
Ocean biogeochemical models (OBMs) are spa-
tially explicit models, consisting of a component that 
describes the ocean’s temperature and salinity dis-
tributions and circulation — including wind and 
density-​driven currents, and wind, convective and eddy-​ 
driven mixing — and a component that describes the 
transformations of biogeochemical constituents con-
tained in seawater. The biogeochemical constituents are 
typically nutrients, functional plankton groups, non-​living 
organic matter, dissolved gases and parameters of the 
inorganic carbon system (Fig. ​1). Both components con-
sist of numerical codes approximating systems of partial 
differential equations. OBMs can be regional or global 
in terms of their geographical scope. They can them-
selves be a component of a larger model, for example 
in Earth system models (ESMs), where an OBM is cou-
pled to a model of the atmosphere and land biosphere, 
or self-​contained where information from the atmos-
phere and land is imposed. An OBM is typically run 
forward in time, starting from a defined initial condition. 
The model simulates the evolution of its state variables 
subject to external forcing, such as wind, atmospheric 
variables — air temperature and partial pressure of car-
bon dioxide (pCO2) — riverine nutrient and freshwater 
inputs, and solar radiation. OBMs can be run as hind-
casts, describing past conditions; as nowcasts, aiming to 
describe the current state of the ocean; or as forecasts 

or projections, intended to inform about possible future 
ocean conditions.

OBMs emerged in the 1990s as a common tool to 
address the needs of two distinct communities with 
different scientific objectives. One community was 
interested in plankton ecology and sought to explain 
and predict seasonal phytoplankton dynamics with 
the help of marine plankton models. The roots of 
these models go back to Gordon Riley1 with further 
developments in the 1980s and 1990s (refs.​2–4). When 
computers became more widely available, these mod-
els were coupled to three-​dimensional models of ocean 
circulation. A regional model of the North Atlantic5 
was probably the first three-​dimensional ocean circula
tion model with explicit representation of plankton 
dynamics. The other community was interested in the 
role of the ocean as a sink of anthropogenic carbon. 
Building on concepts established by Roger Revelle6, 
early ocean carbon cycle models did not include an 
explicit representation of plankton7–9. In the seminal 
work by Ernst Maier-​Reimer10,11, models of carbon 
cycling and plankton dynamics were combined and 
integrated into global ocean circulation models. This 
type of model is now a widely used tool for ocean eco
logists and biogeochemists and has evolved to include 
diverse functional plankton groups and multiple distinct  
elemental cycles.
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This Primer describes the process of OBM construc-
tion; reviews and illustrates methods and metrics for 
evaluating models against observations; and introduces 
approaches for combining models and observations. The 
latter methods are collectively referred to as data assimi-
lation and include optimization of the model parameters 
and model state. Model parameters include plankton 
growth and grazing rates, rates of organic matter sinking 
and remineralization. The model state involves deriva-
tion of the most likely ocean state, given a mechanistic 
understanding of the system from model equations and 
available observations. Several important applications 
of OBMs are described to illustrate their breadth and 
utility. Additionally, best practices for archiving model 
codes, outputs and conducting intercomparisons are 
recommended. The Primer concludes by discussing the 
current limitations of OBMs and their applicability, plus 
anticipated new developments and challenges.

Experimentation
Model construction
Biogeochemical equations. The biogeochemical dynam-
ics at the core of an OBM are commonly cast as a system 
of coupled partial differential equations. These equations 

describe the rate of change of state variables, C, that rep-
resent the concentrations of nutrients, the biomass of 
functional plankton groups and more12,13. The common 
form of these equations is:

_C
t

physics bgc sms∂
∂

= + (1)

where physics includes all advective and dispersive 
transport processes affecting the concentration of  
C, and bgc_sms contains all local sources and sinks 
due to biogeochemical transformations, air–sea  
gas exchange, atmospheric deposition, sediment–water 
exchange, river input and any transport not arising from 
ocean circulation, such as vertical sinking of organic 
matter. Biogeochemical state variables are specified as 
a concentration of some element, often nitrogen. Other 
elements such as carbon, phosphorus, silicon or iron can 
also be included using either fixed or variable elemental 
stoichiometry to relate the different state variables.

One of the lowest-​order, but complete, biogeochemi-
cal models is the nutrient–phytoplankton–zooplankton–
detritus (NPZD) model. The NPZD model describes the 
concentration of the four variables in a homogeneously 
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Fig. 1 | State variables and biogeochemical transformations across  
a range of OBMs. Ocean biogeochemical models (OBMs) increasing in  
complexity from left to right. The simplest, the nutrient–phytoplankton– 
zooplankton–detritus (NPZD) model, includes four state variables and one 
nutrient currency, often nitrogen. In the NPZD example, all transformations 
are indicated by labelled arrows. A typical low-​complexity model includes 
several nutrients and nutrient currencies. Keeping track of multiple nutrient 
currencies requires multiple state variables for some functional groups and 
particulate pools (coloured tabs). In the low to high-​complexity examples, 
only the general transformation direction is indicated for simplicity. In prac-
tice there are many more transformations between state variables, each 

represented by a parameterization that requires at least one, but typically 
more, biogeochemical model parameter. Chlorophyll is also omitted, 
although many models have a chlorophyll state variable for each phytoplank-
ton group to account for photoacclimation. With greater complexity, there is 
an increase in plankton groups and organic matter pools with distinctions by 
particle size, dissolved organic matter and bacteria. For the high-​complexity 
model, only functional phytoplankton and zooplankton groups are schemat-
ically represented because the inorganic and non-​living organic pools are 
similar to the intermediate-​complexity model. Squares represent state vari-
ables, solid arrows represent selected transformations between state variables  
and dashed arrows illustrate vertical sinking of particles.

Functional plankton groups
Groups of planktonic 
organisms that share similar 
traits, for example size, 
biogeochemical function  
or elemental requirements. 
These groups are defined  
to simplify the diversity of 
planktonic communities  
while capturing their essential 
biogeochemical functions in 
ocean biogeochemical models.

Initial condition
The complete set of state 
variables at one instant in time. 
Model integration starts from 
an initial condition.

State variables
A set of variables that fully 
characterize a model’s 
dynamical state such that  
its future behaviour can be 
calculated, provided any 
external inputs are known. 
Each variable that belongs  
to this set is a state variable.
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mixed volume or box. It is obtained by neglecting the 
physical terms to effectively create a zero-​dimensional 
box model. Consequently, the equations are simplified 
to ordinary differential equations (dC/dt) and include 
only four state variables. Assuming a closed system, 
the terms on the right-​hand side of the equation reflect 
transformations between the state variables:

N
t

uptake remineralizationd
d

= − + (2)

P
t

uptake grazingd
d

= − (3)

Z
t

grazing excretiond
d

= − (4)

D
t

excretion remineralizationd
d

= − (5)

Note that the four coupled NPZD equations above 
are mass conserving, where loss from one variable to 
another is balanced by a corresponding gain in the lat-
ter. Also, the four equations make a coupled system of 
equations because the terms on the right-​hand side are 
dependent on multiple state variables.

The next step in modelling the NPZD system is to 
specify the functional form and parameters for each 
of the biogeochemical transformations, referred to as 
parameterizations. They are defined using conceptual 
understanding, also referred to as a priori knowledge, 
from laboratory experiments, field studies and biologi-
cal theory14. For example, the grazing term of zooplank-
ton consuming phytoplankton is a function of P, Z and, 
perhaps, temperature, T, namely grazing = f (P, Z, T, …). 
Below are three example grazing parameterizations:

grazing gZ P
K

= (6)
P

grazing gZ P
P K

=
+ (7)

P

grazing gZ P
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=
+

(8)
P

2

2 2

where g (day–1) is a rate parameter and KP (same units 
as P) is a saturation parameter. All three parameteriza-
tions are common in ecological modelling for capturing 
consumer–resource interactions and reflect distinctly, 
often subtlety different, biological dynamics15. The first 
parameterization assumes that the grazing rate increases 
linearly with the prey concentration (P). By contrast, 
the latter two assume the grazing rate saturates at high 
concentrations of P, meaning P » KP. The P2 terms in 
the third parameterization result in reduced grazing 
at very low P concentrations. The choice of functional 
form for the grazing parameterization is typically based 
on theoretical arguments and considerations about 
the numerical model stability. The parameters for the 
grazing parameterization can be determined by dilu-
tion experiments for some zooplankton species, where 

phytoplankton loss rates are measured across a range of 
prey dilution levels. However, it should be recognized 
that single species experiments in the laboratory do not 
necessarily translate to diverse natural communities. 
Similar decisions on the functional forms and param-
eter values have to be made for all other parameteri-
zations in the NPZD model and initial concentrations 
of all variables have to be prescribed. An example of a 
complete, vertically resolved NPZD model is provided  
in Box ​1.

