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Diamond proved a numerical criterion for modules over local rings to be free modules
over complete intersection rings. We formulate a refinement of these results using the
notion of Wiles defect. A key step in the proof is a formula that expresses the Wiles

defect of a module in terms of the Wiles defect of the underlying ring.

1 Introduction

In his work on modularity of elliptic curves and Fermat's last theorem, Wiles [17]
discovered a numerical criterion for certain noetherian local rings A to be complete
intersections. Diamond [8] generalized Wiles’' result by establishing a criterion for
modules M over A to be free and for A to be a complete intersection; see the discussion
below for the precise statements of their results.

To set the stage for our work, we recall the number theoretic application of
the numerical criterion, although this paper concerns only its commutative algebraic
aspects. The ring of interest is a deformation ring R associated to a modular repre-
sentation p: Gg — GL,(k), with Gg the absolute Galois group of Q. Here p arises
from a Hecke algebra T (which is a complete, Noetherian, local O-algebra) acting

faithfully on H! (Xo(IV), O),, the cohomology of a modular curve X,(IV), associated to
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2 S. Brochard et al.

a positive integer NV, with coefficients in a discrete valuation ring O finite flat over Z,,
localized at the maximal ideal m, and with T/m = k a finite field. There is an action
of Gy on H 1(X,(IV), 0),, and the representation p is isomorphic to the representation
Pm  Gg — GL,(T/m) associated to m. This produces a surjective map R — T, and
the numerical criterion implies in favorable conditions that H! XoWV), 0),, is free as
an R-module and that R is a complete intersection. In particular, the map R — T is
an isomorphism of complete intersections. In practice, this is used to deduce that a
certain ring R’ (parametrizing deformations of p with ramification allowed at a prime
q) acts freely on H!(X,(Ng?),0),,, where m’ is a maximal ideal of the Hecke algebra
acting on H! (XO(NqZ), 0), related to m, from knowing that a quotient R of R’ acts freely
on HY (X, (), O),,,-

The main contribution of the present work is a criterion for freeness of a module
in terms of its Wiles defect, which was introduced in [3]; the definition is recalled below:.
This refines the work of Diamond and Wiles and also gives a new perspective on these
earlier results from the vantage point of the Wiles defect of rings and of modules over
them. Our proofs differ significantly from those in loc. cit.

The setting for all the results of Wiles and Diamond, and the present paper, is
that there is a commutative, noetherian, local ring A equipped with a surjective map
At A — O, where O is a discrete valuation ring (that will be fixed throughout the paper),

with the property that the conormal module
®,:=ps/p3 where p, = Ker(h),

has finite length as an O-module. (In the work of Diamond and Wiles, A would be a
finite O-algebra and A a map of O-algebras, but we do not impose this.) The congruence

module of a finitely generated A-module M is the A-module

W, (M) = L where I, 1= Alp,l.
Mlp, ]+ MlI,]
Here, for any ideal a in A we write M[a] for {m € M | a - m = 0}, the a-torsion submodule
of M. As p, - V,(M) = 0, the congruence module ¥, (M) has a natural structure of an
O-module. Moreover, the hypothesis that &, has finite length implies that the same is
true of W, (M). Also Mlp,] has a natural structure of an O-module, and we can consider
its rank. Observe that the rank of Mlp,] equals the dimension of M, over the fraction
field of O, and in particular they are nonzero precisely when M is supported at p,. This

is the main case of interest in this work.
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Wiles Defect for Modules and Criteria 3

The Wiles defect of the A-module M is the integer
8,(M) = d -lengthy &, — lengthy ¥, (M), (1.1)

where d := rankpMlp,l. In [2, 3], this number is divided by de, where e is the
ramification index of O. We find it more convenient to suppress the denominator.

We prove

Theorem 1.1. Let M be a finitely generated A-module with depth, M > 1. There is an
equality

length, W, (M) = (ranky Mlp,l) - length, ¥, (A) — length, (Mlp,1/I,M) .
Equivalently, there is an equality
8,(M) = (ranky Mlpyl) - 8,4 (A) + lengthy, (Mlp,1/I, M) .

In particular §, (M) > 0. If M,, # 0 and 84 (M) = O, then A is complete intersection and
M is faithful. When in addition, M has rank at most rank, Ml[p,] at each generic point
of A, then M is free.

The 1st part of this result, relating the lengths of the congruence modules of M
and of A, is contained in Theorem 3.3. The last part of Theorem 1.1, describing when
8,(M) = 0 is suggested by, and refines, the result of Diamond [8, Theorem 2.4]; see
Theorem 4.6 and also the result below. In [8] the module M is required to be finite flat
over O; we replace this by the weaker condition that M is finitely generated over A and
of positive depth.

