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Introduction: Using data collected from hearing aid users’ own hearing aids could
improve the customization of hearing aid processing for different users based on
the auditory environments they encounter in daily life. Prior studies characterizing
hearing aid users’ auditory environments have focused on mean sound pressure
levels and proportions of environments based on classifications. In this study, we
extend these approaches by introducing entropy to quantify the diversity of
auditory environments hearing aid users encounter.

Materials and Methods: Participants from 4 groups (younger listeners with normal
hearing and older listeners with hearing loss from an urban or rural area) wore
research hearing aids and completed ecological momentary assessments on a
smartphone for 1 week. The smartphone was programmed to sample the
processing state (input sound pressure level and environment classification) of
the hearing aids every 10 min and deliver an ecological momentary assessment
every 40min. Entropy values for sound pressure levels, environment
classifications, and ecological momentary assessment responses were calculated
for each participant to quantify the diversity of auditory environments
encountered over the course of the week. Entropy values between groups were
compared. Group differences in entropy were compared to prior work reporting
differences in mean sound pressure levels and proportions of environment
classifications. Group differences in entropy measured objectively from the
hearing aid data were also compared to differences in entropy measured from
the self-report ecological momentary assessment data.

Results: Auditory environment diversity, quantified using entropy from the hearing
aid data, was significantly higher for younger listeners than older listeners. Entropy
measured using ecological momentary assessment was also significantly higher
for younger listeners than older listeners.

Discussion: Using entropy, we show that younger listeners experience a greater
diversity of auditory environments than older listeners. Alignment of group
entropy differences with differences in sound pressure levels and hearing aid
feature activation previously reported, along with alignment with ecological
momentary response entropy, suggests that entropy is a valid and useful metric.
We conclude that entropy is a simple and intuitive way to measure auditory
environment diversity using hearing aid data.

KEYWORDS
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Introduction

Recent years have seen a growing interest in understanding the
soundscapes or auditory environments that listeners, and
specifically hearing aid users, encounter in daily life (1).
Understanding the auditory environments hearing aid users
encounter in daily life, and the factors that affect what types of
environments hearing aid users encounter, could improve
hearing aid outcomes. Hearing aid selection, hearing aid signal
processing, counseling, and aural rehabilitation can be tailored
based on the auditory environments users encounter and their
unique hearing needs in specific environments (2-5). For
example, hearing aid users with more active lifestyles, and thus
who likely encounter more diverse auditory environments, may
benefit more from advanced hearing aid technologies than
lifestyles  (6).
improvements have enabled new methods for collecting real-

listeners  with less active Technological
world environment data from daily life. One such method is to
use the hearing aids to collect data about the environment,
(SPL),

environment classification, and the hearing aid processing state

including the sound pressure level hearing aid
(3,5,7). An open question, however, is how to use these data
effectively to characterize the environments users encounter and
draw useful conclusions. The common approach has been to
describe averages and proportions, typically average sound
pressure levels and proportions of environment types (3,5,7).
This
environments and lifestyles of hearing aid users. Specifically, this

approach offers a limited view into the auditory
approach does not capture the the diversity of environments or
how users’ environments change over time. A key feature of
modern hearing aids is their ability to adapt to environments
and even, using machine learning, adapt their processing based
on the diversity and types of environments an individual user
encounters. Thus, it is of interest to find meaningful metrics that
characterize how diverse a hearing aid user’s auditory
environments are, how they change over time, and what
demographic or lifestyle factors might predict these metrics.

To that end, this study presents an analysis of the data
described in (7). The purpose of that study was to investigate
differences in auditory environments and hearing aid feature
activation encountered by different demographic groups: younger
participants with normal hearing and older participants with
hearing loss living in an urban or rural area. Auditory
environment differences between groups were characterized using
participants’ average sound pressure levels, as recorded by the
of different

environments participants encountered (speech, quiet, noise) as

hearing aids, and the proportions auditory
classified by the hearing aids. Using those metrics, the authors
found that older listeners tend to encounter lower sound
pressure levels than younger listeners, with the largest differences
observed between the younger listeners in an urban area and the
older listeners in a rural area. No differences in the proportions
of environment classes was observed.

