

= − 4c

∆d
H ′(b)− 8c

∆d
H ′(d) + 2cH ′′(d) +O(∆τ 2)

= 2c

(

H ′′(e) +
2

1− 2e
H ′(e)

)

+O(∆τ 2).

The upshot is that ∂2aaS and ∂2adS are nonzero constants times c2 plus O(∆τ 3), while ∂2ddS is
a nonzero constant times c plus O(∆τ 2). Replacing c with ∆τ/(3e(1 − 2e)2) and throwing
away the error terms, we obtain a non-singular matrix M0, with no explicit dependence on
a or d, that comes within

(

O(∆τ 3) O(∆τ 3)
O(∆τ 3) O(∆τ 2)

)

of the actual Hessian for all (a, d) within O(∆τ) of (a0, 1 − e). In particular the iteration
(45), beginning at (a, d) = (a0, 1− e), converges to the unique solution to ∂aS = ∂dS = 0 for
all sufficiently small values of ∆τ . This completes the proof of Theorem 2.
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10. Entropy estimates

Having established the properties of the optimizing graphons inO1 andO2 we now consider
the asymptotic values of the the entropy function as τ approaches ε3, both from above and
from below.

10.1. The O2 region with ε = e, τ > e3, e 6= 1/2. Let

c1 =
∆τ

3e(1− 2e)2

c2 = −2
c1d1
1− 2e

− c21

(

2(a0 − e)− (1− 2e)

1− 2e
+
a0 − e− 2(1− 2e)

e

)

.(49)

By our previous estimates, we have

c = c1 + c2 +O(∆τ 3).

We estimate the terms in (31) using

H(b) = H(e) +H ′(e)∆b+
H ′′(e)

2
∆b2 +O(∆τ 3)

= H(e)−H ′(e)

(

2c

1− c
(1− 2e+ d1) + c2∆a

)

+ 2c2(1− 2e)2H ′′(e)

= H(e)− 2c(1− 2e)H ′(e)− 2cd1H
′(e) + c2(2H ′′(e)(1− 2e)2

−H ′(e)(a0 − e+ 2(1− 2e))) +O(∆τ 3)
H(d)−H(b) = H ′(1− e)d1 −H ′(e)∆b+O(∆τ 2)

= H ′(e)(2c(1− 2e)− d1) +O(∆τ 2)
H(a) +H(b)− 2H(d) = H(a)−H(e) +O(∆τ).

Plugging these terms into (31) yields

S = H(e)− 2(c1 + c2)(1− 2e+ d1)H
′(e)− 2c1d1H

′(e)
+c21

(

H(a0)−H(e) +H ′(e)(2(1− 2e)− (a0 − e)) + 2H ′′(e)(1− 2e)2
)

+O(∆τ 3)

Substituting for c2 from (49), we find that the c1d1 terms cancel, leaving us with

S = H(e)−2c1(1−2e)H ′(e) + 2c21H
′(e)

(

2(a0−e)− (1−2e) +
(1−2e)(a0−e−2(1−2e))

e

)

+c21
(

H(a0)−H(e) +H ′(e)(2(1− 2e)− (a0 − e)) + 2H ′′(e)(1− 2e)2
)

+O(∆τ 3)
= H(e)− 2c1(1− 2e)H ′(e)

+c21

(

H(a0)−H(e) +H ′(e)

(

3(a0 − e) +
2(1− 2e)

e
(a0 + 3e− 2) + 2H ′′(e)(1− 2e)2

))

+O(∆τ 3)

= H(e)− 2∆τ

3e(1− 2e)
H ′(e)

+
∆τ 2

9e2(1−2e)4

(

H(a0)−H(e)+H ′(e)

(

3(a0−e)+
2(1−2e)

e
(a0+3e− 2)

))

+
2∆τ 2H ′′(e)

9e2(1− 2e)2
+O(∆τ 3).
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The linear coefficient is of course negative, since H ′(e) is positive for e < 1/2 and is
negative for e > 1/2. The quadratic coefficient is more complicated but is also negative,
diverging as e−3 ln(e) as e→ 0 and as (e− 1)−1 as e→ 1. See Figure 3.

Figure 3. The coefficient of ∆τ 2 as a function of e.