One input in its proof is a result of [9] that dealt with the case M is a cyclic
A-module; see Theorem 4.5 below. The main new ingredient is the following criterion

for freeness of modules.

Theorem 1.2. Suppose that the ring A is Gorenstein and that M is a finitely generated
A-module with depth, M > 1. If

54(M) = (rankp Mlp,1)5,(A),
and M has rank at most rank, Mlp,] at each generic point of A, then M is free.

This result is implied by Theorem 4.3, where the condition on ranks is replaced

by a weaker one involving multiplicities.
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4 S. Brochard et al.

The proofs of Theorems 1.1 and 1.2 are based on a careful study of congruence
modules, and various other auxiliary modules related to them. This is the contents of
Sections 2 and 3. In Section 5, we give a more streamlined proof of a formula for §,(4),
formulated (albeit in the setting of certain derived rings) by Venkatesh [16], and proved
in [10], in terms of certain André—Quillen cohomology modules. We end by explaining
how this formula gives another proof of the isomorphism criterion for maps between
complete intersection rings due to Wiles [17] and Lenstra [13].

We end the introduction by expanding on the potential significance of
Theorem 1.1 for the study of congruences between modular forms. The question of
comparing congruence modules for A and M has been studied extensively, in the context
of the theory of congruences between modular forms. This theory plays a key role in the
breakthrough work of Wiles [17]. As recalled above, one studies a Hecke algebra T acting
on H! XoWV), O),, thatis isomorphic to M@M where M is T-module that is finite flat over
O, and hence of positive depth, and of generic rank one as a T-module. One focuses on
an augmentation A = A: T — O arising from a weight 2 newform f € S,(I'y(V)). In this
context, the question of showing that the congruence modules for T and M (associated
to the augmentation A, arising from the newform f) are the same has been studied in
works of Hida [11] and Ribet [14] in 1980s and in many other works, including [17]. The
motivation for doing this is that the (cohomological) congruence module of M is easier to
study and related to a critical value of the L-function associated to the adjoint motive of
f (as discovered by Hida in his seminal work), while the congruence module for T is more
directly related to congruences between f and other newforms in S,(I'y(V)). In these
works, it was shown that the natural surjection Wp(T) — Wp(M) is an isomorphism,
thus proving that all congruences between f and other newforms in S,(I'((V)) are
detected “cohomologically”, by showing that M is a free T-module (of rank 1). It follows
from our results that such an isomorphism holds precisely when Mlp,1/I,M = O,
which can happen without M being free over T. For instance, [2, Theorem 3.12]
implies that Mlp,1/I,M = 0 when Endy(M) = T, which is a weaker condition than
freeness. We hope the observation recorded in the 1st part of Theorem 1.1, which gives
meaning to the kernel of the surjective map W4(T) — W (M), will be useful in the further

study of congruences between modular forms.

2 The Category Cy,

Throughout this work, O is a discrete valuation ring and @ a uniformizing parameter

for O. We write C, for the category consisting of pairs (4, 14) where A is a commutative,
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Wiles Defect for Modules and Criteria 5

noetherian, local ring and A ,: A — O is a surjective map of rings such that the conormal
module ®, :=p,/(p,)?, where p, := Ker(),), has finite length. The morphisms in C, are
local maps ¢: A — B such that Azp = A4. The rings in C, have the same residue field,
namely, O/w O.

The condition that the conormal module of A has finite length is equivalent to
the natural map Ay, = O being an isomorphism; here O, is the quotient field of O.
Thus, p, is a minimal prime of A and dimA/p, = dim O = 1. This has the following
consequence. Subject to the constraint that depth A < 1, the pair (depth A, dim A) can

take all possible values; see Example 2.

Lemma 2.1. For any A € Cy, one has depthA <1 < dimA.

Proof. The claim about dimension is clear from the surjection A — O. Any associated
prime q of A satisfies depthA < dimA/q; see [5, Proposition 1.2.13]. Setting q := p,
yields the upper bound on the depth of A. |

Let A be in Cy and set I, := Alp,l, the annihilator of p,. In addition, the
following objects also play an important role in this work:
v, :=0O/r(I,) and I—‘Z‘ :
A
The 1st one is the congruence algebra of A, and the last one is the conormal module of
the map A — A/I,. Since p, - I, = 0 the A-action on I, factors through O, and so the

A-action on I, /I5 factors through W,. By the same token, ®, is a ¥, -module.

SetK = (9(0), the field of fractions of O. Viewing I, as an O-module, one has
Ip) o) = HomA(O,A)pA = HomApA (K,ApA) = Homg(K,K) =K. (2.1)

Thus, ranky(I,) = 1. It also follows that I, & p,, for pyA, = 0, so A(I,) # O;
equivalently, that ¥, is a torsion O-module, that is to say, of finite length. In fact, since

the Fitting ideal of p4 is contained in its annihilator, one gets an inequality
lengthy, @, > lengthy, W, . (2.2)

See [7, Section 5, (5.2.3)]. Wiles and Lenstra proved that equality holds if and only if the
ring A is complete intersection; see Theorem 4.5.