This study aims to investigate differences in auditory

environment diversity among those groups by quantifying
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diversity using entropy of measurements collected from the
participants’ hearing aids. To further validate the use of entropy
as a measure of auditory environment diversity, entropy
measured from hearing aid data will be compared to self-report
data from ecological momentary assessments (EMA; surveys
taken on a smartphone throughout the day). Entropy measures
how diverse some system or parameter is as a function of its
predictability. That is, the more predictable a system is—or the
less often and the less drastically it changes—the less diverse it is
and thus the less entropy it has (8). Entropy has been applied
across a range of disciplines to quantify diversity or complexity
in various ways. For example, researchers have used entropy to
quantify the complexity of social networks in communities using
phone call data and literature citations (9,10). Ghozi et al. (11)
used entropy to show how the complexity of a single auditory
environment (a college cafeteria) increased with occupancy and
sound pressure level. Wu et al. (12) proposed entropy as a means
to quantify auditory environments using EMA. Wu et al. (12)
first showed that auditory environment diversity declined during
the Covid-19 pandemic among cochlear implant users, mirroring
the known effects of the pandemic on social lifestyle among the
same participants (13). The authors also showed that hearing aid
users with higher auditory environment entropy reported less
hearing aid benefit, suggesting that entropy is a useful clinical
measure for quantifying auditory environment diversity and its
effect on hearing aid outcomes. The present study furthers the
application of entropy to quantifying auditory environment
diversity through three aims:

1. Demonstrate the use of entropy to quantify diversity of
auditory environments using sound pressure level and
environment classification measured by hearing aids;

2. Use entropy measured from hearing aid data to compare
auditory environment diversity among younger and older
listeners in an urban and rural area;

3. Compare objective differences in entropy between groups
calculated from hearing aid data to self-report differences in
entropy calculated from EMA.

To address these aims, entropy of SPLs and hearing aid
environment classification (taken from hearing aid data) as well
as entropy from EMA responses were computed for each
participant. Entropy was compared among groups and data
types. Methods and findings from this study can inform future
investigations environment

of auditory diversity and its

relationship to clinical practice and audiologic outcomes.

Materials and methods
Participants and procedures

The dataset from (7) was used for this analysis. In that
study, 46 participants were recruited in four groups: older

listeners with hearing loss from an urban area (OHL-U), older
listeners with hearing loss from a rural area (OHL-R), younger
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listeners with normal hearing from and urban area (YNH-U), and
younger listeners with normal hearing from a rural area (YNH-R).
The urban area was the greater San Francisco Bay Area centered
around Berkeley, California, and the rural area was eastern Iowa
centered around Iowa City. Urban and rural are defined in this
study based on the relative population densities of the
recruitment centers. The population density of Johnson County,
Iowa, which contains Iowa City, is 212.9 inhabitants per square
while the County,
California, which contains Berkeley, is 2047.6 inhabitants per

mile, population density of Alameda
square mile (U.S. Census Bureau, 2019). Older was broadly
defined as being over the age of 35, while younger was defined as
being under the age of 35. Participants with normal hearing had
to show audiometric thresholds less than 25 dB HL at all
audiometric frequencies. Participants with hearing loss had to
have acquired, mild-to-moderate sensorinueral hearing loss and
be experienced hearing aid users. Participants in the OHL groups
were generally retired, but the most participated in various
volunteer, social, religious, or community groups or held part-
time employment. Participants in the YNH groups were students
or working professionals, and most indicated participation in a
variety of additional social and community activities. Participants
were paid for their time in the laboratory and $1 for each EMA
they completed. Data collection took place from 2017-2019
(prior to the Covid-19 pandemic).

