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Abstract

Given a family F of k-element sets, S1, . . . , Sr ∈ F form an r-sunflower
if Si ∩ Sj = Si′ ∩ Sj′ for all i ̸= j and i′ ̸= j′. According to a famous
conjecture of Erdős and Rado (1960), there is a constant c = c(r) such
that if |F| ≥ ck, then F contains an r-sunflower.

We come close to proving this conjecture for families of bounded
Vapnik-Chervonenkis dimension, VC-dim(F) ≤ d. In this case, we
show that r-sunflowers exist under the slightly stronger assumption

|F| ≥ 210k(dr)
2 log∗ k

. Here, log∗ denotes the iterated logarithm function.
We also verify the Erdős-Rado conjecture for families F of bounded

Littlestone dimension and for some geometrically defined set systems.

1 Introduction

An r-sunflower is a collection of r sets whose pairwise intersections are the same.
That is, r distinct sets S1, . . . , Sr form an r-sunflower if Si ∩ Sj = Si′ ∩ Sj′ for
all i ̸= j and i′ ̸= j′. The term was coined by Deza and Frankl [11]. For brevity,
a k-element set is called a k-set.

Let fr(k) be the minimum positive integer m such that every family of k-sets
whose size is at least m contains r members that form an r-sunflower. Erdős
and Rado [13] proved that fr(k) ≤ k!(r − 1)k. The Erdős–Rado “sunflower
conjecture” states that there is a constant C = C(r) depending only on r such
that fr(k) ≤ Ck. Over the years, some small improvements have been made on
the upper bound k!(r− 1)k, see [1, 18]. Very recently, a breakthrough has been
achieved by Alweiss, Lovett, Wu, and Zhang [5], who proved that

fr(k) ≤ (cr3 log k log log k)k,
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where c is an absolute constant. For an alternative proof of this result, us-
ing Shannon capacities, see [22]. Some weaker versions of the conjecture are
discussed in [3, 14, 20].

The aim of this note is to study the Erdős-Rado sunflower conjecture for fam-
ilies of bounded dimension. Apart from set systems realized in low-dimensional
Euclidean spaces, we consider two additional notions of dimension: the Vapnik-
Chervonenkis dimension (in short, VC-dimension) and the Littlestone dimension
(LS-dimension), introduced in [29] and [19], respectively. Both are important
combinatorial parameters that measure the complexity of graphs and hyper-
graphs, and play important roles in statistics, algebraic geometry, PAC learning,
and in model theory. There is a growing body of results in extremal combina-
torics and Ramsey theory which give much better bounds or stronger conclusions
under the additional assumption of bounded dimension (see [15, 16]).

Given a family of sets F with ground set V , the VC-dimension of F , denoted
by VC-dim(F), is the maximum d for which there exists a d-element set S ⊂ V
such that for every subset B ⊂ S, one can find a member A ∈ F with A∩S = B.
In this case, we say that S is shattered by F .

Let fd
r (k) denote the least positive integer m such that every family F of

k-sets with |F| ≥ m and VC-dim(F) ≤ d contains an r-sunflower. Clearly,
we have fd

r (k) ≤ fr(k), and the Erdős-Rado sunflower conjecture implies the
following weaker conjecture.

Conjecture 1.1. For d ≥ 1 and r ≥ 3, there is a constant C = C(d, r) such
that fd

r (k) ≤ Ck.

It is not difficult to see that, even for d = 1, the function f1
r (k) grows at

least exponentially in k. More precisely, we have f1
r (k) > (r − 1)k−1. Indeed,

consider a rooted complete (r− 1)-ary tree T with the root on level 0 and with
(r − 1)k−1 leaves on level k − 1. Let F be the family of k-sets consisting of the
vertex sets of the root-to-leaf paths in T . Obviously, F does not contain any
r-sunflower, and its VC-dimension is at most 1.

More generally, we have the recursive lower bound

fd
r (k1 + k2) > (fd

r (k1)− 1)(fd
r (k2)− 1).

Indeed, for i = 1, 2, let Fi be a family of ki-sets of size fd
r (ki) − 1 with VC-

dimension at most d and without any r-sunflower. For each set S in F1, make a
new copy of F2 and add S to each set in F2. The ground set of copies of F2 are
pairwise disjoint for distinct sets of F1. The resulting set system F is (k1+k2)-
uniform with size (fd

r (k1)−1)(fd
r (k2)−1), VC-dimension at most d, and has no

r-sunflower. This implies that if fr(k
′) > Ck′

+1 for some k′ and C, then there
is d depending on k′ such that for all sufficiently large k, fd

r (k) > Ck. Thus, any
exponential lower bound for the classical sunflower problem (with unbounded
VC-dimension) can be achieved by a construction with bounded (but sufficiently
large) VC-dimension.