Most OBMs in current use are extensions of the 
basic NPZD framework but have more complex bio-
geochemical model components. Additional state 
variables include multiple nutrients — nitrate, ammo-
nium, phosphate, silicate and dissolved iron — multiple  
phytoplankton and zooplankton functional groups, 
dissolved gases — for example, oxygen and dissolved 
inorganic carbon — and related properties such as alka-
linity. Multiple nutrients are needed to address spatial 
and temporal switches between limiting nutrients and 
unique requirements by some functional phytoplank-
ton groups, such as diatoms. Multiple plankton vari
ables are included to account for the biogeochemically 
distinct roles played by different size classes and func-
tional groups16. For example, diatoms have a unique 
requirement for silicate and contribute significantly to 
biological carbon export. Coccolithophores produce 
calcium carbonate (CaCO3) as shells and affect verti-
cal carbonate transport and remineralization at depth. 
Diazotrophs fix gaseous nitrogen, turning it into bio-
available forms. Furthermore, chlorophyll concentra-
tion, the most abundant biological measurement in the 
ocean, is non-​linearly related to phytoplankton biomass. 
The chlorophyll to biomass ratio can vary by an order of 
magnitude due to photoacclimation17,18. Many, but not 
all, biogeochemical models account for variations in the 
ratio of phytoplankton biomass to chlorophyll using a 
parameterization of photoacclimation19. Including the 
inorganic carbon cycle is crucial for any OBM used  
for climate studies20. This requires inclusion of state vari
ables for dissolved inorganic carbon and alkalinity, unless 
alkalinity can be inferred from other state variables,  
typically salinity. Knowledge of these two properties 
enables calculation of other carbonate system proper-
ties, including pCO2, which is required to parameterize 
air–sea gas exchange, and pH, which is of considerable 
interest given concerns about ongoing ocean acidifica-
tion. Another common state variable in OBMs is oxy-
gen because of its relevance for climate and ecosystem 
health. Oxygen minimum zones in the open ocean are 
sites of trace gas production and nitrate loss via deni-
trification21. Low oxygen concentrations (hypoxia) or a 
complete absence (anoxia) have deleterious impacts on  
ecosystems.

Although virtually all OBMs for biogeochemical and 
climate studies follow the approach of defining a mod-
erate number of functional groups, there are alternative 
approaches. One family of models initializes simulations 
with dozens to hundreds or more phytoplankton state 
variables, using either a randomly chosen or specifically 
crafted size structure and physiological parameters. The 
model then allows competition within the simulation 

External forcing
All prescribed inputs that  
are needed to determine  
the evolution of a model’s  
state and are not calculated 
internally by the model.

Projections
Simulations into the future  
that go significantly beyond  
the timescale for which models 
have demonstrated predictive 
or forecast skill, such as  
Earth system model (ESM) 
simulations to the end of the 
current century or longer.

Model parameters
Constants that are usually 
specified at the beginning  
of model integration and 
determine the dynamical 
behaviour of the model.

A priori knowledge
Assumptions about ocean 
processes, represented by  
the equations of an ocean 
model and its parameters  
and initial and boundary 
conditions, that are available 
before data assimilation  
is applied.
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to sub-​select regional and seasonal plankton commu-
nities22,23. Another family of models uses allometric 
relationships to represent a continuum of plankton 
size classes to simulate grazing relationships and dis-
tinct trophic interactions in different marine ecosys-
tems24,25. These two approaches move in the direction 
of representing more of the complexity inherent in nat-
ural plankton communities. Others have moved in the  
direction of less complexity by drastically reducing  
the number of biogeochemical state variables to four26.

Model uncertainties enter the OBM biogeochem-
ical equations from several sources. The models have 
many parameters which are not well known or easily 
quantifiable27. Even parameters that can be determined 
experimentally may not effectively represent real-​world 
communities in the field. Furthermore, model param-
eters are not independent for coupled differential 
equations, and system-​level uncertainties can arise 
because of dynamical interactions between state vari-
ables. Parameter optimization aims to address this issue 
but depends critically on the availability of a broad suite 
of observations. More challenging uncertainties arise 
from the choice of model structure and model parame-
terizations. Coupling of biogeochemical equations with 
ocean circulation results in additional sources of errors. 
Careful validation of OBMs to evaluate whether they 
are fit for purpose, be it for a specific scientific ques-
tion or an applied purpose, is an integral part of model  
development and application.

Coupling with ocean circulation. In an OBM, the 
transformations between biogeochemical state var-
iables are connected to their advective and dispersive 
transport arising from ocean circulation, by partial dif-
ferential equations of the general form given by Eq. 1.  

This equation can be rewritten as follows for each state 
variable C:

_

⋅∇ ∇ ⋅ ∇C
t

C k C

z
k C

z
bgc sms

∂
∂

= − u +

+ ∂
∂

∂
∂

+
(9)

3 2 H 2

V


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
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where the first term on the right-​hand side represents 
the advective transport of constituent C (u is the fluid 
velocity vector), the second and third terms represent 
dispersion in the horizontal and vertical directions, 
respectively, and the last term refers to the biogeochem-
ical sources and sinks of C. The parameters kH and kV are 
the horizontal and vertical dispersion coefficients and 
∇ = ( , , )x y z3

∂
∂

∂
∂

∂
∂

 and = ( , )x y2
∂

∂
∂
∂∇  are three-​dimensional 

and two-​dimensional operators. The combination of 
the first three terms on the right-​hand side is referred 
to simply as physics in Eq. 1. As physical transport pro-
cesses operate in all three spatial directions, Eq. 9 is 
three-​dimensional in space and includes partial deriva-
tives with respect to time, t, and the three spatial dimen-
sions, x, y and z. In addition to an equation of this form 
for each biogeochemical variable, an OBM includes par-
tial differential equations for the physical state variables, 
including temperature, salinity and velocity, as well as 
parameterizations for horizontal and vertical disper-
sion coefficients, which can vary in space and time. For 
detailed descriptions of the physical model equations, 
see refs.​13,28.

Except for a few highly idealized cases — for example,  
when considering only one spatial dimension or a cir-
cular or rectangular two-​dimensional domain with 
homogeneous initial conditions and constant forcing 
— the solution to these equations cannot be obtained 

Parameter optimization
The determination of the most 
likely values of poorly known 
model parameters based on 
the agreement of model output 
with observations.

Box 1 | NPZD model example

Simple MATLAB code of the one-​dimensional nutrient–phytoplankton–
zooplankton–detritus (NPZD) model described in ref.​202 is available on 
GitHub201. The model represents a station in the subpolar North Atlantic 
Ocean. The default simulation yields a good agreement between the 
simulated phytoplankton concentration and satellite observations.  
After running the default, increasing and decreasing the initial nitrate 
concentration, maximum phytoplankton growth rate, maximum 
zooplankton grazing rate and latitude enable exploration of the  
model’s dependencies on these parameters.

The figure shows the simulated surface concentrations of nitrate,  
phytoplankton and zooplankton variables in the second year of the 

simulation for the default parameter set (case 1), for a 50% decrease in the 
initial nitrate concentration (case 2) and for a doubling of the maximum 
phytoplankton growth rate (case 3). In case 1, the surface phytoplankton 
concentrations agree with satellite-​based observations. The decrease  
in initial nitrate in case 2 has only a small effect on the timing and ampli-
tude of the spring phytoplankton bloom, but leads to much smaller phyto-
plankton and zooplankton concentrations in summer and autumn than 
case 1. The doubling of the maximum phytoplankton growth rate in case 3 
leads to a much earlier spring bloom initiation, a larger autumn phyto-
plankton bloom and larger spring and autumn peaks in zooplankton than 
for case 1.
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analytically and must be approximated numerically. 
Commonly, the equations are discretized in time, using 
finite time steps, tΔ , and space, on a three-​dimensional 
grid representing the model domain, with the help of 
finite differences. In the finite difference methods, the 
derivatives in the differential equations are replaced 
by finite difference approximations, for instance C t∂ /∂  
and C x∂ /∂  become C tΔ /Δ  and C xΔ /Δ , respectively. 
This results in a system of prognostic equations, which 
include only basic arithmetic operations on defined 
quantities that can be carried out on a computer. There 
are subtle issues and several options when defining spa-
tial grids, the finite difference discretization of equations 
on the grids and time stepping29,30. This explains the 
large diversity of finite difference-​based ocean circula-
tion models in current use. Alternative approaches are 
finite element and finite volume methods, which both 
allow for the creation of unstructured, curved, varying 
resolution grids, especially suitable for models with com-
plex coastlines or bathymetry. Owing to the subtleties 
of discretizing differential equations on unstructured 
grids, these methods are an area of active research31 and,  
to date, only a few OBMs have been coupled to finite 
element32 and finite volume33 circulation models.

Finite difference approximations are not exact solu-
tions to the OBM equations; they only approximate 
the solutions. The accuracy of these approximations 
depends on the chosen difference scheme, the size of the 
time step, Δ​t, and the spatial resolution, Δ​x, Δ​y and Δ​z. It 
is generally desirable to use the finest spatial resolution 
possible with the available computational resources and 
the longest time step that keeps the model numerically 
stable. Although computing power has increased over 
the past two decades, the computational cost of running 
realistic OBMs is so demanding that trade-​offs between 
domain size, resolution and integration time must always 
be considered. When doubling the horizontal resolution 
Δ​x and Δ​y in a finite difference model, the maximum 
allowable time step Δ​t is shortened to a quarter of its pre-
vious value, leading to a factor of 16 increase in overall 
computation time.

ESMs have a spatial resolution on the order of 1° 
(~100 km; Fig. ​2) and are typically integrated for several 
hundred years. Given their spatial resolution, the mod-
els are unable to capture a range of important bathy-
metric and circulation features, such as continental 
shelf edges, mesoscale eddies and currents, and river 
plumes. Regional models have a finer spatial resolution 
(Fig. ​2) on the order of single to tens of kilometres, but 
they have much shorter integration times (months to 
decades). The models’ pros and cons can be illustrated 
using the north-​west North Atlantic Ocean as an exam-
ple. The broad, passive-​margin shelf in this region, 
located at the confluence of two large-​scale current 
systems, the Gulf Stream and the Labrador Current, 
supports economically and culturally important fish-
eries that are particularly vulnerable to warming and 
ocean deoxygenation34,35. A defining circulation fea-
ture in this region is the shelf-​break current, a branch 
of the Labrador Current system, which effectively iso-
lates shelf water from adjacent open-​ocean water lead-
ing to distinct properties and long residence times36.  