Participants wore Starkey Halo 2 i2400 receiver-in-the-canal
hearing aids with research firmware for one week. Participants
were asked to wear the hearing aids for 12-16h per day. For
participants with normal hearing, the hearing aids were set to
have zero gain in all channels. For participants with hearing loss,
the hearing aids were set to match the gain-frequency response
of the participant’s own hearing aids using real-ear measures. For
a complete description of the fitting process, see (14).

Participants also carried a smartphone connected to the
hearing aids via Bluetooth. Throughout the week, data from the
hearing aid was sent to and stored on the smartphone. Data
included the of the
environment classifier as well as the processing state of the

sound level environment and the
hearing aid. Due to the power limitations of the hearing aids and
the smartphone, data was collected by sampling the hearing aid
data, rather than collecting it continuously. Every 10 min, the
system attempted to collect data for one minute at a sampling
rate of 2 Hz. Every 40 min, the system attempted to collect data
for 5min at a sampling rate of 2 Hz. The purpose of the longer
sampling period every 40 min was because every 40 min the
smartphone delivered an EMA which asked participants to report
on the auditory environment and their experience. EMAs were
delivered to participants using the AudioSense+ app (15).
Participants were alerted to complete a survey via a ringtone or
vibration and participants could not initiate a survey themselves.
For this study, only EMA questions which asked participants
about the auditory environment were included in the analysis.
Only EMA responses where the participant indicated that they
were actively listening were included in the analysis. The EMA
questions and possible responses are given in Table 1. Each
question could have 1 response, with the exceptions of questions
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TABLE 1 Ecological momentary assessment (EMA) questions and answer
options used in the analysis of auditory environment diversity.

Quesion _____Response opions

Q1. What did your active listening involve? 1. Conversation, live
2. Conversation via
electronic device
3. Speech/music listening
live
4. Speech/music listening,
media

5. Environmental sound

listening
Q2. (if Q1 = 1 or 2) Were you talking with more than 1. Yes
one person?
2. No
Q3. (if Q1 = 3 or 4) What kind of sounds were you 1. Speech
listening to?
2. Music
Q4. Were you in wind? 1. Yes
2. No
Q5. Was there music in the background? 1. Yes
2. No
Q6. Were there people around you talking in the 1. Yes
background?
2. No
Q7. How loud were the background environmental 1. Very loud
sounds? 2. Loud
3. Medium
4. Soft
5. Very soft

1. Much louder

2. Somewhat louder

Q8. (if Q1 =1 or 2, or Q3 = 1) The speech of interest
was when compared to all other sounds.

3. Equally loud
4. Somewhat softer
5. Much softer

Questions 1 and 3 were “select all that apply.”

1 and 3 which were “select all that apply.” EMA surveys were
with the
participants. For details on the accuracy and assessment of GPS-
tagged EMA, see (2).

also tagged with GPS-coordinates consent of

Hearing aid data

Auditory environments were quantified using two indicators,
measured by the hearing aids: SPLs and environment classifier.
To calculate SPL for each sampling period, all 24 channels of the
hearing aids recorded the input level to that channel every 2 sec.
Frequency-specific transforms were used to estimate the free-field
level at each ear to account for microphone location effects.
Then, microphone and pre-amp gain corrections were applied.
These values were converted to dB full scale (FS) and summed.
Finally, a correction factor was applied to provide an estimate of
the SPL at each sample. For this study, the median value of these
measurements within each sampling period for each hearing aid
was calculated and the values for each hearing aid were averaged
to give a single SPL value for each sampling period. The hearing
aids also returned a classifier of the environment for each
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sample: quiet, speech, noise, music, machine, or wind. The exact
nature of how the hearing aids make decisions on the
environment classification is proprietary and could involve
hundreds of parameters. However, the common approach is to
train an algorithm using known environments and allow the
algorithm to determine what acoustic features are best associated
with each class and then use these features to make decisions
about novel environments (4). The proportion within each
sampling period the hearing aids returned each classifier was
calculated and averaged between hearing aids.