Evidently, p, € All,] but in fact equality always holds.
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6 S. Brochard et al.

Lemma 2.2. For any A in Cy one has p, = All,].

Proof. One has A(AlIL]) - A(Iy) = A(AlIL]l-I,) = 0. Since O is a domain and A(I) is
nonzero, it follows that A(A[I,]) = 0, that is to say, AlI,] € p,. [ ]

The following computation will be useful later on. The hypothesis on depth is

needed even for the weaker conclusion; see 2.

Lemma 2.3. Let A be an object in Cy and M a finitely generated A-module. When
depth, M > 1, one has Mlp,] N MII,] = (0); in particular, ;M Np,M = 0.

Proof. The A-modules Mlp,] and M[I,] are annihilated by p, and I, respectively. Thus,
Mlp,1 N MlI,] is annihilated by p, + I,. This ideal contains some power of the maximal
ideal of A, and hence it contains an element that is not a zero divisor on M, since the
latter has positive depth. Thus, Mlp,] N MlI,] = (0). n

The conormal module and congruence module are related: since A-acts on I,

through O, one gets isomorphisms

I, A _ A
1—2:IA®AI—:IA®O(O®AI—)=IA®O\IJA (23)
A A A

Here is another expression of the relation between all these invariants

I, N ~ o
2 @ Pa=Ia®aPa =11 ®0 5 -
12 w2

To put this isomorphism in a larger context, it helps to remark that
py =Homy(A/I4,A) and I, =Hom,(O,A),

where the 1st equality is by Lemma 2.2 and the 2nd is by definition. These are the
relative dualizing modules for the maps A — A/I, and A — O, respectively. Here is

one consequence of these observations.

Lemma 2.4. Let A be an object in C. When depth A = 1, the ideal I, C A is principal

and as a W,-module I, /I3 is free of rank one.
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Wiles Defect for Modules and Criteria 7

Proof. By Lemma 2.3, the hypothesis that depthA > 1 implies I, Np, = 0, so the
composition I, - A — O is injective. Thus, as an O-module I, is free and of rank one;
in particular I, C A is principal. Moreover, (2.3) implies that as a ¥,-module IA/IE1 is

free of rank one. |

After suitable completion, any A in C, is of the form O[x]/J, for indeterminates
X =Xx,...,X,,and J C w(x) + (x)2. One has py = (x). Let f,....f, be a minimal

generating set for the ideal J. For each i, there is an unique expression of the form
; 2
with a;;in O. It is easy to verify that the conormal module of 1, has a presentation

ij)
Ocm—]>0n—>¢A—>O.

Thus, the condition that ®, has finite length is equivalent to rank(a;;) = n; equivalently,
Fitty(a;), the zeroth Fitting ideal of the O-module @, is nonzero. Using this, or even

directly, one can verify that the ring

_ Olx,,...,x,1
(mxq,...,0Xy,)

is in Cy. The associated primes of A are () and (x), so it follows that dimA = n and
depthA = 1. This shows that for each positive integer n, one has rings A in C, with
depthA =1 and dimA = n; see Lemma 2.1. In the same vein, the ring A/x, (x) satisfies
dimA =n —1 and depthA = 0.

The next example shows that the condition depthA > 1 in Lemma 2.3 is not
superfluous.

When A := Olx]/(wx,x?), one has

pa=x) CIy=(@,%).

Next we describe a ring in the category C,, that is Gorenstein, but not complete

intersection. This is in anticipation of Theorem 4.3.
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8 S. Brochard et al.
Assume 2 is invertible in O and consider the ring

A Olx,y,zl

(x2 —y2,x2 — 72, WX — Y2, Wy — XZ, WZ — Xy)

From 2, one gets that ¢, = k3, where k := O/(w). In particular, A is in Cp. We claim that
the ring A is reduced, Gorenstein of Krull dimension one, but not complete intersection.
It is also finite and free as an O-module.

Indeed, as an O-module, A has a basis consisting of (residue classes of) elements
1,x,y,2, x%, so that A is finite and free over O. In particular, @ is not a zero-divisor on A.
The ring A/(w) is zero-dimensional, with socle the ideal (x?), and hence it is Gorenstein;
however, it is not a complete intersection, for it has embedding dimension three, but
five defining relations; see [5, Example 3.2.11(b)]. Thus, A itself is Gorenstein of Krull
dimension one and not complete intersection.