Using a result of Ding, Seymour, and Winkler [12], we settle Conjecture 1.1
for families of k-sets with VC-dimension d = 1.
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Theorem 1.2. For integers r ≥ 3 and k ≥ 1, every family of k-sets with VC-
dimension d = 1 and cardinality at least r10k has an r-sunflower. That is, we
have

f1
r (k) ≤ r10k.

Let log∗ k denote the iterated logarithm of k, i.e., the minimum i for which
the i times iterated logarithm of k satisfies log(i) k ≤ 2. All logarithms used in
this note are of base 2.

For d ≥ 2, our upper bound on fd
r (k) is not far from the one stated in

Conjecture 1.1.

Theorem 1.3. For integers d, k, r ≥ 2, every family of k-sets with VC-

dimension at most d and cardinality at least 210k(dr)
2 log∗ k

has an r-sunflower.
In notation,

fd
r (k) ≤ 210k(dr)

2 log∗ k

.

The Littlestone dimension of F ⊆ 2V is defined as follows. Consider a rooted
complete binary tree Td, with the root at level 0 and with 2d leaves at the last
level. Let the leaves of Td be labeled by sets in F , and all other vertices by
elements of V . We say that Td is shattered by F if for every root-to-leaf path
with labels v0, v1, . . . , vd−1, F , we have vi ∈ F if and only if the (i+ 1)st vertex
along the path is the left-child of vi, for all 0 ≤ i < d. The Littlestone dimension
of F , denoted by LS-dim(F), is the largest d for which there is a labeling of Td

which is shattered by F .
Obviously, we have VC-dim(F) ≤ LS-dim(F), because if the S =

{s0, . . . , sd−1} ⊆ V is shattered by F , then the labeling of Td in which all
vertices at level i are labeled by si, 0 ≤ si < d, and the leaves by the corre-
sponding sets in F with the appropriate intersection with S, is also shattered
by F .

Let hd
r(k) denote the least positive integer m such that every family F of

k-sets with |F| ≥ m and LS-dim(F) ≤ d contains an r-sunflower. Since the
Littlestone dimension of a set system is at least as large as its VC-dimension,
we have

hd
r(k) ≤ fd

r (k) ≤ fr(k).

It turns out that hd
r(k), as a function of k, grows much more slowly than fd

r (k).
Its growth rate is only polynomial in k, albeit the degree of this polynomial
depends on d.

Theorem 1.4. For positive integers d, r, k, every family of k-sets with LS-
dimension at most d and cardinality at least (rk)d has an r-sunflower. Using
our notation, we have

hd
r(k) ≤ (rk)d.

On the other hand, for integers d, r ≥ 3, and k ≥ 4d, we have

hd
r(k) ≥ (rk/d)d−o(d),

where the o(d) term goes to 0 as d → ∞.
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For several geometrically defined set systems, one can verify the sunflower
conjecture by exploring the special properties of the underlying configurations.

A collection D of Jordan regions in the plane is called a family of pseudo-
disks if the boundaries of any two members in D intersect in at most two points.
For simplicity, we will assume that D is in general position, that is, no point
lies on the boundary of three regions and no two regions are touching. It is well
known that the VC-dimension of the set system obtained by restricting D to V
is at most 3 (see [8]) and, hence, Theorem 1.3 applies. However, in this case,
we can verify the sunflower conjecture.

Theorem 1.5. Let V be a planar point set and let D = {D1, . . . , DN} be a
family of pseudo-disks such that the size of every set Si = Di ∩ V is equal to
k. If N ≥ (500 + r)900k, where r > 2, then there are r distinct sets Si1 , . . . , Sir

that form an r-sunflower.

Our paper is organized as follows. Sections 2 and 3 contain the proofs of
Theorems 1.2 and 1.3, respectively. Theorem 1.4 about set systems of bounded
Littlestone dimension is established in Section 4. Section 5 is devoted to low-
dimensional geometric instances of the sunflower conjecture, while the last sec-
tion contains some concluding remarks.

For the clarity of presentation, throughout this paper we make no attempt
to optimize the absolute constants occurring in the statements.

2 VC-dimension 1 – Proof of Theorem 1.2

Given a family F of subsets of a ground set V , as usual, let ν(F) denote the
packing number of F , i.e., the maximum number of pairwise disjoint members
of F . Also, let τ(F) be the transversal number of F , i.e., the minimum number
of elements that can be selected from V such that every member of F contains
at least one of them. Finally, let λ(F) denote the maximum integer l such that
there are l sets S1, . . . , Sl ∈ F with the property that for any 1 ≤ i < j ≤ l,
there is v = vij ∈ Si ∩ Sj such that v ̸∈ St for t ∈ [m] \ {i, j}. It is easy
to verify that λ(F) is at least as large as the VC-dimension of the set system
(hypergraph) F∗ dual to F .