Entropy calculations

Entropy calculations were made using the Shannon entropy
formulation (8):

H(x) = =) _ puilog,y psi (1)
i=1

where p,; is the probability of the ith event in signal x. The use of
Shannon entropy was motivated by its prior use in measuring
diversity in auditory environments (11,12). Thus, for this study,
entropy varies as a function of the probability of the SPLs and
hearing environment classifications. One way to conceptualize
the relationship between the entropy value and the SPL or
classification probability is to consider the probability density
function of the SPLs or hearing aid environment classification
proportions for each participant. Broader, flatter probability
density functions of either parameter (less predictable, more
diverse) result in higher entropy values relative to narrow, peaked
probability density functions (more predictable, less diverse).

SPL and environment classification entropy per subject were
calculated using data from the hearing aids. SPL entropy
quantifies the overall predictability or diversity of a participant’s
SPLs across the entire week. The more diverse the participant’s
SPLs, the less predictable the participant’s SPLs and the higher
the overall entropy. SPL entropy for each participant was
calculated from the time series of SPL values where each value is
the median SPL in each sample across the entire week. The
distributions of SPLs were discretized into 3 dB bins from 43 dB
SPL to 109 dB SPL (based on the observed range of SPLs
encountered by participants). The same number of bins (23), size
(3 dB), and bin edges were used for each subject. To calculate
entropy, the probabilities of SPLs falling into each bin were
calculated (p,;, where x is the time series of SPLs and i is the
SPL bin) and multiplied by the logl0 of that probability. These
values were summed and multiplied by —1 to give the entropy
value. Environment classification entropy quantifies the overall
predictability or diversity of a participant’s environment
classification across the entire week. The closer the proportions
predictable the
environment and the higher the entropy. To calculate the overall

of each environment classifier, the less
entropy for environment classification, the proportions of each
environment class across the week for each participant were

computed (py, where x is the time series of environment
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the classifier). These values
then multiplied by the logl0 of the values, summed, and
multiplied by —1.

Entropy was also calculated based on participant responses on
the EMA. The EMA entropy value quantifies how predictable
auditory environments were for each subject based on the
of EMA

Participants who recorded a greater diversity of EMA response

classifications and i is were

probabilities of pairwise combinations responses.
combinations therefore encountered more diverse auditory
environments and had higher EMA entropy values. EMA
entropy was calculated using the method described in (12),
which in turn used the network approach described in (9). The
EMA analysis included 8 EMA questions with 52 total possible
response options (Table 1). Each response option was treated as
a network node. The number of links between any 2 possible
nodes (EMA responses) for each subject were calculated to
determine the network. From this network, entropy was
calculated by determining the probability of each link between
each node for each subject and computing the entropy from
those values. Unlike the SPL and environment class entropy
calculations, the EMA entropy calculation was dependent on the
number of EMAs completed by each subject. Because entropy
might increase as a function of the number of values in the
calculation, the EMA entropy value was then normalized by the
log of the number of EMAs completed by each subject. For a
more detailed explanation of calculating entropy from EMA

responses, see (12).

Analysis

Analyses were made between all groups as well as for groups
combined across age and hearing status (e.g., between YNH and
OHL). Group differences were analyzed using one-way Analysis
of Variance (ANOVA). When appropriate, significant omnibus
statistics were followed with a priori pairwise comparisons with
Tukey p-value adjustments for multiple comparisons. Model
assumptions were evaluated by visually examining the data
distribution and residuals, and no evidence of violating model
assumptions was detected. Pearson-product moment correlation
was used to assess the correlations among the 3 entropy
measures. All analyses were performed in R (4.2.1, 2022-06-23,
“Funny-Looking Kid”).

Results
Hearing aid data was collected from a total of 46 participants

across the 4 groups. Participants per group and summary
statistics for each group are given in Table 2.

SPL and environment class entropy

A total of 8,292 data points from the hearing aids (SPLs and
matched environment classifications) were analyzed: 1,654 for
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TABLE 2 Participant data.