Owing to their low resolution, global models typically 
lack the shelf-​break current and cannot reproduce these 
features37. As a result, they do not well reproduce bio
geochemical properties in this region38,39. Recent efforts 
to increase a global OBM resolution to the level of a 
regional model showed that properties are simulated 
much more realistically when the shelf-​break current 
is properly represented40. However, the computational 
effort was so large that its integration time was limited 
to 100 years. Only a highly simplified three-​variable 
model based on ref.26 was included, and the model 
cannot be run routinely given present computational 
resources. The drawback of a high-​resolution, regional 
model is that its integration time is limited to decades. 
Additionally, atmospheric and larger-​scale ocean forcing 
must be specified instead of evolving internally as is the 
case for ESMs.

Running an OBM involves integration forward 
in time from defined initial conditions for each state 
variable. It is subject to external forcing and boundary 
conditions at the model domain edges. Some initial con-
ditions, such as temperature and salinity distributions, 
must be prescribed, whereas the model may start from 
rest, with initial velocities at zero. External forcing of 
the ocean circulation component includes solar radia
tion; air–sea fluxes of momentum, for example wind 
forcing, heat and freshwater, such as precipitation minus 
evaporation, sea-​ice formation and melt; and freshwater 
inputs from rivers. Examples of boundary conditions 
include the stipulation that fluid flow cannot be normal 
or at a right angle to the coast and may be required to 
vanish at the coast — the no slip boundary condition. 
Regional models typically have lateral boundaries that 
do not coincide with coastlines, referred to as open 
boundaries. Flow and associated transport of sea
water constituents across these open boundaries must 
be specified for regional models, which is one of their 
drawbacks.

For the ocean circulation component, initial and 
boundary conditions must be specified for the bio
geochemical state variables. The distributions of nutri-
ents, dissolved gases, alkalinity and long-​lived organic 
pools, for instance long-​lived dissolved organic matter, 
should be prescribed as accurately as possible for initial 
and open boundary conditions. Pools with fast turno-
ver times, such as plankton groups and reactive detri-
tal pools, can be set to small positive numbers and will 
adjust quickly during model spin up. Additional bound-
ary conditions include nutrient and organic matter con-
centrations in river inputs, the mole fractions of gases in 
the atmosphere, atmospheric deposition and exchange 
fluxes across the sediment–water interface.

Ocean biogeochemical processes can also influ-
ence and feed back on ocean physical dynamics. For  
example, several model studies investigated the influ-
ence of phytoplankton chlorophyll on the penetra
tion depth of solar radiation. This highlighted its effect 
on the vertical profile of surface heating and upper ocean 
stratification41. More indirect influences are possible in 
coupled ESMs via changes in the ocean’s production and 
emission of radiatively active gases, including dimethyl 
sulfide (DMS)42.

Integration time
The simulated length of model 
integration. It varies from 
months to decades in regional 
models and hundreds of years 
in Earth system models (ESMs).

Spin up
The initial period of a model 
simulation during which the 
model adjusts from its initial 
state to a new state according 
to the internal model dynamics 
and subject to external forcing. 
The spin up period ranges  
from a few months or years  
for regional models to one or  
a few hundred years for global 
models.
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Combining models and observations
Data assimilation, the process of statistically combining 
models and observations, has the overarching goal of 
achieving the best possible representation of past, cur-
rent or future ocean states. Data assimilation methods 
combine the a priori knowledge of the ocean state and 
its processes that is contained in an OBM with observa-
tions. Two applications for OBMs are parameter opti-
mization and state estimation. Parameter optimization 
is aimed at addressing systematic biases in models that 
arise from inaccurate parameter values and initial or 
boundary conditions. State estimation typically assumes 
the model is unbiased and aims to correct random 
errors, such as deviations between the observed and sim-
ulated ocean state due to stochastic processes, for exam-
ple the ocean’s eddy field or larger-​scale variations such 
as the North Atlantic Oscillation and El Niño-​Southern 
Oscillation. Both applications can be realized through 
variational methods or sequential methods (Box  ​2). 
Typically, OBM implementation includes parameter 
optimization initially to remove biases within the model, 
potentially followed by state estimation to minimize  
random errors.

Parameter optimization. Variational data assimilation 
derives from the mathematical field calculus of vari
ations, which uses small variations in the inputs of func-
tions to find their minima or maxima. A long-​standing 
OBM application is parameter optimization43–45, where 
poorly known model parameters are varied systemati-
cally to minimize the misfit between observations and 

their model equivalents across the whole integration 
period. This results in better agreement between the 
model and observations (Fig. ​3). The misfit is measured 
by the cost function, typically of the form:
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where p is a vector of the parameters to be optimized, also 
referred to as the control vector; y is a vector of the availa-
ble observations; xHy = (p)̂  is a vector of the model equiv-
alents to these observations, obtained by mapping the  
model state x(p) onto the observation vector y using 
the linear operator H; and wi and R contain the weights 
that each observation contributes to the cost function. 
Typically, R is assumed to be diagonal, where the weights 
are inverses of the variances or based on the observa-
tion error for each observation type. R is considered to 
be the covariance matrix of deviations between model 
and observations, referred to as the observation error 
covariance matrix. In practice, assumptions about these 
weights must be made.

Solving this minimization problem yields the optimal  
parameters, which can be obtained with iterative gradi-
ent descent methods, for example conjugate gradient 
search13 or stochastic approaches such as simulated 
annealing43 or evolutionary algorithms46–48. Parameter 
optimization is widely applied to OBMs because they 
typically have many poorly known, difficult to deter-
mine and application-​specific parameters that govern 
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Fig. 2 | Typical horizontal resolutions and bathymetries in global and regional models. The left and middle globes 
show the grids of two global models that are part of the Coupled Model Intercomparison Project’s 6th Assessment Round 
(CMIP6): the IPSL-​CM5A-​LR grid with a horizontal resolution of about 160 km in the corresponding inset (left) and the  
MPI-​ESM1-2-​HR grid with a resolution of about 30 km in the inset (middle). The right globe and inset show the domain 
extent and horizontal resolution of a regional ocean biogeochemical model (OBM) for the north-​west North Atlantic  
and Labrador Sea, with a resolution of about 5 km in the inset.

State estimation
A method to obtain the 
optimal model state by 
combining the information 
contained in the model 
equations and the available 
observations.

Variational methods
Methods aimed at obtaining 
the best fit, in a least-​squares 
sense, between model and 
observations by minimizing  
a cost function. These can  
be applied to parameter and 
state estimation problems.

Sequential methods
The model state, and, 
sometimes, its parameters are 
updated through an alternating 
sequence of forecast steps 
when the model is integrated 
forward in time, and update  
or analysis steps when the 
model state and, if applicable, 
the parameters are updated 
using observations.

Cost function
A measure of the misfit 
between observations and 
their model counterparts  
in a least-​squares sense.
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the biogeochemical transformations. The method aims 
to extract information about these biogeochemical 
transformations, which is available in observations, to 
inform or constrain the poorly known parameters.

In practice, the success of parameter optimization 
depends on whether the available observations contain 
enough information to constrain the parameters to be 
optimized49. For example, chlorophyll observations are 
often the most abundant observation type. Relating 
chlorophyll to phytoplankton biomass is not straight-
forward because the chlorophyll to biomass ratio is 
variable and often not well known. Even if the chloro-
phyll to biomass ratio was known, chlorophyll obser-
vations are useful for informing phytoplankton-​related 
parameters, such as the total phytoplankton growth 
rate, but may not contain much information about 
grazing, remineralization and species-​specific growth 

rates. As a result, those variables would remain poorly 
constrained after optimization using only chlorophyll 
or chlorophyll and nutrient observations44. Because 
observational data sets are often limited in terms of the 
biogeochemical properties available, this is a common 
problem for OBMs, referred to as the underdetermi-
nation problem50. A closely related challenge is that of 
interdependent, correlated or non-​unique parameters, 
which arises when different combinations of parameters 
yield the same result. For example, a reduction in plank-
ton mortality and an increase in plankton growth may 
give the same change in biomass. The available obser-
vations may not provide enough information to distin-
guish between multiple plausible combinations without 
further information. An example of underdetermined 
and interdependent parameters is given in Fig. ​4. An  
a posteriori error analysis provides insight into inter
related and poorly constrained parameters for a specific 
optimization problem44,49.

Parameter optimization is routinely used in bioge-
ochemical modelling51,52. It is often an integral step in 
model development and, if applied systematically for 
different model structures, can guide model construc-
tion53,54. Parameter optimization and state estimation are 
sometimes combined55,56.

Parameter optimization worked example. Python 
and MATLAB codes for parameter optimization of a 
zero-​dimensional (single box) NPZD model are avail-
able on GitHub57. These code examples perform twin 
experiments using the stochastic ensemble Kalman 
filter (SEnKF). The default setting (Fig. ​4) illustrates the 
effect of both interdependent and underdetermined 
parameters. When only phytoplankton observations 
are available, there is a tight interdependence between 
phytoplankton growth and mortality rates. For example, 
low growth and low mortality rates give a similar fit to 
high growth and high mortality. Likewise, phytoplank-
ton observations contain little information about the 
nutrient remineralization rate, which is not improved 
by assimilation in this example and remains underde-
termined. Using different combinations of observation 
types and parameter sets in the assimilation example 
allows these issues to be explored further.

