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Abstract—High-resolution optical imaging systems are quickly
becoming universal tools to characterize and quantify microbial
diversity in marine ecosystems. Automated detection systems such
as convolutional neural networks (CNN) are often developed to
identify the immense number of images collected. The goal of our
study was to develop a CNN to classify phytoplankton images
collected with an Imaging FlowCytobot for the Palmer Antarctica
Long-Term Ecological Research project. A medium complexity
CNN was developed using a subset of manually-identified images,
resulting in an overall accuracy, recall, and fl-score of 93.8%,
93.7%, and 93.7%, respectively. The fl-score dropped to 46.5%
when tested on a new random subset of 10,269 images, likely due
to highly imbalanced class distributions, high intraclass variance,
and interclass morphological similarities of cells in naturally
occurring phytoplankton assemblages. Our model was then used
to predict taxonomic classifications of phytoplankton at Palmer
Station, Antarctica over 2017-2018 and 2018-2019 summer field
seasons. The CNN was generally able to capture important
seasonal dynamics such as the shift from large centric diatoms to
small pennate diatoms in both seasons, which is thought to be
driven by increases in glacial meltwater from January to March.
Moving forward, we hope to further increase the accuracy of our
model to better characterize coastal phytoplankton communities
threatened by rapidly changing environmental conditions.
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I. INTRODUCTION

The West Antarctic Peninsula (WAP) is a highly productive
marine ecosystem characterized by large summer phytoplankton
blooms that support extensive krill and top predator populations
[1]. The WAP is experiencing significant environmental change,
threatening this unique and productive ecosystem. One of the
fastest warming regions on Earth, WAP winter air temperatures
and surface ocean temperatures have increased by 6°C and
>1°C, respectively, over the past 50 years [2-4]. In response,
90% of marine glaciers are currently in retreat, the annual ice
season has decreased by 92 days over the last 35 years, and there
is no longer perennial sea ice in the northern WAP [2], [5].

Ocean warming and melting sea ice have impacted the
phytoplankton community, which has implications for the entire
food web. Phytoplankton biomass has significantly decreased in
the northern WAP, associated with a shift from large-
celled
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diatoms to smaller-celled cryptophytes and mixed flagellates
[6]. This shift is concurrent with an increase in low salinity
meltwater [7-9]. The increased spatial coverage of low salinity
surface waters associated with continued glacial and sea ice melt
is predicted to increase the prevalence of smaller-celled
phytoplankton communities along the WAP, with important
implications for food web structure and energy transfer
efficiency [10].

The Palmer Long-Term Ecological Research project (PAL-
LTER) was established in 1991 to investigate how changes in
sea ice structure the pelagic ecosystem and biogeochemistry
along the WAP. The project has previously used High
Performance Liquid Chromatography (HPLC) analysis of
pigment data to characterize the taxonomic composition of
phytoplankton assemblages [11]. This technique uses marker
pigments of phytoplankton groups to assess their contribution to
the overall abundance. However, HPLC lacks more detailed
taxonomic classification and cell size information that is critical
to understanding how warming and melting impacts
phytoplankton communities along the WAP.

To fill this knowledge gap, in 2017 the PAL-LTER acquired
an Imaging FlowCytobot (IFCB; McLane Labs, Falmouth, MA,
USA). The IFCB is an automated imaging-in-flow submersible
cytometer that uses a combination of video and flow cytometric
technology to collect images and measure chlorophyll
fluorescence and scattered light for each particle (~10-150 pm)
in a 5 mL water sample [12]. These images can be analyzed to
determine cell size dynamics, and sorted taxonomically to the
genus or species level, thus providing much more detailed
organismal information than HPLC methods.

