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A NOTE ON THE ERDŐS-HAJNAL HYPERGRAPH RAMSEY
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(Communicated by Patricia Hersh)

Abstract. We show that there is an absolute constant c > 0 such that the

following holds. For every n > 1, there is a 5-uniform hypergraph on at least

22
cn1/4

vertices with independence number at most n, where every set of 6

vertices induces at most 3 edges. The double exponential growth rate for the
number of vertices is sharp. By applying a stepping-up lemma established by

the first two authors, analogous sharp results are proved for k-uniform hyper-

graphs. This answers the penultimate open case of a conjecture in Ramsey
theory posed by Erdős and Hajnal in 1972.

1. Introduction

The Ramsey number rk(s, n) is the minimum integer N such that for any
red/blue coloring of the k-tuples of [N ] = {1, 2, . . . , N}, there is either a set of
s integers with all of its k-tuples colored red, or a set of n integers with all of its k-
tuples colored blue. Estimating rk(s, n) is a fundamental problem in combinatorics
and has been extensively studied since 1935. For graphs, classical results of Erdős
[7] and Erdős and Szekeres [12] imply that 2n/2 < r2(n, n) < 22n. While small
improvements have been made in both the upper and lower bounds for r2(n, n)
(see [4, 15]), the constant factors in the exponents have not changed over the last
75 years.

Unfortunately for 3-uniform hypergraphs, there is an exponential gap between
the best known upper and lower bounds for r3(n, n). Namely, Erdős, Hajnal, and
Rado [10, 11] showed that

2cn
2

< r3(n, n) < 22c′n
,

where c and c′ are absolute constants. For k ≥ 4, their results also imply an
exponential gap between the lower and upper bounds for rk(n, n),

twrk−1(cn2) < rk(n, n) < twrk(c′n),
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where the tower function is defined recursively as twr1(x) = x and twri+1 = 2twri(x).
Determining the tower growth rate of rk(n, n) is one of the most central problems
in extremal combinatorics. Erdős, Hajnal, and Rado conjectured that the upper
bound is closer to the truth, namely rk(n, n) = twrk(Θ(n)), and Erdős offered a
$500 reward for a proof (see [5]).

Off-diagonal Ramsey numbers rk(s, n) have also been extensively studied. Here,
k and s are fixed constants and n tends to infinity. It follows from well-known
results that r2(s, n) = nΘ(1) (see [1, 2, 3, 11] for the best known bounds), and for

3-uniform hypergraphs, r3(s, n) = 2n
Θ(1)

(see [6] for the best known bounds).
For k > 3, Erdős, Hajnal, and Rado showed that rk(s, n) ≤ twrk−1(nc) where

c = c(k, s), and Erdős and Hajnal conjectured that this bound is the correct tower
growth rate. In [13], the first two authors verified the conjecture for s ≥ k+ 2, and
for the last case s = k+ 1, they showed that rk(k+ 1, n) ≥ twrk−2(nc logn). Hence,
there remains an exponential gap between the best known lower and upper bounds
for rk(k + 1, n) for k ≥ 4.

Due to our lack of understanding of rk(k + 1, n), Erdős and Hajnal in [9] intro-
duced the following more general function (their notation was different).

Definition 1.1. For integers 2 ≤ k < n and 2 ≤ t ≤ k+ 1, let rk(k+ 1, t;n) be the
minimum N such that for every red/blue coloring of the k-tuples of [N ], there is a
set of k+ 1 integers with at least t of its k-tuples colored red, or a set of n integers
with all of its k-tuples colored blue.

Clearly rk(k + 1, 1;n) = n and rk(k + 1, k + 1;n) = rk(k + 1, n). For each
t ∈ {2, . . . , k}, Erdős and Hajnal [9] showed that rk(k+1, t;n) < twrt−1(nΘ(1)) and
conjectured that

(1.1) rk(k + 1, t;n) = twrt−1(nΘ(1)).

This is known to be true for k ≤ 3 and for t ≤ 3 [9]. When k ≥ 5, the first two
authors [14] verified (1.1) for all 3 ≤ t ≤ k − 2. Our main result verifies (1.1) for
t = k − 1, which is one of the last two remaining cases.

