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Diamond proved a numerical criterion for modules over local rings to be free modules

over complete intersection rings. We formulate a refinement of these results using the

notion of Wiles defect. A key step in the proof is a formula that expresses the Wiles

defect of a module in terms of the Wiles defect of the underlying ring.

1 Introduction

In his work on modularity of elliptic curves and Fermat’s last theorem, Wiles [17]

discovered a numerical criterion for certain noetherian local rings A to be complete

intersections. Diamond [8] generalized Wiles’ result by establishing a criterion for

modules M over A to be free and for A to be a complete intersection; see the discussion

below for the precise statements of their results.

To set the stage for our work, we recall the number theoretic application of

the numerical criterion, although this paper concerns only its commutative algebraic

aspects. The ring of interest is a deformation ring R associated to a modular repre-

sentation ρ : GQ → GL2(k), with GQ the absolute Galois group of Q. Here ρ arises

from a Hecke algebra T (which is a complete, Noetherian, local O-algebra) acting

faithfully on H1(X0(N),O)m, the cohomology of a modular curve X0(N), associated to
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2 S. Brochard et al.

a positive integer N, with coefficients in a discrete valuation ring O finite flat over Zp,

localized at the maximal ideal m, and with T/m = k a finite field. There is an action

of GQ on H1(X0(N),O)m and the representation ρ is isomorphic to the representation

ρm : GQ → GL2(T/m) associated to m. This produces a surjective map R → T, and

the numerical criterion implies in favorable conditions that H1(X0(N),O)m is free as

an R-module and that R is a complete intersection. In particular, the map R → T is

an isomorphism of complete intersections. In practice, this is used to deduce that a

certain ring R′ (parametrizing deformations of ρ with ramification allowed at a prime

q) acts freely on H1(X0(Nq2),O)m′ , where m′ is a maximal ideal of the Hecke algebra

acting on H1(X0(Nq2),O), related to m, from knowing that a quotient R of R′ acts freely

on H1(X0(N),O)m.

The main contribution of the present work is a criterion for freeness of a module

in terms of its Wiles defect, which was introduced in [3]; the definition is recalled below.

This refines the work of Diamond and Wiles and also gives a new perspective on these

earlier results from the vantage point of the Wiles defect of rings and of modules over

them. Our proofs differ significantly from those in loc. cit.

The setting for all the results of Wiles and Diamond, and the present paper, is

that there is a commutative, noetherian, local ring A equipped with a surjective map

λ : A → O, where O is a discrete valuation ring (that will be fixed throughout the paper),

with the property that the conormal module

�A := pA/p2
A where pA := Ker(λ),

has finite length as an O-module. (In the work of Diamond and Wiles, A would be a

finite O-algebra and λ a map of O-algebras, but we do not impose this.) The congruence

module of a finitely generated A-module M is the A-module

�A(M) :=
M

M[pA] + M[IA]
, where IA := A[pA].

Here, for any ideal a in A we write M[a] for {m ∈ M | a · m = 0}, the a-torsion submodule

of M. As pA · �A(M) = 0, the congruence module �A(M) has a natural structure of an

O-module. Moreover, the hypothesis that �A has finite length implies that the same is

true of �A(M). Also M[pA] has a natural structure of an O-module, and we can consider

its rank. Observe that the rank of M[pA] equals the dimension of MpA
over the fraction

field of O, and in particular they are nonzero precisely when M is supported at pA. This

is the main case of interest in this work.
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Wiles Defect for Modules and Criteria 3

The Wiles defect of the A-module M is the integer

δA(M) = d · lengthO �A − lengthO �A(M), (1.1)

where d := rankO M[pA]. In [2, 3], this number is divided by de, where e is the

ramification index of O. We find it more convenient to suppress the denominator.

We prove

Theorem 1.1. Let M be a finitely generated A-module with depthA M ≥ 1. There is an

equality

lengthO �A(M) = (rankO M[pA]) · lengthO �A(A) − lengthO (M[pA]/IAM) .

Equivalently, there is an equality

δA(M) = (rankO M[pA]) · δA(A) + lengthO (M[pA]/IAM) .

In particular δA(M) ≥ 0. If MpA
�= 0 and δA(M) = 0, then A is complete intersection and

M is faithful. When in addition, M has rank at most rankO M[pA] at each generic point

of A, then M is free.

The 1st part of this result, relating the lengths of the congruence modules of M

and of A, is contained in Theorem 3.3. The last part of Theorem 1.1, describing when

δA(M) = 0 is suggested by, and refines, the result of Diamond [8, Theorem 2.4]; see

Theorem 4.6 and also the result below. In [8] the module M is required to be finite flat

over O; we replace this by the weaker condition that M is finitely generated over A and

of positive depth.

One input in its proof is a result of [9] that dealt with the case M is a cyclic

A-module; see Theorem 4.5 below. The main new ingredient is the following criterion

for freeness of modules.

Theorem 1.2. Suppose that the ring A is Gorenstein and that M is a finitely generated

A-module with depthA M ≥ 1. If

δA(M) = (rankO M[pA])δA(A) ,

and M has rank at most rankO M[pA] at each generic point of A, then M is free.

This result is implied by Theorem 4.3, where the condition on ranks is replaced

by a weaker one involving multiplicities.
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4 S. Brochard et al.