We need the following result of Ding, Seymour, and Winkler [12] which
bounds the transversal number of F in terms of its packing number and λ(F).

Lemma 2.1 (Ding, Seymour, Winkler). Let F be a set system with ground set
V , and let ν(F) = ν, τ(F) = τ and λ(F) = λ. Then we have

τ ≤ 11λ2(λ+ ν + 3)

(
λ+ ν

λ

)2

.

Notice that VC-dim(F) = 1 implies that λ(F) ≤ 3. Hence, Theorem 1.2 is
an immediate corollary to the following result.

Theorem 2.2. Let r ≥ 3 and let F be a family of k-sets with λ(F) = λ which
does not contain an r-sunflower. Then we have |F| ≤ (λ+ r)6λk.
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Proof. We proceed by induction on k. The base case k = 1 follows from the
trivial bound |F| ≤ r − 1. The induction hypothesis is that the bound holds
for families of (k − 1)-sets. For the inductive step, let F ⊆ 2V be a family of
k-sets with no r-sunflower. In particular, F has no r disjoint members, so that
ν(F) < r. By Lemma 2.1,

τ(F) ≤ 11λ2(λ+ r + 3)

(
λ+ r

λ

)2

≤ 11λ2(λ+ r + 3)(λ+ r)2λ(λ!)−2

≤ 11(λ+ r + 3)(λ+ r)2λ ≤ 20(λ+ r)2λ+1.

Therefore, there is v ∈ V incident to at least |F|/τ(F) ≥ |F|/
(
20(λ+ r)2λ+1

)
members of F .

Let F ′ = {S \ {v} : S ∈ F , v ∈ S}. Then we have |F ′| ≥
|F|/

(
20(λ+ r)2λ+1

)
, λ(F ′) ≤ λ(F), and F ′ does not contain any r-sunflower.

By the induction hypothesis, we have |F ′| ≤ (λ+ r)6λ(k−1). Thus, we obtain

|F| ≤ 20(λ+ r)2λ+1|F ′| ≤ 20(λ+ r)2λ+1(λ+ r)6λ(k−1) ≤ (λ+ r)6λk,

as required.

3 Bounded VC-dimension – Proof of Theorem
1.3

In this section, we prove Theorem 1.3, which is the main result of this paper.
We need the following lemma due to Sauer [23], Shelah [25], Perles, and, in a
slightly weaker form, to Vapnik and Chervonenkis [29]. See also [21, 17].

Lemma 3.1 (Sauer, Shelah, Perles). Let F be a set system with ground set V

and VC-dimension at most d. Then we have |F| ≤
∑d

i=0

(|V |
i

)
.

Before turning to the proof, we need to discuss some closely related variants
of the sunflower problem.

First, we could ask the same question for multifamilies of sets, that is, for
collections of not necessarily distinct sets. Let gr(k) be the minimum positive
integer m such that every multifamily of k-sets of size m contains an r-sunflower.
It is an easy exercise to prove that gr(k) = (r − 1)fr(k) + 1.

Analogously, for any d ≥ 1, let gdr (k) be the minimum positive integer m
such that every multifamily of k-sets of size m with VC-dimension at most d
contains an r-sunflower. We similarly have gdr (k) = (r − 1)fd

r (k) + 1.
To obtain upper bounds for gdr (k) and fd

r (k), we define the following related
function. Let αd

r(k) denote the maximum α such that for every nonempty
multifamily F of k-sets with VC-dimension at most d, if we select r members
uniformly at random from F with replacement, the probability that they have
pairwise equal intersections is at least α.

Next, notice that the value of fr(k) remains the same if we change the
definition from families of k-sets to families of sets with at most k elements.
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Indeed, this can be achieved by adding distinct “dummy” vertices to each set
of size smaller than k so that it will have size exactly k. The same holds for the
functions fd

r (k), gr(k), g
d
r (k), and αd

r(k) because adding dummy vertices does
not affect the VC-dimension of the family.

Considering a family of VC-dimension d which consists of fd
r (k) − 1 sets of

size k and contains no r-sunflower, we immediately obtain the following upper
bound on αd

r(k) as the r-tuples of sets from the family that have pairwise equal
intersections are those that consist of the same set r times.

(1) αd
r(k) ≤ (fd

r (k)− 1)1−r.

The following lemma implies that this bound on αd
r(k) is tight within a factor

err−1.

Lemma 3.2. For integers d, k, r ≥ 2 we have

αd
r(k) ≥ gdr (k)

1−r/e.