However, the IFCB can generate more than 10,000 high-
quality images every hour, which becomes an immense amount
of data over the duration of a research cruise or field season. This
volume of data makes manual image identification impractical,
therefore, these imaging platforms are often complemented by
automated detection systems that allow for rapid and precise
classification of plankton communities. Currently, there are two
typical machine learning approaches for IFCB images: (1) a
support vector machine based on a feature selection algorithm
(88% overall accuracy with 22 classes; [13]), and (2) random
forest (RF) algorithms (~70% overall accuracy depending on the
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model and number of classes, e.g., [14]). Following
advancements in the field of computer vision through deep
learning [15] the IFCB community is now transitioning to
convolutional neural networks (CNNs) for improved accuracy
in image classification. CNNs extract features directly from
images. Starting with raw imagery and labels, semantically
meaningful features are learned as the network trains on a set of
images. In theory, extracted features correspond to components
of the image relevant to the labels, which makes these models
highly accurate and well-suited for image classification tasks.

Since 2017, the PAL-LTER has collected over 10 million
images spanning four summer field seasons. The goal of our
study was to develop a CNN to sort WAP phytoplankton into
taxonomic groups. This would allow for taxonomic
classification of entire seasons of collected phytoplankton data
in a short amount of time. Additionally, the CNN could be used
as a tool to characterize phytoplankton communities in the field
in near-real time to inform opportunistic sampling strategies.
The combination of the IFCB and a high-accuracy automated
classification system would allow the PAL-LTER to learn more
about shifts in phytoplankton community and size dynamics
associated with rapidly changing environmental conditions.

II. METHODS

A. Phytoplankton Image Collection and Processing

IFCB data were collected along the West Antarctic
Peninsula over three summer field seasons: 2017-2018, 2018-
2019, and 2019-2020. Whole water samples were collected at
various depths from both the January cruise along the WAP
(Anvers Island in the north to Charcot Island in the south) and
from seasonal (November-March) sampling at Palmer Station,
Antarctica. 5 mL from each sample was analyzed with the IFCB
to acquire images for each phytoplankton cell in the sample.
Samples were passed through a 150 um Nitrex screen prior to
analysis to prevent large cells from clogging the IFCB’s flow
cell. Cells with a major axis length < 25 pixels (7.35 pm) were
eliminated from the analysis as the resolution of the images was
insufficient to provide clear identification.

Images were processed using methods and software from
[13]  (https://github.com/hsosik/ifcb-analysis/wiki).  Image
processing results in a set of 233 features describing each image
including fluorescence, scattering intensity, equivalent spherical
diameter, area, volume, and other morphometric parameters
such as image texture and histogram of oriented gradients.

B. Model Development

Processed images, metadata, and their associated features
were uploaded to the web application EcoTaxa
(https://ecotaxa.obs-vlfr.fr) [14]. Using EcoTaxa, a subset of
18,699 images was visually inspected and manually classified
into 38 living groups (taxonomic resolution ranging from
genus to class) and 2 non-living groups (detritus and bubbles),
with at least 100 images per group. Samples (images +
features) were augmented to increase training sample size via
image rotations, flips, gaussian noise, and contrast changes.
Features were also randomly multiplied by a factor between
0.8 and 1.2.

After augmentation, a training dataset of 40,000 samples
with 1,000 in each class was used to develop a medium
complexity CNN (8 convolutional layers and 2 million
parameters), and 3,740 unaugmented images, approximately
evenly split across classes, were used as a validation dataset.
Model precision, recall, and f1-score were calculated for the
unmerged data considering all included groups, and for
merged data considering only 8 general taxonomic groupings
(pennate and centric diatoms, cryptophytes, prasinophytes,
mixed flagellates, haptophytes, microzooplankton, and other).
The “other” group includes primarily detritus with some
bubbles. Precision is defined as true positives divided by the
sum of true positives and false positives; it is the proportion of
positive identifications that are correct. Recall is defined as
true positives divided by the sum of true positives and false
negatives; it is the proportion of actual positives that are
identified correctly. The fl-score is the harmonic mean of
precision and recall. Confusion matrices were also generated
showing the percent of manually validated images predicted in
each category by the CNN.

C. Model Validation

To test the model, we used it to predict on a random subset
of 10,269 new images filtered by cell major axis length > 25
pixels. Additionally, we used EcoTaxa’s RF algorithm to
predict on the same images, using a maximum of 500 images
per group. Predictions from both models were compared to
manual identification of the images. Model precision, recall,
and fl-score were calculated for unmerged and merged data
for both the CNN and RF models, and a confusion matrix was
generated for the CNN.

