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ABSTRACT. We show that there is an absolute constant ¢ > 0 such that the

following holds. For every m > 1, there is a 5-uniform hypergraph on at least
1/4
2 vertices with independence number at most n, where every set of 6

vertices induces at most 3 edges. The double exponential growth rate for the
number of vertices is sharp. By applying a stepping-up lemma established by
the first two authors, analogous sharp results are proved for k-uniform hyper-
graphs. This answers the penultimate open case of a conjecture in Ramsey
theory posed by Erd6s and Hajnal in 1972.

gcn

1. INTRODUCTION

The Ramsey number r4(s,n) is the minimum integer N such that for any
red/blue coloring of the k-tuples of [N] = {1,2,..., N}, there is either a set of
s integers with all of its k-tuples colored red, or a set of n integers with all of its k-
tuples colored blue. Estimating (s, n) is a fundamental problem in combinatorics
and has been extensively studied since 1935. For graphs, classical results of Erdés
[7] and Erdds and Szekeres [12] imply that 27/2 < ry(n,n) < 22". While small
improvements have been made in both the upper and lower bounds for rs(n,n)
(see [4, 15]), the constant factors in the exponents have not changed over the last
75 years.

Unfortunately for 3-uniform hypergraphs, there is an exponential gap between
the best known upper and lower bounds for r3(n,n). Namely, Erdés, Hajnal, and
Rado [10, 11] showed that

gen” < re(n,n) < 22",
where ¢ and ¢’ are absolute constants. For k > 4, their results also imply an
exponential gap between the lower and upper bounds for r(n,n),

twry_1(en?) < ri(n,n) < twry,(c'n),
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where the tower function is defined recursively as twr; () = z and twr;; = 26Vi(®),
Determining the tower growth rate of ri(n,n) is one of the most central problems
in extremal combinatorics. Erdds, Hajnal, and Rado conjectured that the upper
bound is closer to the truth, namely r(n,n) = twrg(0O(n)), and Erdés offered a
$500 reward for a proof (see [5]).

Off-diagonal Ramsey numbers 7 (s, n) have also been extensively studied. Here,
k and s are fixed constants and n tends to infinity. It follows from well-known
results that 75(s,n) = n®W) (see [1, 2, 3, 11] for the best known bounds), and for
3-uniform hypergraphs, r3(s,n) = gn® (see [6] for the best known bounds).

For k > 3, Erdés, Hajnal, and Rado showed that ri(s,n) < twri_1(n®) where
¢ = c(k, s), and Erd6s and Hajnal conjectured that this bound is the correct tower
growth rate. In [13], the first two authors verified the conjecture for s > k+ 2, and
for the last case s = k + 1, they showed that r4,(k +1,1) > twry_o(n°!°8™). Hence,
there remains an exponential gap between the best known lower and upper bounds
for r(k + 1,n) for k > 4.

Due to our lack of understanding of rx(k + 1,n), Erdés and Hajnal in [9] intro-
duced the following more general function (their notation was different).

Definition 1.1. For integers 2 < k <nand 2 <t <k+1,let rp(k+1,¢;n) be the
minimum N such that for every red/blue coloring of the k-tuples of [N], there is a
set of k4 1 integers with at least ¢ of its k-tuples colored red, or a set of n integers
with all of its k-tuples colored blue.

Clearly ri(k + 1,1;n) = n and ry(k + 1,k + 1;n) = r(k + 1,n). For each
t€{2,...,k}, Erd6s and Hajnal [9] showed that rj,(k-+1,¢;n) < twr;_;(n®1)) and
conjectured that

(1.1) ri(k+1,tn) = twre_y (n®W).

This is known to be true for k < 3 and for t < 3 [9]. When k > 5, the first two
authors [14] verified (1.1) for all 3 <t < k — 2. Our main result verifies (1.1) for
t = k — 1, which is one of the last two remaining cases.

Theorem 1.2. For k > 4, we have r(k 4 1,k — 1;n) = twry_o(n®M).

This significantly improves the previous best known lower bound for r,(k+1, k—
1;7n), which was one exponential less than above (see [14]). This also immediately
implies the following new lower bound for r4(k + 1, k;n), which is now one expo-
nential off from the upper bound obtained by Erdés and Hajnal.

Corollary 1.3. For k > 4, we have 7, (k + 1, k;n) > twry_o(n®M).