Proof. Let Sd
r (m, k) denote the minimum possible number of r-sunflowers in a

multifamily F of at most k-element sets with cardinality m and VC-dimension
at most d. From the definition, if m < gdr (k), then Sd

r (m, k) = 0, while if
m ≥ gdr (k), then Sd

r (m, k) ≥ 1.
Our argument is based on the proof technique used to obtain the “crossing

lemma” [2], see also [27]. The idea is to use an averaging (or, equivalently,
probabilistic) argument to amplify a weak bound to a better bound. By deleting
one set from each r-sunflower, we get the trivial bound Sd

r (m, k) ≥ m−gdr (k)+1.
For M ≥ m, by averaging over all subfamilies of size m, we obtain

Sd
r (M,k) ≥ Sd

r (m, k)

(
M

r

)
/

(
m

r

)
.

In particular, Sd
r (m, k)/

(
m
r

)
is a monotone increasing function of m. Set m0 =

(1+1/r)gdr (k)− 1. Then we have Sd
r (m0, k) ≥ m0− gdr (k)+1 = gdr (k)/r. Thus,

for m ≥ m0, we have

(2)

Sd
r (m, k) ≥ Sd

r (m0, k)

(
m

r

)
/

(
m0

r

)
≥ 1

r
gdr (k)

(
m

r

)
/

(
(1 + 1/r)gdr (k)

r

)
≥ 1

er
gdr (k)

1−rmr.

Let αd
r(m, k) be the maximum α with the property that for every multifamily

F of at most k-element sets with cardinality m and VC-dimension at most d, if
we uniformly at random choose r sets from F with replacement, the probability
that they have pairwise equal intersections is at least α. Thus,

(3) αd
r(m, k) ≥ Sd

r (m, k)/

(
m

r

)
+m1−r,
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where the first term comes from possibly choosing r different sets (in terms of
label, if we view the m not necessarily distinct sets as labeled from 1 to m), and
the second term comes from possibly choosing the same set r times.

For m ≥ m0, by using (3) and then (2), we have

αd
r(m, k) ≥ Sd

r (m, k)/

(
m

r

)
≥ r!Sd

r (m, k)m−r ≥ (r − 1)!gdr (k)
1−r/e.

For m < m0, using the trivial bound Sd
r (m, k) ≥ 0, we have

αd
r(m, k) ≥ m1−r > m1−r

0 =
(
(1 + 1/r)gdr (k)− 1

)1−r ≥ gdr (k)
1−r/e.

As αd
r(k) = infm αd

r(m, k), we have the desired bound αd
r(k) ≥ gdr (k)

1−r/e.

Combining the previous lemma with the Erdős–Rado bound fr(k) ≤
k!(r − 1)k, and the inequality gdr (k) ≤ gr(k) = (k − 1)fr(k) + 1, we obtain
the following corollary.

Corollary 3.3. For any integers d, k, r ≥ 2, we have

αd
r(k) ≥

(
k!(r − 1)k+1 + 1

)1−r
/e.

We are now in a position to prove the following result which, together with
(1), immediately implies Theorem 1.3.

Theorem 3.4. For any d, k, r ≥ 2, we have

αd
r(k) ≥ 2−10k(dr)2 log∗ k

.

Proof. If r = 2, then we have αd
2(k) = 1 and the result follows. Therefore

we can assume r ≥ 3. We use induction on k. For the base cases k < 8, by
Corollary 3.3, we have

αd
r(k) ≥

(
k!(r − 1)k+1 + 1

)1−r
/e ≥ 2−10k(dr)2 log∗ k

.

For the inductive step, let k ≥ 8 and assume that the statement holds for all
k′ < k. Let F be a non-empty multifamily of at most k-element sets with VC-
dimension at most d. Without loss of generality, we may assume that the ground
set is N. Let ϵi be the fraction of sets in F that contain i. By reordering the
elements of the ground set, if necessary, we may also assume that ϵ1 ≥ ϵ2 ≥ . . .,
that is, the elements of the ground set are ordered in decreasing frequency.

As each member of F has size at most k, the expected size of the intersection
of [s] = {1, 2, . . . , s} with a randomly selected member of F is at most k. On the
other hand, this expectation is ϵ1 + · · ·+ ϵs ≥ sϵs. Therefore, we have ϵs ≤ k/s.

Set s = ⌈4k4/αd
r(log k)⌉. Define two multifamilies, F1 and F2, as follows.

Let
F1 = {S : S ∈ F and |S ∩ [s]| ≤ log k}, F2 = F \ F1.