It remains to verify that A is reduced. A straightforward calculation yields that

the prime ideals in A are
(w,x,v,2), x,v,2), X—w,y—@,Z—w)
xt+w,yt+w,z-—w), Et+wo,y-w,z+to), Xx-owyto,z+o).
In this list, the 1st one is the maximal ideal; the rest are minimal. The localization of A
at any minimal prime is a field. Since A is Cohen-Macaulay of dimension one, it thus
satisfies Serre conditions (S;) and (R,) and hence is reduced.
3 Congruence Modules

In this section, we develop basic properties of congruence modules for modules over
rings in Cy. This prepares us for the next section where we obtain criteria for freeness of
the modules in terms of Wiles defects of the modules in question. We begin by recording

an observation that will be used multiple times in the sequel.

Lemma 3.1. Let J be an ideal in a ring A and M an A-module. If x € A is not a

zerodivisor on M, then
xM N M[J] = x(M[J]) .

Thus, when A is local, M is finitely generated, and x in not a unit in A, either M[J] =0
or M[J] € xM.
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Proof. Indeed, for any m in M if (xm) - J = 0, then m - J = 0 for x is not a zero divisor
on M, and hence m is in M[J], as desired. The 2nd part of the claim is by Nakayama's
Lemma, applied to M[J]. |

3.1 Congruence modules

Let A be an object in Cy and M a finitely generated A-module. As in the Introduction,

the congruence module of M is

vy = — M
a(M) = Mlp,l+ MIIL,]1°

We write W, instead of W, (A); observe that this agrees with the definition introduced
in 2, for AlI4] = p,, by Lemma 2.2. Evidently, ¥, (M) is a finitely generated module over
the congruence algebra ¥,. Next we describe a canonical presentation of the congruence
module.

Observe that the A-modules M(p,] and M/MII,] are annihilated by p, and hence

are naturally O-modules.

Lemma 3.2. When depthy M > 1, the O-modules Mlp,] and M/MI[I,] are free of the
same rank, and the following natural sequence of O-modules is exact:

0 — Mlpyul — — ¥, (M) — 0.

M
ML)
Proof. The exactness of the sequence is immediate from the definition of ¥, and
Lemma 2.3. The main task is to verify the claims about freeness. Since Mlp,] is an A-
submodule of M and the latter has positive depth, so does the former. The A-action on
Milp 4] factors through O so depthyn Mlp,] > 1 and so Mlp,] is free.

Since depth, M > 1, there exists a non-unit element x € A that is not a zero
divisor on M. We claim that x is not a zero divisor on M/MII,] as well.
Indeed, suppose x annihilates the residue class in M/MI[I,] of an element m € M,

that is to say, xm € M[I,]. Then
xm e xM N MII,] = x(MI[I,]),
where the equality is by Lemma 3.1. Thus, xm = xm’ for some m’ € M[I,], and hence

m = m/, as x is not a zero divisor on M. Thus, m is zero in M/MI[I,].

Since M/MII,] has positive depth, it too is free as an O-module. |
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10 S. Brochard et al.

We also consider the following variant of the congruence module:

Lemma 2.2 implies that ¥, (4) = ¥,, so that ¥, (M) is a ¥,-module, namely a quotient
of the ¥,-module ¥, ® , M, and they are equal when M is free as an A-module. It is easy

to verify that there is an exact sequence of ¥,-modules:

Mlp,]

0—
I,M + (Mlp1 N MII,))

— U, (M) — ¥, (M) — 0. (3.1)

Keep in mind that Mlp,] N M[I,] = 0 when depth, M > 1, by Lemma 2.3.
These observations serve to establish the connection between the Wiles defect
(1.1) of A and of M. This settles the 1st part of Theorem 1.1. As in op. cit. one could state

the equality in terms of congruence modules of A and M.

Theorem 3.3. Let A be an object in Cy and M a finitely generated A-module. When
depth, M > 1, there is an equality

8,(M) = (ranky Mlpyl) - 8,4 (A) + lengthy (Mlp,1/I, M) .

In particular, 6, (M) > 0.
Proof. Observe that for any A-module M there is an isomorphism of ¥,-modules
V(M) =W, @p —— .
A( ) A YO M[IA]

Since depth, M > 1, the O-modules M/MI[I,] and Mlp,] are free of the same rank, by

Lemma 3.2, so the isomorphism above yields the equality

length, ¥, (M) = (lengthy, ¥,)d,
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Wiles Defect for Modules and Criteria 11

where d := rank, Mlp,]. This justifies the 3rd equality below.

§,(M) =d -length, &, — length, ¥, (M)
= d -length,, ®, — lengthy, U, (M) + length,, (Mlp41/1,M)
=d -length, ®, —d - lengthy ¥, + length, (Mlp41/I,M)
=d-38,(A) + lengthy (Mlp,1/I,M) .

