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Abstract | Ocean biogeochemical models describe the ocean’s circulation, physical properties,
biogeochemical properties and their transformations using coupled differential equations.
Numerically approximating these equations enables simulation of the dynamic evolution of
the ocean state in realistic global or regional spatial domains, across time spans from years to
centuries. This Primer explains the process of model construction and the main characteristics,
advantages and drawbacks of different model types, from the simplest nutrient—phytoplankton—
zooplankton—detritus model to the complex biogeochemical models used in Earth system
modelling and climate prediction. Commonly used metrics for model-data comparison are
described, alongside a discussion of how models can be informed by observations via parameter
optimization or state estimation, the two main methods of data assimilation. Examples illustrate

how these models are used for various practical applications, ranging from carbon accounting,
ocean acidification, ocean deoxygenation and fisheries to observing system design. Access
points are provided, enabling readers to engage in biogeochemical modelling through practical
code examples and a comprehensive list of publicly available models and observational data sets.
Recommendations are given for best practices in model archiving. Lastly, current limitations

and anticipated future developments and challenges of the models are discussed.

Ocean biogeochemical models (OBMs) are spa-
tially explicit models, consisting of a component that
describes the ocean’s temperature and salinity dis-
tributions and circulation — including wind and
density-driven currents, and wind, convective and eddy-
driven mixing — and a component that describes the
transformations of biogeochemical constituents con-
tained in seawater. The biogeochemical constituents are
typically nutrients, functional plankton groups, non-living
organic matter, dissolved gases and parameters of the
inorganic carbon system (FIC. 1). Both components con-
sist of numerical codes approximating systems of partial
differential equations. OBMs can be regional or global
in terms of their geographical scope. They can them-
selves be a component of a larger model, for example
in Earth system models (ESMs), where an OBM is cou-
pled to a model of the atmosphere and land biosphere,
or self-contained where information from the atmos-
phere and land is imposed. An OBM is typically run
forward in time, starting from a defined initial condition.
The model simulates the evolution of its state variables
subject to external forcing, such as wind, atmospheric
variables — air temperature and partial pressure of car-
bon dioxide (pCO,) — riverine nutrient and freshwater
inputs, and solar radiation. OBMs can be run as hind-
casts, describing past conditions; as nowcasts, aiming to
describe the current state of the ocean; or as forecasts

or projections, intended to inform about possible future
ocean conditions.

OBMs emerged in the 1990s as a common tool to
address the needs of two distinct communities with
different scientific objectives. One community was
interested in plankton ecology and sought to explain
and predict seasonal phytoplankton dynamics with
the help of marine plankton models. The roots of
these models go back to Gordon Riley' with further
developments in the 1980s and 1990s (REFS.*™). When
computers became more widely available, these mod-
els were coupled to three-dimensional models of ocean
circulation. A regional model of the North Atlantic®
was probably the first three-dimensional ocean circula-
tion model with explicit representation of plankton
dynamics. The other community was interested in the
role of the ocean as a sink of anthropogenic carbon.
Building on concepts established by Roger Revelle®,
early ocean carbon cycle models did not include an
explicit representation of plankton’. In the seminal
work by Ernst Maier-Reimer'*'!, models of carbon
cycling and plankton dynamics were combined and
integrated into global ocean circulation models. This
type of model is now a widely used tool for ocean eco-
logists and biogeochemists and has evolved to include
diverse functional plankton groups and multiple distinct
elemental cycles.
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Fig. 1| State variables and biogeochemical transformations across
a range of OBMs. Ocean biogeochemical models (OBMs) increasing in
complexity from left to right. The simplest, the nutrient-phytoplankton—
zooplankton—detritus (NPZD) model, includes four state variables and one
nutrient currency, often nitrogen. In the NPZD example, all transformations
are indicated by labelled arrows. A typical low-complexity model includes
several nutrients and nutrient currencies. Keeping track of multiple nutrient
currencies requires multiple state variables for some functional groups and
particulate pools (coloured tabs). In the low to high-complexity examples,
only the general transformation direction is indicated for simplicity. In prac-
tice there are many more transformations between state variables, each
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represented by a parameterization that requires at least one, but typically
more, biogeochemical model parameter. Chlorophyll is also omitted,
although many models have a chlorophyll state variable for each phytoplank-
ton group to account for photoacclimation. With greater complexity, there is
anincrease in plankton groups and organic matter pools with distinctions by
particle size, dissolved organic matter and bacteria. For the high-complexity
model, only functional phytoplankton and zooplankton groups are schemat-
ically represented because the inorganic and non-living organic pools are
similar to the intermediate-complexity model. Squares represent state vari-
ables, solid arrows represent selected transformations between state variables
and dashed arrows illustrate vertical sinking of particles.

Functional plankton groups
Groups of planktonic
organisms that share similar
traits, for example size,
biogeochemical function

or elemental requirements.
These groups are defined

to simplify the diversity of
planktonic communities

while capturing their essential
biogeochemical functions in
ocean biogeochemical models.

Initial condition
The complete set of state

variables at one instant in time.

Model integration starts from
an initial condition.

State variables

A set of variables that fully
characterize a model's
dynamical state such that
its future behaviour can be
calculated, provided any
external inputs are known.
Each variable that belongs
to this set is a state variable.

This Primer describes the process of OBM construc-
tion; reviews and illustrates methods and metrics for
evaluating models against observations; and introduces
approaches for combining models and observations. The
latter methods are collectively referred to as data assimi-
lation and include optimization of the model parameters
and model state. Model parameters include plankton
growth and grazing rates, rates of organic matter sinking
and remineralization. The model state involves deriva-
tion of the most likely ocean state, given a mechanistic
understanding of the system from model equations and
available observations. Several important applications
of OBMs are described to illustrate their breadth and
utility. Additionally, best practices for archiving model
codes, outputs and conducting intercomparisons are
recommended. The Primer concludes by discussing the
current limitations of OBMs and their applicability, plus
anticipated new developments and challenges.

Experimentation

Model construction

Biogeochemical equations. The biogeochemical dynam-
ics at the core of an OBM are commonly cast as a system
of coupled partial differential equations. These equations

describe the rate of change of state variables, C, that rep-
resent the concentrations of nutrients, the biomass of
functional plankton groups and more'>"*. The common
form of these equations is:

9 physics + bgc_sms (1)

ot

where physics includes all advective and dispersive
transport processes affecting the concentration of
C, and bgc_sms contains all local sources and sinks
due to biogeochemical transformations, air-sea
gas exchange, atmospheric deposition, sediment-water
exchange, river input and any transport not arising from
ocean circulation, such as vertical sinking of organic
matter. Biogeochemical state variables are specified as
a concentration of some element, often nitrogen. Other
elements such as carbon, phosphorus, silicon or iron can
also be included using either fixed or variable elemental
stoichiometry to relate the different state variables.

One of the lowest-order, but complete, biogeochemi-
cal models is the nutrient-phytoplankton-zooplankton—
detritus NPZD) model. The NPZD model describes the
concentration of the four variables in a homogeneously
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External forcing

All prescribed inputs that
are needed to determine
the evolution of a model's
state and are not calculated
internally by the model.

Projections

Simulations into the future
that go significantly beyond
the timescale for which models
have demonstrated predictive
or forecast skill, such as

Earth system model (ESM)
simulations to the end of the
current century or longer.

Model parameters
Constants that are usually
specified at the beginning
of model integration and
determine the dynamical
behaviour of the model.

A priori knowledge
Assumptions about ocean
processes, represented by
the equations of an ocean
model and its parameters
and initial and boundary
conditions, that are available
before data assimilation

is applied.

mixed volume or box. It is obtained by neglecting the
physical terms to effectively create a zero-dimensional
box model. Consequently, the equations are simplified
to ordinary differential equations (dC/dt) and include
only four state variables. Assuming a closed system,
the terms on the right-hand side of the equation reflect
transformations between the state variables:

(ii—zj = — uptake + remineralization 2)
ap _ uptake — grazing (3)
dt

Z ) .

— =grazing — excretion (4)
dt

(cii_lt) = excretion — remineralization (5)

Note that the four coupled NPZD equations above
are mass conserving, where loss from one variable to
another is balanced by a corresponding gain in the lat-
ter. Also, the four equations make a coupled system of
equations because the terms on the right-hand side are
dependent on multiple state variables.

The next step in modelling the NPZD system is to
specify the functional form and parameters for each
of the biogeochemical transformations, referred to as
parameterizations. They are defined using conceptual
understanding, also referred to as a priori knowledge,
from laboratory experiments, field studies and biologi-
cal theory. For example, the grazing term of zooplank-
ton consuming phytoplankton is a function of P, Z and,
perhaps, temperature, T, namely grazing=f(B Z, T, ...).
Below are three example grazing parameterizations:

razing= Zi 6

& g=& K, (6)

razing= gz

& g=& P+K, (7)
2

razing= g/ ——— 8

& g=& P2+Kﬁ (8)

where g (day™) is a rate parameter and K|, (same units
as P) is a saturation parameter. All three parameteriza-
tions are common in ecological modelling for capturing
consumer-resource interactions and reflect distinctly,
often subtlety different, biological dynamics'®. The first
parameterization assumes that the grazing rate increases
linearly with the prey concentration (P). By contrast,
the latter two assume the grazing rate saturates at high
concentrations of P, meaning P» K,. The P? terms in
the third parameterization result in reduced grazing
at very low P concentrations. The choice of functional
form for the grazing parameterization is typically based
on theoretical arguments and considerations about
the numerical model stability. The parameters for the
grazing parameterization can be determined by dilu-
tion experiments for some zooplankton species, where

phytoplankton loss rates are measured across a range of
prey dilution levels. However, it should be recognized
that single species experiments in the laboratory do not
necessarily translate to diverse natural communities.
Similar decisions on the functional forms and param-
eter values have to be made for all other parameteri-
zations in the NPZD model and initial concentrations
of all variables have to be prescribed. An example of a
complete, vertically resolved NPZD model is provided
in BOX 1.