10.2. The region O1 with ε = e, τ < e3, e > 1/2. As before, we express the parameters
(b, c, d) using the coordinates (a, µ). For convenience, we repeat the key identities:

∆b =
c

1− c

(

c∆a

1− c
− 2µ

)

,

∆d = µ− c∆a

1− c
,

c∆a

1− c
= −δ + 2µδ2 − µ2e

(2e− 1)δ
+O(δ4),

c =
δ + µ2e−2µδ2

(2e−1)δ

2e− 1 + δ − a1
+O(δ4),(50)

where a = 1− e+ a1.

Since S = H(b) + 2c(H(d)−H(b)) + c2(H(a) +H(b)− 2H(d)), we need to evaluate H(b)
through O(δ4), H(d) through O(δ3) and H(a) through O(δ2):

H(b) = H(e) +H ′(e)∆b+
1

2
H ′′(e)∆b2 +O(δ6)

H(d) = H(e) +H ′(e)∆d+
1

2
H ′′(e)∆d2 +

1

6
H ′′′(e)∆d3 +O(δ4)

H(a) = H(1− e) +H ′(1− e)a1 +
1

2
H ′′(1− e)a21 +O(δ3)

= H(e)−H ′(e)a1 +
1

2
H ′(e)a21 +O(δ3).
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This makes

S = H(e) +H ′(e)
(

(1− c)2∆b+ 2c(1− c)∆d− c2a1
)

+
H ′′(e)

2

(

(1− c)2∆b2 + 2c(1− c)∆d2 + c2a21
)

+
H ′′′(e)

3
c(1− c)∆d3 +O(δ5).(51)

The coefficient of H ′(e) is

c(1− c)

(

c∆a

1− c
− 2µ

)

+ 2c(1− c)

(

µ− c∆a

1− c

)

− c2a1 = c2(2e− 1− 2a1).

Squaring and expanding the formula for c in (50) gives

c2 =
δ2 + 2µ2e−2µδ2

2e−1

(2e− 1 + δ − a1)2
+O(δ5)

=
δ2

(2e− 1)2
− 2δ2(δ − a1)

(2e− 1)3
+

3δ2(δ − a1)
2

(2e− 1)4
+

2(µ2e− 2µδ2)

(2e− 1)3
+O(δ5).

Multiplying by (2e − 1 − 2a1), and using the fact that a1 = −δ + O(δ2), the coefficient of
H ′(e) becomes

δ2

(2e− 1)
− 2δ3

(2e− 1)2
+

4δ4

(2e− 1)3
+

2(µ2e− 2µδ2)

(2e− 1)2
+O(δ5).

Next we consider the coefficient of (1/2)H ′′(e), namely

(1− c)∆b2 + 2c(1− c)∆d2 + c2a21 = c2
(

c∆a

1− c
− 2µ

)2

+ 2c(1− c)

(

µ− c∆a

1− c

)2

+ c2a21

= (c2 + 2c(1− c))

(

c∆a

1− c

)2

− 4µc2∆a+ c2a21.

Using the third identity of (50), this reduces to

(2c− c2)δ2 + 4µc2(2e− 1) + c2a21 +O(δ5).

But a1 ≈ −δ and

2c− c2 =
2δ

2e− 1
− 5

δ2

(2e− 1)2
+O(δ3),

so this becomes
2δ3

2e− 1
− 4δ4

(2e− 1)2
+

4µδ2

2e− 1
+O(δ5).

Combining everything gives

S = H(e) +
δ2

2e− 1
H ′(e) + δ3

(

H ′′(e)

2e− 1
− 2H ′(e)

(2e− 1)2

)

+δ4
(

4H ′(e)

(2e− 1)3
− 2H ′′(e)

(2e− 1)2
+

H ′′′(e)

3(2e− 1)

)

+µδ2
(

2H ′′(e)

2e− 1
− 4H ′(e)

(2e− 1)2

)

+
2µ2eH ′(e)

(2e− 1)2
+O(δ5).(52)
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This is a quadratic function of µ that is maximized at

µ =
δ2

eH ′(e)
ν +O(δ3),

where

ν = H ′(e)−
(

e− 1

2

)

H ′′(e),

in agreement with (32). Our final total, involving only the parameters e and δ, is then

S = H(e) +
δ2

2e− 1
H ′(e)− 2δ3ν

(2e− 1)2

+δ4
(

H ′′′(e)

3(2e− 1)
+

4ν

(2e− 1)3
− 2ν2

eH ′(e)(2e− 1)2

)

+O(δ5).