Thus, we have |F| = |F1|+ |F2|. We select at random, uniformly and indepen-
dently with repetition, r sets S1, . . . , Sr ∈ F . Let X denote the event that the
r sets form an r-sunflower. The proof now falls into two cases.
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Case 1. Suppose that |F1| ≥ (1 − 1/r)|F|. Let Y denote the event that
S1, . . . , Sr ∈ F1. Let Z be the event that S1 ∩ [s], . . . , Sr ∩ [s] have pairwise
equal intersections, and let W be the event that S1 \ [s], . . . , Sr \ [s] are pairwise
disjoint. Hence,

(4) P[X] ≥ P[Y ∩ Z ∩W ] = P[Y ∩ Z]− P[Y ∩ Z ∩ W̄ ] ≥ P[Y ∩ Z]− P[W̄ ].

Clearly, we have

(5) P[Y ] ≥ (1− 1/r)r ≥ 1

4
,

and, by definition,

(6) P[Z | Y ] ≥ αd
r(log k).

Therefore, by (5) and (6), we have

(7) P[Y ∩ Z] = P[Y ]P[Z | Y ] ≥ 1

4
αd
r(log k).

Fixing Si \ [s], which has size at most k, the probability that Sj \ [s] contains at
least one of the elements of Si \ [s] is at most kϵs+1 ≤ k2/(s+1). Hence, by the
probability union bound, we have

(8) P[W̄ ] ≤
(
k
2

)
k2

s+ 1
<

k4

2s
≤ αd

r(log k)

8
.

Combining (4), (7), and (8), we obtain

P[X] = P[Y ∩ Z]− P[W̄ ] ≥ αd
r(log k)

4
− αd

r(log k)

8
=

αd
r(log k)

8
.

Hence, by the induction hypothesis, we have

αd
r(k) ≥ P[X] ≥ 1

8
αd
r(log k) ≥

1

8
2−10(log k)(dr)2 log∗ k−2

≥ 2−10k(dr)2 log∗ k

.

Case 2. Suppose that |F2| ≥ |F|/r. Since F has VC-dimension at most d,
by the Sauer-Shelah-Perles lemma, Lemma 3.1, the number of distinct sets in
{S ∩ [s] : S ∈ F} is at most sd. By the pigeonhole principle, there is a subset
A ⊂ [s] with |A| ≥ log k such that the family

F ′ = {S ∈ F : S ∩ [s] = A}

has at least |F2|/sd ≥ |F|/(rsd) members.

Select r sets S1, . . . , Sr from F uniformly at random with repetition. Let
Y ′ denote the event that S1, . . . , Sr ∈ F ′ and let Z ′ denote the event that
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S1 \ [s], . . . , Sr \ [s] form an r-sunflower. Hence,

P[X] ≥ P[Y ′ ∩ Z ′]

= P[Y ′] · P[Z ′ | Y ′]

≥
(

1

rsd

)r

αd
r(k − log k)

≥ 1

rr(5k4)dr
(
αd
r(log k)

)dr
αd
r(k − log k).

By the induction hypothesis, we obtain

P[X] ≥ 1

rr(5k4)dr

(
2−10(log k)(dr)2 log∗ k−2

)dr (
2−10(k−log k)(dr)2 log∗ k

)
.

Since dr ≥ 6 and k ≥ 8, we have

P[X] ≥ 1

rr(5k4)dr
2−10k(dr)2 log∗ k+8 log k(dr)2 log∗ k

≥ 2−10k(dr)2 log∗ k

.

This completes the proof.

4 Littlestone dimension – Proof of Theorem 1.4

Originally, the Littlestone dimension was introduced for the characterization of
regret bounds in online learning, see [4, 19, 7]. As Chase and Freitag [9] pointed
out, the notion is equivalent to Shelah’s model theoretic rank. The definition
can also be reformulated as follows.

For a finite family F of sets with ground set V , define LS-dim(F), the
Littlestone dimension of F , recursively. If |F| ≤ 1, then let LS-dim(F) = 0.
For an element x of the ground set, let Fx = {S \ {x} : x ∈ S and S ∈ F} and
F ′

x = {S : x ̸∈ S and S ∈ F}. If |F| > 1, then let

LS-dim(F) = 1 +max
x∈V

min (LS-dim(Fx),LS-dim(F ′
x)) .

For d ≥ 1, let hd
r(k) be the minimum positive integer m such that every

family of k-sets with size at least m and Littlestone dimension at most d contains
an r-sunflower.

Lemma 4.1. For positive integers k and r, we have h1
r(k) = k + r − 1.