Finally, let us point out that Erd6s and Hajnal conjectured that the tower growth
rate for both ri(k + 1, k;n) and the classical Ramsey number 7 (k + 1,n) are the
same. Thus, verifying (1.1) for r(k + 1, k;n) would determine the tower height for
ri(k+1,n).

We develop several crucial new ingredients to the stepping up method in our con-
struction, for example, part (1) of Lemma 2.3, and on page 8, analyzing sequences
of local maxima. It is plausible that these new ideas can be further enhanced to
determine the tower height of rp(k + 1,n).
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2. PROOF OF THEOREM 1.2

In [13], the first two authors proved the following.

Theorem 2.1 (Theorem 7 in [13]). Fork > 6 andt > 5, we have ri(k+1,t;2kn) >
2Tk,1(k,t71;n)71.

In what follows, we will prove the following theorem. Together with Theorem
2.1, Theorem 1.2 quickly follows.
enl/
Theorem 2.2. There is an absolute constant ¢ > 0 such that r5(6,4;n) > 2*
2.1. A double exponential lower bound for r5(6,4;n). In this section, we
begin with a graph coloring with certain properties which we will later use to
define a two-coloring of the edges of a 5-uniform hypergraph.

Lemma 2.3. Forn > 6, there is an absolute constant ¢ > 0 such that the following
holds. There exists a red/blue coloring ¢ of the pairs of {0,1,...,]2°"| — 1} such
that:

(1) There are no 3 disjoint n-sets A, B,C C {0,1,...,]2"| — 1} with the prop-
erty that there is a bijection f : B — C such that for any a € A,b € B, at
least one of ¢(a,b) = red or ¢(a, (b)) = blue occurs.

(2) There is no n-set A C {0,1,...,]2°"| — 1} with the property that every
4-tuple a;,aj,ar,a¢ € A with a; < a; < ar < ag avoids the pattern:

d(ai,a;) = ¢(aj,ar) = dlaj,ar) = red,  P(a;,ar) = d(a;,ar) = d(ak, ag) = blue
Proof. Set D = |2°"|, where c¢ is a sufficiently small constant that will be deter-
mined later. Consider a random 2-coloring of the unordered pairs of {0,1,...,D—1}
where each pair is assigned red or blue with equal probability independent of all
other pairs. Then, the expected number of A, B, C' as in part 1 is at most

D\*  (3\" 1
nl (- -
n 4 37
where the inequality holds by taking c sufficiently small. This is since we pick each
of the n-sets, one of n! possible bijections from B to C, and then there is a %
probability that we have the desired color pattern for each pair of a € A;b € B.

We call a 4-tuple a;,a;,ar, a0 € {0,1,...,D — 1} with a; < aj < ap < a¢ bad if

P(ai,a;) = ¢(aj, ax) = ¢(a;, ar) = red, P(ai, ax) = ¢(ai,ar) = ¢(ax, ar) = blue

and good otherwise. The probability that such a fixed 4-tuple is bad is 2% = é

and thus the probability that such a fixed 4-tuple is good is %. Now consider some
fixed n-set A C {0,1,...,D — 1}. We estimate the probability that A contains
no bad 4-tuple. Note that there exists a partial Steiner (n,4,2)-system S on A,
i.e. a 4-uniform hypergraph on the n-vertex set A with the property that every
pair of vertices is contained in at most one 4-tuple, with at least ¢/n? edges where
¢’ > 0 is some constant (e.g. see [8]). Then, the probability that a 4-tuple in A is
good is at most the probability that every 4-tuple in S is good. Since 4-tuples in
S are independent as no two 4-tuples have more than one vertex is common, the

/o2
probability that every 4-tuple in S is a good 4-tuple is at most (%)c " . Therefore,
the expected number of n-sets A with only good 4-tuples is at most

D @ c/n2 < 1
n 64 3’
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again where we take c sufficiently small. Thus, by Markov’s inequality and the union
bound, we conclude that there is a 2-coloring ¢ with the desired properties. [

We will use this lemma to produce a coloring of a 5-uniform hypergraph. Given
some natural number D, let V = {0,1,...,2P —1}. Then for v € V, we write
v = ZiD:Bl v(4)2" where v(i) € {0,1} for each i. For any u # v, we then let &(u,v)
denote the largest ¢ € {0,1,...,D — 1} such that u(i) # v(¢). We then have the
following properties.

Property I: For every triple u < v < w, §(u,v) # §(v, w).