The proofs of Theorems 1.1 and 1.2 are based on a careful study of congruence

modules, and various other auxiliary modules related to them. This is the contents of

Sections 2 and 3. In Section 5, we give a more streamlined proof of a formula for δA(A),

formulated (albeit in the setting of certain derived rings) by Venkatesh [16], and proved

in [10], in terms of certain André–Quillen cohomology modules. We end by explaining

how this formula gives another proof of the isomorphism criterion for maps between

complete intersection rings due to Wiles [17] and Lenstra [13].

We end the introduction by expanding on the potential significance of

Theorem 1.1 for the study of congruences between modular forms. The question of

comparing congruence modules for A and M has been studied extensively, in the context

of the theory of congruences between modular forms. This theory plays a key role in the

breakthrough work of Wiles [17]. As recalled above, one studies a Hecke algebra T acting

on H1(X0(N),O)m that is isomorphic to M⊕M where M is T-module that is finite flat over

O, and hence of positive depth, and of generic rank one as a T-module. One focuses on

an augmentation λf = λ : T → O arising from a weight 2 newform f ∈ S2(�0(N)). In this

context, the question of showing that the congruence modules for T and M (associated

to the augmentation λf arising from the newform f ) are the same has been studied in

works of Hida [11] and Ribet [14] in 1980s and in many other works, including [17]. The

motivation for doing this is that the (cohomological) congruence module of M is easier to

study and related to a critical value of the L-function associated to the adjoint motive of

f (as discovered by Hida in his seminal work), while the congruence module for T is more

directly related to congruences between f and other newforms in S2(�0(N)). In these

works, it was shown that the natural surjection �T(T) → �T(M) is an isomorphism,

thus proving that all congruences between f and other newforms in S2(�0(N)) are

detected “cohomologically”, by showing that M is a free T-module (of rank 1). It follows

from our results that such an isomorphism holds precisely when M[pA]/IAM = 0,

which can happen without M being free over T. For instance, [2, Theorem 3.12]

implies that M[pA]/IAM = 0 when EndT(M) = T, which is a weaker condition than

freeness. We hope the observation recorded in the 1st part of Theorem 1.1, which gives

meaning to the kernel of the surjective map �T(T) → �T(M), will be useful in the further

study of congruences between modular forms.

2 The Category CO

Throughout this work, O is a discrete valuation ring and � a uniformizing parameter

for O. We write CO for the category consisting of pairs (A, λA) where A is a commutative,
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Wiles Defect for Modules and Criteria 5

noetherian, local ring and λA : A → O is a surjective map of rings such that the conormal

module �A := pA/(pA)2, where pA := Ker(λA), has finite length. The morphisms in CO are

local maps ϕ : A → B such that λBϕ = λA. The rings in CO have the same residue field,

namely, O/�O.

The condition that the conormal module of A has finite length is equivalent to

the natural map ApA
→ O(0) being an isomorphism; here O(0) is the quotient field of O.

Thus, pA is a minimal prime of A and dim A/pA = dimO = 1. This has the following

consequence. Subject to the constraint that depth A ≤ 1, the pair (depth A, dim A) can

take all possible values; see Example 2.

Lemma 2.1. For any A ∈ CO, one has depth A ≤ 1 ≤ dim A.

Proof. The claim about dimension is clear from the surjection A → O. Any associated

prime q of A satisfies depth A ≤ dim A/q; see [5, Proposition 1.2.13]. Setting q := pA

yields the upper bound on the depth of A. �

Let A be in CO and set IA := A[pA], the annihilator of pA. In addition, the

following objects also play an important role in this work:

�A := O/λ(IA) and
IA

I2
A

.

The 1st one is the congruence algebra of A, and the last one is the conormal module of

the map A → A/IA. Since pA · IA = 0 the A-action on IA factors through O, and so the

A-action on IA/I2
A factors through �A. By the same token, �A is a �A-module.

Set K := O(0), the field of fractions of O. Viewing IA as an O-module, one has

(IA)(0)
∼= HomA(O, A)

pA

∼= HomApA
(K, ApA

) ∼= HomK(K, K) ∼= K . (2.1)

Thus, rankO(IA) = 1. It also follows that IA �⊆ pA, for pAApA
= 0, so λ(IA) �= 0;

equivalently, that �A is a torsion O-module, that is to say, of finite length. In fact, since

the Fitting ideal of pA is contained in its annihilator, one gets an inequality

lengthO �A ≥ lengthO �A . (2.2)

See [7, Section 5, (5.2.3)]. Wiles and Lenstra proved that equality holds if and only if the

ring A is complete intersection; see Theorem 4.5.

Evidently, pA ⊆ A[IA] but in fact equality always holds.
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6 S. Brochard et al.

Lemma 2.2. For any A in CO one has pA = A[IA].

Proof. One has λ(A[IA]) · λ(IA) = λ(A[IA] · IA) = 0. Since O is a domain and λ(IA) is

nonzero, it follows that λ(A[IA]) = 0, that is to say, A[IA] ⊆ pA. �

The following computation will be useful later on. The hypothesis on depth is

needed even for the weaker conclusion; see 2.

Lemma 2.3. Let A be an object in CO and M a finitely generated A-module. When

depthA M ≥ 1, one has M[pA] ∩ M[IA] = (0); in particular, IAM ∩ pAM = 0.

Proof. The A-modules M[pA] and M[IA] are annihilated by pA and IA, respectively. Thus,

M[pA] ∩ M[IA] is annihilated by pA + IA. This ideal contains some power of the maximal

ideal of A, and hence it contains an element that is not a zero divisor on M, since the

latter has positive depth. Thus, M[pA] ∩ M[IA] = (0). �

The conormal module and congruence module are related: since A-acts on IA

through O, one gets isomorphisms

IA

I2
A

∼= IA ⊗A

A

IA

∼= IA ⊗O (O ⊗A

A

IA
) ∼= IA ⊗O �A . (2.3)

Here is another expression of the relation between all these invariants

IA

I2
A

⊗(A/IA) pA
∼= IA ⊗A pA

∼= IA ⊗O

pA

p2
A

.