In the default example, three parameters are esti-
mated as follows. First, ten synthetic phytoplankton 
observations are generated from a model simulation 
with known parameters, labelled ‘true’ in Fig. ​4a. The 
prior estimate of the parameters (Fig. ​4b) results in a large 
spread of the forecast ensemble in state space. In Fig. ​4c,​d,  
true and forecast ensemble parameters are shown as 
black plus signs and blue dots, respectively, overlaying  
the misfit between model and synthetic observations. The  
forecast and analysis parameter ensemble means are 
shown as a large blue dot and green square, respec-
tively, in Fig. ​4c,​d. Assimilating the data moves the mean 
parameter estimate closer to the true values in parame-
ter space for the phytoplankton parameters (Fig. ​4c) but 
farther from the true values for the nutrient remineral-
ization rate (Fig. ​4d). The analysis ensemble, shown in 
Fig. ​4e, envelops the observations more tightly than the 
forecast ensemble.

Box 2 | General data assimilation machinery

In data assimilation, an optimization problem is solved where the initial control  
vector — also referred to as the background or initial guess — is updated to minimize, 
in a least-​squares sense, the misfit between observations and their model equivalents. 
In some cases, a combination of the misfit between the initial and updated control 
vector and the misfit between observations and their model equivalents is minimized.

The solution to the optimization problem can be written as:

= + −Hx x K y x[ ( )] (13)ba b

where xa is the optimized control vector; xb is the initial control vector; K is the Kalman 
gain matrix; y is a vector containing the observations to be assimilated; and H is a non- 
linear operator containing the ocean model, which maps the initial control vector onto 
the observations. This equation applies to both parameter and state estimation but  
is more intuitive for the latter. In state estimation, [y −​  H(xb)] represents a vector of 
observation-​model misfits that, when multiplied by the matrix K, is projected onto the 
model state and yields the increments needed to obtain the optimal ocean state, xa.

The optimal solution xa can be obtained by calculating or approximating K, or by 
solving an equivalent minimization problem without explicit evaluation of K. The true 
control vector, which represents the desired solution, is denoted by xt. Then, xb −​ xt 
represents the deviations between the initial control vector and the truth, referred to  
as background errors, and B their covariance matrix. In the case of a linear model, H is 
also linear and denoted by H. Observation errors are y −​ Hxt and their covariance matrix 
given by R. Assuming unbiased background and observation errors and zero cross- 
correlation between these errors, the algebraic form of the gain matrix that provides 
the optimal analysis xa is:

= + −K BH HBH R( ) (14)T T 1

Alternatively, xa can be obtained by minimizing the cost function:

= − − + − −− −J x x x B x x y Hx R y Hx( ) ( ) ( ) ( ) ( ) (15)T T
b

1
b

1

Equation 15 follows Bayes’ theorem in that J is the argument of the Gaussian condi-
tional probability function of x given y. The first and second terms on the right-​hand 
side of Eq. 15 are the arguments of the Gaussian distribution functions for errors in the 
background and errors in the observations, respectively. Identifying the x value that 
minimizes Eq. 15 is equivalent to maximizing the conditional probability P(x|y). Assuming 
a linear model is not strictly necessary to obtain xa by minimization of the cost function 
(Eq. 15). For non-​linear models, the term Hx can be replaced by H(x).

Methods have been developed to obtain, or at least approximate, these solutions for 
realistic models with large control vectors. Ocean biogeochemical models (OBMs) are 
highly non-​linear, have large state vectors and are computationally expensive. They  
also violate some of the underlying assumptions, such as Gaussian error distributions. 
Furthermore, the background and observation error distributions are not well known 
and not necessarily unbiased. Sequential methods estimate the gain matrix K, whereas 
variational methods avoid explicit calculation of K and instead minimize J(x), which is 
equivalent to maximizing P(x|y).

Control vector
A vector containing all of the 
values to be optimized during 
data assimilation. It can  
include model parameters,  
the full model state, a subset 
thereof or a combination  
of both.

Optimal parameters
The results from parameter 
optimization; the para
meter values that minimize  
the cost function in a  
parameter optimization 
problem.
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State estimation. State estimation is where a model’s 
state variables are modified to reduce the discrepancy 
between the model and observations. It is typically 
applied sequentially by alternating forecast steps — 
where the model runs forward for a defined time win-
dow, usually a few days — followed by update or analysis 
steps, where newly available observations are used to 
update the model’s state (Fig. ​5). One of the most widely 
used and robust sequential data assimilation techniques 
is the ensemble Kalman filter (EnKF)58. The EnKF,  
its precursors and many variants apply Eq. 13 in Box ​2.

The EnKF is based on the Kalman–Bucy Filter59, 
which yields the best possible estimate in a least-​squares 
sense, when the model is linear and the distributions of 
the model state and observations are fully character-
ized by the mean and covariances60. The Kalman–Bucy 
Filter sequentially projects the model state, its mean 
and covariances forward in time using the, ideally lin-
ear, model. This is followed by a Bayesian update of the 
model state, its mean and covariances, informed by  
the newly available observations. However, application 
of the Kalman–Bucy Filter to OBMs is complicated 
by the models’ non-​linearity and the large state vector 
size, typically in the order of 108 or larger, which would 
require storing and modifying a prohibitively large 
covariance matrix. These issues led to development of the 
extended Kalman filter (ExtKF)61 for non-​linear mod-
els, and extensions thereof, such as the singular evolu-
tive extended Kalman filter (SEEK)62, which reduces the 
computational requirements for evolving the covariance 
matrix. However, propagation of the covariance matrix 
still requires linearization of the model, which can lead to 
bad approximations for highly non-​linear models.

The EnKF removes the requirement for a linearized 
model by simulating mean and covariance directly with 
the help of a model ensemble. The underlying idea is that 
a model’s probability distribution can be approximated 
by a finite model ensemble, which then allows relatively 
efficient calculation of the forecast error covariance.  
In the forecast step, ensemble members are propagated  
forward by the non-​linear model. In the update step, 
the ensemble of forecasted states is used to compute the  
statistics required to perform the data assimilation 
update. More specifically, the covariance matrix B is 
approximated with the help of the ensemble of model 
states {xi} as:

B x x x x≈ < ( − < >)( − < >) > (11)T
f f f f

where < … > denotes the average over the ensemble58. 
The analysis step is:

x x K y Hx= + [ − ] (12)i i i i
a f f

for each ensemble member, where K is calculated as in 
Box ​2 using the ensemble approximation of B. The EnKF 
has been widely applied to OBMs and has many variants 
that differ in the way the update step is performed. One 
variant is the SEnKF58,63, where an ensemble of observa-
tions is drawn from an assumed distribution of obser-
vations and used to update each ensemble member. 
Another variant is the deterministic EnKF (DEnKF)64–67, 
where the mean and covariance of the ensemble 
are computed and updated using the new observa-
tions, and a new ensemble is drawn from the updated  
distribution.
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Fig. 3 | Representation of a two-dimensional cost function. The cost function J(p) measures the misfit, indicated as the 
grey area in the three insets, between observations and their model equivalents in parameter space. Optimal parameters 
correspond to the minimum of the cost function and produce the best fit between the model and observations. p, control 
vector.

A posteriori error
An estimate of the error in  
the solution of an optimization 
problem given the observations 
and numerical solution 
technique applied.

Least-​squares
A measure of misfit between 
observations and the  
model equivalents of those 
observations that sums the 
squared distances between 
them.
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During the EnKF forecast step, each ensemble mem-
ber is integrated forward. This means the computa-
tional effort of running one realization of the OBM is 
multiplied by the number of ensemble members (Fig. ​5). 
Computational constraints limit the possible size of the 
ensemble to between tens of and a few hundred mem-
bers. The distribution of the high-​dimensional state 
vector is under-​sampled by ensembles that are computa-
tionally feasible. Two techniques, covariance localization 
and covariance inflation, are used to reduce the negative 
effects of this under-​sampling. Localization decreases the  
impact of distant covariance estimates, thus reducing 
the effect of spurious long-​distance correlations in the 
ensemble. Inflation artificially increases the ensemble 
covariances to counteract low covariance estimates due 
to small ensembles68.

Analogues to the underdetermination and para
meter  interdependency problems also exist in the 
context of state estimation. OBMs have many biogeo-
chemical state variables, most of which are not directly 
observed. State estimation is multivariate, meaning 
unobserved variables can be informed by observations of 
related variables through relationships expressed in the 
covariance matrix. However, many elements of the state 
vector may not be well informed by the available obser-
vations and the estimation problem is underdetermined. 
Furthermore, if an increase of one state variable, for 
example phytoplankton, is dictated by observations and 
achieved by different adjustments to the model’s bioge-
ochemical transformations, such as increasing nutrient 
supply or zooplankton grazing, additional observation 
types would be necessary to conclusively inform which 
update is correct69,70. Formal analysis of the impact 
of individual observation types can be useful in this  
context71,72.

Although the EnKF is the most common sequential 
data assimilation technique, variational approaches are 
being applied to OBMs73. The three-​dimensional vari-
ational (3D-​Var)74–76 and four-​dimensional variational 
(4D-​Var)69,77 approaches include the sequence of fore-
cast and analysis steps, where the analysis step uses the 
variational method (Fig. ​5). In the 3D-​Var approach,  
the observation operator H is assumed to be time inde-
pendent, thought to be appropriate for short forecast 
windows. In the 4D-​Var approach, H is time dependent 
and includes the non-​linear forecast model, although it is 
common to linearize the problem78. Particle filters, such 
as sequential importance resampling79, are promising 
alternative methods that do not rely on the assumption 
of Gaussian error distributions. They have been used for 
state and parameter estimation of OBMs80 but are not 
yet widely used.

State estimation worked example. MATLAB and Fortran 
codes for ensemble-​based state estimation suitable for 
three-​dimensional OBMs are available on GitHub81. The 
example is set up as an identical twin experiment for 
an idealized three-​dimensional OBM, using ROMS and 
the DEnKF as in ref.​64. The model domain is an ideal-
ized north–south channel with periodic boundary con-
ditions on the northern and southern boundaries and  
narrow shelves along the eastern and western edges. 