Property II: For v; < --- < v,,0(v1,v,) = maxi<j<p—10(Vj,Vj4+1)-

From Properties I and II, we also derive the following.

Property III: For every 4-tuple vy < -+ < wy, if 0(vy,v2) > d(vg,v3), then
§(v1,v2) # I(vs,va). Note that if §(vq,v2) < §(ve,v3), it is possible that §(vy,ve) =
(5(1}3, U4).

Property IV: For v; < --- < v,, set §; = 6(vj,v;41) for j € [r — 1] and
suppose that d1,...,d,_1 forms a monotone sequence. Then for every subset of k
vertices v;,, Uiy, - - ., Vi, Where v, < -+ < 4, 0(Viy, Viy)y 0 (Vig, Vig)y -+ s 0(Vip_y, Viy)
forms a monotone sequence. Moreover for every subset of k& — 1 such d;’s, i.e.
0j150j5,---,04,_,, there are k vertices v;,,...,v;, such that 6(v;,, v, ,) = 0j,.

We now turn to the coloring of a 5-uniform hypergraph. Let ¢ > 0 be the constant
given by Lemma 2.3 and let U = {0,1,...,[2°*] — 1} and ¢ : ([2]) — {red, blue} be
a 2-coloring of the pairs of U satisfying the properties given in the lemma. Now let
N =22"Tandlet V ={0,1,...,N —1}. In the following, we will use the coloring
¢ to define a red/blue coloring x : (‘;) — {red, blue} of the 5-tuples of V such that
x produces at most 3 red edges among any 6 vertices and y does not produce a

blue copy of KSQM.
d > 0.
For vy,...,v5 € V with 1 < va < -+ < wvs, let 0; = d(vs,viq1). We set
x(v1,...,v5) = red if:
(1) We have that 01, d2, d3, 04 are monotone and form a bad 4-tuple, that is, if
01 < 99 < 03 < 04 then:

¢(61a 62) = ¢(62a 63) = ¢(62a 54) = red, ¢(51a 63) = ¢(61a 64) = ¢(63a 64) = blue,
and if 41 > dy > 03 > 4 then:

¢(04,03) = P(3,02) = ¢(d3,01) = red, $(04,02) = $(04,01) = $(d2,01) = blue.
(2) We have that §; > Jo < d3 > 04, where 01, d9,d3,04 are all distinct with
01 < 03,02 > 04 and ¢(d1,04) = red, ¢(d2,04) = blue. The ordering can
also be expressed as §3 > d; > do > d4.
(3) We have that 61 < dy > 03 < d4, where 01, d2, 3,04 are all distinct with
01 < 03,02 > 64 and ¢(51,54) = red, ¢(51,53) = blue. The Ordering can
also be expressed as 0o > 04 > 03 > 01.
(4) We have that 07 < 6o > d5 < 04 and 6; = d4. In other words, 6o > 6, =
b4 > 03.
Otherwise x(v1,...,v5) = blue.

Assume for the sake of contradiction that there are at least 4 red edges among
some 6 vertices. Let these vertices be vy,...,vg where v; < v9 < -+ < vg and let
0; = 0(vi,vit1). Let e; = {v1,...,v6} \ {vi}. Let d(e;) be the resulting sequence
of §’s. In particular, for i = 1, d(ey) = (d2,d5,04,05). For 2 < i < 5, §(e;) =

nl/4
This would imply that 75(6,4;n) > 22 for some constant
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(54 (53 (52 (51 (51 62 53 54

e emee

vi: 0 0 00O 0 0 0O
v2: 0 00O 1 1 0 0O
v3: 0 01 1 1 1 00
%01 11 1 1 10
vs: 1 1 11 1 1 11
(A) Monotone
03 01 02 04 02 04 03 01 02 01/04 03
o ¢ o—e o ¢ oo e oo
vi: 0 0 0 O 00 0O 0 0 O
v2: 0 0 0 1 0 0 0 1 01 0
v3: 0 0 1 1 1 0 00 1 0 0
v4: 0 1 1 1 1 010 1 01
vs: 1 1 1 1 1 1 .00 1 10
(B) 03 > 61 > 82 > 04 (C) 02 > 64 > 83 > 01 (D) 62 > 01 =04 > 83

FIGURE 1. Examples of v; < vy < vg < vy < v5 and §; =
0(vi,vi11) for i € [4] such that x(vi,...,vs) is red. Each v; is
represented in binary with the left-most entry corresponding to
the most significant bit.