Most OBMs in current use are extensions of the
basic NPZD framework but have more complex bio-
geochemical model components. Additional state
variables include multiple nutrients — nitrate, ammo-
nium, phosphate, silicate and dissolved iron — multiple
phytoplankton and zooplankton functional groups,
dissolved gases — for example, oxygen and dissolved
inorganic carbon — and related properties such as alka-
linity. Multiple nutrients are needed to address spatial
and temporal switches between limiting nutrients and
unique requirements by some functional phytoplank-
ton groups, such as diatoms. Multiple plankton vari-
ables are included to account for the biogeochemically
distinct roles played by different size classes and func-
tional groups'®. For example, diatoms have a unique
requirement for silicate and contribute significantly to
biological carbon export. Coccolithophores produce
calcium carbonate (CaCQ,) as shells and affect verti-
cal carbonate transport and remineralization at depth.
Diazotrophs fix gaseous nitrogen, turning it into bio-
available forms. Furthermore, chlorophyll concentra-
tion, the most abundant biological measurement in the
ocean, is non-linearly related to phytoplankton biomass.
The chlorophyll to biomass ratio can vary by an order of
magnitude due to photoacclimation'”'*. Many, but not
all, biogeochemical models account for variations in the
ratio of phytoplankton biomass to chlorophyll using a
parameterization of photoacclimation®. Including the
inorganic carbon cycle is crucial for any OBM used
for climate studies®. This requires inclusion of state vari-
ables for dissolved inorganic carbon and alkalinity, unless
alkalinity can be inferred from other state variables,
typically salinity. Knowledge of these two properties
enables calculation of other carbonate system proper-
ties, including pCO,, which is required to parameterize
air-sea gas exchange, and pH, which is of considerable
interest given concerns about ongoing ocean acidifica-
tion. Another common state variable in OBMs is oxy-
gen because of its relevance for climate and ecosystem
health. Oxygen minimum zones in the open ocean are
sites of trace gas production and nitrate loss via deni-
trification”’. Low oxygen concentrations (hypoxia) or a
complete absence (anoxia) have deleterious impacts on
ecosystems.

Although virtually all OBM:s for biogeochemical and
climate studies follow the approach of defining a mod-
erate number of functional groups, there are alternative
approaches. One family of models initializes simulations
with dozens to hundreds or more phytoplankton state
variables, using either a randomly chosen or specifically
crafted size structure and physiological parameters. The
model then allows competition within the simulation
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Box 1| NPZD model example

Simple MATLAB code of the one-dimensional nutrient-phytoplankton—
zooplankton—detritus (NPZD) model described in REF.?*? is available on
GitHub?, The model represents a station in the subpolar North Atlantic
Ocean. The default simulation yields a good agreement between the
simulated phytoplankton concentration and satellite observations.
After running the default, increasing and decreasing the initial nitrate
concentration, maximum phytoplankton growth rate, maximum
zooplankton grazing rate and latitude enable exploration of the
model’s dependencies on these parameters.

The figure shows the simulated surface concentrations of nitrate,
phytoplankton and zooplankton variables in the second year of the

simulation for the default parameter set (case 1), for a 50% decrease in the
initial nitrate concentration (case 2) and for a doubling of the maximum
phytoplankton growth rate (case 3). In case 1, the surface phytoplankton
concentrations agree with satellite-based observations. The decrease

in initial nitrate in case 2 has only a small effect on the timing and ampli-
tude of the spring phytoplankton bloom, but leads to much smaller phyto-
plankton and zooplankton concentrations in summer and autumn than
case 1. The doubling of the maximum phytoplankton growth rate in case 3
leads to a much earlier spring bloom initiation, a larger autumn phyto-
plankton bloom and larger spring and autumn peaks in zooplankton than
for case 1.
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Parameter optimization

The determination of the most
likely values of poorly known
model parameters based on
the agreement of model output
with observations.
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to sub-select regional and seasonal plankton commu-
nities?>”’. Another family of models uses allometric
relationships to represent a continuum of plankton
size classes to simulate grazing relationships and dis-
tinct trophic interactions in different marine ecosys-
tems***. These two approaches move in the direction
of representing more of the complexity inherent in nat-
ural plankton communities. Others have moved in the
direction of less complexity by drastically reducing
the number of biogeochemical state variables to four*.

Model uncertainties enter the OBM biogeochem-
ical equations from several sources. The models have
many parameters which are not well known or easily
quantifiable””. Even parameters that can be determined
experimentally may not effectively represent real-world
communities in the field. Furthermore, model param-
eters are not independent for coupled differential
equations, and system-level uncertainties can arise
because of dynamical interactions between state vari-
ables. Parameter optimization aims to address this issue
but depends critically on the availability of a broad suite
of observations. More challenging uncertainties arise
from the choice of model structure and model parame-
terizations. Coupling of biogeochemical equations with
ocean circulation results in additional sources of errors.
Careful validation of OBMs to evaluate whether they
are fit for purpose, be it for a specific scientific ques-
tion or an applied purpose, is an integral part of model
development and application.

Coupling with ocean circulation. In an OBM, the
transformations between biogeochemical state var-
iables are connected to their advective and dispersive
transport arising from ocean circulation, by partial dif-
ferential equations of the general form given by Eq. 1.

Sep Oct Dec

Feb Apr May Jul Sep Oct Dec

This equation can be rewritten as follows for each state
variable C:

a—C:—u~V3C+V2-kHV2C
ot ©)
+i k a—C]+b c_sms
oz ¥ oz 8=

where the first term on the right-hand side represents
the advective transport of constituent C (u is the fluid
velocity vector), the second and third terms represent
dispersion in the horizontal and vertical directions,
respectively, and the last term refers to the biogeochem-
ical sources and sinks of C. The parameters k,, and k, are
the horizontal and vertical dispersion coefficients and
= 9 9 9yand Vv, = (2, %) are three-dimensional
ox’ 9y, 0z . dx’ o . .
and two-dimensional operators. The combination of
the first three terms on the right-hand side is referred
to simply as physics in Eq. 1. As physical transport pro-
cesses operate in all three spatial directions, Eq. 9 is
three-dimensional in space and includes partial deriva-
tives with respect to time, ¢, and the three spatial dimen-
sions, x, y and z. In addition to an equation of this form
for each biogeochemical variable, an OBM includes par-
tial differential equations for the physical state variables,
including temperature, salinity and velocity, as well as
parameterizations for horizontal and vertical disper-
sion coefficients, which can vary in space and time. For
detailed descriptions of the physical model equations,
see REFS. 1%,

Except for a few highly idealized cases — for example,
when considering only one spatial dimension or a cir-
cular or rectangular two-dimensional domain with
homogeneous initial conditions and constant forcing
— the solution to these equations cannot be obtained

4| Article citation ID:

(2022) 2:76

www.nature.com/nrmp



Integration time

The simulated length of model
integration. It varies from
months to decades in regional
models and hundreds of years

in Earth system models (ESMs).

Spin up

The initial period of a model
simulation during which the
model adjusts from its initial
state to a new state according
to the internal model dynamics
and subject to external forcing.
The spin up period ranges
from a few months or years
for regional models to one or

a few hundred years for global
models.

analytically and must be approximated numerically.
Commonly, the equations are discretized in time, using
finite time steps, At, and space, on a three-dimensional
grid representing the model domain, with the help of
finite differences. In the finite difference methods, the
derivatives in the differential equations are replaced
by finite difference approximations, for instance 0C/dt
and dC/0x become AC/At and AC/Ax, respectively.
This results in a system of prognostic equations, which
include only basic arithmetic operations on defined
quantities that can be carried out on a computer. There
are subtle issues and several options when defining spa-
tial grids, the finite difference discretization of equations
on the grids and time stepping®*’. This explains the
large diversity of finite difference-based ocean circula-
tion models in current use. Alternative approaches are
finite element and finite volume methods, which both
allow for the creation of unstructured, curved, varying
resolution grids, especially suitable for models with com-
plex coastlines or bathymetry. Owing to the subtleties
of discretizing differential equations on unstructured
grids, these methods are an area of active research’ and,
to date, only a few OBMs have been coupled to finite
element™ and finite volume* circulation models.

Finite difference approximations are not exact solu-
tions to the OBM equations; they only approximate
the solutions. The accuracy of these approximations
depends on the chosen difference scheme, the size of the
time step, At, and the spatial resolution, Ax, Ay and Az. It
is generally desirable to use the finest spatial resolution
possible with the available computational resources and
the longest time step that keeps the model numerically
stable. Although computing power has increased over
the past two decades, the computational cost of running
realistic OBMs is so demanding that trade-offs between
domain size, resolution and integration time must always
be considered. When doubling the horizontal resolution
Ax and Ay in a finite difference model, the maximum
allowable time step At is shortened to a quarter of its pre-
vious value, leading to a factor of 16 increase in overall
computation time.