Theorem 1.2. For k ≥ 4, we have rk(k + 1, k − 1;n) = twrk−2(nΘ(1)).

This significantly improves the previous best known lower bound for rk(k+1, k−
1;n), which was one exponential less than above (see [14]). This also immediately
implies the following new lower bound for rk(k + 1, k;n), which is now one expo-
nential off from the upper bound obtained by Erdős and Hajnal.

Corollary 1.3. For k ≥ 4, we have rk(k + 1, k;n) > twrk−2(nΘ(1)).

Finally, let us point out that Erdős and Hajnal conjectured that the tower growth
rate for both rk(k + 1, k;n) and the classical Ramsey number rk(k + 1, n) are the
same. Thus, verifying (1.1) for rk(k+ 1, k;n) would determine the tower height for
rk(k + 1, n).

We develop several crucial new ingredients to the stepping up method in our con-
struction, for example, part (1) of Lemma 2.3, and on page 8, analyzing sequences
of local maxima. It is plausible that these new ideas can be further enhanced to
determine the tower height of rk(k + 1, n).
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2. Proof of Theorem 1.2

In [13], the first two authors proved the following.

Theorem 2.1 (Theorem 7 in [13]). For k ≥ 6 and t ≥ 5, we have rk(k+1, t; 2kn) >
2rk−1(k,t−1;n)−1.

In what follows, we will prove the following theorem. Together with Theorem
2.1, Theorem 1.2 quickly follows.

Theorem 2.2. There is an absolute constant c > 0 such that r5(6, 4;n) > 22cn1/4

.

2.1. A double exponential lower bound for r5(6, 4;n). In this section, we
begin with a graph coloring with certain properties which we will later use to
define a two-coloring of the edges of a 5-uniform hypergraph.

Lemma 2.3. For n ≥ 6, there is an absolute constant c > 0 such that the following
holds. There exists a red/blue coloring φ of the pairs of {0, 1, . . . , b2cnc − 1} such
that:

(1) There are no 3 disjoint n-sets A,B,C ⊂ {0, 1, . . . , b2cnc−1} with the prop-
erty that there is a bijection f : B → C such that for any a ∈ A, b ∈ B, at
least one of φ(a, b) = red or φ(a, f(b)) = blue occurs.

(2) There is no n-set A ⊂ {0, 1, . . . , b2cnc − 1} with the property that every
4-tuple ai, aj , ak, a` ∈ A with ai < aj < ak < a` avoids the pattern:

φ(ai, aj) = φ(aj , ak) = φ(aj , a`) = red, φ(ai, ak) = φ(ai, a`) = φ(ak, a`) = blue

Proof. Set D = b2cnc, where c is a sufficiently small constant that will be deter-
mined later. Consider a random 2-coloring of the unordered pairs of {0, 1, . . . , D−1}
where each pair is assigned red or blue with equal probability independent of all
other pairs. Then, the expected number of A,B,C as in part 1 is at most(

D

n

)3

n!

(
3

4

)n2

<
1

3
,

where the inequality holds by taking c sufficiently small. This is since we pick each
of the n-sets, one of n! possible bijections from B to C, and then there is a 3

4
probability that we have the desired color pattern for each pair of a ∈ A, b ∈ B.

We call a 4-tuple ai, aj , ak, a` ∈ {0, 1, . . . , D − 1} with ai < aj < ak < a` bad if

φ(ai, aj) = φ(aj , ak) = φ(aj , a`) = red, φ(ai, ak) = φ(ai, a`) = φ(ak, a`) = blue

and good otherwise. The probability that such a fixed 4-tuple is bad is 1
26 = 1

64

and thus the probability that such a fixed 4-tuple is good is 63
64 . Now consider some

fixed n-set A ⊂ {0, 1, . . . , D − 1}. We estimate the probability that A contains
no bad 4-tuple. Note that there exists a partial Steiner (n, 4, 2)-system S on A,
i.e. a 4-uniform hypergraph on the n-vertex set A with the property that every
pair of vertices is contained in at most one 4-tuple, with at least c′n2 edges where
c′ > 0 is some constant (e.g. see [8]). Then, the probability that a 4-tuple in A is
good is at most the probability that every 4-tuple in S is good. Since 4-tuples in
S are independent as no two 4-tuples have more than one vertex is common, the

probability that every 4-tuple in S is a good 4-tuple is at most
(

63
64

)c′n2

. Therefore,
the expected number of n-sets A with only good 4-tuples is at most(

D

n

)(
63

64

)c′n2

<
1

3
,
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again where we take c sufficiently small. Thus, by Markov’s inequality and the union
bound, we conclude that there is a 2-coloring φ with the desired properties. �

We will use this lemma to produce a coloring of a 5-uniform hypergraph. Given
some natural number D, let V = {0, 1, . . . , 2D − 1}. Then for v ∈ V , we write

v =
∑D−1
i=0 v(i)2i where v(i) ∈ {0, 1} for each i. For any u 6= v, we then let δ(u, v)

denote the largest i ∈ {0, 1, . . . , D − 1} such that u(i) 6= v(i). We then have the
following properties.

Property I: For every triple u < v < w, δ(u, v) 6= δ(v, w).
Property II: For v1 < · · · < vr, δ(v1, vr) = max1≤j≤r−1 δ(vj , vj+1).
From Properties I and II, we also derive the following.
Property III: For every 4-tuple v1 < · · · < v4, if δ(v1, v2) > δ(v2, v3), then

δ(v1, v2) 6= δ(v3, v4). Note that if δ(v1, v2) < δ(v2, v3), it is possible that δ(v1, v2) =
δ(v3, v4).

Property IV: For v1 < · · · < vr, set δj = δ(vj , vj+1) for j ∈ [r − 1] and
suppose that δ1, . . . , δr−1 forms a monotone sequence. Then for every subset of k
vertices vi1 , vi2 , . . . , vik where vi1 < · · · < vik , δ(vi1 , vi2), δ(vi2 , vi3), . . . , δ(vik−1

, vik)
forms a monotone sequence. Moreover for every subset of k − 1 such δj ’s, i.e.
δj1 , δj2 , . . . , δjk−1

, there are k vertices vi1 , . . . , vik such that δ(vit , vit+1
) = δjt .

We now turn to the coloring of a 5-uniform hypergraph. Let c > 0 be the constant
given by Lemma 2.3 and let U = {0, 1, . . . , b2cnc − 1} and φ :

(
U
2

)
→ {red, blue} be

a 2-coloring of the pairs of U satisfying the properties given in the lemma. Now let
N = 2b2

cnc and let V = {0, 1, . . . , N − 1}. In the following, we will use the coloring

φ to define a red/blue coloring χ :
(
V
5

)
→ {red, blue} of the 5-tuples of V such that

χ produces at most 3 red edges among any 6 vertices and χ does not produce a

blue copy of K
(5)
128n4 . This would imply that r5(6, 4;n) > 22c′n1/4

for some constant
c′ > 0.

For v1, . . . , v5 ∈ V with v1 < v2 < · · · < v5, let δi = δ(vi, vi+1). We set
χ(v1, . . . , v5) = red if:

(1) We have that δ1, δ2, δ3, δ4 are monotone and form a bad 4-tuple, that is, if
δ1 < δ2 < δ3 < δ4 then:

φ(δ1, δ2) = φ(δ2, δ3) = φ(δ2, δ4) = red, φ(δ1, δ3) = φ(δ1, δ4) = φ(δ3, δ4) = blue,

and if δ1 > δ2 > δ3 > δ4 then:

φ(δ4, δ3) = φ(δ3, δ2) = φ(δ3, δ1) = red, φ(δ4, δ2) = φ(δ4, δ1) = φ(δ2, δ1) = blue.

(2) We have that δ1 > δ2 < δ3 > δ4, where δ1, δ2, δ3, δ4 are all distinct with
δ1 < δ3, δ2 > δ4 and φ(δ1, δ4) = red, φ(δ2, δ4) = blue. The ordering can
also be expressed as δ3 > δ1 > δ2 > δ4.

(3) We have that δ1 < δ2 > δ3 < δ4, where δ1, δ2, δ3, δ4 are all distinct with
δ1 < δ3, δ2 > δ4 and φ(δ1, δ4) = red, φ(δ1, δ3) = blue. The ordering can
also be expressed as δ2 > δ4 > δ3 > δ1.