Proof. We have h1
r(k) > k + r − 2 by considering the following family Fr,k of

k-sets. For k = 1, let the family consist of r − 1 singleton sets. For k > 1, we
obtain Fr,k from Fr,k−1 by adding one new ground element to all sets in Fr,k−1,
and then including one additional k-set with entirely new ground elements. It
is straightforward to check that this family of k-sets has k+ r− 2 members, its
Littlestone dimension is 1, and it does not contain any r-sunflower.
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We prove the upper bound inductively on k, with the base case k = 1 being
trivial. Let k ≥ 2 and let F be a family of k-sets with size h1

r(k)− 1 which has
Littlestone dimension at most 1 and does not contain an r-sunflower. A family
of sets has Littlestone dimension at most 1 if and only if every element x of the
ground set belongs to at most one or to all but at most one set in the family,
that is, if |Fx| ≤ 1 or |F ′

x| ≤ 1 for all x. If there is an element x for which
|F ′

x| ≤ 1, then |Fx| = |F| − 1 = h1
r(k) − 2 and Fx is a family of (k − 1)-sets

of Littlestone dimension at most 1 which does not contain an r-sunflower, from
which we obtain h1

r(k − 1) ≤ h1
r(k − 1) + 1. If there is no ground element x in

more than one set in F , then all members of F are disjoint. Therefore, |F| < r
and h1

r(k) ≤ r.

Lemma 4.2. For any family F of sets of size at most k with no (r + 1)-
sunflower, there is an element of the ground set which belongs to at least a
1
kr -fraction of the sets.

Proof. Consider a maximum family {S1, . . . , Ss} of sets in F which are pairwise
disjoint. Such a family forms a sunflower and hence s ≤ r. In particular, any set
in F contains at least one element from

⋃s
i=1 Si, which has a total of ks ≤ kr

elements. By the pigeonhole principle, there is an element of the ground set
which belongs to at least a fraction 1

kr of the sets in F .

Lemma 4.3. For integers k, r ≥ 1 and d ≥ 2, we have

hd
r(k) ≤ max

(
k(r − 1)

(
hd−1
r (k − 1)− 1

)
+ 1, hd

r(k − 1) + hd−1
r (k)− 1

)
.

Proof. Let F be a family of k-sets with size hd
r(k) − 1 which has Littlestone

dimension at most d and does not contain an r-sunflower. By Lemma 4.2, there
is an element x of the ground set in at least a fraction 1

k(r−1) of the sets in

F . As F has Littlestone dimension d, at least one of Fx or F ′
x has Littlestone

dimension at most d− 1.
If Fx has Littlestone dimension at most d−1, then Fx is a family of (k−1)-

sets which has no r-sunflower, and hence

1

k(r − 1)

(
hd
r(k)− 1

)
=

1

k(r − 1)
|F| ≤ |Fx| ≤ hd−1

r (k − 1)− 1,

from which it follows that hd
r(k) ≤ k(r − 1)

(
hd−1
r (k − 1)− 1

)
+ 1.

If F ′
x has Littlestone dimension at most d−1, then we have |F ′

x| ≤ hd−1
r (k)−1

and |F ′
x| ≤ hd

r(k − 1)− 1, from which it follows that

hd
r(k)− 1 = |F| = |Fx|+ |F ′

x| ≤ hd−1
r (k)− 1 + hd

r(k − 1)− 1,

and, hence, hd
r(k) ≤ hd−1

r (k) + hd
r(k − 1)− 1.

We can now prove Theorem 1.4.
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Proof of Theorem 1.4. For the upper bound, the proof is by induction on the
Littlestone dimension d. In the base case d = 1, we have h1

r(k) = k+r−1 ≤ kr.
Suppose d ≥ 2. Consider the recursive upper bound on hd

r(k) from Lemma
4.3. We split the proof into two cases depending on the maximum of the two
functions in the upper bound on hd

r(k). In each case, we use the induction
hypothesis.

In the first case, we have

hd
r(k) ≤ k(r − 1)

(
hd−1
r (k − 1)− 1

)
+ 1 ≤ kr(kr)d−1 = (kr)d.

In the latter case, we have

hd
r(k) ≤ hd−1

r (k) + hd
r(k − 1)− 1 < (kr)d−1 + ((k − 1)r)d

≤ (kr)d−1 +

(
1− 1

k

)
(kr)d < (kr)d.

In either case, we obtained the desired bound.

For the lower bound, let d ≥ 6, r ≥ 3, k be sufficiently large with k ≥
4d, n = k2r/(500d log k), t = ⌈log d⌉ and m = n−1(n/k)d−t. We use the
probabilistic method to show that there exists a family F of k-element subsets
of [n] := {1, . . . , n} with |F| ≥ m/2, F does not contain any r-sunflower, and
the Littlestone dimension of F is at most d. This implies the desired lower
bound on hd

r(k).
We will show that F satisfies four properties each with high probability. This

means that the probability is of the form 1 − o(1) with the o(1) term tending
to 0 as k tends to infinity. Hence, all four properties hold with high probability.
These four properties guarantee that F has the desired properties and hence
there is a choice of F with the desired properties.

Pick m subsets S1, . . . , Sm ⊂
(
[n]
k

)
uniformly and independently at random.