Wind forcing results in intermitted upwelling on the 
western side of the domain with upward transport of 
nutrients and stimulation of phytoplankton growth. In 
the free run, several biological parameters and the wind 
forcing are altered, resulting in a delayed upwelling and 
weaker phytoplankton response compared with the 
baseline run, which we consider the ‘truth’. Sea surface 
height, surface temperature, surface chlorophyll and 
profiles of temperature and nitrate concentration are 
sampled from the ‘truth’ simulation and assimilated into 
the perturbed free run to obtain the data-​assimilative 
simulation. The evolution of the mean surface chloro-
phyll concentrations (Fig. ​6a) illustrates the differences 
between the ‘truth’ run (black), the perturbed free run  
(blue) and the sequential updates from forecast to analy
sis during update steps (red). The ensemble spread 
increases during most forecast steps. During assimila-
tion steps the ensemble spread is reduced. The impact on 
surface and vertical distributions (Fig. ​6b) of chlorophyll 
concentrations on day 16 illustrates the discrepancies 
between the ‘truth’ and free runs, and the improvement 
due to assimilation in the analysis.

Results
Model evaluation
Whether an OBM has value as a research tool depends 
on how accurately it represents the processes relevant 
to the scientific question being addressed. Evaluating a 
model’s performance is an integral part of model analy-
sis. It relies on comparing the model output with obser-
vations. Often, this occurs as an iterative loop, where 
the evaluation of a hindcast simulation is followed by 
model refinements, such as increasing model resolution, 
improving parameterizations or changing the model 
structure, followed by a new hindcast and evaluation82. 
The three most commonly used statistical metrics 
for model evaluation are the root mean-​square error 
(RMSE), the bias and the correlation coefficient (Box ​3). 
All three are calculated by directly relating observations 
to their model counterparts. They are also all relative 
measures, without an objective criterion that indicates 
which range of values is acceptable or unacceptable. 
These metrics can be calculated using spatial and tem-
poral averaging, temporal averaging only or spatial aver-
aging only83. Specialized graphics have been devised to 
effectively represent some of these metrics for a large 
number of different models or different hindcasts from 
the same model, including the Taylor diagram84 and the 
target diagram85. Two metrics with built-​in criteria on 
the acceptability of a model’s performance are Z-​scores, 
which consider variability within the observational data 
set, and the model efficiency or model skill, which quan-
tifies whether the model outperforms an observational 
climatology (Box ​3).

No single metric provides a complete evaluation of a 
model’s predictive power. Instead, multiple, complemen-
tary metrics should be used in concert86. A model may 
provide accurate estimates for some variables, locations 
or times, but perform poorly for others87. Space, time 
and a breadth of variable types should be considered in 
any comprehensive model assessment. Furthermore, 
there may be aspects of a system that the model cannot 
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reasonably be expected to reproduce. For example, an 
OBM without state estimation cannot exactly reproduce 
stochastic aspects of the system, such as the exact timing 
and location of elevated chlorophyll due to mesoscale 
eddies. However, the magnitude, shape and frequency 
of eddy-​induced chlorophyll enhancements are expected 
to be represented well. Specialized metrics that account 
for mismatches in space and time can be used for  
this purpose88.

In OBMs with data assimilation, the need for model 
assessment expands further, to include evaluation of 
state or parameter estimates. This becomes more dif-
ficult, as these estimates already contain information 
from the observations that were assimilated. One gen-
eral strategy is to only use observations in the evalua-
tion that were not assimilated and can be considered 
independent86. In practice, this presents a conundrum 
because, ideally, all available observations would be used 
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in assimilation to obtain the best possible estimates, and 
observations withheld from assimilation may be corre-
lated to those used in assimilation, meaning they are not 
truly independent. Decorrelation scales must be consid-
ered when deciding what represents truly independent 
observations. Perhaps the most convincing assessment 
of an assimilative model is an ongoing test of its pre-
dictions against observations as they become available.  
A closely related approach can be used to assess sequen-
tial state estimates in hindcast mode. In this approach, 
misfits between observations and model forecasts at 
the current time are compared with misfits between 
current observations and analysis from the previous 
update step. The underlying idea is to test whether 
the forecast outperforms the persistence model, 
which assumes that the previous analysis is also the  
best forecast.

Challenges to model evaluation
The rigour of any model evaluation depends on the 
observational data set available. Despite major efforts 
in ocean observation in the twentieth and early 
twenty-​first century, the ocean’s biogeochemical state 
remains under-​observed in many critical aspects. This 
has hampered the evaluation and systematic improve-
ment of OBMs89. Major biogeochemical observation 
efforts include ocean colour satellites, coordinated 
ship-​based initiatives to obtain global three-​dimensional 
distributions, time series sites for a broad suite of obser-
vations, networks of ships of opportunity and numerous 
individual, investigator-​driven cruises. Although each 
approach is valuable, biogeochemical under-​sampling 
remains a problem due to the cost and effort involved 
in ship-​based measurements. This limits sampling to 
a few instances in space and time. Additionally, satel-
lite observations of ocean colour only provide infor-
mation about plankton-​related properties at the very 

surface of the ocean. The maturation of autonomous  
platforms — profiling floats and gliders — and minia-
turized biogeochemical sensors has paved the way for 
cost-​effective and routine observation of a broad suite of 
biogeochemical properties90,91. Autonomous observation 
technology is quickly becoming an additional, comple-
mentary data source, making it feasible to observe the 
global ocean in near-​real time at an unprecedented spa-
tial and temporal resolution, with an accuracy sufficient 
to detect climate-​induced changes92.

A technical challenge to rigorous model evaluation is 
that many model variables are not in the same currency 
or unit as observations. For example, chlorophyll is 
non-​linearly related to phytoplankton biomass. Plankton 
observations can be in the unit of cells per volume or 
biovolume per volume, whereas the model uses moles 
of carbon or nitrogen per volume. Large zooplankton 
is often measured in towed nets, resulting in a spatially 
integrated measure. Definitions of plankton size classes 
are typically not well defined for models. The necessary 
conversions introduce uncertainties when comparing 
observations and models. Another difficulty is accessing 
existing observations. Whereas many of the major coor-
dinated observational initiatives have provided sustained 
access to observations, often through individual reposi-
tories, small, investigator-​driven efforts are typically not 
well positioned to guarantee long-​term access to spe-
cialized observations. Instead, they depend on national 
or international repositories, such as NOAA MEDS.  
A unified data management approach, with standardized 
meta-​data requirements and data formats that ensure 
discoverability and accessibility of existing data sets, has 
been identified by the oceanographic community as a 
common goal93,94 and will greatly benefit OBM evaluation  
and improvement.

Model evaluation relies on climatologies, satellite- 
based estimates of chlorophyll and primary produc-
tion, comprehensive time series for a small number of 
sites, focused process studies and, increasingly, global 
autonomous data sets. Typically, an available data set 
includes fewer properties than the OBM’s state and 
only a small number of the biogeochemical transforma-
tions are observed. As a result, an excellent agreement 
between model and observation does not guarantee that 
the model’s representation of unobserved properties and 
fluxes is correct, or that the model is a skilful predictive 
tool. Internal model errors may compensate to reach a 
seemingly correct result when judged by a limited data 
set. However, the result may have been obtained for 
the wrong reasons. It is therefore critical to continually 
evaluate models and their predictions against sustained 
observational data streams with an increasing breadth 
of observables.

Applications
OBM applications range from scientific, for example 
building fundamental understanding or for hypothesis 
testing, to practical, such as producing forecasts and 
model-​derived products. This section gives key examples 
to illustrate the breadth and importance of different appli-
cations, but should not be considered a comprehensive  
description of OBM applications.

Fig. 4 | Application of a stochastic ensemble Kalman filter for estimating three 
parameters of a zero-dimensional (single box) NPZD model in a twin experiment 
using example code57. a | Ten phytoplankton observations (green dots) are generated 
by sampling a model simulation with known parameters (+ signs in panels c and d).  
This simulation represents the ‘true’ solution. b | The spread in model solutions prior  
to assimilation or analysis. The forecast ensemble includes the model simulations 
(transparent thin lines) for all parameter values (small blue dots in panels c and d)  
of the prior estimate. Dashed lines show the ensemble mean. c | Cost function values  
(in greyscale) over the phytoplankton mortality and maximum growth rates, shown  
with the forecast ensemble of parameters (small blue dots), the parameter ensemble 
after analysis (small green diamonds), the mean values of the parameter ensemble  
with standard deviation before and after analysis (large blue dot and green diamond, 
respectively, with transparent ovals) and the true parameter values (+ sign). Red arrow 
indicates the change in parameter estimate during the analysis step due to assimilation. 
For these two parameters, the analysis moves the mean parameter estimates close  
to the ‘truth’. The contraction in the size of the transparent ovals before (blue)  
and after (green) analysis indicates improved confidence in the accuracy of the 
parameter estimates. d | Same as panel c but for phytoplankton mortality and nutrient 
remineralization rates. The estimate for the nutrient remineralization rate is not 
improved by the analysis, indicating that the observations contain little information  
on this parameter. e | Model ensemble after assimilation, represented in the same way  
as panel b. The ensemble mean for phytoplankton matches the observations very well, 
especially compared with panel b. However, not all parameter updates resulted in  
the ‘true’ values (see nutrient remineralization rate in panel d), which illustrates the 
underdetermination problem often encountered in parameter optimization. NPZD, 
nutrient–phytoplankton–zooplankton–detritus.