(4) We have that δ1 < δ2 > δ3 < δ4 and δ1 = δ4. In other words, δ2 > δ1 =
δ4 > δ3.

Otherwise χ(v1, . . . , v5) = blue.
Assume for the sake of contradiction that there are at least 4 red edges among

some 6 vertices. Let these vertices be v1, . . . , v6 where v1 < v2 < · · · < v6 and let
δi = δ(vi, vi+1). Let ei = {v1, . . . , v6} \ {vi}. Let δ(ei) be the resulting sequence
of δ’s. In particular, for i = 1, δ(e1) = (δ2, δ3, δ4, δ5). For 2 ≤ i ≤ 5, δ(ei) =
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δ4 δ3 δ2 δ1

v1: 0 0 0 0
v2: 0 0 0 1
v3: 0 0 1 1
v4: 0 1 1 1
v5: 1 1 1 1

δ1 δ2 δ3 δ4

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

(a) Monotone

δ3 δ1 δ2 δ4

v1: 0 0 0 0
v2: 0 0 0 1
v3: 0 0 1 1
v4: 0 1 1 1
v5: 1 1 1 1

(b) δ3 > δ1 > δ2 > δ4

δ2 δ4 δ3 δ1

0 0 0 0

0 0 0 1

1 0 0 0

1 0 1 0

1 1 0 0

(c) δ2 > δ4 > δ3 > δ1

δ2 δ1/δ4 δ3

0 0 0

0 1 0

1 0 0

1 0 1

1 1 0

(d) δ2 > δ1 = δ4 > δ3

Figure 1. Examples of v1 < v2 < v3 < v4 < v5 and δi =
δ(vi, vi+1) for i ∈ [4] such that χ(v1, . . . , v5) is red. Each vi is
represented in binary with the left-most entry corresponding to
the most significant bit.

(δ1, . . . , δ(vi−1, vi+1), . . . , δ5). For i = 6, δ(e6) = (δ1, δ2, δ3, δ4). In the following we
will often use that if 2 ≤ i ≤ 5, then δ(vi−1, vi+1) = max(δi−1, δi) by Property II.

For convenience, if inequalities are known between consecutive δ’s, this will be
indicated in the sequence by replacing the comma with the respective sign. For
instance, assume that δ1 < δ2 > δ3 < δ4 > δ5. Then since δ(e1) = (δ2, δ3, δ4, δ5)
has δ2 > δ3 < δ4 > δ5, we will write

δ(e1) = (δ2 > δ3 < δ4 > δ5).

Similarly, if not all inequalities are known, as in δ(e3), we write,

δ(e3) = (δ1 < δ2 , δ4 > δ5).

Now we will consider cases depending on the sequence of inequalities between
δ1, . . . , δ5, and we will further split into subcases by taking a sequence of inequalities
and reversing it. There are 16 possible sequences so we will have 8 cases in what
follows.

Case 1a: Suppose δ1 > δ2 < δ3 > δ4 < δ5. This implies that

δ(e1) = (δ2 < δ3 > δ4 < δ5),

δ(e2) = δ(e3) = (δ1 , δ3 > δ4 < δ5),

δ(e4) = δ(e5) = (δ1 > δ2 < δ3 , δ5),

δ(e6) = (δ1 > δ2 < δ3 > δ4).

In particular, note that at least one of e4, e5, e6 must be red so we must have that
δ1 < δ3 and δ2 > δ4. However, since δ1 > δ2 > δ4, note that e1 is only red if
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δ2 = δ5 and similarly e2, e3 are only red if δ1 = δ5. Since these cannot happen
simultaneously, there is at least one blue edge among these three edges. Thus, we
must have that e4, e5 are also red to avoid having three blue edges, making δ2 > δ5
(and δ3 > δ5). However, then δ1 > δ2 > δ5 so none of e1, e2, e3 are red and thus
there are at most 3 red edges.

Case 1b: Suppose δ1 < δ2 > δ3 < δ4 > δ5. This implies that

δ(e1) = δ(e2) = (δ2 > δ3 < δ4 > δ5),

δ(e3) = δ(e4) = (δ1 < δ2 , δ4 > δ5),

δ(e5) = δ(e6) = (δ1 < δ2 > δ3 < δ4).