(51, ey §(Ui_1, ’UH_l), [N ,55). For 1 = 6, 5(66) = (51, 62, 53, 64) In the fOHOWiIlg we
will often use that if 2 < i <5, then é(v;—1,v;41) = max(d;—1,0;) by Property II.
For convenience, if inequalities are known between consecutive d’s, this will be

indicated in the sequence by replacing the comma with the respective sign. For
instance, assume that §; < d2 > d3 < 04 > 05. Then since d(e1) = (02,3, o4, 05)
has do > 03 < §4 > 5, we will write

(5(61) = ((52 > 03 < 04 > (55)
Similarly, if not all inequalities are known, as in d(es), we write,

6(63) = (51 < & s 04 > 65)

Now we will consider cases depending on the sequence of inequalities between
d1,...,05, and we will further split into subcases by taking a sequence of inequalities

and reversing it. There are 16 possible sequences so we will have 8 cases in what
follows.

Case 1a: Suppose §; > ds < d3 > 04 < 05. This implies that
d(e1) = (02 < 83 > 64 < 05),
0(ez) = d(es) = (61 , 03 > 04 < 05),
0(eq) =d(es) = (61 > 02 < 03 , 05),
d(eg) = (01 > 62 < &3 > 04).

In particular, note that at least one of ey, e5, eg must be red so we must have that
61 < 03 and d > d4. However, since 61 > 05 > 4, note that ey is only red if
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0o = 05 and similarly e, es are only red if §; = d5. Since these cannot happen
simultaneously, there is at least one blue edge among these three edges. Thus, we
must have that ey, e5 are also red to avoid having three blue edges, making ds > 5
(and 03 > 05). However, then é; > d2 > 05 so none of eq,eq, e3 are red and thus
there are at most 3 red edges.

Case 1b: Suppose 41 < do > 63 < 04 > 05. This implies that

5(61) = 5(62) = (52 > 53 < 54 > 55),
5(63) = 5(64) = (51 < 62 , 54 > 55),
(5(65) = 5(66) = (51 < 0p > 03 < (54)

Note that es, e4 are blue so we must have that all of ey, es, e5, e are red. If es, eqg
are red, then regardless of which rule applies, do > 04 and thus e, e5 are blue, so
there are at most 2 red edges.

Case 2a: Suppose d; > 63 > 03 < d4 > 05. This implies that

5(e1) = (62 > 03 < 64 > J5),
8(ez) = (61 > 03 < 84 > 05),
d(ez) = d(ea) = (01 > d2 , da > 05),
d(es) = d(es) = (01 > 02 > 03 < da).

Note that es, eg are blue so that all of eq,...,e4 are red. Since e; is red, we must
have that do < d4, s0 §(e;) are ordered as in the second condition for red edges for all
i € [4]. Thus, e; implies that ¢(d2,05) = red while ez implies that ¢(dz2, J5) = blue,
a contradiction.

Case 2b: Suppose 01 < do < 03 > d4 < d5. This implies that

d(e1) = d(e2) = (02 < d3 > 04 < J5),

S(es) = (61 < d3 > 64 < 05),
d(eq) = 6(es) = (01 < 03 <85 , O5)
(e6) = (61 < bz < 03 > b4).

Since eg is blue, in order to have at least 4 red edges, we must have that ey, e5 are
red. Thus d3 < d5. However, then for e;, es to be red, we must have that do = ds,
which is impossible since do < d5. Thus, there are at most 3 red edges here.

Case 3a: Suppose §; > do < d3 > 04 > 05. This implies that

d(e1) = (2 < 03 > 04 > 5),
§(ez) =d(es) = (61 , 03 > 04 > 05),
8(eq) = (81 > 0y < 83 > 05),
§(es) = d(eg) = (01 > d2 < 03 > 04).

Since e; is blue, we must have that es, eg are red and thus d; < d3. However, we
also must have eg, eg are red and thus §; > d3, a contradiction.
Case 3b: Suppose 01 < dg > 03 < 04 < J5. This implies that

5(er) = d(ez) = (62 > 03 < 04 < 05),
6(es) = d(eq) = (61 < b2 , 04 < J5),
(e5) = (81 < &g > 3 < 65)
(e6) = (61 < d2 > 03 < da).