To put this isomorphism in a larger context, it helps to remark that

pA = HomA(A/IA, A) and IA = HomA(O, A) ,

where the 1st equality is by Lemma 2.2 and the 2nd is by definition. These are the

relative dualizing modules for the maps A → A/IA and A → O, respectively. Here is

one consequence of these observations.

Lemma 2.4. Let A be an object in CO. When depth A = 1, the ideal IA ⊂ A is principal

and as a �A-module IA/I2
A is free of rank one.
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Wiles Defect for Modules and Criteria 7

Proof. By Lemma 2.3, the hypothesis that depth A ≥ 1 implies IA ∩ pA = 0, so the

composition IA → A → O is injective. Thus, as an O-module IA is free and of rank one;

in particular IA ⊂ A is principal. Moreover, (2.3) implies that as a �A-module IA/I2
A is

free of rank one. �

After suitable completion, any A in CO is of the form O[[x]]/J, for indeterminates

x := x1, . . . , xn, and J ⊆ �(x) + (x)2. One has pA := (x). Let f1, . . . , fc be a minimal

generating set for the ideal J. For each i, there is an unique expression of the form

fi =
∑

aijxj + term in (x)2 ,

with aij in O. It is easy to verify that the conormal module of λA has a presentation

O
c

(aij)
−−−→ O

n −→ �A −→ 0 .

Thus, the condition that �A has finite length is equivalent to rank(aij) = n; equivalently,

Fitt0(aij), the zeroth Fitting ideal of the O-module �A, is nonzero. Using this, or even

directly, one can verify that the ring

A :=
O[[x1, . . . , xn]]

(�x1, . . . , �xn)

is in CO. The associated primes of A are (�) and (x), so it follows that dim A = n and

depth A = 1. This shows that for each positive integer n, one has rings A in CO with

depth A = 1 and dim A = n; see Lemma 2.1. In the same vein, the ring A/x1(x) satisfies

dim A = n − 1 and depth A = 0.

The next example shows that the condition depth A ≥ 1 in Lemma 2.3 is not

superfluous.

When A := O[[x]]/(�x, x2), one has

pA = (x) ⊆ IA = (� , x) .

Thus, IA ∩ pA = pA.

Next we describe a ring in the category CO that is Gorenstein, but not complete

intersection. This is in anticipation of Theorem 4.3.
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8 S. Brochard et al.

Assume 2 is invertible in O and consider the ring

A :=
O[[x, y, z]]

(x2 − y2, x2 − z2, �x − yz, �y − xz, �z − xy)
.

From 2, one gets that �A
∼= k3, where k := O/(�). In particular, A is in CO. We claim that

the ring A is reduced, Gorenstein of Krull dimension one, but not complete intersection.

It is also finite and free as an O-module.

Indeed, as an O-module, A has a basis consisting of (residue classes of) elements

1, x, y, z, x2, so that A is finite and free over O. In particular, � is not a zero-divisor on A.

The ring A/(�) is zero-dimensional, with socle the ideal (x2), and hence it is Gorenstein;

however, it is not a complete intersection, for it has embedding dimension three, but

five defining relations; see [5, Example 3.2.11(b)]. Thus, A itself is Gorenstein of Krull

dimension one and not complete intersection.

It remains to verify that A is reduced. A straightforward calculation yields that

the prime ideals in A are

(� , x, y, z) , (x, y, z) , (x − � , y − � , z − �)

(x + � , y + � , z − �) , (x + � , y − � , z + �) , (x − � , y + � , z + �) .

In this list, the 1st one is the maximal ideal; the rest are minimal. The localization of A

at any minimal prime is a field. Since A is Cohen–Macaulay of dimension one, it thus

satisfies Serre conditions (S1) and (R0) and hence is reduced.

3 Congruence Modules

In this section, we develop basic properties of congruence modules for modules over

rings inCO. This prepares us for the next section where we obtain criteria for freeness of

the modules in terms of Wiles defects of the modules in question. We begin by recording

an observation that will be used multiple times in the sequel.

Lemma 3.1. Let J be an ideal in a ring A and M an A-module. If x ∈ A is not a

zerodivisor on M, then

xM ∩ M[J] = x(M[J]) .

Thus, when A is local, M is finitely generated, and x in not a unit in A, either M[J] = 0

or M[J] �⊆ xM.
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Wiles Defect for Modules and Criteria 9

Proof. Indeed, for any m in M if (xm) · J = 0, then m · J = 0 for x is not a zero divisor

on M, and hence m is in M[J], as desired. The 2nd part of the claim is by Nakayama’s

Lemma, applied to M[J]. �

3.1 Congruence modules

Let A be an object in CO and M a finitely generated A-module. As in the Introduction,

the congruence module of M is

�A(M) :=
M

M[pA] + M[IA]
.

We write �A, instead of �A(A); observe that this agrees with the definition introduced

in 2, for A[IA] = pA, by Lemma 2.2. Evidently, �A(M) is a finitely generated module over

the congruence algebra �A. Next we describe a canonical presentation of the congruence

module.

Observe that the A-modules M[pA] and M/M[IA] are annihilated by pA and hence

are naturally O-modules.