Note that e3, e4 are blue so we must have that all of e1, e2, e5, e6 are red. If e5, e6

are red, then regardless of which rule applies, δ2 > δ4 and thus e1, e2 are blue, so
there are at most 2 red edges.

Case 2a: Suppose δ1 > δ2 > δ3 < δ4 > δ5. This implies that

δ(e1) = (δ2 > δ3 < δ4 > δ5),

δ(e2) = (δ1 > δ3 < δ4 > δ5),

δ(e3) = δ(e4) = (δ1 > δ2 , δ4 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 > δ3 < δ4).

Note that e5, e6 are blue so that all of e1, . . . , e4 are red. Since e1 is red, we must
have that δ2 < δ4, so δ(ei) are ordered as in the second condition for red edges for all
i ∈ [4]. Thus, e1 implies that φ(δ2, δ5) = red while e3 implies that φ(δ2, δ5) = blue,
a contradiction.

Case 2b: Suppose δ1 < δ2 < δ3 > δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 < δ3 > δ4 < δ5),

δ(e3) = (δ1 < δ3 > δ4 < δ5),

δ(e4) = δ(e5) = (δ1 < δ2 < δ3 , δ5),

δ(e6) = (δ1 < δ2 < δ3 > δ4).

Since e6 is blue, in order to have at least 4 red edges, we must have that e4, e5 are
red. Thus δ3 < δ5. However, then for e1, e2 to be red, we must have that δ2 = δ5,
which is impossible since δ2 < δ5. Thus, there are at most 3 red edges here.

Case 3a: Suppose δ1 > δ2 < δ3 > δ4 > δ5. This implies that

δ(e1) = (δ2 < δ3 > δ4 > δ5),

δ(e2) = δ(e3) = (δ1 , δ3 > δ4 > δ5),

δ(e4) = (δ1 > δ2 < δ3 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 < δ3 > δ4).

Since e1 is blue, we must have that e5, e6 are red and thus δ1 < δ3. However, we
also must have e2, e3 are red and thus δ1 > δ3, a contradiction.

Case 3b: Suppose δ1 < δ2 > δ3 < δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 > δ3 < δ4 < δ5),

δ(e3) = δ(e4) = (δ1 < δ2 , δ4 < δ5),

δ(e5) = (δ1 < δ2 > δ3 < δ5),

δ(e6) = (δ1 < δ2 > δ3 < δ4).
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Since e1, e2 are blue, we must have that the remaining edges are red. If δ2 < δ4,
then e6 is blue. Otherwise δ2 > δ4. First if δ1 = δ4 then e3, e4 are blue. Thus, for
e6 to be red, we have that δ1 < δ3, which implies that δ1 < δ4 < δ5. From e3 being
red, we find that δ2 > δ5 as well. We then have that φ(δ1, δ4) = red from e6 while
φ(δ1, δ4) = blue from e3, a contradiction.

Case 4a: Suppose δ1 > δ2 < δ3 < δ4 > δ5. This implies that

δ(e1) = (δ2 < δ3 < δ4 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 < δ3 < δ4).

so we have at least 3 blue edges.
Case 4b: Suppose δ1 < δ2 > δ3 > δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 > δ3 > δ4 < δ5),

δ(e6) = (δ1 < δ2 > δ3 > δ4).

so we have at least 3 blue edges.
Case 5 : Suppose δ1 > δ2 < δ3 < δ4 < δ5 or δ1 < δ2 > δ3 > δ4 > δ5. In

the first case, each of δ(e4), δ(e5), δ(e6) is in the form δ1 > δ2 < δi < δj where
i, j ∈ {3, 4, 5}, so these are blue. In the second case, each of δ(e4), δ(e5), δ(e6) is in
the form δ1 < δ2 > δi > δj where i, j ∈ {3, 4, 5}, so these are blue.

Case 6 : Suppose δ1 > δ2 > δ3 < δ4 < δ5 or δ1 < δ2 < δ3 > δ4 > δ5. In the first
case,

δ(e1) = (δ2 > δ3 < δ4 < δ5),

δ(e2) = (δ1 > δ3 < δ4 < δ5),

δ(e6) = (δ1 > δ2 > δ3 < δ4).

so there are at least 3 blue edges. In the second case, δ(e1), δ(e2) are both δ2 <
δ3 > δ4 > δ5 and thus blue. Similarly, δ(e6) = δ1 < δ2 < δ3 > δ4, so there are at
least 3 blue edges.