ESMs have a spatial resolution on the order of 1°
(~100km; FIG. 2) and are typically integrated for several
hundred years. Given their spatial resolution, the mod-
els are unable to capture a range of important bathy-
metric and circulation features, such as continental
shelf edges, mesoscale eddies and currents, and river
plumes. Regional models have a finer spatial resolution
(FIC. 2) on the order of single to tens of kilometres, but
they have much shorter integration times (months to
decades). The models’ pros and cons can be illustrated
using the north-west North Atlantic Ocean as an exam-
ple. The broad, passive-margin shelf in this region,
located at the confluence of two large-scale current
systems, the Gulf Stream and the Labrador Current,
supports economically and culturally important fish-
eries that are particularly vulnerable to warming and
ocean deoxygenation®**. A defining circulation fea-
ture in this region is the shelf-break current, a branch
of the Labrador Current system, which effectively iso-
lates shelf water from adjacent open-ocean water lead-
ing to distinct properties and long residence times™.

Owing to their low resolution, global models typically
lack the shelf-break current and cannot reproduce these
features”. As a result, they do not well reproduce bio-
geochemical properties in this region®**’. Recent efforts
to increase a global OBM resolution to the level of a
regional model showed that properties are simulated
much more realistically when the shelf-break current
is properly represented®. However, the computational
effort was so large that its integration time was limited
to 100 years. Only a highly simplified three-variable
model based on REF.** was included, and the model
cannot be run routinely given present computational
resources. The drawback of a high-resolution, regional
model is that its integration time is limited to decades.
Additionally, atmospheric and larger-scale ocean forcing
must be specified instead of evolving internally as is the
case for ESMs.

Running an OBM involves integration forward
in time from defined initial conditions for each state
variable. It is subject to external forcing and boundary
conditions at the model domain edges. Some initial con-
ditions, such as temperature and salinity distributions,
must be prescribed, whereas the model may start from
rest, with initial velocities at zero. External forcing of
the ocean circulation component includes solar radia-
tion; air-sea fluxes of momentum, for example wind
forcing, heat and freshwater, such as precipitation minus
evaporation, sea-ice formation and melt; and freshwater
inputs from rivers. Examples of boundary conditions
include the stipulation that fluid flow cannot be normal
or at a right angle to the coast and may be required to
vanish at the coast — the no slip boundary condition.
Regional models typically have lateral boundaries that
do not coincide with coastlines, referred to as open
boundaries. Flow and associated transport of sea-
water constituents across these open boundaries must
be specified for regional models, which is one of their
drawbacks.

For the ocean circulation component, initial and
boundary conditions must be specified for the bio-
geochemical state variables. The distributions of nutri-
ents, dissolved gases, alkalinity and long-lived organic
pools, for instance long-lived dissolved organic matter,
should be prescribed as accurately as possible for initial
and open boundary conditions. Pools with fast turno-
ver times, such as plankton groups and reactive detri-
tal pools, can be set to small positive numbers and will
adjust quickly during model spin up. Additional bound-
ary conditions include nutrient and organic matter con-
centrations in river inputs, the mole fractions of gases in
the atmosphere, atmospheric deposition and exchange
fluxes across the sediment-water interface.

Ocean biogeochemical processes can also influ-
ence and feed back on ocean physical dynamics. For
example, several model studies investigated the influ-
ence of phytoplankton chlorophyll on the penetra-
tion depth of solar radiation. This highlighted its effect
on the vertical profile of surface heating and upper ocean
stratification"'. More indirect influences are possible in
coupled ESMs via changes in the ocean’s production and
emission of radiatively active gases, including dimethyl
sulfide (DMS)*2.
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State estimation

A method to obtain the
optimal model state by
combining the information
contained in the model
equations and the available
observations.

Variational methods
Methods aimed at obtaining
the best fit, in a least-squares
sense, between model and
observations by minimizing

a cost function. These can

be applied to parameter and
state estimation problems.

Sequential methods

The model state, and,
sometimes, its parameters are
updated through an alternating
sequence of forecast steps
when the model is integrated
forward in time, and update
or analysis steps when the
model state and, if applicable,
the parameters are updated
using observations.

Cost function

A measure of the misfit
between observations and
their model counterparts
in a least-squares sense.

100 km

IPSL-CM5A-LR (~160 km resolution)

MPI-ESM1-2-HR (~30 km resolution)

100 km 100 km

Dal-NWA-BCP (~5 km resolution)

Fig. 2 | Typical horizontal resolutions and bathymetries in global and regional models. The left and middle globes
show the grids of two global models that are part of the Coupled Model Intercomparison Project’s 6th Assessment Round
(CMIP6): the IPSL-CM5A-LR grid with a horizontal resolution of about 160 km in the corresponding inset (left) and the
MPI-ESM1-2-HR grid with a resolution of about 30km in the inset (middle). The right globe and inset show the domain
extent and horizontal resolution of a regional ocean biogeochemical model (OBM) for the north-west North Atlantic

and Labrador Sea, with a resolution of about 5 km in the inset.

Combining models and observations

Data assimilation, the process of statistically combining
models and observations, has the overarching goal of
achieving the best possible representation of past, cur-
rent or future ocean states. Data assimilation methods
combine the a priori knowledge of the ocean state and
its processes that is contained in an OBM with observa-
tions. Two applications for OBMs are parameter opti-
mization and state estimation. Parameter optimization
is aimed at addressing systematic biases in models that
arise from inaccurate parameter values and initial or
boundary conditions. State estimation typically assumes
the model is unbiased and aims to correct random
errors, such as deviations between the observed and sim-
ulated ocean state due to stochastic processes, for exam-
ple the ocean’s eddy field or larger-scale variations such
as the North Atlantic Oscillation and El Nino-Southern
Oscillation. Both applications can be realized through
variational methods or sequential methods (BOX 2).
Typically, OBM implementation includes parameter
optimization initially to remove biases within the model,
potentially followed by state estimation to minimize
random errors.

Parameter optimization. Variational data assimilation
derives from the mathematical field calculus of vari-
ations, which uses small variations in the inputs of func-
tions to find their minima or maxima. A long-standing
OBM application is parameter optimization*-*, where
poorly known model parameters are varied systemati-

cally to minimize the misfit between observations and

their model equivalents across the whole integration
period. This results in better agreement between the
model and observations (FIC. 3). The misfit is measured
by the cost function, typically of the form:

N
J(p)= ZW(y 2(p))* or

1
N
J(p)=(y- HX(P))TR’ (y - Hx(p))

where p is a vector of the parameters to be optimized, also
referred to as the control vector; y is a vector of the availa-
ble observations; § = Hx(p) is a vector of the model equiv-
alents to these observations, obtained by mapping the
model state x(p) onto the observation vector y using
the linear operator H; and w, and R contain the weights
that each observation contributes to the cost function.
Typically, R is assumed to be diagonal, where the weights
are inverses of the variances or based on the observa-
tion error for each observation type. R is considered to
be the covariance matrix of deviations between model
and observations, referred to as the observation error
covariance matrix. In practice, assumptions about these
weights must be made.

Solving this minimization problem yields the optimal
parameters, which can be obtained with iterative gradi-
ent descent methods, for example conjugate gradient
search'® or stochastic approaches such as simulated
annealing® or evolutionary algorithms**. Parameter
optimization is widely applied to OBMs because they
typically have many poorly known, difficult to deter-
mine and application-specific parameters that govern

(10)
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Control vector

A vector containing all of the
values to be optimized during
data assimilation. It can
include model parameters,
the full model state, a subset
thereof or a combination

of both.

Optimal parameters

The results from parameter
optimization; the para-
meter values that minimize
the cost functionin a
parameter optimization
problem.

the biogeochemical transformations. The method aims
to extract information about these biogeochemical
transformations, which is available in observations, to
inform or constrain the poorly known parameters.

In practice, the success of parameter optimization
depends on whether the available observations contain
enough information to constrain the parameters to be
optimized®”. For example, chlorophyll observations are
often the most abundant observation type. Relating
chlorophyll to phytoplankton biomass is not straight-
forward because the chlorophyll to biomass ratio is
variable and often not well known. Even if the chloro-
phyll to biomass ratio was known, chlorophyll obser-
vations are useful for informing phytoplankton-related
parameters, such as the total phytoplankton growth
rate, but may not contain much information about
grazing, remineralization and species-specific growth

Box 2 | General data assimilation machinery

In data assimilation, an optimization problem is solved where the initial control

vector — also referred to as the background or initial guess — is updated to minimize,

in a least-squares sense, the misfit between observations and their model equivalents.