’ﬁ Age (Mean, StD) | PTA (Mean, StD)

OHL-R Iowa City, IA 66.2, 4.12 47.9, 6.1
OHL-U Berkeley, CA 12 65.5, 4.12 483, 5.5
YNH-R Iowa City, IA | 10 25.6, 6.5 6.6, 3.7
YNH-U | Berkeley, CA 11 26.5, 4.6 2.6, 4.4

N, number of participants; Age, mean, standard deviation of age in years. PTA,
mean; standard deviation of 4-frequency pure tone average (0.5 1, 2, and 4 kHz)
in dB, averaged across ears.

YNH-U, 2,117 for OHL-U, and 1,802 for YNH-R, 2,719 for OHL-
R. The YNH showed lower numbers of data points than the OHL
groups, likely because the sample size was slightly smaller for the
YNH groups. However, the number of samples per participant
did not differ (F(3) = 1.68,
p = 0.186). Based on hearing aid data-logging information taken

significantly between groups

from the programming software, hearing aid data was collected,
on average, every 20.38min of hearing aid wear time for
participants with normal hearing and every 27.1min for
participants with hearing loss. This is likely due to different
amounts of daily wear time. Based on available data-logging (7
from the YNH group and 12 from the OHL group), the YNH
group wore their hearings for an average of 8.71h per day and

10.3389/fdgth.2023.1141917

the OHL group wore their hearing aids for an average of 13.17h
a day. This (¢(13.45) = —6.46,
p < 0.001). Note, however, that participants with hearing loss

difference was significant
likely wore the hearing aids beyond data collection period each
day, and thus actual data collection sampling periods were likely
closer together than 27.1 min.

To provide an example of how entropy quantifies diversity via
predictability, kernel density estimation was used to plot the overall
SPL probability density estimates for each participant (Figure 1).
As can be seen, the OHL groups have generally taller, narrower
probability densities than the YNH groups, indicating more
predictable, less diverse auditory environments overall. Further,
the rural groups generally have taller, narrower probability
densities than their respective urban groups, suggesting less
diversity of auditory environments in the rural groups compared
to their age-matched urban groups. Taller, narrower probability
densities have lower entropy values than flatter, more broad
probability densities.

This pattern is observed in the entropy values. SPL entropy
values are shown in Figure 2. Generally, SPL entropy increased
from the OHL groups to the YNH groups, and from the rural
groups to the urban groups. There was a significant overall group

effect on SPL entropy (F(3)=3.22, p=0.0321). Pairwise

Kernel Density Estimates of SPL Probability Densities for All Participants

0.16 T T T T T

01sf YNH-U

Probability Density

T T T T T

OHL-U

Probability Density

100

FIGURE 1

higher entropy values

Probability density estimates for sound pressure level for each participant in each group. Broader, flatter probability densities (less predictability) result in

100 120
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comparisons showed the significant omnibus statistic was driven by
the YNH-U have a significantly higher SPL entropy than then the
OHL-R group (#(42) = —3.01, adjusted p = 0.022). Recall the
taller, narrower probability density functions for the OHL groups
compared to the YNH groups. This is observed in entropy values
when combining the groups along age and hearing. The YNH
participants had significantly higher SPL entropy than the OHL
participants (F(1) = 7.141, p = 0.011).

Environment class entropy between all groups is shown in
Figure 3. The OHL-R group had higher environment class
entropy than the OHL-U group, and the YNH-U group had
higher environment class entropy than the YNH-R group,
though these differences did not reach significance (F(3) = 2.133,
p=0.11). The difference between the YNH-U and OHL-U
group approached (t(42) = —2.492, adjusted
p = 0.076). When groups were combined along age and hearing
YNH participants had
than the

significance

status, the significantly  higher
environment class entropy OHL participants

(F(1) = 4.226, p = 0.046).