Case 7 : Suppose δ1 > δ2 > δ3 > δ4 < δ5 or δ1 < δ2 < δ3 < δ4 > δ5. In the first
case, each of δ(e1), δ(e2), δ(e3) is in the form δi > δj > δ4 < δ5 for i, j ∈ [3] and thus
blue. In the second case, each of δ(e1), δ(e2), δ(e3) is in the form δi < δj < δ4 > δ5
for i, j ∈ [3] and thus blue.

Case 8a: Suppose δ1 > δ2 > δ3 > δ4 > δ5. This implies that

δ(e1) = (δ2 > δ3 > δ4 > δ5),

δ(e2) = (δ1 > δ3 > δ4 > δ5),

δ(e3) = (δ1 > δ2 > δ4 > δ5),

δ(e4) = (δ1 > δ2 > δ3 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 > δ3 > δ4).

First if e5, e6 are red, then φ(δ4, δ1) = blue implies that e2, e3 are blue, and
φ(δ4, δ2) = blue implies that e1 is blue, a contradiction. Thus, e5, e6 are blue and
e1 must be red but then φ(δ5, δ3) = blue implies that e4 is blue, a contradiction.
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Case 8b: Suppose δ1 < δ2 < δ3 < δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 < δ3 < δ4 < δ5),

δ(e3) = (δ1 < δ3 < δ4 < δ5),

δ(e4) = (δ1 < δ2 < δ4 < δ5),

δ(e5) = (δ1 < δ2 < δ3 < δ5),

δ(e6) = (δ1 < δ2 < δ3 < δ4).

If e1, e2 are red, then φ(δ2, δ5) = blue implies that e4, e5 are blue and φ(δ2, δ4) =
blue implies that e6 is blue, a contradiction. Thus, e1, e2 are blue and e6 must be
red but then φ(δ1, δ3) = blue implies that e3 is blue, a contradiction.

Thus, for every 6 vertices in V = {0, 1, . . . , 2b2cnc− 1}, χ produces at most 3 red
edges among them.

Now, we show that there is no blue K
(5)
128n4 in coloring χ. We first make the

following definitions. Given a sequence {ai}ri=1 ⊆ R and j ∈ {2, . . . , r − 1}, we
say that aj is a local minimum if aj−1 > aj < aj+1, a local maximum if aj−1 <
aj > aj+1, and a local extremum if it is either a local minimum or local maximum.
In particular, when looking at some set of vertices {v1, . . . , vs} where v1 < v2 <
· · · < vs and considering the sequence {δ(vi, vi+1)}s−1

i=1 , by Property I, δ(vj , vj+1) 6=
δ(vj+1, vj+2) for every j, so every nonmonotone sequence will have local extrema.

Set m = 128n4 and consider vertices v1, . . . , vm ∈ V such that v1 < v2 < · · · <
vm. Assume for the sake of contradiction that these m vertices correspond to a
blue clique in the coloring χ. Again, let δi = δ(vi, vi+1). We first note the following
lemma.

Lemma 2.4. There is no monotone subsequence {δk`}n`=1 ⊂ {δi}
m−1
i=1 such that for

any a, b, c, d ∈ [n] with a < b < c < d, there exists u1, u2, u3, u4, u5 ⊂ {v1, . . . , vm}
such that δ(u1, . . . , u5) = {δka , δkb , δkc , δkd}.

Proof. Indeed, if such a monotone subsequence existed, then as χ(u1, . . . , u5) =
blue, we have that {δk`}n`=1 would form an n-set with no bad 4-tuple in the graph
coloring φ, a contradiction. �

From this, we note that there is no integer j ∈ [m−n+1] such that the sequence

{δi}j+n−1
i=j is monotone. Otherwise, by Property IV, we have that for any length 4

subsequence {δi1 , δi2 , δi3 , δi4} ⊂ {δi}
j+n−1
i=j , there is a 5-tuple e ⊂ {v1, . . . , vm} such

that δ(e) corresponds to this monotone sequence. From here, we apply Lemma 2.4
to get a contradiction. Thus, we can find a sequence of consecutive local extrema
and from this extract a sequence of local maxima δi1 , . . . , δi32n3 .