In some cases, a combination of the misfit between the initial and updated control

vector and the misfit between observations and their model equivalents is minimized.
The solution to the optimization problem can be written as:

x, =X+ Kly — H(xy)]

(13)

where x, is the optimized control vector; x, is the initial control vector; K is the Kalman
gain matrix; y is a vector containing the observations to be assimilated; and H is a non-
linear operator containing the ocean model, which maps the initial control vector onto
the observations. This equation applies to both parameter and state estimation but
is more intuitive for the latter. In state estimation, [y — H(x,)] represents a vector of
observation-model misfits that, when multiplied by the matrix K, is projected onto the
model state and yields the increments needed to obtain the optimal ocean state, x,.
The optimal solution x, can be obtained by calculating or approximating K, or by
solving an equivalent minimization problem without explicit evaluation of K. The true
control vector, which represents the desired solution, is denoted by x,. Then, x, —x,
represents the deviations between the initial control vector and the truth, referred to
as background errors, and B their covariance matrix. In the case of a linear model, H is
also linear and denoted by H. Observation errors are y— Hx, and their covariance matrix
given by R. Assuming unbiased background and observation errors and zero cross-
correlation between these errors, the algebraic form of the gain matrix that provides
the optimal analysis x, is:

K=BH'(HBH' +R)™ (14)
Alternatively, x, can be obtained by minimizing the cost function:
Jx) = (x = xp) B (x = x;,) + (y = HX)'R 'y — Hx) (15)

Equation 15 follows Bayes’ theorem in that J is the argument of the Gaussian condi-
tional probability function of x given y. The first and second terms on the right-hand
side of Eq. 15 are the arguments of the Gaussian distribution functions for errors in the
background and errors in the observations, respectively. Identifying the x value that
minimizes Eqg. 15 is equivalent to maximizing the conditional probability P(x|y). Assuming
alinear model is not strictly necessary to obtain x, by minimization of the cost function
(Eq. 15). For non-linear models, the term Hx can be replaced by H(x).

Methods have been developed to obtain, or at least approximate, these solutions for
realistic models with large control vectors. Ocean biogeochemical models (OBMs) are
highly non-linear, have large state vectors and are computationally expensive. They
also violate some of the underlying assumptions, such as Gaussian error distributions.
Furthermore, the background and observation error distributions are not well known
and not necessarily unbiased. Sequential methods estimate the gain matrix K, whereas
variational methods avoid explicit calculation of K and instead minimize J(x), which is
equivalent to maximizing P(x]y).

rates. As a result, those variables would remain poorly
constrained after optimization using only chlorophyll
or chlorophyll and nutrient observations*’. Because
observational data sets are often limited in terms of the
biogeochemical properties available, this is a common
problem for OBMs, referred to as the underdetermi-
nation problem™. A closely related challenge is that of
interdependent, correlated or non-unique parameters,
which arises when different combinations of parameters
yield the same result. For example, a reduction in plank-
ton mortality and an increase in plankton growth may
give the same change in biomass. The available obser-
vations may not provide enough information to distin-
guish between multiple plausible combinations without
further information. An example of underdetermined
and interdependent parameters is given in FIC. 4. An
a posteriori error analysis provides insight into inter-
related and poorly constrained parameters for a specific
optimization problem***.

Parameter optimization is routinely used in bioge-
ochemical modelling™ . It is often an integral step in
model development and, if applied systematically for
different model structures, can guide model construc-
tion>***. Parameter optimization and state estimation are
sometimes combined®*.

Parameter optimization worked example. Python
and MATLAB codes for parameter optimization of a
zero-dimensional (single box) NPZD model are avail-
able on GitHub". These code examples perform twin
experiments using the stochastic ensemble Kalman
filter (SEnKF). The default setting (FIC. 4) illustrates the
effect of both interdependent and underdetermined
parameters. When only phytoplankton observations
are available, there is a tight interdependence between
phytoplankton growth and mortality rates. For example,
low growth and low mortality rates give a similar fit to
high growth and high mortality. Likewise, phytoplank-
ton observations contain little information about the
nutrient remineralization rate, which is not improved
by assimilation in this example and remains underde-
termined. Using different combinations of observation
types and parameter sets in the assimilation example
allows these issues to be explored further.

In the default example, three parameters are esti-
mated as follows. First, ten synthetic phytoplankton
observations are generated from a model simulation
with known parameters, labelled ‘true’ in FIG. 4a. The
prior estimate of the parameters (FIC. 4b) results in a large
spread of the forecast ensemble in state space. In FIC. 4c,d,
true and forecast ensemble parameters are shown as
black plus signs and blue dots, respectively, overlaying
the misfit between model and synthetic observations. The
forecast and analysis parameter ensemble means are
shown as a large blue dot and green square, respec-
tively, in FIC. 4c,d. Assimilating the data moves the mean
parameter estimate closer to the true values in parame-
ter space for the phytoplankton parameters (FIC. 4c) but
farther from the true values for the nutrient remineral-
ization rate (FIC. 4d). The analysis ensemble, shown in
FIG. 4e, envelops the observations more tightly than the
forecast ensemble.
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A posteriori error

An estimate of the error in

the solution of an optimization
problem given the observations
and numerical solution
technique applied.

Least-squares

A measure of misfit between
observations and the

model equivalents of those
observations that sums the
squared distances between
them.
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correspond to the minimum of the cost function and produce the best fit between the model and observations. p, control

vector.

State estimation. State estimation is where a model’s
state variables are modified to reduce the discrepancy
between the model and observations. It is typically
applied sequentially by alternating forecast steps —
where the model runs forward for a defined time win-
dow, usually a few days — followed by update or analysis
steps, where newly available observations are used to
update the model’s state (FIC. 5). One of the most widely
used and robust sequential data assimilation techniques
is the ensemble Kalman filter (EnKF)*®. The EnKF,
its precursors and many variants apply Eq. 13 in BOX 2.

The EnKEF is based on the Kalman-Bucy Filter®,
which yields the best possible estimate in a least-squares
sense, when the model is linear and the distributions of
the model state and observations are fully character-
ized by the mean and covariances®. The Kalman-Bucy
Filter sequentially projects the model state, its mean
and covariances forward in time using the, ideally lin-
ear, model. This is followed by a Bayesian update of the
model state, its mean and covariances, informed by
the newly available observations. However, application
of the Kalman-Bucy Filter to OBMs is complicated
by the models’ non-linearity and the large state vector
size, typically in the order of 10® or larger, which would
require storing and modifying a prohibitively large
covariance matrix. These issues led to development of the
extended Kalman filter (ExtKF)®' for non-linear mod-
els, and extensions thereof, such as the singular evolu-
tive extended Kalman filter (SEEK)®?, which reduces the
computational requirements for evolving the covariance
matrix. However, propagation of the covariance matrix
still requires linearization of the model, which can lead to
bad approximations for highly non-linear models.

The EnKF removes the requirement for a linearized
model by simulating mean and covariance directly with
the help of a model ensemble. The underlying idea is that
a model’s probability distribution can be approximated
by a finite model ensemble, which then allows relatively
efficient calculation of the forecast error covariance.
In the forecast step, ensemble members are propagated
forward by the non-linear model. In the update step,
the ensemble of forecasted states is used to compute the
statistics required to perform the data assimilation
update. More specifically, the covariance matrix B is
approximated with the help of the ensemble of model
states {x'} as:

B~ < (x;—<x;>)(x;—<x;>) > (11)
where <... > denotes the average over the ensemble*.
The analysis step is:

x,'=x/ + K[y’ - Hx]] (12)
for each ensemble member, where K is calculated as in
BOX 2 using the ensemble approximation of B. The EnKF
has been widely applied to OBMs and has many variants
that differ in the way the update step is performed. One
variant is the SEnKF**%, where an ensemble of observa-
tions is drawn from an assumed distribution of obser-
vations and used to update each ensemble member.
Another variant is the deterministic EnKF (DEnKF)*-%,
where the mean and covariance of the ensemble
are computed and updated using the new observa-
tions, and a new ensemble is drawn from the updated
distribution.
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During the EnKF forecast step, each ensemble mem-
ber is integrated forward. This means the computa-
tional effort of running one realization of the OBM is
multiplied by the number of ensemble members (FIG. 5).
Computational constraints limit the possible size of the
ensemble to between tens of and a few hundred mem-
bers. The distribution of the high-dimensional state
vector is under-sampled by ensembles that are computa-
tionally feasible. Two techniques, covariance localization
and covariance inflation, are used to reduce the negative
effects of this under-sampling. Localization decreases the
impact of distant covariance estimates, thus reducing
the effect of spurious long-distance correlations in the
ensemble. Inflation artificially increases the ensemble
covariances to counteract low covariance estimates due
to small ensembles®.

Analogues to the underdetermination and para-
meter interdependency problems also exist in the
context of state estimation. OBMs have many biogeo-
chemical state variables, most of which are not directly
observed. State estimation is multivariate, meaning
unobserved variables can be informed by observations of
related variables through relationships expressed in the
covariance matrix. However, many elements of the state
vector may not be well informed by the available obser-
vations and the estimation problem is underdetermined.
Furthermore, if an increase of one state variable, for
example phytoplankton, is dictated by observations and
achieved by different adjustments to the model’s bioge-
ochemical transformations, such as increasing nutrient
supply or zooplankton grazing, additional observation
types would be necessary to conclusively inform which
update is correct®’”°. Formal analysis of the impact
of individual observation types can be useful in this
context”"’?,

Although the EnKF is the most common sequential
data assimilation technique, variational approaches are
being applied to OBMs”*. The three-dimensional vari-
ational (3D-Var)”*7¢ and four-dimensional variational
(4D-Var)®”” approaches include the sequence of fore-
cast and analysis steps, where the analysis step uses the
variational method (FIC. 5). In the 3D-Var approach,
the observation operator H is assumed to be time inde-
pendent, thought to be appropriate for short forecast
windows. In the 4D-Var approach, H is time dependent
and includes the non-linear forecast model, although it is
common to linearize the problem’. Particle filters, such
as sequential importance resampling’, are promising
alternative methods that do not rely on the assumption
of Gaussian error distributions. They have been used for
state and parameter estimation of OBMs" but are not
yet widely used.