The 1st and the last equalities are the definition of defects (1.1) while the 2nd one is
from (3.1) and Lemma 2.3. The last equality also uses the observation that the rank of
the O-module Alp,] = I, is one; see (2.1).

The last conclusion holds because §,(4) > O; see (2.2). [ |

It follows from the proof above that when depth, M > 1 and rank, Mlp,] = 1,
there is a surjective map ¥, — W, (M), with kernel M(p,1/I, M.

In the next lemma, we show that the congruence module for modules M of
positive depth remains invariant under pull-back of rings. We use this in the proof of
Theorem 4.6.

Lemma 3.4. LetA — Bbe asurjective map in C, and M a finitely generated B-module.

One has a natural surjection

Wp(M) — W, (M) .

This map is bijective when depthy M > 1 and then §, (M) > 85(M). Moreover, §, (M) =
8p(M) if and only if length, ®, = length, 5.

Proof. Since p,B = py one has I,B C I, so there is an exact sequence
Iy B B
00— —— —— ——0
of B-modules. Applying Homz(—, M) yields an exact sequence

I
0 — MlIz] — MII,] — HomB(I—BB,M)
A

of B-modules. Since Mlpyz] = Mlp,], the 1st part of the statement is immediate for the

inclusion MlIz] € MIlI,] and the definition of congruence modules.
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12 S. Brochard et al.

Observe that Iz/I,B is annihilated by p, and I, and hence it has finite length
over A, so also over B. Thus, when depthy M > 1, one has Homy(Iz/I,B,M) = 0, so
MIIg]l = MII,]. This gives the desired isomorphism.

The inequality of Wiles defects is clear since the map ®, — & is surjective

[7, Section 5.2] as is the statement about equality. |

4 Criteria for Freeness

In this section, we relate the freeness of a module over a local ring in G to numerical
invariants associated with its congruence module. The main result here is Theorem 4.3.
In addition to the results on congruence modules presented in Section 3, its proof uses
the following criterion for freeness of modules over Gorenstein local rings of Krull

dimension zero.

Lemma 4.1. Let R be a Gorenstein local ring with maximal ideal m and of Krull

dimension zero. A finitely generated R-module M is free if and only if

lengthy M < lengthy (R[m] - M)lengthR.

Proof. The ideal R[m] is the socle of the ring R and since the ring is Gorenstein and
of dimension zero, one has R[m] = k; see [5, Theorem 3.2.10]. Both sides of the desired
inequality are additive on direct sums of modules and coincide on R, by the remark
about socles. Thus, we can assume M has no free summands. Consider the injective hull
M C F of M. Since R is Gorenstein of dimension zero, the only indecomposable injective
module is R itself; see [5, Proposition 3.2.12(e)]. Thus, the R-module F is free, and since

M has not free summands M C mF. Therefore,

R[m]-M C R[m] - (mF) =0.

The hypothesis thus yields lengthy M = 0 and so M = 0. |

In the sequel, we use some basic results, recalled below, from the theory of
multiplicities for modules over local rings; for details see [5, Chapter 4].

Let A be alocal ring with maximal ideal m, and M a finitely generated A-module.
We write e, (M) for the Hilbert-Samuel multiplicity with respect to m, of the A-module
M; see [5, §4.6]. For M = A, we write e(A) instead of e, (A). Here are the crucial facts

about multiplicities.
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Wiles Defect for Modules and Criteria 13

When A has Krull dimension zero, then e, (M) = length, M.

When A is a finite O-algebra, then e, (M) = (ranky M)(ranky A).

One has e, (M) > 0 with strict inequality if and only if dim M = dim A. This also
follows from the additivity formula (4.1) below.

Set A := {q € SpecA | dim(A/q) = dimA}; these are the prime ideals

corresponding to the components of Spec A of maximal dimension. There is an equality

e, (M) = Z(lengthAq M,)e(A,) . (4.1)
qeA

In particular, if the rank of M at each q in A is at most that at p,, then

e, (M) < (rankgy M[pA])(z e(Aq)) = (ranky Mlp,l) - e(4) . (4.2)
qeA
This holds in particular when M := B for any surjective map A — B in Cy because one

has B, =B, =0, and the rank of B at any q in A is at most one.

Lemma 4.2. Let A € Cy be a Gorenstein ring and x € A a nonzero divisor such that
A, (x) is a uniformizing parameter for O. The ring R := A/xA is Gorenstein with socle

equal to I, - R.