Lemma 3.2. When depthA M ≥ 1, the O-modules M[pA] and M/M[IA] are free of the

same rank, and the following natural sequence of O-modules is exact:

0 −→ M[pA] −→
M

M[IA]
−→ �A(M) −→ 0 .

Proof. The exactness of the sequence is immediate from the definition of �A and

Lemma 2.3. The main task is to verify the claims about freeness. Since M[pA] is an A-

submodule of M and the latter has positive depth, so does the former. The A-action on

M[pA] factors through O so depthO M[pA] ≥ 1 and so M[pA] is free.

Since depthA M ≥ 1, there exists a non-unit element x ∈ A that is not a zero

divisor on M. We claim that x is not a zero divisor on M/M[IA] as well.

Indeed, suppose x annihilates the residue class in M/M[IA] of an element m ∈ M,

that is to say, xm ∈ M[IA]. Then

xm ∈ xM ∩ M[IA] = x(M[IA]) ,

where the equality is by Lemma 3.1. Thus, xm = xm′ for some m′ ∈ M[IA], and hence

m = m′, as x is not a zero divisor on M. Thus, m is zero in M/M[IA].

Since M/M[IA] has positive depth, it too is free as an O-module. �
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10 S. Brochard et al.

We also consider the following variant of the congruence module:

�̂A(M) :=
M

M[IA] + IAM
.

Lemma 2.2 implies that �̂A(A) = �A, so that �̂A(M) is a �A-module, namely a quotient

of the �A-module �A ⊗A M, and they are equal when M is free as an A-module. It is easy

to verify that there is an exact sequence of �A-modules:

0 −→
M[pA]

IAM + (M[pA] ∩ M[IA])
−→ �̂A(M) −→ �A(M) −→ 0 . (3.1)

Keep in mind that M[pA] ∩ M[IA] = 0 when depthA M ≥ 1, by Lemma 2.3.

These observations serve to establish the connection between the Wiles defect

(1.1) of A and of M. This settles the 1st part of Theorem 1.1. As in op. cit. one could state

the equality in terms of congruence modules of A and M.

Theorem 3.3. Let A be an object in CO and M a finitely generated A-module. When

depthA M ≥ 1, there is an equality

δA(M) = (rankO M[pA]) · δA(A) + lengthO (M[pA]/IAM) .

In particular, δA(M) ≥ 0.

Proof. Observe that for any A-module M there is an isomorphism of �A-modules

�̂A(M) ∼= �A ⊗O

M

M[IA]
.

Since depthA M ≥ 1, the O-modules M/M[IA] and M[pA] are free of the same rank, by

Lemma 3.2, so the isomorphism above yields the equality

lengthO �̂A(M) = (lengthO �A)d,
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Wiles Defect for Modules and Criteria 11

where d := rankO M[pA]. This justifies the 3rd equality below.

δA(M) = d · lengthO �A − lengthO �A(M)

= d · lengthO �A − lengthO �̂A(M) + lengthO (M[pA]/IAM)

= d · lengthO �A − d · lengthO �A + lengthO (M[pA]/IAM)

= d · δA(A) + lengthO (M[pA]/IAM) .

The 1st and the last equalities are the definition of defects (1.1) while the 2nd one is

from (3.1) and Lemma 2.3. The last equality also uses the observation that the rank of

the O-module A[pA] = IA is one; see (2.1).

The last conclusion holds because δA(A) ≥ 0; see (2.2). �

It follows from the proof above that when depthA M ≥ 1 and rankO M[pA] = 1,

there is a surjective map �A � �A(M), with kernel M[pA]/IAM.

In the next lemma, we show that the congruence module for modules M of

positive depth remains invariant under pull-back of rings. We use this in the proof of

Theorem 4.6.

Lemma 3.4. Let A → B be a surjective map in CO and M a finitely generated B-module.

One has a natural surjection

�B(M) � �A(M) .

This map is bijective when depthB M ≥ 1 and then δA(M) ≥ δB(M). Moreover, δA(M) =

δB(M) if and only if lengthO �A = lengthO �B.

Proof. Since pAB = pB one has IAB ⊆ IB, so there is an exact sequence

0 −→
IB

IAB
−→

B

IAB
−→

B

IB
−→ 0

of B-modules. Applying HomB(−, M) yields an exact sequence

0 −→ M[IB] −→ M[IA] −→ HomB(
IB

IAB
, M)

of B-modules. Since M[pB] = M[pA], the 1st part of the statement is immediate for the

inclusion M[IB] ⊆ M[IA] and the definition of congruence modules.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
5
2
/6

5
5
4
1
5
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
,  iy

e
n
g
a
r o

n
 2

5
 M

a
rc

h
 2

0
2
2



12 S. Brochard et al.

Observe that IB/IAB is annihilated by pA and IA and hence it has finite length

over A, so also over B. Thus, when depthB M ≥ 1, one has HomB(IB/IAB, M) = 0, so

M[IB] = M[IA]. This gives the desired isomorphism.

The inequality of Wiles defects is clear since the map �A → �B is surjective

[7, Section 5.2] as is the statement about equality. �

4 Criteria for Freeness

In this section, we relate the freeness of a module over a local ring in CO to numerical

invariants associated with its congruence module. The main result here is Theorem 4.3.

In addition to the results on congruence modules presented in Section 3, its proof uses

the following criterion for freeness of modules over Gorenstein local rings of Krull

dimension zero.

Lemma 4.1. Let R be a Gorenstein local ring with maximal ideal m and of Krull

dimension zero. A finitely generated R-module M is free if and only if

lengthR M ≤ lengthR (R[m] · M)length R .