:(566

)

566

(=%

)

)

€6
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Since eq, es are blue, we must have that the remaining edges are red. If do < 44,
then eg is blue. Otherwise §o > d4. First if §; = d4 then es, e4 are blue. Thus, for
eg to be red, we have that §; < d3, which implies that 6; < d4 < d5. From e3 being
red, we find that dy > 05 as well. We then have that ¢(d1,04) = red from eg while
¢(d1,04) = blue from eg, a contradiction.

Case 4a: Suppose §; > ds < d3 < d4 > d5. This implies that

(5(61) = (52 < 63 < 54 > 55),
d(es) = d(e) = (01 > 02 < &3 < b4).

so we have at least 3 blue edges.
Case 4b: Suppose 01 < d > 03 > 64 < J5. This implies that

d(e1) = 0(e2) = (02 > 63 > 04 < J5),
5(eg) = (01 < b2 > 83 > d4).

so we have at least 3 blue edges.

Case §5: Suppose d; > 0y < 03 < 04 < 05 or 1 < dg > 03 > 04 > 65. In
the first case, each of d(esq),d(es5),d(eg) is in the form &1 > d2 < &; < d; where
i,7 € {3,4,5}, so these are blue. In the second case, each of d(ey),d(e5),d(eg) is in
the form 01 < dy > &; > 0; where ¢,j € {3,4,5}, so these are blue.

Case 6: Suppose 61 > 0o > 03 < 04 < 05 or §; < 0 < d3 > 04 > 05. In the first
case,

5(61) = (52 > 53 <1 < 55),
5(62) = (51 > 53 < 54 < 65)7
(5(66) = ((51 > 0y > 03 < (54)

so there are at least 3 blue edges. In the second case, d(e1),d(ez) are both d2 <
d3 > 04 > d5 and thus blue. Similarly, d(eg) = §1 < d2 < d3 > dy4, so there are at
least 3 blue edges.

Case 7: Suppose 61 > 03 > 03 > 04 < 05 or 01 < 03 < 03 < 04 > J5. In the first
case, each of §(e1), 6(e2),d(e3) is in the form §; > 6; > 64 < 05 for ¢, j € [3] and thus
blue. In the second case, each of 6(eq),d(e2),6(e3) is in the form 6; < §; < 64 > 05
for i,j € [3] and thus blue.

Case 8a: Suppose d1 > 6o > d3 > 04 > 05. This implies that

d(e1) = (82 > 03 > 04 > 05),
d(eg) = (61 > 03 > 04 > 05),
d(esz) = (61 > dg > 04 > 05),
d(eq) = (61 > 93 > 03 > 05),

(e6) = ( )

51>52>53>54.

First if es,eq are red, then ¢(d4,01) = blue implies that es,es are blue, and
@(d4,02) = blue implies that ey is blue, a contradiction. Thus, es, e are blue and
e1 must be red but then ¢(J5,d3) = blue implies that ey is blue, a contradiction.
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Case 8b: Suppose 01 < 0g < 03 < 04 < 05. This implies that
§(e1) = d(ea) = (82 < 63 < 64 < J5),
§(ez) = (81 < 03 < 8y < 65),
§(eq) = (01 < 0z < 04 < 65),
6(es) = (01 < 02 < 83 < 05),
§(eg) = (01 < 0 < 03 < d4).

If e1, ey are red, then ¢(d2,05) = blue implies that ey, e5 are blue and ¢(ds,d4) =
blue implies that eg is blue, a contradiction. Thus, ey, eo are blue and eg must be
red but then ¢(d1,03) = blue implies that e is blue, a contradiction.

Thus, for every 6 vertices in V = {0,1,...,22"J — 1}, x produces at most 3 red
edges among them.

Now, we show that there is no blue Kigé# in coloring x. We first make the
following definitions. Given a sequence {a;}/_; C R and j € {2,...,r — 1}, we
say that a; is a local minimum if a;_1 > a; < ajq1, a local mazimum if a;_1 <
aj > ajy1, and a local extremum if it is either a local minimum or local maximum.
In particular, when looking at some set of vertices {v1,...,vs} where v; < v <
-+ < vg and considering the sequence {d(v;, viH)}f;ll, by Property I, 6(vj,vj41) #
8(vj41,v;42) for every j, so every nonmonotone sequence will have local extrema.

Set m = 128n* and consider vertices v1,...,v, € V such that v; < vy < -+ <
VUym. Assume for the sake of contradiction that these m vertices correspond to a
blue clique in the coloring x. Again, let §; = (v, v;11). We first note the following
lemma.