State estimation worked example. MATLAB and Fortran
codes for ensemble-based state estimation suitable for
three-dimensional OBMs are available on GitHub®'. The
example is set up as an identical twin experiment for
an idealized three-dimensional OBM, using ROMS and
the DEnKF as in REF“". The model domain is an ideal-
ized north-south channel with periodic boundary con-
ditions on the northern and southern boundaries and
narrow shelves along the eastern and western edges.

Wind forcing results in intermitted upwelling on the
western side of the domain with upward transport of
nutrients and stimulation of phytoplankton growth. In
the free run, several biological parameters and the wind
forcing are altered, resulting in a delayed upwelling and
weaker phytoplankton response compared with the
baseline run, which we consider the ‘truth’ Sea surface
height, surface temperature, surface chlorophyll and
profiles of temperature and nitrate concentration are
sampled from the ‘truth’ simulation and assimilated into
the perturbed free run to obtain the data-assimilative
simulation. The evolution of the mean surface chloro-
phyll concentrations (FIC. 6a) illustrates the differences
between the ‘truth’ run (black), the perturbed free run
(blue) and the sequential updates from forecast to analy-
sis during update steps (red). The ensemble spread
increases during most forecast steps. During assimila-
tion steps the ensemble spread is reduced. The impact on
surface and vertical distributions (FIG. 6b) of chlorophyll
concentrations on day 16 illustrates the discrepancies
between the ‘truth’ and free runs, and the improvement
due to assimilation in the analysis.

Results

Model evaluation

Whether an OBM has value as a research tool depends
on how accurately it represents the processes relevant
to the scientific question being addressed. Evaluating a
model’s performance is an integral part of model analy-
sis. It relies on comparing the model output with obser-
vations. Often, this occurs as an iterative loop, where
the evaluation of a hindcast simulation is followed by
model refinements, such as increasing model resolution,
improving parameterizations or changing the model
structure, followed by a new hindcast and evaluation®.
The three most commonly used statistical metrics
for model evaluation are the root mean-square error
(RMSE), the bias and the correlation coefficient (BOX 3).
All three are calculated by directly relating observations
to their model counterparts. They are also all relative
measures, without an objective criterion that indicates
which range of values is acceptable or unacceptable.
These metrics can be calculated using spatial and tem-
poral averaging, temporal averaging only or spatial aver-
aging only™. Specialized graphics have been devised to
effectively represent some of these metrics for a large
number of different models or different hindcasts from
the same model, including the Taylor diagram® and the
target diagram®. Two metrics with built-in criteria on
the acceptability of a model’s performance are Z-scores,
which consider variability within the observational data
set, and the model efficiency or model skill, which quan-
tifies whether the model outperforms an observational
climatology (BOX 3).

No single metric provides a complete evaluation of a
model’s predictive power. Instead, multiple, complemen-
tary metrics should be used in concert®. A model may
provide accurate estimates for some variables, locations
or times, but perform poorly for others”. Space, time
and a breadth of variable types should be considered in
any comprehensive model assessment. Furthermore,
there may be aspects of a system that the model cannot
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reasonably be expected to reproduce. For example, an
OBM without state estimation cannot exactly reproduce
stochastic aspects of the system, such as the exact timing
and location of elevated chlorophyll due to mesoscale
eddies. However, the magnitude, shape and frequency
of eddy-induced chlorophyll enhancements are expected
to be represented well. Specialized metrics that account
for mismatches in space and time can be used for
this purpose®.

In OBMs with data assimilation, the need for model
assessment expands further, to include evaluation of
state or parameter estimates. This becomes more dif-
ficult, as these estimates already contain information
from the observations that were assimilated. One gen-
eral strategy is to only use observations in the evalua-
tion that were not assimilated and can be considered
independent®. In practice, this presents a conundrum
because, ideally, all available observations would be used
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Fig. 4| Application of a stochastic ensemble Kalman filter for estimating three
parameters of a zero-dimensional (single box) NPZD model in a twin experiment
using example code®’. a| Ten phytoplankton observations (green dots) are generated
by sampling a model simulation with known parameters (+ signs in panels c and d).
This simulation represents the ‘true’ solution. b | The spread in model solutions prior
to assimilation or analysis. The forecast ensemble includes the model simulations
(transparent thin lines) for all parameter values (small blue dots in panels c and d)

of the prior estimate. Dashed lines show the ensemble mean. ¢ | Cost function values
(in greyscale) over the phytoplankton mortality and maximum growth rates, shown
with the forecast ensemble of parameters (small blue dots), the parameter ensemble
after analysis (small green diamonds), the mean values of the parameter ensemble
with standard deviation before and after analysis (large blue dot and green diamond,
respectively, with transparent ovals) and the true parameter values (+ sign). Red arrow
indicates the change in parameter estimate during the analysis step due to assimilation.
For these two parameters, the analysis moves the mean parameter estimates close

to the ‘truth’. The contraction in the size of the transparent ovals before (blue)

and after (green) analysis indicates improved confidence in the accuracy of the
parameter estimates. d | Same as panel ¢ but for phytoplankton mortality and nutrient
remineralization rates. The estimate for the nutrient remineralization rate is not
improved by the analysis, indicating that the observations contain little information
on this parameter. e | Model ensemble after assimilation, represented in the same way
as panel b. The ensemble mean for phytoplankton matches the observations very well,
especially compared with panel b. However, not all parameter updates resulted in

the ‘true’ values (see nutrient remineralization rate in panel d), which illustrates the
underdetermination problem often encountered in parameter optimization. NPZD,
nutrient-phytoplankton—-zooplankton—detritus.

in assimilation to obtain the best possible estimates, and
observations withheld from assimilation may be corre-
lated to those used in assimilation, meaning they are not
truly independent. Decorrelation scales must be consid-
ered when deciding what represents truly independent
observations. Perhaps the most convincing assessment
of an assimilative model is an ongoing test of its pre-
dictions against observations as they become available.
A closely related approach can be used to assess sequen-
tial state estimates in hindcast mode. In this approach,
misfits between observations and model forecasts at
the current time are compared with misfits between
current observations and analysis from the previous
update step. The underlying idea is to test whether
the forecast outperforms the persistence model,
which assumes that the previous analysis is also the
best forecast.

Challenges to model evaluation

The rigour of any model evaluation depends on the
observational data set available. Despite major efforts
in ocean observation in the twentieth and early
twenty-first century, the ocean’s biogeochemical state
remains under-observed in many critical aspects. This
has hampered the evaluation and systematic improve-
ment of OBMs*. Major biogeochemical observation
efforts include ocean colour satellites, coordinated
ship-based initiatives to obtain global three-dimensional
distributions, time series sites for a broad suite of obser-
vations, networks of ships of opportunity and numerous
individual, investigator-driven cruises. Although each
approach is valuable, biogeochemical under-sampling
remains a problem due to the cost and effort involved
in ship-based measurements. This limits sampling to
a few instances in space and time. Additionally, satel-
lite observations of ocean colour only provide infor-
mation about plankton-related properties at the very

Decorrelation scales

The e-folding scales of the auto-
correlation function of the
property under consideration;
the distance or period over
which the autocorrelation
decreases by a factor of 1/e.

surface of the ocean. The maturation of autonomous
platforms — profiling floats and gliders — and minia-
turized biogeochemical sensors has paved the way for
cost-effective and routine observation of a broad suite of
biogeochemical properties™'. Autonomous observation
technology is quickly becoming an additional, comple-
mentary data source, making it feasible to observe the
global ocean in near-real time at an unprecedented spa-
tial and temporal resolution, with an accuracy sufficient
to detect climate-induced changes”.

A technical challenge to rigorous model evaluation is
that many model variables are not in the same currency
or unit as observations. For example, chlorophyll is
non-linearly related to phytoplankton biomass. Plankton
observations can be in the unit of cells per volume or
biovolume per volume, whereas the model uses moles
of carbon or nitrogen per volume. Large zooplankton
is often measured in towed nets, resulting in a spatially
integrated measure. Definitions of plankton size classes
are typically not well defined for models. The necessary
conversions introduce uncertainties when comparing
observations and models. Another difficulty is accessing
existing observations. Whereas many of the major coor-
dinated observational initiatives have provided sustained
access to observations, often through individual reposi-
tories, small, investigator-driven efforts are typically not
well positioned to guarantee long-term access to spe-
cialized observations. Instead, they depend on national
or international repositories, such as NOAA MEDS.
A unified data management approach, with standardized
meta-data requirements and data formats that ensure
discoverability and accessibility of existing data sets, has
been identified by the oceanographic community as a
common goal”™”* and will greatly benefit OBM evaluation
and improvement.

Model evaluation relies on climatologies, satellite-
based estimates of chlorophyll and primary produc-
tion, comprehensive time series for a small number of
sites, focused process studies and, increasingly, global
autonomous data sets. Typically, an available data set
includes fewer properties than the OBM’s state and
only a small number of the biogeochemical transforma-
tions are observed. As a result, an excellent agreement
between model and observation does not guarantee that
the model’s representation of unobserved properties and
fluxes is correct, or that the model is a skilful predictive
tool. Internal model errors may compensate to reach a
seemingly correct result when judged by a limited data
set. However, the result may have been obtained for
the wrong reasons. It is therefore critical to continually
evaluate models and their predictions against sustained
observational data streams with an increasing breadth
of observables.

