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Abstract—In this letter, we introduce robust data-driven
control barrier functions (CBF-DDs) to guarantee robust
safety of unknown continuous control affine systems
despite worst-case realizations of generalization errors
from prior data under various continuity assumptions.
To achieve this, we leverage non-parametric data-driven
approaches for learning guaranteed upper and lower
bounds of an unknown function from the data set to formu-
late/obtain a safe input set for a given state. By incorporat-
ing the safe input set into an optimization-based controller,
the safety of the system can be ensured. Moreover, we
present several complexity reduction approaches includ-
ing providing subproblems that can be solved in parallel
and downsampling strategies to improve computational
performance.

Index Terms—Constrained control, identification for con-
trol, optimization.

I. INTRODUCTION

IN RECENT years, various control approaches have been
developed to guarantee system safety, in addition to

stability, especially for safety-critical applications such as
bipedal robots, multi-agent systems, and adaptive cruise con-
trol systems. Specifically, a huge body of research proposed
set invariance-based techniques, including designing barrier
certificates, e.g., [1], and control barrier functions (CBFs),
e.g., [2], to encode the forward controlled invariance of
safety sets. However, disturbances, noise, and parameter
uncertainties are inevitable and the assumption that known
(parametric) mathematical models of the system dynamics is
accessible is not always justifiable in real-world applications.
Hence, addressing safety for systems with (partially) unknown
dynamical models, including with the CBF framework, is an
interesting and challenging problem.
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Literature review: In the context of systems with uncer-
tain/noisy but known (parametric) models, the work in [3],
[4] studied the robustness of CBFs to additive perturbations
and model uncertainty. Further, adaptive/robust adaptive CBFs
were introduced in [5], [6] to estimate the unknown parameters
by means of adaptation laws, while [7] additionally investi-
gated the fixed-time convergence of parameter estimates under
persistence of excitation. On the other hand, robust CBFs were
proposed, e.g., in [8], for ensuring safety of all possible values
of parametric uncertainties, with the price of potentially being
conservative. Further, the work in [9] considered robustness to
both additive disturbances and state estimation errors.

On the other hand, when models of systems are unknown
but input-output data sets are instead available, data-driven
methods also need to be developed for maintaining system
safety. The majority of data-driven CBF approaches rely on
first identifying or learning the unknown dynamical mod-
els or their deviations from some assumed nominal models
from data, e.g., using neural networks and reinforcement
learning [10], [11], polynomial [12] or Gaussian process
regression [13], [14], [15], and using these data-driven models
to ensure safety. However, these methods often only provide
probabilistic safety guarantees instead of being robust to worst-
case generalization errors, i.e., the out-of-sample difference
between the true system and learned models, that, although
unlikely, may still lead to safety violations.

An interesting recent work [16] explicitly considered robust-
ness to worst-case generalization errors using control cer-
tificate functions by assuming Lipschitz continuity of the
deviation between the unknown dynamics and an assumed
nominal model, but when incorporated into an optimization-
based controller, the resulting second-order cone problems
(SOCPs) are often not amenable to run-time implementation.
This approach generally falls under the umbrella of non-
parametric learning approaches, where no functional forms or
features (e.g., linear, control-affine, polynomial or Gaussian)
are assumed and the number of parameters are not fixed but
grows with the size of data sets. More importantly, many
non-parametric learning approaches enable the worst-case gen-
eralization errors to be bounded (independently of the number
of data points) under some continuity assumptions such as
Lipschitz or Hölder continuity or bounded Jacobians, e.g.,
[17], [18], [19], which we will leverage in this letter to
obtain robust data-driven CBFs that are more computationally
amenable.

Contributions: This letter proposes robust data-driven con-
trol barrier functions (CBF-DD) that can guarantee (global)
robust safety despite worst-case generalization errors when
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only data sets of (safe/unsafe) demonstrations of unknown
dynamical systems are available. In contrast to state-of-the-
art techniques, e.g., [16], our proposed CBF-DD is a novel
end-to-end method that directly learns sufficient conditions
for making a CBF candidate controlled invariant, instead
of first learning the system dynamics or (worst-case) devia-
tions from assumed nominal models before enforcing safety
via CBFs. Moreover, we consider various continuity assump-
tions when developing our robust CBF-DD by leveraging our
prior experience with computing robust data-driven models
[19], [20]. The corresponding sufficient conditions for data-
driven robust controlled invariance can also be encoded within
an optimization-based controller and are often less computa-
tionally intensive than solving SOCPs in [16]. Further, since
our approach falls under the umbrella of non-parametric learn-
ing that are known to not scale well with the size of the data
sets, we also propose several computational complexity reduc-
tion approaches, namely parallelization and downsampling
strategies. The effectiveness of our approach is demonstrated
on various examples, including for adaptive cruise control.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations and Definitions
Rn,R+,R≥0 and Z+