Lemma 2.4. There is no monotone subsequence {8, }7_, C {8;}" " such that for
any a,b,c,d € [n] with a < b < ¢ < d, there exists uy, uz, ug, tg, us C {v1,...,0m}
such that §(uq, ..., us) = {0k, , 0k, , Ok, Ok, }-

Proof. Indeed, if such a monotone subsequence existed, then as x(ui,...,us) =
blue, we have that {dy,};_, would form an n-set with no bad 4-tuple in the graph
coloring ¢, a contradiction. O

From this, we note that there is no integer j € [m —n+ 1] such that the sequence
{51-}{:;171 is monotone. Otherwise, by Property IV, we have that for any length 4
subsequence {0;,,0i,,0:5,0:, } C {5i}gif_1, there is a 5-tuple e C {v1,..., v} such
that 0(e) corresponds to this monotone sequence. From here, we apply Lemma 2.4
to get a contradiction. Thus, we can find a sequence of consecutive local extrema
and from this extract a sequence of local maxima 0;,,...,0;, ;-

We now restrict our attention to this sequence of local maxima (d;,,...,d,, ;).
Note that any two local maxima are distinct: assume for the sake of contradiction
that we have maxima 6;, = d;, where j < k. First consider if there is no J, for
ij < £ < iy such that §, > 51'1. = 5% Then, (5(’[%].,’[)@) = 61] = SZk = 5(vik,vik+1),
a contradiction of Property I. Otherwise, there exists i; < ¢ < i such that J, >
di; = 0;;,. By letting £ correspond to the maximum J, in this range, we have

O(Vi, 5 Vij 41,5 Vig -1, Vig, Vi 1) = (03, < 6¢ > 4, —1 < 63, ),
which implies that x(vi,,vi; +1,vi, 1, Vi, Vi, +1) = red as §;, = §;,, contradiction.

Moreover, there is no j € [32n® — n + 1] such that the sequence {d;, i:;fl is

monotone. If there is such j and the sequence is increasing, for any a,b,c,d €
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{j,j+1,...,7+n—1} with a < b < ¢ <d, then
(Vi s Vig 415 Vig15 Vi 41, Vigs1) = (04, < 03, < 03, < 05,)-

This follows by Property II; in particular, if there exists £ such that i,+1 < £ < 45+1
and d; > §;,, then there must exist some greater local maxima between 4;, and 9;, ,
a contradiction of the monotonicity of {J;, }f;?_l, as these are consecutive local
maxima. Thus, by Lemma 2.4, we have a contradiction.

Similarly, if the sequence is decreasing, consider any a,b,c,d € {j,7+1,...,5+

n—1} with a < b < ¢ < d. Then
3(Viy s Viys Vig s Vig, Vigt1) = (83, > 83y > 05, > 05,).

As with the above, we apply Lemma 2.4 to derive a contradiction.

Thus, within the sequence (i, , i, , - - -, di,, ), we can find a subsequence of con-
secutive local extrema d;,,...,0; ,, where d;,,0j,,...,0; .  are local maxima
and dj,,0j,,...,05 , are local minima (within the sequence d;,,d;,, . .. 3 0iny s ).

We now claim that there exists k € {4n + 1,4n + 2,...,16n? — 4n} such that
05, < 05, if k—4n <€ < k4 4n and £ # k. Assume for the sake of contradiction
that this is not the case. We then recursively build the following sets S,., T,.. Start
with Sp =Ty = @,00 = 0,79 = 16n? + 1. At each step r,

(1) o, = 0if S, is empty and o, = max(S,.) otherwise. Similarly, 7, = 16n?+1
if T, is empty and 7,, = min(7}.) otherwise.
(2) If s € Sy and s < £ < 7, then 0;, > ¢;,. Similarly if ¢t € T}, and o, < £ < t,
then 6jt > 63'[.
(3) |S-| +|T7| = r and 7, — 0, > 16n? — 4nr.
Note that these properties hold for » = 0 by definition. Now assume that we have
Sy, Ty, 0, T satisfying the desired properties for some r < 2n. Note that by the
properties, we have that

T —op > 1602 — dnr > 16n% — 8n2 > 8n2% > 0.