Although this formula for the entropy describes a smooth function of δ at δ = 0, it is not
a smooth function of τ = e3 − δ3. The first and second derivatives of s(ε, τ) with respect to
τ are positive and diverge as δ−1 and δ−4, respectively, as δ → 0.

Comparing the entropy functions in the regions O1 and O2, we see that the entropy is
continuous in τ at τ = ε3, but the first derivative is not. The first derivative approaches a
finite value as τ approaches ε3 from above, as does the second derivative, but these quantities
diverge as τ approaches ε3 from below. This completes the proof of Theorem 3.

11. Longer cycles

Finally, we turn to the edge-k-cycle problem for odd k > 3 and prove Theorem 4. The
strategy is essentially the same as in the proof of Theorems 1–3. The part of the proof
concerning τk < ek follows these steps:

(1) We show that, for any graphon, τk is bounded below by ek − ‖δg‖k2, with equality
only when δg has rank 1 with eigenvalue −δ and the degree function is constant.
Combined with our existing estimates of a graphon with ‖δg‖2 of fixed size, this
gives upper bounds on the entropy of any graphon with the given values of e and δ.
These bounds, as a function of e and δ, are identical to those obtained for triangles.

(2) A bipodal graphon with a = 1−e and d = 1+δ comes within O(δ3) of achieving that
upper bound. This bounds the extent to which an optimal graphon can differ from
our model graphon. These bounds are sharper than in the edge-triangle model. In
the edge-triangle model, we had the a priori estimate

∫ 1

0
δd(x)2 dx = O(δ4), but with

k-cycles we have
∫ 1

0
δd(x)2 dx = O(δk+1). When dealing with bipodal graphons, this

means that the parameter µ is a priori O(δk/2) instead of O(δ3/2). (The µ parameter
will eventually turn out to be O(δk−1).) We also obtain bounds on how far δg is (in
an L2 sense) from having rank one. These bounds are qualitatively similar to those
derived for the edge-triangle model.

(3) The argument that g is approximately bipodal, taking on values that are close to e
or 1− e, proceeds exactly as before.

(4) The averaging argument is similar to before. If the optimal graphon weren’t already
bipodal, we could average its value over each quadrant to get a bipodal graphon with
the same value of ε, and a quantifiable trade-off between τk and entropy. Moreover,
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a sharp trade-off would imply the same structural properties of g that we had in
Section 6.

(5) If we knew that the optimal graphon were bipodal, we could maximize the entropy as
in Section 10, expressing all parameters in terms of ∆a and µ. There is a positive term
proportional to δ2µ, as in the edge-triangle model, and a negative term proportional
to µ2δ3−k. The optimal value of µ is then O(δk−1), implying that d = e+ δ+O(δk−1)
and the contribution of µ to the entropy is O(δk+1). This shows that there is at most
one possiblity for a bipodal optimizer, and gives good estimates for its parameters.

(6) Combining the last two steps, if the original graphon were not optimal, we could
replace it with the averaged graphon of Step 3, then perturb the bipodal parameters
using the estimates from Step 4 to construct a graphon with the same ε and τk, but
larger entropy.

In the limit as k → ∞, our problem reduces to finding a graphon of the form g(x, y) =

e−δv(x)v(y), where
∫ 1

0
v(x) dx = 0 and

∫ 1

0
v(x)2 dx = 1, that maximizes the entropy for fixed

e and δ. This graphon is bipodal, with d and −c∆a/(1− c) exactly equal to δ. Theorem 4
only gives a = 1 − e − δ + O(δ2) to first order in δ, but there is no obstacle to computing
higher coefficients. The parameters for the optimal graphon for any fixed k are all within
O(δk−1) of the parameters for this limiting graphon.

We now begin the proof.

Step 1: Writing g(x, y) = e+ δg(x, y), we have

τk = Tr(gk) = Tr((e+ δg)k).