D. Model Application

After training and evaluation, our model was used to
predict taxonomic classifications of phytoplankton collected at
0 m from Station B near Palmer Station, Antarctica over the
2017-2018 and 2018-2019 summer field seasons. CNN
predictions were compared to manual validation of the images
to determine the accuracy of the predicted seasonal trends.

E. Sea Ice Characterization

Sea ice data were calculated using version 3.1 of the
GSFC Bootstrap sea ice concentrations. Sea ice duration is the
time elapsed between day of advance and day of retreat. All
sea ice metrics use the 200 km area south and west of Palmer
Station. See [16] for more information.

III. RESULTS

A. Model Accuracy

The overall precision, recall, and fl-score of the model were
93.8%, 93.7%, and 93.7%, respectively. After merging the
initial set of 40 classes into the 8 broader taxonomic groups, the
precision, recall, and fl-score of the model all increased to
96.5%. Accuracy per group was > 95% for all groups except for
microzooplankton (> 80%), mixed flagellates (> 90%), and
other (> 90%).
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TABLE 1. CONFUSION MATRIX FOR BROAD TAXONOMIC GROUPS
USING 10,269 NEW, RANDOM IMAGES
Pennate
diatoms 929 | 0.8 0.3 0.6 4.8 0.0 0.0 0.7
(n=1577)
Centric
diatoms 28 [ 643 | 52 24 | 153 | 0.0 0.0 | 10.0
(n=249)
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(n1=2565) 9.4 1.0 | 65.0 | 44 | 198 | 0.0 0.0 0.5
 Prasinophytes) , oy o | 04 | 306|280 00 | 00 |278
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= flagellates 116 | 1.5 3.9 74 1662 | 0.0 0.3 9.2
(n=1085)
Haptophytes | | 60 | 0.0 | 00 | 00 | 100 | 0.0 | 00
(n=1)
Microzoo-
plankton 00 (167 ] 00 | 00 | 167 | 0.0 | 66.7 | 0.0
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Using the model to predict on the 10,269 new images
resulted in unmerged and merged f1-scores 0f46.5% and 47.6%,
respectively. This is a 12% increase in the unmerged fl-score
over EcoTaxa’s random forest model (46.5% vs. 41.5%,
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respectively; [14]). The model predicted most accurately for
pennate diatoms (92.9%), and performed moderately well for
microzooplankton (66.7%), mixed flagellates (66.2%),
cryptophytes (65.0%), and centric diatoms (64.3%; Table 1).
Our model was least precise predicting prasinophytes (39.6%)
and other cells (14.9%; Table 1). Only one haptophyte was
manually identified in the random dataset but was predicted
correctly.

B. Phytoplankton Seasonal Succession at Palmer Station

Overall, the CNN captured important seasonal trends in
phytoplankton dynamics. In both the 2017-2018 and 2018-2019
seasons, peak phytoplankton biovolume occurred midseason (1
January 2018 and 4 February 2019; Fig. 1). In 2017-2018, the
peak was dominated by a mix of cryptophytes, prasinophytes,
and mixed flagellates, while in 2017-2018 the peak was
dominated by pennate diatoms. The CNN also captured early
and late season peaks composed of centric diatoms in 2018-2019
(Fig. 1C-D).

However, there are several discrepancies between methods.
In both seasons, but particularly 2017-2018, there were many
cells manually identified as “other” that were classified as both
mixed flagellates and prasinophytes by the CNN (Fig. 1). In this
manner, the CNN appears to overestimate the abundance of
these groups. The CNN also underestimated the abundance of
cryptophytes, especially during peak biovolume in both years.
Importantly, this misclassification of “other” cells also greatly
overestimates the phytoplankton biovolume compared to
manual validation, causing the seasonal phytoplankton peak in
2017 to appear much higher than for manual validation (Fig. 1 A-
B).