Consider 0, < k < 7, such that §;, = max,, <¢<r, 0j,. f k=0, > 4n and 7.—k > 4n,
then k would satisfy that 6;, < 9, if k—4n < ¢ < k+44n and ¢ # k, a contradiction.
Now if k — o, < 4n, set

Sep1 =5, Uk}, Trpa =T, o=k 741="10

Then, the first property holds by definition. The second property holds for every
s € Sy,t € T, by assumption, and it holds for k € S,4, since §;, = max,, <r<+, 0j,-
The first part of the third property clearly holds and

Trgl — Opy1 = Tp — k > Tp — 0 — 4n > 16n% — 4n(r + 1).
Otherwise if 7. — k < 4n, set
ST+1 = Sr; Tr+1 =T U {k}a Or+1 = O0r, Tr4l = k.

By the same reasoning, the three properties hold as desired. Thus, we can construct
these sets while r» < 2n.

Now, consider So,, To,. Since |Soy| + |Ton| = 2n, at least one of these sets has
size at least n. If |S2,| > n, consider {s1,...,s,} C S, where i < j = s; < s;.
Then, since min(75,,) > max(Sa,) by Property 3 and 1, by Property 2 we have

5j51 > (sjS2 > > (San .



10 DHRUV MUBAYI, ANDREW SUK, AND EMILY ZHU

In particular, Property 2 implies that for a,b,c,d € [n] and a < b < ¢ < d,
0(Vjay s Vjey s Vians Via ) Vs, +1) = (05, > 05, > 65, > 05,

and thus, by Lemma 2.4, we have a contradiction. If instead |T%,| > n, a similar
argument shows that we derive a contradiction. Thus, such a k exists and note that
in particular £ must be odd.

Order the set of local minima {J;
as Y1y Y4n- Let

A= {ajk—4n+l’6

Jk—an437 " *

")

jksan_1 ) i increasing order

k—4n+1 5jk74n+37 e

J

Jk+dan—1 }

.0, .} and B = {§;

Note that since A’, B" partition {dj, _,,...>0jx_snis>---s0jrsun_s ) €ither we have
that [A'N{y1,...,72n} = nor |[B N{y,...,y2n} = n. Without loss of gener-
ality, we assume that the former occurs since a symmetric argument would follow
otherwise. Then, we also have that |B’ N {y2n41,--.,%n}| > n. Set

A=A"N{y,...,72n} and B =B N {y2nt1,--->Van}-

Let a € A and b € B. By definition, §;, < J;,, and note that b < k 4 4n =
b+1<k+4n, so

k+176jk+37""

§(Uja7vja+1’ Ujbvvjb+1avjb+1+1) - (5]}1 < 5jk > 5jb < 6jb+1)7

where d;, > d;,., by definition. Since

b1
X(Uja » Vja+15 Vg Vg +15 Ujb+1+1) = blue,

we cannot have both ¢(6;,,6;,,,) = red and ¢(6;,,6;,) = blue. Finally, restricting

to any n elements of A, B and letting
C= {5jb+1 : 6jb € B}v

and defining f : B — C via §;, + d;,,,, we obtain 3 disjoint n-sets with precisely
the structure avoided in the graph coloring ¢, a contradiction.
Thus, x does not produce a blue KS;M on V. (]

3. CONCLUDING REMARKS

We have determined the tower growth rate for ri(k + 1,k — 1;n). Thus, the
only problem remaining for the Erdés-Hajnal hypergraph Ramsey conjecture, is to
determine the tower growth rate for ri(k + 1, k;n).

Let us remark that similar arguments show that r5(6, 5;4n?) > 2r+G:4m)=1 Tg
define such a coloring, let N = r4(5,4;n) —1 and let ¢ be a red/blue coloring of the
4-tuples of {0, ..., N — 1} such that there are there are at most 3 red edges among
every b vertices and there is no blue clique of size n. We then color the 5-tuples
of V.= 1{0,1,...,2% — 1} so that x produces at most 4 red edges among any 6
vertices and y does not produce a blue clique of size 4n2. For vertices v1,...,vs
with v; < vy < -+ < ws, let § = §(v;, vip1). We set x(vy,...,v5) =red if:

(1) We have that d,d2, 3,04 are monotone and ¢(d1, da, d3,d4) = red.

(2) We have that §; > d2 < d5 > d4 and §; < 3.
Together with Lemma 2.1, showing that r4(5,4;n) grows double exponential in a
power of n would thus show that 7 (k 4+ 1, k;n) = twry_; (n®M).
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