Expanding this out gives ek+Tr(δgk) plus a number of cross terms. Some of the cross terms
are of the form ek−m〈1, Tδgm1〉, where 1 denotes the constant function in L2([0, 1]). Others
are powers of e times the product of several 〈1, Tδgm1〉 expressions.
The expression 〈1, Tδgm1〉 is zero if m = 1, is

∫ 1

0
δd(x)2 dx if m = 2, and is bounded by

‖δg‖m−2
op

∫ 1

0
δd(x)2 dx if m > 2. Since δg (viewed as an integral operator) is self-adjoint, its

operator norm is the size of its largest eigenvalue, which is bounded by its L2 norm, which is
small compared to 1. Of course, the product of two or more expressions of the form 〈1, Tδgm1〉
is smaller still.

The upshot is that

τk = ek + Tr(δgk) + kek−2

∫ 1

0

δd(x)2 dx+

+terms small compared to

∫ 1

0

δd(x)2 dx

≥ ek + Tr(δgk) +
kek−2

2

∫ 1

0

δd(x)2 dx.

The last term is of course positive-definite. This implies that ‖δg‖2 ≥ δ, with equality (if

and) only if δg is rank-1 with eigenvalue −δ and
∫ 1

0
δd(x)2 dx = 0.

We have previously shown that any graphon with ‖δg‖ ≥ δ has entropy at most

H(e) +
δ2H ′(e)

2e− 1
+O(δ3),
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so this is also an upper bound on the entropy of any graphon with τk = ek − δk.

Step 2: Consider the bipodal graphon with a = 1−e, b = e−δ2/(2e− 1), c = δ/(2e− 1 + δ)
and d = e + δ. This graphon has edge density e, k-cycle density ek − δk, and entropy
H(e) + δ2H ′(e)/(2e− 1) + O(δ3). That is, it comes within O(δ3) of saturating the upper
bound.

This means that the errors in step 1, both those involving
∫ 1

0
δd(x)2 dx being nonzero

and those from comparing Tr(δgk) to ‖δg‖k2, cannot cost us more than O(δ3) in entropy, or
equivalently cannot cause ‖δg‖22 to be greater than δ2 +O(δ3).

In particular, since an O(δ3) change in ‖δg‖22 corresponds to an O(δk+1) change in ‖δg‖k2,
we must have

∫ 1

0

δd(x)2 dx = O(δk+1).

Furthermore, the contribution of the small eigenvalues of δg to ‖δg‖22 is at most O(δ3). That
is, δg is within O(δ3/2), in an L2-sense, of being rank-1.

Step 3: Approximate bipodality (i.e., Proposition 6) proceeds exactly as in the k = 3 case,
because the only ingredients in the proof of Proposition 6 were the estimates from Step 1.
The error terms in Proposition 6 are the same order in δ for every k.

Step 4: Let h be the graphon obtained by averaging g on podes, and write g = h + ∆h.
We need to estimate the changes to entropy and τk in going from g to h, as was done in
Section 6 for k = 3. The change in entropy follows exactly as in Lemma 20:

S(g) ≤ S(h)− C(e)‖∆h‖22,

and the inequality is sharp if and only if the non-zero values of ∆h are close to 1 − 2e on
C1 × C1 and 2e− 1 elsewhere.

To bound the change in τk, note that h (being bipodal) has rank two, and that its eigenval-
ues are approximately λ1(h) ≈ e and λ2(h) ≈ −δ. Since ∆h integrates to zero on each pode,
〈w, T∆hw〉 = 0 for every non-trivial eigenfunction w of h. It follows that the eigenvalues of
g = h+∆h are

λ1(g) = λ1(h) +
|〈u1, T∆hu2〉|2

e
(1 +O(δ)) ≥ λ1(h)

λ2(g) = λ2(h)−
|〈u1, T∆hu2〉|2

δ
(1 +O(δ)) ≥ λ2(h)−

‖∆h‖22
2δ

(1 +O(δ)),

where u1 and u2 are the non-trivial (normalized) eigenfunctions of h. Moreover, the second
inequality is sharp if and only if ∆h(x, y) = u2(x)T∆hu2(y) + u2(y)T∆hu2(x) + w(x, y) for
some remainder w with ‖w‖2 = o(‖∆h‖2). All other eigenvalues of h are zero, and so all
other eigenvalues of g are bounded in absolute value by ‖∆h‖2 = O(δ3/2), and also the sum of
their squares is at most ‖∆h‖22. In particular,

∑

i≥3 |λi(g)|k ≤ ‖∆h‖k−2
2

∑

i |λi(g)|2 ≤ ‖∆h‖k2.
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Since τk(h) = λk1(h) + λk2(h) and τk(h) =
∑

i λ
k
i (g), we have

τk(h) ≤ λk1(g) +

(

λ2(g) +
‖∆h‖22
2δ

(1 +O(δ))