We now restrict our attention to this sequence of local maxima (δi1 , . . . , δi32n3 ).
Note that any two local maxima are distinct: assume for the sake of contradiction
that we have maxima δij = δik where j < k. First consider if there is no δ` for
ij < ` < ik such that δ` > δij = δik . Then, δ(vij , vik) = δij = δik = δ(vik , vik+1),
a contradiction of Property I. Otherwise, there exists ij < ` < ik such that δ` >
δij = δik . By letting ` correspond to the maximum δ` in this range, we have

δ(vij , vij+1, vik−1, vik , vik+1) = (δij < δ` > δik−1 < δik),

which implies that χ(vij , vij+1, vik−1, vik , vik+1) = red as δij = δik , contradiction.

Moreover, there is no j ∈ [32n3 − n + 1] such that the sequence {δik}
j+n−1
k=j is

monotone. If there is such j and the sequence is increasing, for any a, b, c, d ∈
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{j, j + 1, . . . , j + n− 1} with a < b < c < d, then

δ(via , via+1, vib+1, vic+1, vid+1) = (δia < δib < δic < δid).

This follows by Property II; in particular, if there exists ` such that ia+1 ≤ ` < ib+1
and δ` > δib , then there must exist some greater local maxima between δia and δib ,

a contradiction of the monotonicity of {δik}
j+n−1
k=j , as these are consecutive local

maxima. Thus, by Lemma 2.4, we have a contradiction.
Similarly, if the sequence is decreasing, consider any a, b, c, d ∈ {j, j + 1, . . . , j +

n− 1} with a < b < c < d. Then

δ(via , vib , vic , vid , vid+1) = (δia > δib > δic > δid).

As with the above, we apply Lemma 2.4 to derive a contradiction.
Thus, within the sequence (δi1 , δi2 , . . . , δi32n3 ), we can find a subsequence of con-

secutive local extrema δj1 , . . . , δj16n2 , where δj1 , δj3 , . . . , δj16n2−1
are local maxima

and δj2 , δj4 , . . . , δj16n2 are local minima (within the sequence δi1 , δi2 , . . . , δi32n3 ).

We now claim that there exists k ∈ {4n + 1, 4n + 2, . . . , 16n2 − 4n} such that
δj` < δjk if k − 4n ≤ ` ≤ k + 4n and ` 6= k. Assume for the sake of contradiction
that this is not the case. We then recursively build the following sets Sr, Tr. Start
with S0 = T0 = ∅, σ0 = 0, τ0 = 16n2 + 1. At each step r,

(1) σr = 0 if Sr is empty and σr = max(Sr) otherwise. Similarly, τr = 16n2 +1
if Tr is empty and τr = min(Tr) otherwise.

(2) If s ∈ Sr and s < ` < τr, then δjs > δj` . Similarly if t ∈ Tr and σr < ` < t,
then δjt > δj` .

(3) |Sr|+ |Tr| = r and τr − σr ≥ 16n2 − 4nr.

Note that these properties hold for r = 0 by definition. Now assume that we have
Sr, Tr, σr, τr satisfying the desired properties for some r < 2n. Note that by the
properties, we have that

τr − σr ≥ 16n2 − 4nr > 16n2 − 8n2 ≥ 8n2 > 0.

Consider σr < k < τr such that δjk = maxσr<`<τr δj` . If k−σr > 4n and τr−k > 4n,
then k would satisfy that δj` < δjk if k−4n ≤ ` ≤ k+4n and ` 6= k, a contradiction.
Now if k − σr ≤ 4n, set

Sr+1 = Sr ∪ {k}, Tr+1 = Tr, σr+1 = k, τr+1 = τr.

Then, the first property holds by definition. The second property holds for every
s ∈ Sr, t ∈ Tr by assumption, and it holds for k ∈ Sr+1 since δjk = maxσr<`<τr δj` .
The first part of the third property clearly holds and

τr+1 − σr+1 = τr − k ≥ τr − σr − 4n ≥ 16n2 − 4n(r + 1).