Proof. Since dimA = 1, by Lemma 2.1, the ring R is zero dimensional, with maximal

ideal my := myR. Rees’ theorem [5, Lemma 3.1.16] yields isomorphisms
Exth(k, R) = Ext,/!(k,A) foralli.
In particular, the socle Rlmg] of R can be computed as follows:

I
Homg(k, R) = Ext}(k,A) = 4 =1, -R.
wl,
The equality holds because I, N xA = xI, = wl,; see Lemma 3.1. This justifies the last

part of the result. |

Here is an analogue of Lemma 4.1 in the category Cy. By (4.2), the upper bound
on e, (M) holds when the rank of M at each generic point of A is at most d. Thus,
the result below contains Theorem 1.2 from the Introduction. It was suggested by the

arguments in the 2nd half of the proof of [8, Theorem 2.4] to prove freeness of modules
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14 S. Brochard et al.

over complete intersection rings using numerical conditions. There do exist rings in C,

that are Gorenstein but not complete intersection; see 2.

Theorem 4.3. Let A € Cy be a Gorenstein ring, M a finitely generated A-module with
depth, M > 1, and set d := ranky Mlp,]. The A-module M is free if, and only if, there are

inequalities

(M) <d-5,4(A) and e (M) <d-eld).

Given Theorem 3.3, the inequality on the left is equivalent to §, (M) = d - 5, (A).

Proof. The “only if” direct is clear. As to the converse, the hypothesis §, (M) < d-§,(4)
is equivalent to M[p,] = I, M, by Theorem 3.3.

Pick an element x € A mapping to a uniformizer for O and such that x is a
nonzero divisor on both A and M. This is possible as A and M have depth one. Set
R = A/xA and N = M/xM. Then R is a Gorenstein local ring of dimension zero, with
maximal ideal m,R and socle Rlm,R] = I4R; see Lemma 4.2. Since x is a nonzero divisor

on A and M, and hence on I, M, and not in mi, one gets

e(A) =lengthR, e,(M)=1engthyN and e,(I,M) = lengthy I,M/xI,M).

We also have the following sequence of equalities:

(I, M + xM)
xM
M

(xM NI,M)

lengthy (IR - N) = lengthy
= lengthpy

where the 3rd one holds by the observation recorded in Lemma 3.1, applied with
J =yp, to ,M = Mlp,l. Observe that e, (I,M) = e, (Mlp,]) = d, so the hypothesis on

multiplicities translates to

lengthy N < lengthy (I,R - N)lengthR.

By Lemma 4.2, the ring R is Gorenstein with socle IR, so Lemma 4.1 applies to yield
the R-module N is free. Thus, the A-module M is free. [ |
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Theorem 4.3 implies the following known isomorphism criteria; see [9, Lemma
A.8] and [7, Theorem 5.21]. We state it here for ease of reference as its needed later, and

our methods yield a new proof of it.

Corollary 4.4. Let ¢: A — B be a surjective map in Cy. The map ¢ is an isomorphism

under either of the following conditions:

(1) lengthy ¥, =length, W3, the ring A is Gorenstein and B is Cohen-Macaulay;

(2) length, ®, = length, &5 and B is complete intersection.

Proof. The goal is to deduce that B is free as an A-module, so Ker(p) = 0.

(1) Since ¥z = W,(B), by Lemma 3.4, the hypothesis yields §,(B) = §,(4). As
e, (B) < e(A) always holds—see 4—we can apply Theorem 4.3 to deduce that B is free as
an A-module.

(2) Lemma 3.4 yields the 1st equality below

5,(B) = 85(B) =0.

The 2nd one holds for B is complete intersection. Apply Theorem 4.3 again. |
4.1 Diamond's theorem

We begin by recalling the result below from [9, Proposition A.6]; it is used in the proof
of Theorem 4.6(1).

Theorem 4.5. Let ¢: A — Bin Cy be a surjective map with depthB > 1. If §,(B) = 0,

then ¢ is an isomorphism of complete intersections.

Given (4.2), it is immediate that the result below contains [8, Theorem 2.4], which
was proved under the additional hypotheses that A is an O-algebra and M is a finite free

O-module.

Theorem 4.6. Let A be an object in C, and M a nonzero finitely generated A-module

supported at p,, and with depth, M > 1.
(1) If §,(M) = 0, then the ring A is complete intersection, M is faithful, and
Mlp,] = I, M.
(2) If moreover e, (M) < (ranky, Mlpyl)e(4), then the A-module M is free.
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Proof. Let B denote the image of A in End,(M). Since M is supported at p,, the
canonical surjection A — B is in Cy. Since M has positive depth, so does End, (M),

and hence also B. Thus, Lemma 3.4 applies and gives the 1st inequality below
5 (M) = 85(M) > 0.

The 2nd inequality is by Theorem 3.3 applied to B. Thus, if §, (M) = 0, then
S,(M) =0 =38z(M).