Let F be the family of distinct Si. Since m ≪
(
n
k

)
, it is easy to see that, with

high probability, we have |F| ≥ m/2.
We next show that, with high probability, F does not contain any r-

sunflower. Consider a subsequence of r of these random sets, say S1, . . . , Sr.
The number of sequences of r sets in

(
[n]
k

)
which have pairwise equal intersec-

tion, and this intersection has size s, is(
n

s

) r∏
i=1

(
n− s− (i− 1)(k − s)

k − s

)
= s!−1(k − s)!−rn!/ (n− s− r(k − s))!

This is because there are
(
n
s

)
ways of choosing the common intersection of size

s, and given the Sj with j < i, the remaining k− s elements from Si not in the
common intersection must be chosen from the n − s − (i − 1)(k − s) elements
not in any of the Sj with j < i. As there are

(
n
k

)
ways to pick each Si, the

probability that the r random sets S1, . . . , Sr have pairwise equal intersection
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of size s is

(9)

(
n

k

)−r

s!−1(k − s)!−r n!

(n− s− r(k − s))!

=

(
k

s

)
· (k!/(k − s)!)

r−1 · n!/(n− s− r(k − s))!(
k!
(
n
k

))r .

Note that the expression in the right hand side of (9) is the product of three
factors. The middle factor is at most ks(r−1). In the third factor in the right
hand side of (9), the numerator can be expressed as the product of factors (n−j)
for j = 0, . . . , s + r(k − s) − 1, which is a total of s + r(k − s) factors, while
the denominator can be expressed as the product of rk factors which are of the
form (n− h) with h ≤ k. It follows that the third factor in the right hand side
of (9) is at most

(n− k)−s(r−1)

(r−1)(k−s)−1∏
j=1

(
1− j

n− k

)
≤ (n− k)−s(r−1)e−(r−1)2(k−s)2/(4n),

where we used the inequality 1− x ≤ e−x for x ≥ 0 to bound each factor in the
product.

It follows that the expression on the right hand side of (9) is at most

(10)
(
k (k/(n− k))

r−1
)s

· e−(r−1)2(k−s)2/(4n).

Thus, the probability that S1, . . . , Sr form an r-sunflower is at most

k∑
s=0

(
k (k/(n− k))

r−1
)s

e−(r−1)2(k−s)2/(4n).

We bound the probability that there is an r-sunflower in F by taking the union
bound over all the

(
m
r

)
choices of r sets from S1, . . . , Sm. Note that (10) is the

product of two factors which are each at most 1. We bound (10) for s ≥ 2d by
the first factor, and for s < 2d by the second factor. We also use the inequality(
m
r

)
≤ (em/r)r. Substituting in the chosen values for n and m, we get an o(1)

probability that there is an r-sunflower in F .
Finally, we bound the probability that F has Littlestone dimension greater

than d. If F has Littlestone dimension greater than d, in the rooted complete
binary tree realizing the Littlestone dimension, going down from the root by
taking the left-child each time for d − t levels, we see that there are at least
2t ≥ d sets that each contain the same d− t vertices. So the probability that F
has Littlestone dimension greater than d is at most the probability that there are
d sets in F that each contain the same d− t elements from [n]. This probability
in turn is at most(

m

d

)(
n

d− t

)(
k

n

)(d−t)d

<
(em

d

)d
(

en

d− t

)d−t (
k

n

)(d−t)d

= o(1).

Here we used the union bound over all
(
m
d

)
choices of d indices from [m] and

over all
(

n
d−t

)
choices of d − t distinct integers in [n]. We also used that the
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probability that a given set of d − t elements in [n] is in a random k-set is at

most (k/n)
d−t

. The last inequality is by substituting in the chosen values of n
and m.

5 Geometric versions of the sunflower conjec-
ture

We start with the proof of Theorem 1.5. We need the following lemma due to
Sharir [24].

Lemma 5.1. Let D = {D1, . . . , Dt} be a family of pseudo-disks in the plane,
and let P denote the set of all intersection points of the boundaries of Di. Then
the number of points in P covered by the interior of at most k other regions Di

is at most 26kt.

Proof of Theorem 1.5. Given r > 2, let N = (500 + r)900k. We proceed by
induction on k. The base case k = 1 is trivial. Now assume the statement holds
for k′ < k.

Let V be a planar point set and let D = {D1, . . . , DN} be a family of pseudo-
disks in the plane such that |Di ∩ V | = k for all i. By slightly perturbing each
region Di, we can assume that no point in V lies on the boundary of Di for all
i. Set Si = Di ∩ V and F = {S1, . . . , SN}.