Applications

OBM applications range from scientific, for example
building fundamental understanding or for hypothesis
testing, to practical, such as producing forecasts and
model-derived products. This section gives key examples
to illustrate the breadth and importance of different appli-
cations, but should not be considered a comprehensive
description of OBM applications.
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Ocean carbon accounting

The global ocean absorbs about a quarter of contem-
porary human emissions of CO, to the atmosphere™.
OBMs have been central in quantifying the patterns and
rates of ocean anthropogenic CO, uptake. This uptake
occurs via natural physical-chemical gas exchange at
the air-sea interface, followed by ocean circulation that
transports surface water with excess CO, into the ocean
interior’®. OBMs are pivotal for characterizing future
ocean CO, uptake and its sensitivity to ocean climate
change under different policy scenarios”. Synthesis of

ocean carbon observational and model information
is invaluable for efforts to quantify the contemporary
global carbon budget™®. It is also needed to assess the
predictability of global-scale atmosphere-ocean CO,
flux relevant for carbon policy and management'®.
Partly because of the large CO, uptake capacity of
the ocean, several approaches have been proposed to
enhance ocean uptake through deliberate CO, removal
or negative emissions technologies'"'. Rapid decarboni-
zation of the global economy is needed to meet the inter-
national Paris Climate Agreement to keep global surface
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warming well below +2.0 °C, relative to pre-industrial
conditions. Coupled carbon-climate models indicate
that society must meet roughly net-zero human CO,
emissions by the middle of the twenty-first century.
Given the challenges of abating all human CO, emissions
from energy and transportation systems, a substantial
amount of deliberate CO, removal may be required”.
Significant knowledge gaps exist for all ocean-based
CO, removal approaches. Unknowns range from the
efficacy of net CO, uptake to permanence of carbon
storage, method verification or carbon accounting,
scalability and environmental impacts'®. In conjunction
with laboratory and field experiments, OBMs are cen-
tral to resolving these questions across a range of scales:

local, regional and global. Deliberate CO, removal will
be challenging to verify because it represents a relatively
small perturbation of the large natural uptake of anthro-
pogenic CO, and natural background variations. Ocean
circulation would transport added CO, away from
the site of deliberate manipulation and dilute signals.
Alterations of the ocean’s carbonate system and nutrient
inventory would have downstream effects ranging from
desirable — countering ocean acidification for alkalin-
ity enhancements — to counterproductive, for example
by diminishing the additionality of CO, removal, or
enhancing acidification. OBMs in combination with
well-resolved, comprehensive observation will be central
to verification of CO, removal and carbon accounting.
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Fig. 6 | Application of ensemble-based state estimation for a three-dimensional model, using example code®'.

a| Mean surface chlorophyll concentration in the ‘truth’ run (black line), the perturbed free run (blue line), the model
ensemble (red line) of the data assimilation (DA) run, and the ensemble spread (full range shown in light red, £1 standard
deviation of the ensemble in darker red). Grey vertical lines indicate the timing of assimilation steps. b | Surface and
vertical distributions of chlorophyll concentrations on day 16 in the ‘truth’ run, the free run and the analysis (mean of the
ensemble after the assimilation step) from left to right. The location of the vertical transect is indicated by the black line

in the middle panels.
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Box 3 | Common statistical metrics for model evaluation

The root mean-square error (RMSE), defined asRMSE = [% Thq(m;— oi)z, is a measure
of the overall distance between observational data pointso; (i=1, ..., n) and their

model equivalents m;.

The bias, b, defined asb = 1 Y1 (m;—o0,), measures to what degree the model
overestimates (b > 0) or underestimates (b < 0) the observational data.

The correlation coefficient, r, defined asr = (3, (m; — m)(o; 6))/\/2{‘:1 (m;-m)? 54 (0;-0)?,
measures to what degree the observations and their model equivalents are linearly
related. For r=1 they would perfectly relate to each other or be perfectly correlated.
For r=0 there would be no relation, and for r = —1 they would be perfectly anti-correlated,
meaning whenever observations increase the model equivalents decrease by a

proportional amount.

A climatology, 0, is the long-term average of an observational data setoi=1, ..., n).
A climatology can be spatially resolved, for example a gridded field, or calculated
for a single location. It can be a temporal average over all data (annual climatology),
temporally resolved by month (monthly climatology), day (daily climatology) or another

averaging interval.

The model skill or model efficiency, m,, defined asm_=1— (3%, (m,— 0)*)/(Z, (6 - 0)?),
measures whether a model results in better (0 <m_ < 1) or worse (m, < 0) predictions than
an observation-based climatology 0.

The Z-score, Z, defined as Z; = (m; — p)/0, relates model output m; to corresponding
observational data of the same property. Assuming the observational data are normally
distributed, with mean y and standard deviation o, the Z-score indicates the probability
of encountering the value m, in the data set given natural variability. A Z-score of 0
occurs when m; is equal to the mean of the observations. Z-scores above 1 or below -1
indicate that m, is outside one standard deviation of the observations.

Eutrophication
An excessive supply of plant
nutrients to a body of water,

often due to input from land.

Previous OBM studies have explored some of
these questions for different CO, removal techniques,
including ocean iron fertilization of high-nitrate,
low-chlorophyll regions'*-'%, artificial upwelling of
nutrients into the surface ocean'’, macroalgae farm-
ing'”, seawater alkalinity enhancement'*®'”” and, more
generally, the permanence of CO, removal'"’.

Ocean ecosystem health

Deoxygenation. Dissolved oxygen is an important
measure of ocean ecosystem health because oxygen
is essential for supporting aerobic aquatic life. Long-
term observations indicate that the oxygen content
of the global ocean has declined by more than 2% over
the past five decades'"". This has raised concerns about
profound effects on ocean biogeochemical cycles and
marine ecosystems''”. The observed oxygen loss of the
global ocean is projected to continue''>'", primarily
because of a decrease in oxygen solubility, increases
in biological oxygen demand and reduced ventila-
tion of the deep ocean from global warming''>''.
In addition to the large-scale climate effect, coastal
waters are affected by growing anthropogenic nutrient
inputs that lead to a worldwide expansion of coastal
hypoxiall7,ll8'

Global OBMs and ESMs have been used to under-
stand why the global ocean oxygen content changes'"’
and to make future projections under different emis-
sion scenarios'>''*'?°, These models consistently pro-
ject continued and accelerating deoxygenation, but
underestimate observed deoxygenation rates and fail to
accurately reproduce observed patterns and temporal
variability of oxygen changes'"®. Notable differences in
the simulated intensity and spatial patterns of oxygen
projections among ESMs'**"*! point to deficiencies in
mechanistic understanding and modelling capabilities.

Likely factors limiting current models have been iden-
tified in multi-model comparisons and sensitivity
experiments, including insufficient model resolution'*,
inaccuracies in ocean mixing parameterizations'*>'**
and incorrect model representation of biological
processes'”’.

Regional OBMs are widely used to improve under-
standing of coastal oxygen dynamics and to guide man-
agement in coastal regions'*>'**. They allow examination
and quantification of the factors governing oxygen vari-
ability and hypoxia formation'*~'*. Alongside this, they
can be used to project changes in oxygen supply under
climate change™"'** and to understand the consequences
of hypoxia on the marine food web'*>'**. Regional OBMs
are used for a range of applied purposes. For example,
they can evaluate how hypoxia would be affected by dif-
ferent nutrient reduction scenarios'*>'*°, investigate the
compounding effects of anthropogenic nutrient inputs
and climate change on hypoxia'**~'*, provide for seasonal
forecasts'*>'** and allow exploration of eco-engineering
strategies for hypoxia mitigation'*". Data-assimilative
OBMs provide short-term ecological forecasts, includ-
ing for oxygen, in various coastal systems by optimally
combining models and observations”.

Acidification. Ocean uptake of anthropogenic CO, slows
its atmospheric accumulation and, in turn, slows climate
change. However, it also changes seawater chemistry by
elevating dissolved inorganic carbon and aqueous CO,,
while reducing pH and carbonate mineral saturation
states'*2. Because it shifts seawater pH towards acidic
conditions, this process is referred to as ocean acidifi-
cation. Acidification likely has deleterious impacts on
ocean ecosystems and coastal human communities that
depend on marine resources'*>'*!. OBMs are used exten-
sively to quantify past and future rates and patterns of
ocean acidification.

Global OBMs simulate future reductions in surface
planktonic CaCO, production and elevated, shallower
CaCO, remineralization'*"'*". These simulations sug-
gest that open-ocean surface acidification is controlled
largely by the choice of atmosphere CO, scenario. This
is due to relatively rapid air-sea CO, gas exchange on
annual and longer timescales. By contrast, subsurface
acidification is more strongly dependent on simulated
ocean ventilation rates, which differ across models'*.
Decadal prediction systems using ensemble forecasts
from ESMs have demonstrable skill for surface pH
variations for up to 5years'®.

In coastal ecosystems, acidification is compounded
by eutrophication, acidic freshwater discharge, coastal
upwelling and terrestrial organic carbon inputs. Regional
OBM:s are used to analyse the synergy between acidifi-
cation and eutrophication'* and for characterizing the
highly variable physical and biogeochemical condi-
tions’**2, These models have also been used to quan-
tify the time of emergence when anthropogenic changes
exceed natural variability'>*. Further applications include
investigating how anthropogenic CO, trends amplify the
frequency of extreme acidification events* and com-
pound events with overlapping extremes of acidification,
marine heatwaves and deoxygenation'.
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The biological impacts of ocean acidification likely
vary across different marine environments — coral reefs,
wetlands, shallow coastal systems and pelagic planktonic
systems — with effects extending across scales from
organisms to the community and whole ecosystem. This
is accompanied by positive and negative effects for dif-
ferent taxonomic groups'*. For planktonic systems, ele-
vated aqueous CO, is projected to increase primary and
secondary productivity, alter community structure
and, perhaps, increase the frequency of harmful algal
blooms. At the same time, reduced carbonate mineral
saturation states are projected to lower the competitive-
ness of calcifying plankton species'*. This poses con-
siderable challenges for OBMs because existing model
structures and parameterizations are tailored to present
conditions. They are not necessarily able to account for
functional changes at the organism and community
levels due to acidification.