◀

Decorrelation scales
The e-​folding scales of the auto
correlation function of the 
property under consideration; 
the distance or period over 
which the autocorrelation 
decreases by a factor of 1 / e.
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Ocean carbon accounting
The global ocean absorbs about a quarter of contem-
porary human emissions of CO2 to the atmosphere95. 
OBMs have been central in quantifying the patterns and 
rates of ocean anthropogenic CO2 uptake. This uptake 
occurs via natural physical–chemical gas exchange at 
the air–sea interface, followed by ocean circulation that 
transports surface water with excess CO2 into the ocean 
interior96. OBMs are pivotal for characterizing future 
ocean CO2 uptake and its sensitivity to ocean climate 
change under different policy scenarios97. Synthesis of 

ocean carbon observational and model information 
is invaluable for efforts to quantify the contemporary 
global carbon budget98,99. It is also needed to assess the 
predictability of global-​scale atmosphere–ocean CO2 
flux relevant for carbon policy and management100. 
Partly because of the large CO2 uptake capacity of 
the ocean, several approaches have been proposed to 
enhance ocean uptake through deliberate CO2 removal 
or negative emissions technologies101. Rapid decarboni-
zation of the global economy is needed to meet the inter-
national Paris Climate Agreement to keep global surface 
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warming well below +​2.0 °C, relative to pre-​industrial 
conditions. Coupled carbon–climate models indicate 
that society must meet roughly net-​zero human CO2 
emissions by the middle of the twenty-​first century. 
Given the challenges of abating all human CO2 emissions 
from energy and transportation systems, a substantial 
amount of deliberate CO2 removal may be required97.

Significant knowledge gaps exist for all ocean-​based 
CO2 removal approaches. Unknowns range from the 
efficacy of net CO2 uptake to permanence of carbon 
storage, method verification or carbon accounting, 
scalability and environmental impacts102. In conjunction 
with laboratory and field experiments, OBMs are cen-
tral to resolving these questions across a range of scales: 

local, regional and global. Deliberate CO2 removal will 
be challenging to verify because it represents a relatively 
small perturbation of the large natural uptake of anthro-
pogenic CO2 and natural background variations. Ocean 
circulation would transport added CO2 away from 
the site of deliberate manipulation and dilute signals. 
Alterations of the ocean’s carbonate system and nutrient 
inventory would have downstream effects ranging from 
desirable — countering ocean acidification for alkalin-
ity enhancements — to counterproductive, for example 
by diminishing the additionality of CO2 removal, or 
enhancing acidification. OBMs in combination with 
well-​resolved, comprehensive observation will be central 
to verification of CO2 removal and carbon accounting.
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Previous OBM studies have explored some of 
these questions for different CO2 removal techniques, 
including ocean iron fertilization of high-​nitrate, 
low-​chlorophyll regions103–105, artificial upwelling of 
nutrients into the surface ocean106, macroalgae farm-
ing107, seawater alkalinity enhancement108,109 and, more 
generally, the permanence of CO2 removal110.

Ocean ecosystem health
Deoxygenation. Dissolved oxygen is an important 
measure of ocean ecosystem health because oxygen 
is essential for supporting aerobic aquatic life. Long-​
term observations indicate that the oxygen content  
of the global ocean has declined by more than 2% over 
the past five decades111. This has raised concerns about 
profound effects on ocean biogeochemical cycles and 
marine ecosystems112. The observed oxygen loss of the 
global ocean is projected to continue113,114, primarily 
because of a decrease in oxygen solubility, increases 
in biological oxygen demand and reduced ventila-
tion of the deep ocean from global warming115,116. 
In addition to the large-​scale climate effect, coastal 
waters are affected by growing anthropogenic nutrient 
inputs that lead to a worldwide expansion of coastal  
hypoxia117,118.

Global OBMs and ESMs have been used to under-
stand why the global ocean oxygen content changes119 
and to make future projections under different emis-
sion scenarios113,114,120. These models consistently pro-
ject continued and accelerating deoxygenation, but 
underestimate observed deoxygenation rates and fail to 
accurately reproduce observed patterns and temporal 
variability of oxygen changes116. Notable differences in 
the simulated intensity and spatial patterns of oxygen 
projections among ESMs120,121 point to deficiencies in 
mechanistic understanding and modelling capabilities. 

Likely factors limiting current models have been iden-
tified in multi-​model comparisons and sensitivity 
experiments, including insufficient model resolution122, 
inaccuracies in ocean mixing parameterizations123,124 
and incorrect model representation of biological  
processes119.

Regional OBMs are widely used to improve under-
standing of coastal oxygen dynamics and to guide man-
agement in coastal regions125,126. They allow examination 
and quantification of the factors governing oxygen vari-
ability and hypoxia formation127–130. Alongside this, they 
can be used to project changes in oxygen supply under 
climate change131,132 and to understand the consequences 
of hypoxia on the marine food web133,134. Regional OBMs 
are used for a range of applied purposes. For example, 
they can evaluate how hypoxia would be affected by dif-
ferent nutrient reduction scenarios135,136, investigate the 
compounding effects of anthropogenic nutrient inputs 
and climate change on hypoxia136–138, provide for seasonal 
forecasts139,140 and allow exploration of eco-​engineering 
strategies for hypoxia mitigation141. Data-​assimilative 
OBMs provide short-​term ecological forecasts, includ-
ing for oxygen, in various coastal systems by optimally 
combining models and observations73.

Acidification. Ocean uptake of anthropogenic CO2 slows 
its atmospheric accumulation and, in turn, slows climate 
change. However, it also changes seawater chemistry by 
elevating dissolved inorganic carbon and aqueous CO2, 
while reducing pH and carbonate mineral saturation 
states142. Because it shifts seawater pH towards acidic 
conditions, this process is referred to as ocean acidifi-
cation. Acidification likely has deleterious impacts on 
ocean ecosystems and coastal human communities that 
depend on marine resources143,144. OBMs are used exten-
sively to quantify past and future rates and patterns of 
ocean acidification.

Global OBMs simulate future reductions in surface 
planktonic CaCO3 production and elevated, shallower 
CaCO3 remineralization145–147. These simulations sug-
gest that open-​ocean surface acidification is controlled 
largely by the choice of atmosphere CO2 scenario. This 
is due to relatively rapid air–sea CO2 gas exchange on 
annual and longer timescales. By contrast, subsurface 
acidification is more strongly dependent on simulated 
ocean ventilation rates, which differ across models148. 
Decadal prediction systems using ensemble forecasts 
from ESMs have demonstrable skill for surface pH  
variations for up to 5 years149.

In coastal ecosystems, acidification is compounded 
by eutrophication, acidic freshwater discharge, coastal 
upwelling and terrestrial organic carbon inputs. Regional 
OBMs are used to analyse the synergy between acidifi-
cation and eutrophication150 and for characterizing the 
highly variable physical and biogeochemical condi-
tions151,152. These models have also been used to quan-
tify the time of emergence when anthropogenic changes 
exceed natural variability153. Further applications include 
investigating how anthropogenic CO2 trends amplify the 
frequency of extreme acidification events154 and com-
pound events with overlapping extremes of acidification, 
marine heatwaves and deoxygenation155.

Box 3 | Common statistical metrics for model evaluation

The root mean-​square error (RMSE), defined as = ∑ −= m oRMSE ( )
n i

n
i i

1
1

2 , is a measure 
of the overall distance between observational data points o i n( 1, , )i = …  and their 
model equivalents mi.

The bias, b, defined as = ∑ −=b m o( ),
n i

n
i i

1
1  measures to what degree the model 

overestimates >b( 0) or underestimates <b( 0) the observational data.
The correlation coefficient, r, defined as = ∑ − − ∑ − ∑ −= = =r m m o o m m o o( ( )( ))/ ( ) ( ) ,i

n
i i i

n
i i

n
i1 1

2
1

2   
measures to what degree the observations and their model equivalents are linearly 
related. For r = 1 they would perfectly relate to each other or be perfectly correlated. 
For r = 0 there would be no relation, and for r 1= −  they would be perfectly anti-correlated, 
meaning whenever observations increase the model equivalents decrease by a 
proportional amount.

A climatology, o, is the long-​term average of an observational data set o i n( 1, , )i = … . 
A climatology can be spatially resolved, for example a gridded field, or calculated  
for a single location. It can be a temporal average over all data (annual climatology), 
temporally resolved by month (monthly climatology), day (daily climatology) or another 
averaging interval.

The model skill or model efficiency, me, defined as = − ∑ − ∑ −= =m m o o o1 ( ( ) )/( ( ) )i
n

i i i
n

ie 1
2

1
2 ,  

measures whether a model results in better (0 < me < 1) or worse (me < 0) predictions than 
an observation-​based climatology o .

The Z-​score, Zi, defined as Z m( )/ ,i i σ= − μ  relates model output mi to corresponding 
observational data of the same property. Assuming the observational data are normally 
distributed, with mean μ and standard deviation σ , the Z-​score indicates the probability 
of encountering the value mi in the data set given natural variability. A Z-​score of 0 
occurs when mi is equal to the mean of the observations. Z-​scores above 1 or below –1 
indicate that mi is outside one standard deviation of the observations.

Eutrophication
An excessive supply of plant 
nutrients to a body of water, 
often due to input from land.
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The biological impacts of ocean acidification likely 
vary across different marine environments — coral reefs, 
wetlands, shallow coastal systems and pelagic planktonic 
systems — with effects extending across scales from 
organisms to the community and whole ecosystem. This 
is accompanied by positive and negative effects for dif-
ferent taxonomic groups144. For planktonic systems, ele-
vated aqueous CO2 is projected to increase primary and  
secondary productivity, alter community structure 
and, perhaps, increase the frequency of harmful algal 
blooms. At the same time, reduced carbonate mineral 
saturation states are projected to lower the competitive-
ness of calcifying plankton species156. This poses con-
siderable challenges for OBMs because existing model 
structures and parameterizations are tailored to present 
conditions. They are not necessarily able to account for 
functional changes at the organism and community  
levels due to acidification.