Let t = λ(F) and suppose the sets S1, . . . , St ∈ F have the property that
for any 1 ≤ i < j ≤ t, there is a vertex v ∈ Si ∩ Sj from V such that v ̸∈ Sℓ

for ℓ ∈ [t] \ {i, j}. Then, by letting Ci denote the boundary of Di, there are at
least

(
t
2

)
connected components in R2 \

⋃
i Ci that are covered by at most two

regions Di. On the other hand, by Lemma 5.1, there are at most 4(52)t such
regions, since every point in the arrangement

⋃
i Ci is incident to at most four

such connected components. Therefore, we have(
t

2

)
≤ 208t,

which implies that t ≤ 417.
Further, we can assume that ν(F) ≤ r − 1, since otherwise we would be

done. By Lemma 2.1, we have

τ(F) ≤ 11(417)2(419 + r)

(
416 + r

417

)2

≤ (500 + r)900.

There is a vertex v ∈ V which is incident to at least N/τ(F) members in
F . Let D′ = {Di ∈ D : v ∈ Di}, V ′ = V \ {v}, and S′

i = V ′ ∩ D′
i. Hence,

|D′| ≥ N/τ(F) ≥ (500 + r)900(k−1). By the induction hypothesis, there are r
sets S′

i1
, . . . , S′

ir
in D′ that form an r-sunflower. Together with vertex v, we

obtain an r-sunflower in F .
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Replacing Lemma 5.1 with Clarkson’s theorem on levels in arrangement of
hyperplanes [10], the argument above gives the following.

Theorem 5.2. Given r > 2, there is a constant C = C(r) for which the
following statement is true. If V is a point set in R3 and H = {H1, . . . ,HN} is
a family of N ≥ Ck half-spaces such that the size of the set Si = Hi ∩ V is k
for all i, then there are r distinct sets Si1 , . . . , Sir that form an r-sunflower.

6 Concluding remarks

The Erdős–Rado sunflower conjecture remains an outstanding open problem.
Although we made progress in this paper, it still remains open for families of
bounded VC-dimension. It is unclear if the methods used in this paper can be
used towards the original sunflower conjecture.

We were able to prove the conjecture in a geometric setting in the plane
(Theorem 1.5). We think it would be interesting to prove the conjecture in
other geometric settings, such as for families of sets that are the intersection of
the ground set with semi-algebraic sets of bounded description complexity. Such
families are of bounded VC-dimension. The following conjecture is a natural
special case to consider.

Conjecture 6.1. For each integer r ≥ 3, there is a constant C = C(r) such
that the following holds. If V ⊂ R3 and F is a family of subsets of V each of
size k with |F| ≥ Ck such that every set in F is the intersection of V with a
unit ball in R3, then F contains an r-sunflower.

Acknowledgement. We would like to thank Amir Yehudayoff for suggesting
working with the Littlestone dimension, and the SoCG 2021 referees for helpful
comments.
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Erdős conjecture, Symposium on Computational Geometry (2020), 46:1–
46:8.

[17] P. Frankl: On the trace of finite sets, J. Combin. Theory Ser. A 34
(1983), 41–45.

[18] A. V. Kostochka: An intersection theorem for systems of sets, Random
Structures Algorithms 9 (1996), 213–221.

[19] N. Littlestone: Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm, Mach. Learn. 2 (1987), 285–318.

[20] E. Naslund and W. Sawin: Upper bounds for sunflower-free sets, Forum
Math. Sigma 5 (2017), Paper No. e15.

[21] J. Pach and P. Agarwal: Combinatorial Geometry, Wiley-Interscience,
New York, 1995.

15



[22] A. Rao: Coding for sunflowers, Discrete Anal. (2020) Paper No. 2.

[23] N. Sauer: On the density of families of sets, J. Combinat. Theory Ser. A
13 (1972), 145–147.

[24] M. Sharir: On k-sets in arrangements of curves and surfaces, Discrete
Comput. Geom. 6 (1991), 593–617.

[25] S. Shelah: A combinatorial problem, stability and order for models and
theories in infinitary languages, Pacific J. Math. 41 (1972), 247–261.

[26] S. Shelah: Classification Theory and the Number of Non-Isomorphic Mod-
els, North-Holland, Amsterdam, 1978.

[27] S. Smorodinsky and M. Sharir: Selecting points that are heavily cov-
ered by pseudo-circles, spheres or rectangles, Combin. Probab. Comput. 13
(2004), 389–411.

[28] J. Spencer: Intersection theorems for systems of sets, Canad. Math. Bull.
20 (1977), 249–254.

[29] V. Vapnik andA. Chervonenkis: On the uniform convergence of relative
frequencies of events to their probabilities, Theory Probab. Appl. 16 (1971),
264–280.

Jacob Fox

Department of Mathematics

Stanford University

Stanford, CA, USA

jacobfox@stanford.edu

János Pach
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