EMA entropy
2,074 ecological momentary assessments were analyzed (587

for YNH-U, 517 for OHL-U, and 286 for YNH-R, 684 for OHL-
R). On average, each participant completed 8.3 EMA surveys per

Frontiers in Digital Health

day (7.8 for YNH-U, 8.9 for OHL-U, 5.6 for YNH-R, and 9.9
for OHL-R). Number of EMA surveys completed per group did
not differ with the exception that the YNH-R group completed
fewer EMA surveys than the OHL-R group (#(42) = 2.832,
p=0.034).

EMA entropy differences between all groups followed a similar
pattern as SPL entropy (Figure 4). EMA entropy was highest for
participants in the YNH-U group and lowest for the OHL-R
group. Differences in EMA entropy between all groups
did not significance (F(3) = 1.91,
p =0.15). When combined along age and hearing status, EMA
entropy differences were aligned with entropy differences

approached but reach

observed in SPL and environment class: the YNH participants
had significantly higher EMA entropy than the OHL participants
(F(1) = 4.639, p = 0.039).

Entropy correlations

Pearson’s product-moment correlations were used to assess the
relationship among the 3 entropy values. Correlation coefficients
and 95% confidence interval estimates are shown in Table 3.
Moderate and significant correlations were observed between SPL
and environment class entropy (p = 0.012) and between SPL and
EMA entropy (p = 0.016). The correlation between environment
class and EMA entropy was not significant (p = 0.265).
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Discussion

This study aimed to use a novel metric—entropy—to quantify
auditory environment diversity using SPL and environment
classification data from hearing aids. We showed that entropy
could be calculated in a straightforward manner from hearing aid
data. The study then aimed to validate the use of entropy,
calculated from hearing aid data, as a measure of auditory
environment diversity by comparing SPL and environment class
entropy between younger and older listeners from an urban and
rural area and comparing these entropy differences to differences
in entropy on EMA. SPL and environment class entropy was
significantly higher for the YNH than the OHL participants, with
the largest differences were observed between the YNH-U and
OHL-R groups. Similarly, the YNH participants had significantly
higher EMA entropy than the OHL participants. Finally, this
study aimed to compare entropy measured objectively from
hearing aid data to entropy measured from EMA, a self-report
measure. Significant, moderate correlations were observed
between SPL and environment class entropy and between SPL
and EMA entropy, providing further evidence for the validity of
entropy as a measure of auditory environment diversity. Taken
together, the findings from this study suggest that younger
listeners encounter a greater diversity of auditory environments
than older listeners, that this diversity can be captured using

hearing aid data and measured using entropy, and that entropy

Frontiers in Digital Health

calculated using objective hearing aid data broadly corresponds
with entropy measured from self-report EMA data.

Findings in the present study are broadly consistent with the
findings in (7), where younger listeners were observed to
encounter higher SPLs and greater likelihood of hearing aid
feature activation than older listeners. This study extends those
findings to formally quantify that younger listeners, and
particularly younger listeners in an urban area, also encounter
more diverse auditory environments than older listeners, and
particularly older listeners in a rural area. In both studies,
differences between the YNH and OHL groups were clear, while
less clear differences were observed when groups were further
divided along geographic location. A possible reason for this is
that age is a more robust predictor of auditory environment
diversity than geographic location, and with a relatively small
sample, the clearest differences emerged when groups were
combined along age. This is consistent with prior work (16).
Findings from the present study are also consistent with those of
Wu et al. (12), where entropy calculated from EMA was
validated as a measure of auditory environment diversity. The
convergence of these findings suggests that entropy is a valid
measure of auditory environment diversity and that entropy
measured from hearing aid data is consistent with listeners’
perceived experience.

Quantifying auditory environments via entropy with hearing
aid data has some advantages over other approaches. Because
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TABLE 3 Correlation coefficients between SPL entropy, environment class
entropy, and EMA entropy.