Fisheries. Primary production by phytoplankton sus-
tains the marine food web. However, OBMs typically 
include only species on the lowest trophic levels, such 
as phytoplankton and zooplankton, with the implicit 
assumption that predation on plankton by higher 
trophic levels, for example fish, can be represented by an 
additional mortality term in the zooplankton equation. 
The clear dependence of fishery yields on ecosystem pri-
mary production157 led modellers of higher trophic level 
processes to use simulated primary production from 
OBMs to force models in the early 2000s. Examples 
include a study of the impact of climate change on tuna 
populations in the tropical oceans158, and a study using 
IPCC-​type models to assess the impact of climate on 
living marine resources159. This type of work continues, 
as exemplified by the recent FishMIP model intercom-
parison project160 where a set of global, upper trophic 
level models were forced with outputs from ESM pro-
jections. These projections reveal that average animal 
biomass in the global ocean could decline by 17–19% 
in high emission scenarios and 5–7% in low emission 
scenarios by 2100 (refs.​161,162). This is primarily due to 
increasing temperature, decreasing primary production 
and changes in species ranges. These OBM projections 
have been used to project changes in fish catch poten-
tial163 and global fishery revenues164. Although these 
results have been widely used in international assess-
ments165,166, the projections are subject to large uncer-
tainties with a substantial uncertainty contribution 
from OBM-​projected lower trophic level biomasses and 
production161.

More recently, direct coupling of OBMs to higher 
trophic level models has enabled examination of 
top-​down control from higher trophic levels on plank-
tonic ecosystems and marine biogeochemical cycles in 
general. For example, a study that coupled an OBM to 
an upper trophic level model with explicit representation 
of vertically migrating organisms, which feed at the sur-
face but excrete and respire at greater depth, estimated 
that diurnal vertical migration contributes significantly 
to the biological carbon pump. It could amount to 20% 
of the vertical carbon flux due to settling particles167. 
Diagnostic analyses of the contribution of zooplankton’s 

diel vertical migration to biological carbon export have 
yielded similar results168.

Observing system design
Observing system simulation experiments (OSSEs) are 
a type of data assimilation experiment in which syn-
thetic, or simulated, observations are used to design 
new, or modify existing, observing systems. OSSEs 
have their origin in numerical weather prediction169 
but are increasingly used for ocean models170, includ-
ing OBMs65,76. Typically, OSSEs are performed when a 
new observing system is designed, or in anticipation 
of a proposed change to an existing observing system, 
for example when a new instrument type or sensor 
becomes available. An OSSE provides information 
about the instrument combination and configuration 
that leads to the greatest improvement in forecast skill  
of a data assimilation system. This is particularly valu
able information given the expense of new satellite-​based 
sensors or in situ ocean observing arrays. Beyond guid-
ing observing system design, OSSEs can also be used to 
prepare for new data, to develop and improve data pro-
cessing, and to streamline the data assimilation system, 
before new data sets become available.

OSSEs produce a simulated set of observations and 
use a data assimilation system to examine their impact on 
the system’s predictive skill. The simulated observations, 
which include representations of the existing operational 
observing system and the proposed additions, should be 
obtained from an independent model simulation that 
satisfies a few criteria170. This independent simulation 
is referred to as the nature run. The simulated observa-
tions sampled from the nature run are then assimilated 
into a data-​assimilative model that closely resembles the  
operational system. This is referred to as the perturba
tion run. By comparing the perturbation run with a 
control run, where only simulated observations from 
the existing system were assimilated, the potential bene
fits of the new observational assets or configuration can 
be quantified. As the nature run can be sampled at any 
desired location and frequency, many different observing 
system configurations can be assessed. However, for an 
OSSE to yield reliable conclusions, discrepancies between 
the simulated observations and the data-​assimilative 
model must have the same error statistics as the differ-
ences between real observations and the data-​assimilative  
model.

Creating realistic simulated observations with repre-
sentative error statistics is non-​trivial and should follow 
the principles laid out in ref.​170. Identical twin OSSEs  
use the same model to perform the nature and perturba-
tion runs, where discrepancies between the two are intro-
duced by modifying one or multiple model inputs, for 
example parameters, initial conditions or physical forc-
ing. Although identical twin OSSEs are relatively easy to 
set up, they are likely to produce simulated observations 
with non-​representative errors, leading to unrealistically 
optimistic forecast skill estimates65. The more desirable, 
fraternal twin OSSEs use a different model for gener-
ating observations from the assimilative system. OSSEs 
require careful calibration, comparison of the nature  
run with reality, and an examination of observation 

	  15NATuRE REvIEwS | MeTHODS PRImeRS | Article citation ID:            (2022) 2:76 

P r i m e r

0123456789();: 



innovation statistics and forecast compared with the 
assimilation of real data.

Reproducibility and data deposition
In alignment with efforts to make ocean observations 
freely and easily accessible, alongside a general move-
ment to greater transparency in research dissemina-
tion, for example through open-​access publishing, it 
is becoming standard for OBM codes and output to be 
made freely available. All of the widely used OBM codes 
are community efforts, with shared code repositories 
and active user groups (Table ​1). Code archiving services 
such as github.com enable scientists to maintain and 
share their individual code repositories and collaborate 
with others. Archiving of model output presents a larger 
challenge because the size of raw model output easily 
exceeds available storage capacities. This makes some 
subsampling and curation necessary. Community-​driven 
archiving services such as zenodo.org enable permanent 
and open archiving of data sets, including OBM output, 
with assignment of persistent digital object identifiers. 
Some physical and biogeochemical simulation outputs 

from more formal model intercomparison activities 
are archived and available through centralized data 
repositories20,171.

The ocean modelling community has a history of 
embracing model intercomparison. Different mod-
elling groups collaborate to define a target simulation 
with a standard set of implementation and evaluation 
criteria172,173. By comparing different model architectures 
against common criteria, it is possible to identify short-
comings in individual models that can be remedied and 
assess model uncertainties. If these uncertainties cannot 
be eliminated, they must be considered when interpret-
ing results. The IPCC has a well-​established process for 
intercomparison of ESMs, referred to as the Coupled 
Model Intercomparison Project (CMIP), that includes 
intercomparison projects for ocean physical and bio
geochemical models20,171. The latest round, CMIP6, cor-
responds to the 6th Assessment Report of the IPCC and 
includes an intercomparison of the ocean biogeochem-
ical components of ESMs148,174,175. Coordinated efforts 
to compare multiple OBMs in a systematic fashion date 
back to the mid 1990s and early 2000s, with the first two 
phases of the Ocean Carbon Model Intercomparison 
Project (OCMIP-1 and OCMIP2)173. The OCMIP team 
created common frameworks for ocean tracer and bio-
geochemical experiments. These include natural and  
anthropogenic radiocarbon; chlorofluorocarbons; 
and abiotic and biotic carbon and nutrient cycling. 
Experiment packages included a specified atmospheric 
boundary condition for trace gases, such as chlorofluor-
ocarbons and CO2, ocean biogeochemical parameteriza-
tions and standardized model diagnostics and output. 
Individual groups implemented the OCMIP experimen-
tal protocols in different ocean physical general circula-
tion models with different physical forcing and ocean 
circulation112. The resulting range of simulated ocean 
tracer and biogeochemical fields could then be related 
back to differences in the underlying physics, rather than 
differences in the biogeochemical components176, and 
model skill could be evaluated against a common set of 
observed metrics177.

Intercomparison is also well established for regional 
models, for example within the Integrated Ocean 
Observing System’s Coastal Ocean Modeling Testbed 
(IOOS COMT)178. As part of the COMT, different phys-
ical models for simulation and prediction of coastal 
hypoxia in the Mississippi River outflow region were 
compared using the same simple oxygen model179. The 
aim was to distinguish model to model differences due 
to model physics from those resulting from different 
biological model formulations180. This approach is sim-
ilar to the OCMIP protocols. An alternate, but equally 
useful, approach is to compare different biogeochem-
ical parameterizations within the same ocean physical 
model. This is particularly effective when including 
parameter optimization to minimize uncertainties  
in parameter choices, focusing the intercomparison on 
structural model differences45,53,54.

OBM intercomparison activities rely on available, 
open-​access, high-​quality ocean data sets for model 
development and evaluation20,89. In many cases, gridded 
data products and climatologies are more desirable than 

Table 1 | Important repositories examples for OBM codes, outputs and 
observations

Repository 
type

Abbreviation Name

Codes ROMS​ Regional Ocean Modeling System

MOM​ Modular Ocean Model

HYCOM​ Hybrid Coordinate Ocean Model

NEMO​ Nucleus for European Modelling of the Ocean

MITgcm​ Massachusetts Institute of Technology General 
Circulation Model

Outputs OMIP​ Ocean Model Intercomparison Project

CMIP6​ Coupled Model Intercomparison Project Phase 6, 
output data repository

C4MIP​ Coupled Climate Carbon Cycle Model 
Intercomparison Project

RECCAP-2​ Regional Carbon Cycle Assessment and Processes 2

MAREMIP​ MARine Ecosystem Model Intercomparison Project

IOOS COMT​ Integrated Ocean Observing System’s Coastal  
and Ocean Modeling Testbed

Observations GEOTRACES​ An International Study of the Marine 
Biogeochemical Cycles of Trace Elements  
and Isotopes

GO-​SHIP​ Global Ocean Ship-​based Hydrographic 
Investigations Program

SOCAT​ Surface Ocean CO2 Atlas

GLODAP​ Global Ocean Data Analysis Project

BGC-​Argov​ Biogeochemical Argo

BCO-​DMO​ Biological and Chemical Oceanography Data 
Management Office

World Ocean 
Atlas 2018​

Ocean hydrography, oxygen and nutrients

SeaBASS​ NASA SeaWiFS Bio-​optical Archive and Storage 
System

MAREDAT​ MARine Ecosystem Biomass DATa

OBM, ocean biogeochemical model.
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compilations of raw ocean data profiles. The construc-
tion of data products that span many individual data 
collectors and time frames requires substantial effort by 
domain experts from oceanography, data analysis and 
data management. The visibility of ocean data manage-
ment as a distinct and critical element of ocean research 
has risen substantially over the past couple of decades. 
Multiple aspects, from informatics and cyber infrastruc-
ture to research culture, create incentives for scientists to  
share data through recognized data repositories and  
to properly cite data products181,182. Current commu-
nity ocean data efforts revolve around the emergence of 
new standards for data to be findable, accessible, inter-
operable and reusable (FAIR)93. Data system elements 
can include an agreement on common sampling and 
analytical measurement methods, data quality control 
protocols and assurance checks, laboratory and field 
intercomparison activities, analytical standards and ref-
erence materials, data ontologies and vocabularies, data 
reporting requirements and formatting standards, and 
support for data accessibility and archiving through data 
repositories.