The CNN also captured interesting seasonal trends in the
diatom community. There was less total diatom biovolume in
2017-2018 compared to 2018-2019 (Fig. 2A, 2D). In both
seasons, centric diatoms shifted from a dominance of >20 um
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Fig. 1. Methods comparison of phytoplankton seasonal succession for the (A-B) 2017-2018 and (C-D) 2018-2019 summer field seasons, showing biovolume

data from (A and C) manual validation and (B and D) CNN predictions.
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Fig. 2. Diatom seasonal diversity as predicted with the CNN for the (A-C) 2017-2018 and (D-F) 2018-2019 summer field seasons. (A and D) Total biovolume
attributed to pennate and centric diatoms. (B and E) Total biovolume attributed to different size classes of centric diatoms. (C and F) Total biovolume attributed

to different size classes of pennate diatoms.

cells in November and December, to a dominance of 10-15 um
cells in February and March (Fig. 2B, 2E). Pennate diatoms were
consistently dominated by cells < 10 pm, with an increase in
biovolume during February and March, especially in 2018-2019
(Fig. 2C, 2F). Both seasons were primarily dominated by centric
diatoms, with the notable exception of a large peak in pennate
diatom biovolume in 2018 (Fig. 2A, 2D).

C. Sea Ice Dynamics

2017 had lower maximum winter sea ice coverage and
shorter sea ice duration than 2018, but a later sea ice retreat
(Table 2 and Fig. 3). Sea ice cleared the region rapidly in 2017,
dropping from 52% coverage in November, to 12% in
December, and 3% in January (Fig. 3). In 2018, the sea ice
retreated earlier but coverage stayed higher in the region into the
summer, with 24% coverage in November, 17% coverage in
December, and 10% coverage in January (Fig. 3).

TABLE IL SEA ICE CHARACTERIZATION
Year Sea Ice Duration Date of Sea Ice
(days) Retreat
2017 132 December 3
2018 153 November 27

IV. DISCUSSION

A. Model Development: Successes and Challenges

Overall, we achieved the goal of our study: to create a CNN
to accurately sort WAP phytoplankton into taxonomic
categories. Our overall model achieved an fl-score of 93.7%
with an increase to 96.5% for merged taxonomic groupings. This
indicates that our phytoplankton imagery data can be
successfully and accurately sorted with machine learning
techniques, greatly reducing the time spent classifying these
images manually. Absolute comparisons to classification
algorithms from previous studies is challenging given different
numbers of classes, data filtering schemes, and methods for
determining what constitutes test data, but in general these
metrics compare very favorably to other models. The
development of regional and global phytoplankton classifying
CNNs presents an opportunity to greatly advance our
understanding of plankton diversity and ecology.

However, our model fl-score dropped dramatically from
93.7% during model development to 46.5% during model
validation on a new, random dataset with a class distribution
representative of that found in natural waters. We believe that
this large decrease in model accuracy is a key challenge rarely
addressed in the literature. One reason for this decrease is the
highly imbalanced class distributions of naturally occurring
phytoplankton assemblages compared to our model testing
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Fig. 3. Percent sea ice coverage in the 200 km area south and west of Palmer
Station during the 2017-2018 season (black) and the 2018-2019 season
(blue).

dataset (e.g., see n values in Table 1). Model categories such as
detritus are highly abundant in our dataset, often composing up
to 50% of the biovolume in a sample, while other ecologically
important groups, such as large, morphologically distinct
diatoms including Corethron penatum and Eucampia antarctica
are encountered sporadically in our dataset. A minor
misclassification of detritus as a rare class can easily overwhelm
that category.

Nearly all previous studies report accuracy for a balanced
and curated test dataset rather than a random sample of natural
waters. During model development a balanced class distribution
is necessary to ensure the model equally weights each category
during training. For example, if during model development a
single class composed 90% of the training dataset, the model
could classify every sample as that class, ignoring all others, and
be 90% accurate. The gradient descent optimization algorithm
would never learn any other classes. In the few studies that do
report accuracy in natural samples, our drop-off is similar (See
Table 2 in [13]).