The 1st equality already implies Mlp,] = I, M, by Theorem 3.3. The equality of defects
of M over A and B yields that the natural map ®, — &5 is an isomorphism; see Lemma

3.4. This gives the 1st equality below:
length, ¢, = length, ®; = length, V3.

Since §5(M) = 0, applying Theorem 3.3 but now to M viewed as a B-module gives §5(B) =

0, which justifies the 2nd equality. Since depth B > 1, the map A — B is an isomorphism

of complete intersections; see Theorem 4.5. In particular, the A-module M is faithful.
This completes the proof of the 1st statement. Given this, the 2nd part is

immediate from Theorem 4.3. |

4.2 An analog of Wiebe's result for modules

Wiles' theorem characterizing complete intersection rings A € C can be deduced from
the theorem of Wiebe [5, Theorem 2.3.16] that when R is a local ring with maximal ideal
m, its Fitting ideal Fittz(m) is nonzero if and only if R is a complete intersection of
dimension zero. Diamond’s theorem suggests the following module theoretic extension

of Wiebe's theorem; compare with Lemma 4.1.

Lemma 4.7. Let R be a noetherian local ring, with maximal ideal m. If M is a nonzero

finitely generated R-module such that
e(M) < lengthp (Fittg(m) - M) - e(R),

then R is a complete intersection with dim R = 0, and M is free.
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Proof. As M is nonzero, e(M) # 0 so the hypothesis implies Fittz(m) is nonzero.
Thus, Wiebe's theorem [5, Theorem 2.3.16] implies R is complete intersection of Krull
dimension zero. Moreover, Fittgz(m) = R[m], the socle of R. At this point, we can invoke
Lemma 4.1 to deduce that M is free. |

5 Venkatesh’s Formula

In this section, we establish a formula for the defect of a local ring in Cp, in terms of
certain André—Quillen homology modules, see Theorem 5.2. This gives a different proof
of a variant of the results in [16] and [10].

Throughout this section, fix A in C, with dimA =1, and let

A— B :=A/FmA(A)

be the maximal Cohen-Macaulay quotient of A; here I, (A) is the m,-power torsion

submodule of A.

Proposition 5.1. Let «: C — A be a surjective map in Cy, with C a Gorenstein ring,

and set I := A-(ann,(Kerw)). With B as above, one has an equality

lengthy ¥, = length ¥ + length, (O/I).

Proof. First, we reduce to the case A = B. Applying Hom (-, C) to the exact sequence
0—1TI,,A —A—B—0
yields an exact sequence
0 — Hom(B, C) — Homg(4, C) — Homg([,, (4),C) =0
where the equality on the right holds because depth C > 1. This gives the equality
Hom,(B,C) = Hom;(4,C),

so that we can replace A by B and assume A is Cohen-Macaulay.

Consider the exact sequence

0— Kera — C— A —0.
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18 S. Brochard et al.

Applying Hom(O, —) to it yields the exact sequence of O-modules

0 — Hom (O, Kera) — Hom(O,C) — Hom (O, A) — Ext}(O,Kera) —> 0.

Since the map C — O factors through A one has Kero C p. so
Hom (O, Kera) =INKera C IoNp,=0.

Moreover, Hom;(O, A) = Hom, (O, A) so the exact sequence above becomes
0 —> ng —> 1y — ExtL(O,Kera) —> 0,

where 7, and n, are the images of I, and I, in O. Thus, we get an exact sequence
0 — Ext}(O,Kera) — ¥, —> ¥, — 0,

and hence the equality

length, ¥, = length, ¥, + length, Ext}(O, Kera). (5.1)

Now we analyze the Ext term above. For this, it is convenient to work in the
stable module category of C; see [6] for background. Since O is maximal Cohen-Macaulay

as a C-module, [6, Corollary 6.4.1] gives the 1st isomorphism below:
EXtIC(O,Ker(x) = Hom, (O, Q 'Kera) = Hom (O, A).

The 2nd isomorphism arises from the exact sequence 0 — Kera¢ — C — A — 0. On the
other hand, keeping in mind that A is also maximal Cohen-Macaulay as a C-module,

from Auslander duality [6, Theorem 7.7.5] one gets that
length, Hom (O, A) = length, Hom.(4, O).

By the definition of stable homomorphism, one has the exact sequence in the top row of

the diagram below:

Hom((4,C) ®; O —— Hom(4,0) —— Hom (4,0) —— 0

| > |

ann.(Kero) @, O @ > Hom.(A4,0) —— 0
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Thus, Hom(A4, ©) = O/I. Combining with this (5.1) yields the desired equality. ]

Let now «: C — A be a surjective map in Cy, with C a complete intersection;
see [9, Lemma A.7]. We say that such an « is minimal if the natural map ®, — &, is

bijective; it is always surjective. It is helpful to introduce the ideals
I:= A(ann (Ker o)) and J 1= A (Fitto(Kerw)).

In particular, I 2 J.