The physical hydrography community has a long 
history of building unified data products for tempera-
ture, salinity, nutrients and oxygen183. Standard products, 
such as the World Ocean Atlas 2018, are created by the 
National Oceanic and Atmospheric Administration 
(NOAA) and other ocean data centres184. The ocean 
chemical tracer and biogeochemical community has pur-
sued similar efforts to compile and, where feasible, grid 
water column data relevant to OBMs. The Global Ocean 
Data Analysis Project (GLODAP), for example, com-
piled data on ocean circulation tracers — radiocarbon  
and chlorofluorocarbon — and dissolved inorganic 
carbon system variables, including alkalinity, based on 
historical global ocean surveys dating back to the 1970s 
(ref.​185). The GLODAP product includes objectively 
analysed, gridded spatial maps for both observed pro
perties and derived products, such as anthropogenic 
CO2. The GLODAP data product is a living data set, most 
recently updated as GLODAPv2.2020 (ref.​186). Many of 
the large-​scale, international ocean observing efforts 
are built on collaborations to generate similar publicly 
accessible, standardized data products that are routinely 
updated with new field observations. Relevant examples 
for OBM efforts include the GO-​SHIP hydrographic 
programme187, surface ocean CO2 observations188, time 
series189, plankton products190,191 and quality-​controlled 
BGC-​Argo products192,193.

Limitations and optimizations
Application of OBMs is subject to computational limi-
tations, for example limits in CPU time and disk space. 
This requires compromises in spatial and process reso-
lution achievable in the required domain size, integra-
tion time and model ensemble size. For example, the 
resolution of most ESMs is too coarse to capture ocean 
mesoscale features, although some modelling groups 
are exploring global ocean mesoscale plankton simula-
tions194. Given current computing resources, increasing 
the spatial resolution of a global model with century 
integration times is typically only possible by drastically 

reducing the number of biogeochemical state vari
ables26. Regional models are affordable at much higher 
spatial resolution, but require boundary conditions from 
larger-​scale models and much shorter integration times. 
Practical workarounds include approaches for upscaling 
and downscaling195; nested domains, including two-​way 
coupling, where information flows from the large to 
small scale and vice versa196; and adaptive grids or model 
structures, although these model structures are difficult 
to implement and rarely used.

Uncertainties in OBM parameters and structures are 
a major issue limiting the models’ predictive skill. Many 
model parameters cannot be determined experimentally 
and have relatively large plausible ranges. Parameter 
optimization approaches should, theoretically, be able 
to address this as an inverse problem, where informa-
tion contained in biogeochemical observations is used 
to infer the underlying parameters. However, in practice, 
observations are often limited by resolution and breadth 
of variable types, meaning many model parameters are 
unconstrained by optimization44,50. The issue of unde-
termined parameters worsens with increasing model 
complexity, for example when increasing the number 
of state variables. This is because the number of poorly 
known parameters multiplies and the degrees of free-
dom increase27. The strong non-​linearities characterizing 
OBM equations also contribute to the challenges. One 
manifestation of underdetermination is a cancellation of 
errors, where the model seemingly agrees with available 
observations, but does so because underlying errors com-
pensate for each other. This includes the possibility of the 
biogeochemical model compensating for shortcomings 
in the physical model component. This is problematic for 
future climate projections, where compensating errors 
give a plausible simulated present, but limited confidence 
in future behaviour197. Whenever different errors com-
pensate for each other, the OBM might perform accept-
ably for the tuned observational period, but not outside 
it. This limits both the mechanistic insights that can be 
gained from the model and its use as a predictive tool. 
Slow climate-​biogeochemical feedback, for example, is 
difficult to probe with current observations. A prudent 
approach is to apply Occam’s razor, for example by limit-
ing the number of biogeochemical state variables to those 
necessary and focusing on processes which have a con-
ceptual or theoretical understanding of climate sensitiv-
ity. In practice, this depends on the scientific or practical 
challenges being addressed and can be subjective.

Related to the underdetermination problem is the 
issue of structural uncertainties in OBMs. Equations 
governing biogeochemical state variables are empiri-
cal and, except for mass conservation, are not derived 
from fundamental laws and first principles such as the 
Navier–Stokes equations. As a result, there are no univer-
sally agreed upon parameterizations or optimal model 
structures. Although most models have converged on 
a similar, intermediate-​complexity structure, the model 
structures and predictive capabilities are not rigorously 
tested. Until recently, observational data sets have been 
too limited in space, time or breadth, for a thorough 
OBM validation. The rise of global autonomous bio-
geochemical observation networks91,191 is beginning to 
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alleviate this problem and will likely prove transformative  
for further development of OBMs.

A limitation to the use of ESMs for projecting future 
conditions is that projections cannot be validated. The 
use of past climatic changes is one possibility, but has  
the drawback of observational constraints being lim-
ited to palaeo proxies. Additionally, there is no close 
analogue to the current global warming in the recent 
geological past, with the current continental plate con-
figuration. Assessment of ESMs for present-​day condi-
tions38,174 provides information about model biases, but 
does not necessarily describe their behaviour outside 
the observed conditions. Again, the issues of underde-
termination and compensating errors lead to large and 
poorly quantified uncertainties. In numerical weather 
prediction it is generally true that an ensemble of differ-
ent models represents a better forecast than individual 
models because model uncertainties partly cancel. This 
notion has been adopted in climate projections where  
ensembles of ESMs are commonly used. However, evalua
tion of CMIP5 and CMIP6 ensembles for present-​day  
conditions shows that the assumption of cancellation 
of errors does not generally hold38. This is unsurpris-
ing when considering that many models share similar 
shortcomings and biases. A recent development is the 
use of explainable and empirical inter-​model relation-
ships between characteristics of the present-​day condi-
tions and long-​term climate projections, the emergent 
constraint approach198. It has enabled a reduction in 
projection uncertainties in ESMs and has been applied 
successfully to marine biogeochemistry199,200.

Another major challenge when using OBMs for 
future projections is that a fixed biogeochemical struc-
ture may not account for functional changes in biological 
communities due to acclimation and adaptation to new 
environmental conditions. One potential workaround 
is to enable emergent communities22. However, this is 
computationally costly and not feasible in the integra-
tion times required for future projections with current 
computational capabilities. Another approach, which 
requires ongoing input of well-​resolved biogeochemical 
observations, is to allow for adaptive model parame-
ters55,56. This is potentially feasible for nowcasts but not 
projections. Whether the current status quo prevails or 
new approaches are adopted, a continuous evaluation of 
OBM results against a well-​resolved, broad suite of obser-
vations from a sustained global ocean observing system 
will be paramount as climate-​related changes manifest.

Outlook
Anthropogenic perturbations of the global carbon and 
nitrogen cycles are leading to ocean warming, acidifica-
tion, deoxygenation and coastal eutrophication. These 
place stresses on ocean ecosystems and compound 
direct human impacts, such as overfishing or trawling. 
Prevention, mitigation and adaptation to the negative 
effects of these stressors present a formidable challenge. 
Skilful OBMs that provide robust, accurate and action-
able information are key to developing an appropriate 
response, to enable optimal outcomes. This will require 
a rigorous quantitative assessment and validation of 
OBMs, including their structural uncertainties, model 
refinement and method development. Ocean model-
ling already benefits from computational advances in 
traditional ocean and climate models, alongside new 
approaches using machine learning and other advanced 
techniques. The OBM simulation tasks further depend 
on continued expansion of the global ocean observing 
system into more biogeochemical and ecosystem vari
ables, taking advantage of cost-​effective, autonomous 
platforms and sensors, plus remote sensing.

Given an expanded and sustained biogeochemical 
observing system, the development of well-​constrained, 
operational OBMs will be feasible in the near term. They 
will benefit a broad range of scientific purposes and 
practical applications. The need for accurate information 
in some specific applications will require development 
of tailored OBM applications. This includes ocean CO2 
removal and carbon accounting; coastal eutrophication; 
fisheries; marine diseases; and harmful algal blooms. 
New applications focused on vulnerability and impacts 
will drive integration of the current OBM generation 
with specialized application models and more direct 
engagement with stakeholders. Demand may grow for 
near-​term to seasonal, to multi-​year forecasting pro
ducts. A continued commitment to open-​source code 
and open-​access principles in dissemination of OBM 
results and derived products should be prioritized by 
the research community and funders.

Code availability
Example code for a nutrient–phytoplankton– 
zooplankton–detritus (NPZD) model, parameter opti-
mization and state estimation can be found in refs.​57,81,201,  
respectively.
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