Proof. The ideal R[m] is the socle of the ring R and since the ring is Gorenstein and

of dimension zero, one has R[m] ∼= k; see [5, Theorem 3.2.10]. Both sides of the desired

inequality are additive on direct sums of modules and coincide on R, by the remark

about socles. Thus, we can assume M has no free summands. Consider the injective hull

M ⊆ F of M. Since R is Gorenstein of dimension zero, the only indecomposable injective

module is R itself; see [5, Proposition 3.2.12(e)]. Thus, the R-module F is free, and since

M has not free summands M ⊆ mF. Therefore,

R[m] · M ⊆ R[m] · (mF) = 0 .

The hypothesis thus yields lengthR M = 0 and so M = 0. �

In the sequel, we use some basic results, recalled below, from the theory of

multiplicities for modules over local rings; for details see [5, Chapter 4].

Let A be a local ring with maximal ideal mA and M a finitely generated A-module.

We write eA(M) for the Hilbert–Samuel multiplicity with respect to mA of the A-module

M; see [5, §4.6]. For M = A, we write e(A) instead of eA(A). Here are the crucial facts

about multiplicities.
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Wiles Defect for Modules and Criteria 13

When A has Krull dimension zero, then eA(M) = lengthA M.

When A is a finite O-algebra, then eA(M) = (rankO M)(rankO A).

One has eA(M) ≥ 0 with strict inequality if and only if dim M = dim A. This also

follows from the additivity formula (4.1) below.

Set 
 := {q ∈ Spec A | dim(A/q) = dim A}; these are the prime ideals

corresponding to the components of Spec A of maximal dimension. There is an equality

eA(M) =
∑

q∈


(lengthAq
Mq)e(Aq) . (4.1)

In particular, if the rank of M at each q in 
 is at most that at pA, then

eA(M) ≤ (rankO M[pA])(
∑

q∈


e(Aq)) = (rankO M[pA]) · e(A) . (4.2)

This holds in particular when M := B for any surjective map A � B in CO because one

has BpA
= BpB

= O, and the rank of B at any q in 
 is at most one.

Lemma 4.2. Let A ∈ CO be a Gorenstein ring and x ∈ A a nonzero divisor such that

λA(x) is a uniformizing parameter for O. The ring R := A/xA is Gorenstein with socle

equal to IA · R.

Proof. Since dim A = 1, by Lemma 2.1, the ring R is zero dimensional, with maximal

ideal mR := mAR. Rees’ theorem [5, Lemma 3.1.16] yields isomorphisms

Exti
R(k, R) ∼= Exti+1

A (k, A) for all i.

In particular, the socle R[mR] of R can be computed as follows:

HomR(k, R) ∼= Ext1
A(k, A) ∼=

IA
� IA

= IA · R .

The equality holds because IA ∩ xA = xIA = � IA; see Lemma 3.1. This justifies the last

part of the result. �

Here is an analogue of Lemma 4.1 in the category CO. By (4.2), the upper bound

on eA(M) holds when the rank of M at each generic point of A is at most d. Thus,

the result below contains Theorem 1.2 from the Introduction. It was suggested by the

arguments in the 2nd half of the proof of [8, Theorem 2.4] to prove freeness of modules
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14 S. Brochard et al.

over complete intersection rings using numerical conditions. There do exist rings in CO

that are Gorenstein but not complete intersection; see 2.

Theorem 4.3. Let A ∈ CO be a Gorenstein ring, M a finitely generated A-module with

depthA M ≥ 1, and set d := rankO M[pA]. The A-module M is free if, and only if, there are

inequalities

δA(M) ≤ d · δA(A) and eA(M) ≤ d · e(A) .

Given Theorem 3.3, the inequality on the left is equivalent to δA(M) = d · δA(A).

Proof. The “only if” direct is clear. As to the converse, the hypothesis δA(M) ≤ d · δA(A)

is equivalent to M[pA] = IAM, by Theorem 3.3.

Pick an element x ∈ A mapping to a uniformizer for O and such that x is a

nonzero divisor on both A and M. This is possible as A and M have depth one. Set

R = A/xA and N = M/xM. Then R is a Gorenstein local ring of dimension zero, with

maximal ideal mAR and socle R[mAR] = IAR; see Lemma 4.2. Since x is a nonzero divisor

on A and M, and hence on IAM, and not in m2
A, one gets

e(A) = length R , eA(M) = lengthR N and eA(IAM) = lengthR (IAM/xIAM) .

We also have the following sequence of equalities:

lengthR (IAR · N) = lengthR

(IAM + xM)

xM

= lengthR

IAM

(xM ∩ IAM)

= lengthR (IAM/xIAM) ,

where the 3rd one holds by the observation recorded in Lemma 3.1, applied with

J = pA to IAM = M[pA]. Observe that eA(IAM) = eA(M[pA]) = d, so the hypothesis on

multiplicities translates to

lengthR N ≤ lengthR (IAR · N) length R .

By Lemma 4.2, the ring R is Gorenstein with socle IAR, so Lemma 4.1 applies to yield

the R-module N is free. Thus, the A-module M is free. �
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Wiles Defect for Modules and Criteria 15

Theorem 4.3 implies the following known isomorphism criteria; see [9, Lemma

A.8] and [7, Theorem 5.21]. We state it here for ease of reference as its needed later, and

our methods yield a new proof of it.

Corollary 4.4. Let ϕ : A → B be a surjective map in CO. The map ϕ is an isomorphism

under either of the following conditions:

(1) lengthO �A = lengthO �B, the ring A is Gorenstein and B is Cohen–Macaulay;

(2) lengthO �A = lengthO �B and B is complete intersection.