Given a map of rings A — B and a B-module M, we write D;(B/A; M) for the
ith André-Quillen homology module of the A-algebra B, with coefficients in M. We only
need these functors for i = 0, 1,2 and Jacobi-Zariski sequence associated to maps; see,
for instance, [4, §2], or [12].

Here is a formula for §,(B) in terms of these modules; it can also be expressed

as an equality of Fitting ideals. See 5 for connections with earlier work.
Theorem 5.2. With notation as above, one has (in)equalities
8,(B) = length, D,(0O/A; O) — length, (I/J) < lengthy, (O/I).

Moreover, equality holds on the right when « is minimal.

Proof. Since D,(A4/C; O) = (Kerua) ®,; O, one gets an equality
length, D, (4/C; O) = lengthy (O/J).
From this and the Jacobi-Zariski sequence associated to C — A — O, which reads
0 — Dy,(0O/A;0) - D,(A/C,0) —» & — P, — 0,
one gets equalities

lengthy &, — length, @, = length, D,(O/A; O) — lengthy, D, (A/C; O)

= length, D,(O/A; O) — length,, (O/J).

In particular, length, D,(O/A; O) — length (O/J) < 0 with equality when « is minimal;

this justifies the inequality and the last assertion in the statement of the theorem.
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Moreover, the equality above yields the 2nd equality below:

lengthy ®, —length, ¥ = length, ®, — lengthy & + length, (O/I)
= length, D,(O/A; O) — length, (O/J) + length, (O/I)

= length, D,(O/A; O) — length, (I/J).

The 1st one is by Proposition 5.1; it applies as complete intersections rings are
Gorenstein, and also length, &, = length, W.. The claim about the defect of B as a

A-module follows. |

Suppose that A is a finite O-algebra, with A: A — O a map of O-algebras. Then
it is immediate from the Jacobi-Zariski sequence associated to the map O —- A — O

that for any integer i one has an isomorphism
D;(A/0; 0) =D, ,(0/A;0).

Let K be the field of fractions of O, so that the O-module K/O is the injective hull of the
residue field of O. Then it follows from Matlis duality [5, §3.2] that

length, D;(A/O; O) = length Di(A/O; K/0)

where the module on the right is the ith André—Quillen cohomology of the O-algebra A4,

with coefficients in K/O. Thus, one can rewrite the equality in Theorem 5.2 as
length, ®, — length, ¥, (B) = length DY(4/0;K/0) — length, (I/J).

It is in this form that the formula was proposed by Venkatesh [16], and proved in [10].
From our perspective, the avatar in terms of André—Quillen homology is more natural.

Theorem 5.2 expresses the defect of A as a difference of two positive integers.
It is not clear why they are both zero when the defect is zero, as asserted by Wiles’
Theorem 4.5. What is more Venkatesh’s formula only applies when dimA = 1. So we
sketch an argument that deduces the latter result from the former, though only under
the additional hypothesis that dimB = 1.

Proof of Theorem 4.5 when dimB = 1. We start by reducing to the case where
dimA = 1. Set b = Ker(A — B) and A’ := A/b%. Thus, the map ¢ factors through the
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surjection A — A’. This gives the second of the following inequalities:
lengthy ¥y > length, ®, > lengthy &y .

The 1st one is by hypothesis. Thus, the hypothesis of the desired result applies to the
surjection A’ — B; we claim it suffices to verify the conclusion for this map, for if
this map is an isomorphism one gets that b = b2, so that b = 0, that is to say ¢ is
an isomorphism, as desired. Since dim A’ = dim B, we can replace A by A’ and assume
dimA =1.

Next we reduce to the case where B is A modulo its m,-power torsion ideal, so
we can apply Venkatesh's equality: set B’ := A/I',,, (A). Since ¢ is surjective, p(m,) = mp
so that ¢(I,, (4)) is mp-power torsion; thus depthB > 1 implies ¢(I,,(A)) = 0O, that is
to say, ¢ factors through the surjection A — B’. This gives the 1st inequality below:

length, ¥y > length, W > length, @, .

The 2nd one is part of the hypothesis. Since depth B’ > 1 as well, the map A — B’ also
satisfies the hypothesis of the desired result. We claim that it suffices to verify then
that A is complete intersection. Indeed then A = B’ and keeping in mind that the lengths

of ¥, and ¢, coincide, we get the inequality:
lengthy, ¥y > lengthy, W, .
Then Corollary 4.4 applies to yield that ¢ is an isomorphism. Thus, we can assume
B = B/, which puts us in the context of Theorem 5.2.
Since dimA = 1, we can choose a minimal presentation «: C — A, with C a
complete intersection; see 5. Theorem 5.2 with M = B yields

length, ®, — length, W5 = length, (O/I).

By the hypothesis, the term on the left is negative so we deduce that I = O. Therefore,

Kera =0, s0 A = C and A is complete intersection. |
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