The classes being naturally highly imbalanced creates
several model development choices, including whether to
exclude, up-sample, or augment low incidence classes, and how
specific model classifications should be (e.g., high level classes
like diatoms, dinoflagellates, etc. or species level classes like
Thalassiosira and Gyrodinium). We tried to strike a balance in
our model setup by eliminating rare classes or merging them into
broader groups while keeping groups morphologically distinct
to prevent model confusion. However, there remains a degree of
high intraclass variance and interclass similarity in morphology
that was impossible to eliminate (e.g., 14.9% classification
accuracy for “other”; Table 1). This challenge can be addressed
on the other end of model development, by filtering samples
where model uncertainty is high. The CNN outputs a confidence
score (from the Softmax classification layer) for each prediction
from O to 1 that can be used to filter samples below a certain
threshold. While potentially increasing the model accuracy, this

could also bias the system against certain classes that are
challenging to classify, and thus was not implemented in this
work.

Another potential cause of reduced model accuracy is data
labelling errors. Theoretically, manual identification of images
should be close to perfect, but unfortunately this is not the case.
In this work and most others, there is often a bias for training
and test data that is easily identifiable by manual validation,
which prevents test metrics from translating exactly to the wild.
There are also many images with conglomerations of cells
including detritus and multiple living species. While these may
be manually sorted into a category labelled “multiple” and
discarded from the analysis, a CNN might sort these images into
the most prominent class present within each image.
Additionally, morphologically ambiguous cells may be sorted
more accurately by a CNN than by manual identification, as a
CNN can mathematically match image attributes to potential
groups. One way we attempted to eliminate a portion of these
ambiguous cells was to exclude all cells with a major axis length
less than 25 pixels (7.35 pm) prior to model training. These
small cells are below the quantifiable limit of detection based on
instrument resolution, and thus have a high probability of being
incorrectly identified. Accurately classifying these smaller cells
will likely require techniques other than imaging. The issues of
class imbalance can also magnify labelling errors, especially
when these errors are within abundant classes such as “detritus”.

B.  Phytoplankton Seasonal Succession at Palmer Station

Like other studies, we found that following a winter with low
sea ice (2017), the phytoplankton community had less diatoms,
and more mixed flagellates and cryptophytes, and following a
winter with high sea ice (2018), the community was dominated
by diatoms (Figs. 1, 3, Table 2) [9], [17]. Following trends found
in previous years at Palmer Station [9], we also saw diatoms
dominate in the early and late season, and higher cryptophyte
concentrations in December and January.

Along the WAP, phytoplankton show strong interannual and
regional variability timed with light availability and sea ice
retreat. As day length increases in austral spring, solar warming
and sea ice melt stabilize the upper water column allowing
phytoplankton to remain near the surface in waters with high
light availability [18-19]. These conditions initiate large diatom-
dominated spring blooms, as we saw in 2018 [20-21]. In 2017,
there was 52% sea ice coverage in November, likely inhibiting
light penetration and subsequent phytoplankton growth.
Dramatic reduction in sea ice coverage between November and
December indicates that the ice was rapidly advected out of the
region, reducing sea ice melt near Palmer Station and potentially
reducing the stability of the upper mixed layer. In 2018, although
sea ice retreat is six days later than in 2017, November sea ice
coverage is only 24%, allowing adequate light for phytoplankton
growth. Additionally, the sea ice lingers into December and
January (17% and 10%, respectively), providing a stable
environment for growth well into the summer. Matching our
results, [22] found that rapid sea ice retreat was associated with
lower proportions of centric diatoms during the spring in Ryder
Bay, Antarctica (Fig. 2). Sea ice can also hold populations of ice
algae, which can seed coastal regions during melting in spring
[23]. Tt is possible that with rapid sea ice advection from the
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region in 2017, less ice algae were released to the coastal region
near Palmer Station than in 2018 when sea ice lingered and
contributed more meltwater.