Fisheries. Primary production by phytoplankton sus-
tains the marine food web. However, OBMs typically
include only species on the lowest trophic levels, such
as phytoplankton and zooplankton, with the implicit
assumption that predation on plankton by higher
trophic levels, for example fish, can be represented by an
additional mortality term in the zooplankton equation.
The clear dependence of fishery yields on ecosystem pri-
mary production'*’ led modellers of higher trophic level
processes to use simulated primary production from
OBMs to force models in the early 2000s. Examples
include a study of the impact of climate change on tuna
populations in the tropical oceans', and a study using
IPCC-type models to assess the impact of climate on
living marine resources'”. This type of work continues,
as exemplified by the recent FishMIP model intercom-
parison project'® where a set of global, upper trophic
level models were forced with outputs from ESM pro-
jections. These projections reveal that average animal
biomass in the global ocean could decline by 17-19%
in high emission scenarios and 5-7% in low emission
scenarios by 2100 (REFS.'*"'®?). This is primarily due to
increasing temperature, decreasing primary production
and changes in species ranges. These OBM projections
have been used to project changes in fish catch poten-
tial'® and global fishery revenues'®’. Although these
results have been widely used in international assess-
ments'®>'®, the projections are subject to large uncer-
tainties with a substantial uncertainty contribution
from OBM-projected lower trophic level biomasses and
production’®'.

More recently, direct coupling of OBM:s to higher
trophic level models has enabled examination of
top-down control from higher trophic levels on plank-
tonic ecosystems and marine biogeochemical cycles in
general. For example, a study that coupled an OBM to
an upper trophic level model with explicit representation
of vertically migrating organisms, which feed at the sur-
face but excrete and respire at greater depth, estimated
that diurnal vertical migration contributes significantly
to the biological carbon pump. It could amount to 20%
of the vertical carbon flux due to settling particles'®’.
Diagnostic analyses of the contribution of zooplankton’s

diel vertical migration to biological carbon export have

yielded similar results's*.

Observing system design

Observing system simulation experiments (OSSEs) are
a type of data assimilation experiment in which syn-
thetic, or simulated, observations are used to design
new, or modify existing, observing systems. OSSEs
have their origin in numerical weather prediction'®
but are increasingly used for ocean models'”’, includ-
ing OBMs®®. Typically, OSSEs are performed when a
new observing system is designed, or in anticipation
of a proposed change to an existing observing system,
for example when a new instrument type or sensor
becomes available. An OSSE provides information
about the instrument combination and configuration
that leads to the greatest improvement in forecast skill
of a data assimilation system. This is particularly valu-
able information given the expense of new satellite-based
sensors or in situ ocean observing arrays. Beyond guid-
ing observing system design, OSSEs can also be used to
prepare for new data, to develop and improve data pro-
cessing, and to streamline the data assimilation system,
before new data sets become available.

OSSEs produce a simulated set of observations and
use a data assimilation system to examine their impact on
the system’s predictive skill. The simulated observations,
which include representations of the existing operational
observing system and the proposed additions, should be
obtained from an independent model simulation that
satisfies a few criteria'”’. This independent simulation
is referred to as the nature run. The simulated observa-
tions sampled from the nature run are then assimilated
into a data-assimilative model that closely resembles the
operational system. This is referred to as the perturba-
tion run. By comparing the perturbation run with a
control run, where only simulated observations from
the existing system were assimilated, the potential bene-
fits of the new observational assets or configuration can
be quantified. As the nature run can be sampled at any
desired location and frequency, many different observing
system configurations can be assessed. However, for an
OSSE to yield reliable conclusions, discrepancies between
the simulated observations and the data-assimilative
model must have the same error statistics as the differ-
ences between real observations and the data-assimilative
model.

Creating realistic simulated observations with repre-
sentative error statistics is non-trivial and should follow
the principles laid out in REF.'”". Identical twin OSSEs
use the same model to perform the nature and perturba-
tion runs, where discrepancies between the two are intro-
duced by modifying one or multiple model inputs, for
example parameters, initial conditions or physical forc-
ing. Although identical twin OSSEs are relatively easy to
set up, they are likely to produce simulated observations
with non-representative errors, leading to unrealistically
optimistic forecast skill estimates®. The more desirable,
fraternal twin OSSEs use a different model for gener-
ating observations from the assimilative system. OSSEs
require careful calibration, comparison of the nature
run with reality, and an examination of observation
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innovation statistics and forecast compared with the
assimilation of real data.

Reproducibility and data deposition

In alignment with efforts to make ocean observations
freely and easily accessible, alongside a general move-
ment to greater transparency in research dissemina-
tion, for example through open-access publishing, it
is becoming standard for OBM codes and output to be
made freely available. All of the widely used OBM codes
are community efforts, with shared code repositories
and active user groups (TABLE 1). Code archiving services
such as github.com enable scientists to maintain and
share their individual code repositories and collaborate
with others. Archiving of model output presents a larger
challenge because the size of raw model output easily
exceeds available storage capacities. This makes some
subsampling and curation necessary. Community-driven
archiving services such as zenodo.org enable permanent
and open archiving of data sets, including OBM output,
with assignment of persistent digital object identifiers.
Some physical and biogeochemical simulation outputs

Table 1 | Important repositories examples for OBM codes, outputs and
observations

Repository Abbreviation Name
type
Codes ROMS Regional Ocean Modeling System
MOM Modular Ocean Model
HYCOM Hybrid Coordinate Ocean Model
NEMO Nucleus for European Modelling of the Ocean
MITgem Massachusetts Institute of Technology General
Circulation Model
Outputs OMIP Ocean Model Intercomparison Project
CMIP6 Coupled Model Intercomparison Project Phase 6,
output data repository
C4MIP Coupled Climate Carbon Cycle Model

Intercomparison Project
RECCAP-2 Regional Carbon Cycle Assessment and Processes 2
MAREMIP MARine Ecosystem Model Intercomparison Project

|OOS COMT  Integrated Ocean Observing System’s Coastal
and Ocean Modeling Testbed

Observations ~ GEOTRACES  An International Study of the Marine
Biogeochemical Cycles of Trace Elements
and Isotopes

GO-SHIP Global Ocean Ship-based Hydrographic
Investigations Program

SOCAT Surface Ocean CO, Atlas

GLODAP Global Ocean Data Analysis Project

BGC-Argov Biogeochemical Argo

BCO-DMO Biological and Chemical Oceanography Data
Management Office

World Ocean  Ocean hydrography, oxygen and nutrients
Atlas 2018

SeaBASS NASA SeaWiFS Bio-optical Archive and Storage
System

MAREDAT MARine Ecosystem Biomass DATa

OBM, ocean biogeochemical model.

from more formal model intercomparison activities
are archived and available through centralized data
repositories*”'”".

The ocean modelling community has a history of
embracing model intercomparison. Different mod-
elling groups collaborate to define a target simulation
with a standard set of implementation and evaluation
criteria'”>'”. By comparing different model architectures
against common criteria, it is possible to identify short-
comings in individual models that can be remedied and
assess model uncertainties. If these uncertainties cannot
be eliminated, they must be considered when interpret-
ing results. The IPCC has a well-established process for
intercomparison of ESMs, referred to as the Coupled
Model Intercomparison Project (CMIP), that includes
intercomparison projects for ocean physical and bio-
geochemical models®'”". The latest round, CMIP6, cor-
responds to the 6th Assessment Report of the IPCC and
includes an intercomparison of the ocean biogeochem-
ical components of ESMs'**'"4!7>. Coordinated efforts
to compare multiple OBMs in a systematic fashion date
back to the mid 1990s and early 2000s, with the first two
phases of the Ocean Carbon Model Intercomparison
Project (OCMIP-1 and OCMIP2)'”*. The OCMIP team
created common frameworks for ocean tracer and bio-
geochemical experiments. These include natural and
anthropogenic radiocarbon; chlorofluorocarbons;
and abiotic and biotic carbon and nutrient cycling.
Experiment packages included a specified atmospheric
boundary condition for trace gases, such as chlorofluor-
ocarbons and CO,, ocean biogeochemical parameteriza-
tions and standardized model diagnostics and output.
Individual groups implemented the OCMIP experimen-
tal protocols in different ocean physical general circula-
tion models with different physical forcing and ocean
circulation'”. The resulting range of simulated ocean
tracer and biogeochemical fields could then be related
back to differences in the underlying physics, rather than
differences in the biogeochemical components'”®, and
model skill could be evaluated against a common set of
observed metrics'”’.

Intercomparison is also well established for regional
models, for example within the Integrated Ocean
Observing System’s Coastal Ocean Modeling Testbed
(IOOS COMT)'" . As part of the COMT, different phys-
ical models for simulation and prediction of coastal
hypoxia in the Mississippi River outflow region were
compared using the same simple oxygen model'”’. The
aim was to distinguish model to model differences due
to model physics from those resulting from different
biological model formulations'®. This approach is sim-
ilar to the OCMIP protocols. An alternate, but equally
useful, approach is to compare different biogeochem-
ical parameterizations within the same ocean physical
model. This is particularly effective when including
parameter optimization to minimize uncertainties
in parameter choices, focusing the intercomparison on
structural model differences*>*>**.