Proof. The goal is to deduce that B is free as an A-module, so Ker(ϕ) = 0.

(1) Since �B
∼= �A(B), by Lemma 3.4, the hypothesis yields δA(B) = δA(A). As

eA(B) ≤ e(A) always holds—see 4—we can apply Theorem 4.3 to deduce that B is free as

an A-module.

(2) Lemma 3.4 yields the 1st equality below

δA(B) = δB(B) = 0 .

The 2nd one holds for B is complete intersection. Apply Theorem 4.3 again. �

4.1 Diamond’s theorem

We begin by recalling the result below from [9, Proposition A.6]; it is used in the proof

of Theorem 4.6(1).

Theorem 4.5. Let ϕ : A → B in CO be a surjective map with depth B ≥ 1. If δA(B) = 0,

then ϕ is an isomorphism of complete intersections.

Given (4.2), it is immediate that the result below contains [8, Theorem 2.4], which

was proved under the additional hypotheses that A is an O-algebra and M is a finite free

O-module.

Theorem 4.6. Let A be an object in CO and M a nonzero finitely generated A-module

supported at pA, and with depthA M ≥ 1.

(1) If δA(M) = 0, then the ring A is complete intersection, M is faithful, and

M[pA] = IAM.

(2) If moreover eA(M) ≤ (rankO M[pA])e(A), then the A-module M is free.
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16 S. Brochard et al.

Proof. Let B denote the image of A in EndA(M). Since M is supported at pA, the

canonical surjection A → B is in CO. Since M has positive depth, so does EndA(M),

and hence also B. Thus, Lemma 3.4 applies and gives the 1st inequality below

δA(M) ≥ δB(M) ≥ 0 .

The 2nd inequality is by Theorem 3.3 applied to B. Thus, if δA(M) = 0, then

δA(M) = 0 = δB(M) .

The 1st equality already implies M[pA] = IAM, by Theorem 3.3. The equality of defects

of M over A and B yields that the natural map �A → �B is an isomorphism; see Lemma

3.4. This gives the 1st equality below:

lengthO �A = lengthO �B = lengthO �B .

Since δB(M) = 0, applying Theorem 3.3 but now to M viewed as a B-module gives δB(B) =

0, which justifies the 2nd equality. Since depth B ≥ 1, the map A → B is an isomorphism

of complete intersections; see Theorem 4.5. In particular, the A-module M is faithful.

This completes the proof of the 1st statement. Given this, the 2nd part is

immediate from Theorem 4.3. �

4.2 An analog of Wiebe’s result for modules

Wiles’ theorem characterizing complete intersection rings A ∈ CO can be deduced from

the theorem of Wiebe [5, Theorem 2.3.16] that when R is a local ring with maximal ideal

m, its Fitting ideal FittR(m) is nonzero if and only if R is a complete intersection of

dimension zero. Diamond’s theorem suggests the following module theoretic extension

of Wiebe’s theorem; compare with Lemma 4.1.

Lemma 4.7. Let R be a noetherian local ring, with maximal ideal m. If M is a nonzero

finitely generated R-module such that

e(M) ≤ lengthR (FittR(m) · M) · e(R) ,

then R is a complete intersection with dim R = 0, and M is free.
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Wiles Defect for Modules and Criteria 17

Proof. As M is nonzero, e(M) �= 0 so the hypothesis implies FittR(m) is nonzero.

Thus, Wiebe’s theorem [5, Theorem 2.3.16] implies R is complete intersection of Krull

dimension zero. Moreover, FittR(m) = R[m], the socle of R. At this point, we can invoke

Lemma 4.1 to deduce that M is free. �

5 Venkatesh’s Formula

In this section, we establish a formula for the defect of a local ring in CO, in terms of

certain André–Quillen homology modules, see Theorem 5.2. This gives a different proof

of a variant of the results in [16] and [10].

Throughout this section, fix A in CO with dim A = 1, and let

A → B := A/ΓmA
(A)

be the maximal Cohen–Macaulay quotient of A; here ΓmA
(A) is the mA-power torsion

submodule of A.

Proposition 5.1. Let α : C → A be a surjective map in CO, with C a Gorenstein ring,

and set I := λC(annC(Ker α)). With B as above, one has an equality

lengthO �C = lengthO �B + lengthO (O/I) .

Proof. First, we reduce to the case A = B. Applying HomC(−, C) to the exact sequence

0 −→ ΓmA
(A) −→ A −→ B −→ 0

yields an exact sequence

0 −→ HomC(B, C) −→ HomC(A, C) −→ HomC(ΓmA
(A), C) = 0

where the equality on the right holds because depth C ≥ 1. This gives the equality

HomC(B, C) = HomC(A, C) ,

so that we can replace A by B and assume A is Cohen–Macaulay.

Consider the exact sequence

0 −→ Ker α −→ C −→ A −→ 0 .
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18 S. Brochard et al.

Applying HomC(O, −) to it yields the exact sequence of O-modules

0 −→ HomC(O, Ker α) −→ HomC(O, C) −→ HomC(O, A) −→ Ext1
C(O, Ker α) −→ 0.

Since the map C → O factors through A one has Ker α ⊆ pC so

HomC(O, Ker α) = IC ∩ Ker α ⊆ IC ∩ pC = 0 .