‘ SPL entropy | Class entropy | EMA entropy

SPL entropy 1.00 0.37 [0.09, 0.59] 0.35 [0.07, 0.58]
0.37 [0.09, 0.59] 1.00 0.17 [—0.13, 0.44]
0.35 [0.07, 0.58] 0.17 [—0.13, 0.44] 1.00

Class entropy
EMA entropy

Values are shown with 95% confidence interval estimates. Significant correlations
(p < 0.05) are in bold.

data is collected frequently, it may be more sensitive to detecting
auditory environment differences than other approaches. For
example, as reported in (7), no differences between the groups in
this study were found on the frequency sub-scale of the Auditory
Lifestyle and Demand questionnaire, which aims to capture how
often listeners encounter different environments and should then
measure auditory environment diversity (17). Retrospective
questionnaires may not be sensitive enough to capture auditory
environment diversity. Both this study and Wu et al. (12)
quantified auditory environment diversity using EMA. Although
EMA is well-suited to collecting frequent samples about a
listener’s experience, it still requires effort on the part of the
affects
frequency, and reactivity (18). Further, EMA may under-sample

participant, which in turn compliance, sampling

demanding environments like noisy places where listeners may
be less likely to complete the assessment (19). Because hearing
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aids can collect data with no effort from the participant, the data
may be less systematically biased and the sampling frequency can
be very high. On the other hand, using hearing aid data to
quantify auditory environments requires the user to wear the
hearing aids consistently across environments, which may not
always be the case (5). Finally, it is worth noting that an analysis
of the data collected in this study was performed on the GPS
coordinates collected from the participants’ smartphones. Those
data were used to assess whether there were group differences in
the number of different locations the participant went to over the
week. No differences were found, suggesting that auditory
environment diversity is not necessarily related to environment
diversity. Thus, hearing aids, because they collect acoustic data
specifically, provide a more sensitive measure of auditory
environments that broader metrics like GPS tracking.

A simple, intuitive, and theoretically meaningful measure of
auditory environment diversity such as entropy has many
potential applications. Hearing aids users who encounter greater
auditory environment diversity may benefit from more advanced
hearing aid technologies such as a more detailed environment
classification taxonomy, faster feature activation of adaptation,
more user control, GPS-tagged features, feature parameters that
learn from the environment and user input, or other algorithms
that take into account less predictable inputs (2,5,6). Because
auditory environment diversity can be meaningfully estimated
with entropy measured from hearing aid input data, the hearing
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aids themselves could use this information to make decisions about
how to adapt to the environment for a given user. For example, if
the hearing aid determines that the user encounters a diversity of
environments, based on some entropy metric, the hearing aid
change adaptation parameters or classification specificity to better
meet a given users’ needs. That is, rather than clinicians making
choices about a users’ technology level needs based on patient
interview or questionnaires, it could be left up to the hearing aid
itself to decide how to employ available algorithms based on
estimations of the users’ lifestyle using metrics such as SPL or
environment class entropy.

This re-analysis had three key limitations that should be
noted. First, absolute entropy values are not meaningful. What the
actual entropy values are depends on the parameter and the study
design. It is not possible to compare absolute entropy values across
studies. Second, there is no ground truth for auditory environment
diversity. We do not have a way to validate the entropy value by
comparing it to the “true” auditory environment diversity of each
participant. We validate entropy as a measure of auditory
environment diversity by comparing entropy to other measures of
diversity and by comparing various methods of measuring
entropy. Third, this study relied on a relatively small sample from
only two geographic areas. We did not attempt to collect data
about all factors that might affect auditory environment diversity,
such as cultural, socioeconomic, or other demographic factors.
The bias in auditory environments of this sample relative to the
population is unknown, and the effects of age and location on
auditory environment entropy may be moderated by additional
factors not accounted for in this study.

Conclusions

Entropy, calculated using hearing aid data such as SPL and

environment classification, is an intuitive, simple, and
theoretically meaningful way to estimate the diversity of auditory
environments encountered by listeners. SPL and environment
class entropy are consistent with other measures of auditory
environment diversity as well as entropy calculated using self-
report on EMA, suggesting that entropy may be a valid measure
of auditory environment diversity. Entropy could be a useful
metric for a hearing aid to determine the auditory environment
diversity of a user and make processing changes based on

individual users’ auditory environment diversity.
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