OBM intercomparison activities rely on available,
open-access, high-quality ocean data sets for model
development and evaluation’*. In many cases, gridded
data products and climatologies are more desirable than
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compilations of raw ocean data profiles. The construc-
tion of data products that span many individual data
collectors and time frames requires substantial effort by
domain experts from oceanography, data analysis and
data management. The visibility of ocean data manage-
ment as a distinct and critical element of ocean research
has risen substantially over the past couple of decades.
Multiple aspects, from informatics and cyber infrastruc-
ture to research culture, create incentives for scientists to
share data through recognized data repositories and
to properly cite data products'®"'*’. Current commu-
nity ocean data efforts revolve around the emergence of
new standards for data to be findable, accessible, inter-
operable and reusable (FAIR)”. Data system elements
can include an agreement on common sampling and
analytical measurement methods, data quality control
protocols and assurance checks, laboratory and field
intercomparison activities, analytical standards and ref-
erence materials, data ontologies and vocabularies, data
reporting requirements and formatting standards, and
support for data accessibility and archiving through data
repositories.

The physical hydrography community has a long
history of building unified data products for tempera-
ture, salinity, nutrients and oxygen'®. Standard products,
such as the World Ocean Atlas 2018, are created by the
National Oceanic and Atmospheric Administration
(NOAA) and other ocean data centres'®*. The ocean
chemical tracer and biogeochemical community has pur-
sued similar efforts to compile and, where feasible, grid
water column data relevant to OBMs. The Global Ocean
Data Analysis Project (GLODAP), for example, com-
piled data on ocean circulation tracers — radiocarbon
and chlorofluorocarbon — and dissolved inorganic
carbon system variables, including alkalinity, based on
historical global ocean surveys dating back to the 1970s
(REF.'®). The GLODAP product includes objectively
analysed, gridded spatial maps for both observed pro-
perties and derived products, such as anthropogenic
CO,. The GLODAP data product is a living data set, most
recently updated as GLODAPv2.2020 (REF.'*). Many of
the large-scale, international ocean observing efforts
are built on collaborations to generate similar publicly
accessible, standardized data products that are routinely
updated with new field observations. Relevant examples
for OBM efforts include the GO-SHIP hydrographic
programme'?’, surface ocean CO, observations'*, time
series'®, plankton products'*'*! and quality-controlled
BGC-Argo products'*>'”,

Limitations and optimizations

Application of OBMs is subject to computational limi-
tations, for example limits in CPU time and disk space.
This requires compromises in spatial and process reso-
lution achievable in the required domain size, integra-
tion time and model ensemble size. For example, the
resolution of most ESMs is too coarse to capture ocean
mesoscale features, although some modelling groups
are exploring global ocean mesoscale plankton simula-
tions'”*. Given current computing resources, increasing
the spatial resolution of a global model with century
integration times is typically only possible by drastically

reducing the number of biogeochemical state vari-
ables®. Regional models are affordable at much higher
spatial resolution, but require boundary conditions from
larger-scale models and much shorter integration times.
Practical workarounds include approaches for upscaling
and downscaling'**; nested domains, including two-way
coupling, where information flows from the large to
small scale and vice versa'*’; and adaptive grids or model
structures, although these model structures are difficult
to implement and rarely used.

Uncertainties in OBM parameters and structures are
a major issue limiting the models’ predictive skill. Many
model parameters cannot be determined experimentally
and have relatively large plausible ranges. Parameter
optimization approaches should, theoretically, be able
to address this as an inverse problem, where informa-
tion contained in biogeochemical observations is used
to infer the underlying parameters. However, in practice,
observations are often limited by resolution and breadth
of variable types, meaning many model parameters are
unconstrained by optimization***". The issue of unde-
termined parameters worsens with increasing model
complexity, for example when increasing the number
of state variables. This is because the number of poorly
known parameters multiplies and the degrees of free-
dom increase”. The strong non-linearities characterizing
OBM equations also contribute to the challenges. One
manifestation of underdetermination is a cancellation of
errors, where the model seemingly agrees with available
observations, but does so because underlying errors com-
pensate for each other. This includes the possibility of the
biogeochemical model compensating for shortcomings
in the physical model component. This is problematic for
future climate projections, where compensating errors
give a plausible simulated present, but limited confidence
in future behaviour'”. Whenever different errors com-
pensate for each other, the OBM might perform accept-
ably for the tuned observational period, but not outside
it. This limits both the mechanistic insights that can be
gained from the model and its use as a predictive tool.
Slow climate-biogeochemical feedback, for example, is
difficult to probe with current observations. A prudent
approach is to apply Occam’s razor, for example by limit-
ing the number of biogeochemical state variables to those
necessary and focusing on processes which have a con-
ceptual or theoretical understanding of climate sensitiv-
ity. In practice, this depends on the scientific or practical
challenges being addressed and can be subjective.

Related to the underdetermination problem is the
issue of structural uncertainties in OBMs. Equations
governing biogeochemical state variables are empiri-
cal and, except for mass conservation, are not derived
from fundamental laws and first principles such as the
Navier-Stokes equations. As a result, there are no univer-
sally agreed upon parameterizations or optimal model
structures. Although most models have converged on
a similar, intermediate-complexity structure, the model
structures and predictive capabilities are not rigorously
tested. Until recently, observational data sets have been
too limited in space, time or breadth, for a thorough
OBM validation. The rise of global autonomous bio-
geochemical observation networks”'"! is beginning to
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alleviate this problem and will likely prove transformative
for further development of OBMs.

A limitation to the use of ESMs for projecting future
conditions is that projections cannot be validated. The
use of past climatic changes is one possibility, but has
the drawback of observational constraints being lim-
ited to palaeo proxies. Additionally, there is no close
analogue to the current global warming in the recent
geological past, with the current continental plate con-
figuration. Assessment of ESMs for present-day condi-
tions™'”* provides information about model biases, but
does not necessarily describe their behaviour outside
the observed conditions. Again, the issues of underde-
termination and compensating errors lead to large and
poorly quantified uncertainties. In numerical weather
prediction it is generally true that an ensemble of differ-
ent models represents a better forecast than individual
models because model uncertainties partly cancel. This
notion has been adopted in climate projections where
ensembles of ESMs are commonly used. However, evalua-
tion of CMIP5 and CMIP6 ensembles for present-day
conditions shows that the assumption of cancellation
of errors does not generally hold*. This is unsurpris-
ing when considering that many models share similar
shortcomings and biases. A recent development is the
use of explainable and empirical inter-model relation-
ships between characteristics of the present-day condi-
tions and long-term climate projections, the emergent
constraint approach'®. It has enabled a reduction in
projection uncertainties in ESMs and has been applied
successfully to marine biogeochemistry'***.

Another major challenge when using OBMs for
future projections is that a fixed biogeochemical struc-
ture may not account for functional changes in biological
communities due to acclimation and adaptation to new
environmental conditions. One potential workaround
is to enable emergent communities”. However, this is
computationally costly and not feasible in the integra-
tion times required for future projections with current
computational capabilities. Another approach, which
requires ongoing input of well-resolved biogeochemical
observations, is to allow for adaptive model parame-
ters®. This is potentially feasible for nowcasts but not
projections. Whether the current status quo prevails or
new approaches are adopted, a continuous evaluation of
OBM results against a well-resolved, broad suite of obser-
vations from a sustained global ocean observing system
will be paramount as climate-related changes manifest.

Outlook

Anthropogenic perturbations of the global carbon and
nitrogen cycles are leading to ocean warming, acidifica-
tion, deoxygenation and coastal eutrophication. These
place stresses on ocean ecosystems and compound
direct human impacts, such as overfishing or trawling.
Prevention, mitigation and adaptation to the negative
effects of these stressors present a formidable challenge.
Skilful OBMs that provide robust, accurate and action-
able information are key to developing an appropriate
response, to enable optimal outcomes. This will require
a rigorous quantitative assessment and validation of
OBMs, including their structural uncertainties, model
refinement and method development. Ocean model-
ling already benefits from computational advances in
traditional ocean and climate models, alongside new
approaches using machine learning and other advanced
techniques. The OBM simulation tasks further depend
on continued expansion of the global ocean observing
system into more biogeochemical and ecosystem vari-
ables, taking advantage of cost-effective, autonomous
platforms and sensors, plus remote sensing.

Given an expanded and sustained biogeochemical
observing system, the development of well-constrained,
operational OBMs will be feasible in the near term. They
will benefit a broad range of scientific purposes and
practical applications. The need for accurate information
in some specific applications will require development
of tailored OBM applications. This includes ocean CO,
removal and carbon accounting; coastal eutrophication;
fisheries; marine diseases; and harmful algal blooms.
New applications focused on vulnerability and impacts
will drive integration of the current OBM generation
with specialized application models and more direct
engagement with stakeholders. Demand may grow for
near-term to seasonal, to multi-year forecasting pro-
ducts. A continued commitment to open-source code
and open-access principles in dissemination of OBM
results and derived products should be prioritized by
the research community and funders.

Code availability

Example code for a nutrient-phytoplankton-
zooplankton—detritus (NPZD) model, parameter opti-
mization and state estimation can be found in REFS.*#2"",
respectively.
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