Moreover, HomC(O, A) = HomA(O, A) so the exact sequence above becomes

0 −→ ηC −→ ηA −→ Ext1
C(O, Ker α) −→ 0 ,

where ηC and ηA are the images of IC and IA in O. Thus, we get an exact sequence

0 −→ Ext1
C(O, Ker α) −→ �C −→ �A −→ 0 ,

and hence the equality

lengthO �C = lengthO �A + lengthO Ext1
C(O, Ker α) . (5.1)

Now we analyze the Ext term above. For this, it is convenient to work in the

stable module category of C; see [6] for background. Since O is maximal Cohen–Macaulay

as a C-module, [6, Corollary 6.4.1] gives the 1st isomorphism below:

Ext1
C(O, Ker α) ∼= HomC(O, �−1 Ker α) ∼= HomC(O, A).

The 2nd isomorphism arises from the exact sequence 0 → Ker α → C → A → 0. On the

other hand, keeping in mind that A is also maximal Cohen–Macaulay as a C-module,

from Auslander duality [6, Theorem 7.7.5] one gets that

lengthO HomC(O, A) = lengthO HomC(A,O) .

By the definition of stable homomorphism, one has the exact sequence in the top row of

the diagram below:
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Wiles Defect for Modules and Criteria 19

Thus, HomC(A,O) ∼= O/I. Combining with this (5.1) yields the desired equality. �

Let now α : C → A be a surjective map in CO with C a complete intersection;

see [9, Lemma A.7]. We say that such an α is minimal if the natural map �C → �A is

bijective; it is always surjective. It is helpful to introduce the ideals

I := λC(annC(Ker α)) and J := λC(FittC(Ker α)) .

In particular, I ⊇ J.

Given a map of rings A → B and a B-module M, we write Di(B/A; M) for the

ith André–Quillen homology module of the A-algebra B, with coefficients in M. We only

need these functors for i = 0, 1, 2 and Jacobi–Zariski sequence associated to maps; see,

for instance, [4, §2], or [12].

Here is a formula for δA(B) in terms of these modules; it can also be expressed

as an equality of Fitting ideals. See 5 for connections with earlier work.

Theorem 5.2. With notation as above, one has (in)equalities

δA(B) = lengthO D2(O/A;O) − lengthO (I/J) ≤ lengthO (O/I) .

Moreover, equality holds on the right when α is minimal.

Proof. Since D1(A/C;O) = (Ker α) ⊗C O, one gets an equality

lengthO D1(A/C;O) = lengthO (O/J) .

From this and the Jacobi–Zariski sequence associated to C → A → O, which reads

0 → D2(O/A;O) → D1(A/C;O) → �C −→ �A → 0 ,

one gets equalities

lengthO �A − lengthO �C = lengthO D2(O/A;O) − lengthO D1(A/C;O)

= lengthO D2(O/A;O) − lengthO (O/J) .

In particular, lengthO D2(O/A;O) − lengthO (O/J) ≤ 0 with equality when α is minimal;

this justifies the inequality and the last assertion in the statement of the theorem.
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20 S. Brochard et al.

Moreover, the equality above yields the 2nd equality below:

lengthO �A − lengthO �B = lengthO �A − lengthO �C + lengthO (O/I)

= lengthO D2(O/A;O) − lengthO (O/J) + lengthO (O/I)

= lengthO D2(O/A;O) − lengthO (I/J) .

The 1st one is by Proposition 5.1; it applies as complete intersections rings are

Gorenstein, and also lengthO �C = lengthO �C. The claim about the defect of B as a

A-module follows. �

Suppose that A is a finite O-algebra, with λ : A → O a map of O-algebras. Then

it is immediate from the Jacobi–Zariski sequence associated to the map O → A → O

that for any integer i one has an isomorphism

Di(A/O;O) ∼= Di+1(O/A;O) .

Let K be the field of fractions of O, so that the O-module K/O is the injective hull of the

residue field of O. Then it follows from Matlis duality [5, §3.2] that

lengthO Di(A/O;O) ∼= lengthO Di(A/O; K/O)

where the module on the right is the ith André–Quillen cohomology of the O-algebra A,

with coefficients in K/O. Thus, one can rewrite the equality in Theorem 5.2 as

lengthO �A − lengthO �A(B) = lengthO D1(A/O; K/O) − lengthO (I/J).

It is in this form that the formula was proposed by Venkatesh [16], and proved in [10].

From our perspective, the avatar in terms of André–Quillen homology is more natural.

Theorem 5.2 expresses the defect of A as a difference of two positive integers.

It is not clear why they are both zero when the defect is zero, as asserted by Wiles’

Theorem 4.5. What is more Venkatesh’s formula only applies when dim A = 1. So we

sketch an argument that deduces the latter result from the former, though only under

the additional hypothesis that dim B = 1.

Proof of Theorem 4.5 when dim B = 1. We start by reducing to the case where

dim A = 1. Set b = Ker(A → B) and A′ := A/b2. Thus, the map ϕ factors through the
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surjection A → A′. This gives the second of the following inequalities:

lengthO �B′ ≥ lengthO �A ≥ lengthO �A′ .

The 1st one is by hypothesis. Thus, the hypothesis of the desired result applies to the

surjection A′ → B; we claim it suffices to verify the conclusion for this map, for if

this map is an isomorphism one gets that b = b2, so that b = 0, that is to say ϕ is

an isomorphism, as desired. Since dim A′ = dim B, we can replace A by A′ and assume

dim A = 1.