Otherwise if τr − k ≤ 4n, set

Sr+1 = Sr, Tr+1 = Tr ∪ {k}, σr+1 = σr, τr+1 = k.

By the same reasoning, the three properties hold as desired. Thus, we can construct
these sets while r ≤ 2n.

Now, consider S2n, T2n. Since |S2n| + |T2n| = 2n, at least one of these sets has
size at least n. If |S2n| ≥ n, consider {s1, . . . , sn} ⊆ S2n where i < j ⇒ si < sj .
Then, since min(T2n) > max(S2n) by Property 3 and 1, by Property 2 we have

δjs1
> δjs2

> · · · > δjsn .
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In particular, Property 2 implies that for a, b, c, d ∈ [n] and a < b < c < d,

δ(vjsa , vjsb , vjsc , vjsd , vjsd+1) = (δjsa > δjsb > δjsc > δjsd ),

and thus, by Lemma 2.4, we have a contradiction. If instead |T2n| ≥ n, a similar
argument shows that we derive a contradiction. Thus, such a k exists and note that
in particular k must be odd.

Order the set of local minima {δjk−4n+1
, δjk−4n+3

, . . . , δjk+4n−1
} in increasing order

as γ1, . . . , γ4n. Let

A′ = {δjk−4n+1
, δjk−4n+3

, . . . , δjk−1
} and B′ = {δjk+1

, δjk+3
, . . . , δjk+4n−1

}.

Note that since A′, B′ partition {δjk−4n+1
, δjk−4n+3

, . . . , δjk+4n−1
}, either we have

that |A′ ∩ {γ1, . . . , γ2n}| ≥ n or |B′ ∩ {γ1, . . . , γ2n}| ≥ n. Without loss of gener-
ality, we assume that the former occurs since a symmetric argument would follow
otherwise. Then, we also have that |B′ ∩ {γ2n+1, . . . , γ4n}| ≥ n. Set

A = A′ ∩ {γ1, . . . , γ2n} and B = B′ ∩ {γ2n+1, . . . , γ4n}.

Let a ∈ A and b ∈ B. By definition, δja < δjb , and note that b < k + 4n ⇒
b+ 1 ≤ k + 4n, so

δ(vja , vja+1, vjb , vjb+1, vjb+1+1) = (δja < δjk > δjb < δjb+1
),

where δjk > δjb+1
by definition. Since

χ(vja , vja+1, vjb , vjb+1, vjb+1+1) = blue,

we cannot have both φ(δja , δjb+1
) = red and φ(δja , δjb) = blue. Finally, restricting

to any n elements of A,B and letting

C = {δjb+1
: δjb ∈ B},

and defining f : B → C via δjb 7→ δjb+1
, we obtain 3 disjoint n-sets with precisely

the structure avoided in the graph coloring φ, a contradiction.

Thus, χ does not produce a blue K
(5)
128n4 on V . �

3. Concluding remarks

We have determined the tower growth rate for rk(k + 1, k − 1;n). Thus, the
only problem remaining for the Erdős-Hajnal hypergraph Ramsey conjecture, is to
determine the tower growth rate for rk(k + 1, k;n).

Let us remark that similar arguments show that r5(6, 5; 4n2) > 2r4(5,4;n)−1. To
define such a coloring, let N = r4(5, 4;n)−1 and let ϕ be a red/blue coloring of the
4-tuples of {0, . . . , N − 1} such that there are there are at most 3 red edges among
every 5 vertices and there is no blue clique of size n. We then color the 5-tuples
of V = {0, 1, . . . , 2N − 1} so that χ produces at most 4 red edges among any 6
vertices and χ does not produce a blue clique of size 4n2. For vertices v1, . . . , v5

with v1 < v2 < · · · < v5, let δi = δ(vi, vi+1). We set χ(v1, . . . , v5) = red if:

(1) We have that δ1, δ2, δ3, δ4 are monotone and ϕ(δ1, δ2, δ3, δ4) = red.
(2) We have that δ1 > δ2 < δ3 > δ4 and δ1 < δ3.

Together with Lemma 2.1, showing that r4(5, 4;n) grows double exponential in a
power of n would thus show that rk(k + 1, k;n) = twrk−1(nΘ(1)).
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