)k

+
∑

i≥3

|λi(g)|k

≤ λk1(g) + λk2(g)− k
δk−2‖∆h‖22

2
(1 +O(δ)) +

∑

i≥3

|λi(g)|k

≤ τk(g)− k
δk−2‖∆h‖22

2
(1 +O(δ)),

and the bound is sharp if and only if ∆h ≈ u2(x)T∆hu2(y) + u2(y)T∆hu2(x). This is the
analogue of Lemma 22 for general k.

Step 5: When considering bipodal graphons, we can compute the two eigenvalues of g from
the trace and the Hilbert-Schmidt norm:

λ1 + λ2 = e+ c∆a+ (1− c)∆b

= e+
d∆a

1− c
− 2µc

λ21 + λ22 = c2a2 + 2c(1− c)d2 + (1− c)2b2

= e2 + c2∆a2 + 2c(1− c)∆d2 + (1− c)2∆b2

= e2 +

(

c∆a

1− c

)2

− 4cµ

(

c∆a

1− c

)

+ 2µ2(c+ c2).

From this we compute the two eigenvalues

λ1,2 =
1

2

(

e+
c∆a

1− c
− 2µc±

(

e− c∆a

1− c
+ 2µc

)

√

1 +
4µ2c(1− c)

(

e− c∆a
1−c

+ 2µc
)2

)

.

These work out to

λ1 = e+
µ2c(1− c)

e+ 2µc− c∆a
1−c

+O(µ4δ2)(53)

λ2 =
c∆a

1− c
− 2µc− µ2c(1− c)

e+ 2µc− c∆a
1−c

+O(µ4δ2)(54)

Note that if µ = 0, then our eigenvalues are exactly e and c∆a
1−c

, so we have ek−δk = λk1+λ
k
2 =

ek +
(

c∆a
1−c

)k
, so c∆a

1−c
= −δ. We are quantifying how much they differ from these values when

µ is nonzero. However, we know that µ = O(δk/2), so these corrections are small.

Setting the full expressions for λk1 + λk2 equal to ek − δk, and using the fact that c =
δ/(2e− 1) +O(δ2), gives

(

c∆a

1− c

)k

= −δk − kek−2µ2δ

2e− 1
+

2kµδk

2e− 1
+O(µ2δ2, µδk+1).

Taking kth roots, we then have

(55)
c∆a

1− c
= −δ + 2µδ

2e− 1
− µ2ek−2

(2e− 1)δk−2
+O(µδ2, µ2δ3−k),
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which in turn implies that

(56) c =
δ + µ2ek−2δ2−k−2µδ

2e−1

2e− 1 + δ − a1
+O(µδ2, µ2δ3−k).

We now expand the entropy, using Taylor series around e and 1− e, exactly as in Section
10. As before, the coefficient of H ′(e) is c2(2e− 1− 2a1). Substituting for c using (56), the
leading order contribution of µ to our H ′(e) term becomes

2µ2ek−2δ3−k − 4µδ2

(2e− 1)2
H ′(e).

The coefficient of (1/2)H ′′(e) is

(2c− c2)

(

c∆a

1− c

)2

− 4µc2∆a+ c2a21,

exactly as before. The leading contribution of µ is the second term. Finally, all contributions
of µ to the coefficients of higher derivatives of H are higher order. Thus, to leading order,
the contribution of µ to the entropy is

(57)
2µδ2H ′′(e)

2e− 1
− 4µδ2H ′(e)

(2e− 1)2
+

2µ2ek−2H ′(e)

δk−3(2e− 1)2
=

4µek−2δ3−kH ′(e)− δ2ν

(2e− 1)2
.

Setting the derivative with respect to µ equal to zero then gives

µ =
νδk−1

ek−2H ′(e)
.

That is, µ = O(δk−1) and only contributes to the entropy at order δk+1. For all computa-
tions at lower order, and in particular for computing a, b, c, and d through order δk−2, we
can simply set µ = 0. That is, to this order the computations for the edge-k-cycle model are
identical to the limiting problem where ∆d and −c∆a/(1− c) are set exactly equal to δ. In
that limiting problem, a = 1 − e − δ + O(δ2). This then determines c and b. The entropy
then follows from (51), or equivalently from (52) with µ set equal to zero.