Despite differences in phytoplankton abundance and
community structure between the two years, there were similar
trends in the diatom community. The early season was
dominated by large centric diatoms > 20 pm timed with sea ice
retreat as described above. As both seasons progressed, centric
diatoms became smaller (< 20 um), and the abundance of
pennate diatoms < 10 um increased (Fig. 3). A explanation for
this size shift is the increasing amount of glacial meltwater from
January to March [24]. Stronger surface stratification due to
increased ice melt can reduce nutrients in surface waters, giving
an advantage to smaller phytoplankton with high surface-area-
to-volume ratios and reduced sinking rates [26]. Additionally,
[25] experimentally exposed phytoplankton populations from
Potter Cove, Antarctica to low salinity conditions (30 PSU) and
found a decline in the abundance of large centric diatoms from
~90% on day 2 to ~0% on day 7, and an increase in abundance
of small pennate diatoms from ~0% on day 4 to ~95% on day 8.
They attribute these changes to differing osmotic stress
tolerances: in large centric diatoms, a decrease in salinity caused
cell size increases, compression of chloroplasts, granularization
of the protoplasm, and retraction of the cytoplasm, while some
small pennate diatoms (e.g., Fragiliariopsis cylindrus) may
contain genes beneficial for adaptation to extreme
environmental conditions in polar oceans and sea ice. Thus,
increases in glacial meltwater in late summer could cause diatom
communities to become smaller and increasingly dominated by
pennate cells as we observed.

C. Conclusions and Next Steps

Our CNN is a step forward for understanding phytoplankton
ecology along the WAP. However, there are still improvements
to be made before it becomes a long-term tool for the
community. As explained above, an important issue to address
is class imbalance compounded with labelling errors of
abundant classes. One potential way to better represent these
undifferentiated classes (e.g., “detritus” or “multiple”) is to use
unsupervised methods (e.g., non-linear dimensionality
reduction, clustering, and manifold learning) to break these
classes into several new groups. Defining classes purely via data
rather than taxonomy could help models with potentially more
easily separable decision boundaries. These techniques could
also reduce manually labeled training data needs with semi-
supervised classification, and in many cases unsupervised
techniques may be sufficient for answering questions about
phytoplankton dynamics without any need for supervised
classification [27]. Another method could be to use a stage-wise
approach, with a one-class-classifier or binary classification to
exclude “detritus” and “multiple” images up front to limit the
spread of these issues into the full output range which is
exacerbated by the prevalence of these classes. In tandem to
improving the classification itself, per class uncertainty
estimates (sensu [13]) will be critical to unbiased extrapolation
from CNN output to ecological dynamics.

With further increases in model accuracy, we hope our
model will become a helpful tool for phytoplankton research.
Long-term warming and sea ice declines along the WAP are

contributing to shifts to smaller and less abundant phytoplankton
populations [6], and these trends are likely to continue.
Understanding the seasonal and spatial dynamics of
phytoplankton diversity is integral to contextualizing how
communities will change in the future. Beyond the CNN’s
ability to rapidly classify entire seasons of collected
phytoplankton imagery, it can also be used to characterize
phytoplankton communities in near-real time. Getting a
snapshot of species and cell size dynamics soon after collecting
a sample would aid in opportunistic sampling while still in the
field. This would be invaluable, as research time in Antarctica is
both limited and expensive.

Lastly, the PAL-LTER is not the only group experiencing
these challenges: there is a broad IFCB user community
searching for methods to automate sample classification to
reduce the need for manual image validation. Various groups are
independently creating phytoplankton CNNs and other models
for their study sites of interest. We implore the community to
begin reporting their model metrics on data with distributions
representative of the natural environment, sharing labeled data
openly on freely accessible platforms (e.g., EcoTaxa, IFCB
Dashboard), and sharing open and reproducible code for
processing and model development. As models improve, the
community may be able to develop a series of regional models,
freely available to download and classify a worker’s data, or
even a single generalizable model usable for the world oceans.
Moving forward towards this vision, it will be critical for
oceanographers to collaborate with computer scientists and
modelers, incorporating the best computer vision and
classification techniques to these datasets to ultimately better
understand phytoplankton dynamics in a changing ocean.
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