Next we reduce to the case where B is A modulo its mA-power torsion ideal, so

we can apply Venkatesh’s equality: set B′ := A/ΓmA
(A). Since ϕ is surjective, ϕ(mA) = mB

so that ϕ(ΓmA
(A)) is mB-power torsion; thus depth B ≥ 1 implies ϕ(ΓmA

(A)) = 0, that is

to say, ϕ factors through the surjection A → B′. This gives the 1st inequality below:

lengthO �B′ ≥ lengthO �B ≥ lengthO �A .

The 2nd one is part of the hypothesis. Since depth B′ ≥ 1 as well, the map A → B′ also

satisfies the hypothesis of the desired result. We claim that it suffices to verify then

that A is complete intersection. Indeed then A = B′ and keeping in mind that the lengths

of �A and �A coincide, we get the inequality:

lengthO �B ≥ lengthO �A .

Then Corollary 4.4 applies to yield that ϕ is an isomorphism. Thus, we can assume

B = B′, which puts us in the context of Theorem 5.2.

Since dim A = 1, we can choose a minimal presentation α : C → A, with C a

complete intersection; see 5. Theorem 5.2 with M = B yields

lengthO �A − lengthO �B = lengthO (O/I) .

By the hypothesis, the term on the left is negative so we deduce that I = O. Therefore,

Ker α = 0, so A = C and A is complete intersection. �

Funding

This work was supported by the National Science Foundation [DMS-200985 to S.B.I.].

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
5
2
/6

5
5
4
1
5
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
,  iy

e
n
g
a
r o

n
 2

5
 M

a
rc

h
 2

0
2
2



22 S. Brochard et al.

Acknowledgments

It is a pleasure to thank a referee for a careful reading of the manuscript.

References

[1] Avramov, L. L. and S. Iyengar. “Homological Criteria for Regular Homomorphisms and for

Locally Complete Intersection Homomorphisms.” In Algebra, Arithmetic and Geometry, Part

I, II, Mumbai, 2000. Tata Inst. Fund. Res. Stud. Math. 16. Bombay: Tata Inst. Fund. Res., 2002,

pp. 97–122.

[2] Böckle, G., C. B. Khare, and J. Manning. “Wiles defect for Hecke algebras that are not

complete intersections.” Compos. Math. 157, no. 9 (2021): 2046–88. 0010-437X, MR 4301563.

http://10.1112/S0010437X21007454.

[3] Böckle, G., C. B. Khare, and J. Manning. “Wiles defect of Hecke algebras via local-global

arguments.” (2021): preprint https://arxiv.org/abs/2108.09729.

[4] Brochard, S., S. B. Iyengar, and C. B. Khare. “A freeness criterion without patching for mod-

ules over local rings.” J. Inst. Math. Jussieu (2021): 1–13. http://10.1017/S147474802100061X.

[5] Bruns, W. and J. Herzog. Cohen-Macaulay Rings. Cambridge: Cambridge University Press,

1998. xiv+453.

[6] Buchweitz, R.-O. “Maximal Cohen-Macaulay Modules and Tate Cohomology.” In Maximal

Cohen–Macaulay Modules and Tate Cohomology, vol. 262. Providence, RI: American Mathe-

matical Society, 2021.

[7] Darmon, H., F. Diamond, and R. Taylor. “Fermat’s Last Theorem.” In Elliptic Curves, Modular

Forms & Fermat’s Last Theorem, Hong Kong, 1993, pp. 2–140. Cambridge, MA: Int. Press,

1997.

[8] Diamond, F. “The Taylor-Wiles construction and multiplicity one.” Invent. Math. 128, no. 2

(1997): 379–91.

[9] Fakhruddin, N., C. Khare, and R. Ramakrishna. “Quantitative level lowering for Galois

representations.” J. Lond. Math. Soc. (2) 103, no. 1 (2021): 250–87.

[10] Fakhruddin, N. and C. B. Khare. “A formula of Venkatesh.” (2021): preprint.

[11] Hida, H. “On congruence divisors of cusp forms as factors of the special values of their zeta

functions.” Invent. Math. 64, no. 2 (1981): 221–62.

[12] Iyengar, S. “André-Quillen Homology of Commutative Algebras.” In Interactions Between

Homotopy Theory and Algebra, vol. 436. Providence, RI: Amer. Math. Soc., 2007,

pp. 203–34.

[13] Lenstra, Jr., H. W. “Complete Intersections and Gorenstein Rings.” In Elliptic Curves,

Modular Forms, & Fermat’s Last Theorem, Hong Kong, 1993, Ser. Number Theory, I,

pp. 99–109. Cambridge, MA: Int. Press, 1995.

[14] Ribet, K. A. “Modp Hecke operators and congruences between modular forms.” Invent. Math.

71, no. 1 (1983): 193–205.

[15] Taylor, R. and A. Wiles. “Ring-theoretic properties of certain Hecke algebras.” Ann. of Math.

(2) 141, no. 3 (1995): 553–72.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
5
2
/6

5
5
4
1
5
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
,  iy

e
n
g
a
r o

n
 2

5
 M

a
rc

h
 2

0
2
2



Wiles Defect for Modules and Criteria 23

[16] Venkatesh, A. “Derived version of Wiles’s equality.” (2016): preprint.

[17] Wiles, A. “Modular elliptic curves and Fermat’s last theorem.” Ann. of Math. (2) 141, no. 3

(1995): 443–551.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
5
2
/6

5
5
4
1
5
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
,  iy

e
n
g
a
r o

n
 2

5
 M

a
rc

h
 2

0
2
2


	 Wiles Defect for Modules and Criteria for Freeness
	1 Introduction
	2 The Category CO
	3 Congruence Modules
	4 Criteria for Freeness
	5 Venkatesh's Formula