Finally, we consider the Hessian of the entropy. The coefficient of µ2 in expression (57)
is large and negative, much larger than when k = 3. However, the linear term is the same
as when k = 3, as are the contributions to S that don’t involve µ. The upshot is that ∂2µµS

is more negative than when k = 3, while ∂2µaS and ∂2aaS are essentially the same. Thus the
Hessian is negative definite and any optimizing bipodal graphon is unique.

Step 6: Starting from the bipodal graphon obtained from averaging in Step 4, we can
parametrize it in terms of c, ∆a, and µ as in Step 5. Then we construct a perturbation by
increasing c while holding ∆a and µ constant. From (53) and (54), we see that

dλ1
dc

= O(µ2),(58)

dλ2
dc

= ∆a+O(δ).(59)

It follows that
dτk
dc

= kλk−1
1

dλ1
dc

+ kλk−1
2

dλ2
dc

= −kδk−1(2e− 1) + o(δk−1),
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where the last equality follows from ∆a ≈ 1− 2e, λ2 ≈ −δ, and µ2 = O(δk).

On the other hand, the change in entropy is dS/dc = [2δ/(2e− 1)]D(1 − e)(1 + o(1)),
exactly as in Section 7. That is, starting from the averaged graphon h we can trade off
entropy for k-cycles at the rate

dS

dτk
= −(1 + o(1))

2D(1− e)

kδk−2(2e− 1)2
= −(1 + o(1))

2C(e)

kδk−2
.

The rest of the proof of Theorem 4 for τk < ek follows exactly as in the k = 3 case: if the per-
turbation of the averaged graphon h does not contradict the optimality of g, both the k-cycle
change and entropy change inequalities of Step 4 must be sharp. It follows that ∆h approx-
imately takes the prescribed values and that ∆h ≈ u2(x)T∆hu2(y) + u2(y)T∆hu2(x); but as
in Section 7 these two properties contradict the definitions of C1 and C2 in Proposition 6.
The rest of the proof of Theorem 4 for τk < ek continues as in the case k = 3.

We now turn to τk > ek. A graph is said to be 2-star-like if all of its vertices have degree
1 or 2. In particular, all k-cycles are 2-star-like. Theorem 1.1 of [14] then states that the
optimizing graphon for τk slightly above e3 is bipodal with the parameters (a, b, c, d) taking
the approximate forms indicated in Theorem 4, only with errors that are o(1) or o(∆τ)
instead of the O(∆τ) or O(∆τ 2) errors claimed in Theorem 4.

All that remains is to sharpen the estimates and compute the entropy. We follow the same
procedure as in Section 9, only with the expressions (47) and (48) for ∆τ replaced with

∆τk =

(

c

1− c

)

kek−2µ2 + kek−3c2µ2(∆a+∆b− 2∆d)

+kek−4c2µ2
(

c(∆a−∆d)2 + (1− c)(∆d−∆b)2
)

+
k(k − 5)ek−4c2µ4

2(1− c)2
+O(c3).

The first three terms are the multiples of 〈1, Tδg21〉, 〈1, Tδg31〉 and 〈1, Tδg41〉, respectively,
discussed in Step 1 of the proof for τ < ek. The last term involves the product of two factors
of 〈1, Tδg21〉 and only occurs when k ≥ 7. All other terms in the expansion of ∆τk, including
Tr(δgk), are of higher order.

The upshot is that the calculation is the same as for triangles, only with a coefficient of
kek−2 instead of 3e in the leading term, and with different O(c2) terms. Adjusting the O(c2)
terms does not affect the computation of (a, b, c, d) to the order specified in Theorem 4. The
change from 3e to kek−2 in the leading term does change the O(∆τ) terms in the expansions
of c and b, but does not affect the leading expressions for d or a, or the fact that the errors
are indeed O(∆τ)2) for b and c and are O(∆τ) for a and d. Plugging these values of (a, b, c, d)
into the formula for the entropy then yields the estimate (11).

Data availability statement: Data sharing not applicable to this article as no datasets
were generated or analysed during the current study.
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Math. 373 (2020) 107289.
[8] S. Chatterjee and S. R. S. Varadhan, The large deviation principle for the Erdős-Rényi random
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