n represent a set of real numbers of
dimension n, a set of non-negative and positive real numbers,
and a set of positive integers up to n, respectively. In rep-
resents an identity matrix of size n and 0m×n represents a
matrix of zeros of size m × n. Moreover, for a vector/matrix
M, M+ ! max{M, 0} and M− ! M+ − M with element-
wise maximum, and vector inequalities are also element-wise.
Further, a continuous function α: [0, a) → R+ with a ∈ R+
is a class K function if it is strictly monotonically increasing
and α(0) = 0, and is a class K∞ function if it is a class K
function with a = ∞ and limx→∞ α(x) = ∞.

We will rely on the following proposition (that slightly
generalizes [21, Lemma 1]) to later prove Theorem 2.

Proposition 1: Let x ≤ x ≤ x ∈ Rn and A ∈ Rm×n be
decomposed as A = Au − Al for any Au, Al ≥ 0. Then,

Aux − Alx ≤ A+x − A−x ≤ Ax
≤ A+x − A−x ≤ Aux − Alx.

Proof: It follows from [21, Lemma 1] and the fact that
Au, Al ≥ 0, Aux ≤ Aux ≤ Aux and Alx ≤ Ax ≤ Alx ⇔
−Alx ≤ −Ax ≤ −Alx. It then follows from summing up these
two inequalities that Aux − Alx ≤ Ax ≤ Aux − Alx. Further,
again by [21, Lemma 1], it follows that A+x − A−x ≤ Ax ≤
A+x − A−x. Moreover, it has been shown in [22, Lemma 1]
that these bounds are tighter than any other possible bounds.
All these together return the results.

B. Control Barrier Function Fundamentals
Our work builds upon the concept of control barrier func-

tions in the literature that enforce safety using controlled
forward invariance of a safety set. Hence, in the following,
we first recap the fundamentals of control barrier functions
for known control affine systems, given by

ẋ = f (x) + g(x)u, (1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are state and input
vectors, respectively, with known functions f and g and the
set U can be used to capture (convex) input constraints.

Definition 1 (Control Barrier Functions [2]): Let S ⊆ X
be the superlevel set of a continuously differentiable function
h : X → R, i.e., S ! {x ∈ X | ∃u ∈ U s.t. h(x) ≥ 0}. Then, h
is a control barrier function (CBF) if there exists an extended
class K∞ function α such that for the control system (1),

sup
u∈U

ḣ(x, u) ≥ −α(h(x)), (2)

for all x ∈ X , where ḣ(x, u) = ∇h(x).f (x) + ∇h(x).g(x)u.
Theorem 1 (Safety With CBF [2]): For an known control

affine system (1) with a CBF h : X → R defined in
Definition 1 and the associated safety set S , any Lipschitz
continuous controller u(x) that satisfies (2) for the system (1)
renders the set S controlled invariant (thus, safe).

Furthermore, given any (legacy) feedback controller u =
k(x) ∈ U for the nonlinear control affine system (1), in order
to minimally modify the controller while guaranteeing safety,
the following optimization problem can be considered [2]:

u(x) = arg minu∈U
1
2
‖u − k(x)‖2

2 (3a)

s.t. ḣ(x, u) ≥ −α(h(x)), (3b)

where (3b) is derived from (2).

C. Problem Formulation
In this letter, we consider an unknown nonlinear control

affine system that is similarly given by (1) with an input con-
straint set U , but with unknown continuous functions f and
g, which is common in the real-world setting since accurate
mathematical models are often unavailable or hard to obtain.
Instead, we assume that a candidate CBF h and prior data of
the system operation are available, as follows.

Assumption 1: A continuously differentiable candidate
CBF h : X → R and an a priori collected input-output data set
D = {(ḣ(xi, ui), xi, ui)}N

1 with xi ∈ X , ui ∈ U , i = 1, . . . , N,
from the unknown system (1) are available. For convenience,
we denote ḣ(xi, ui) as ḣi.

Remark 1: The assumption of measured ḣ(xi, ui) is mainly
for ease of exposition. In practice, ḣ(xi, ui) = ∂h

∂x (xi)(f (xi) +
g(xi)ui) is unknown even when h(xi) and ∂h

∂x (xi) is known since
f and g are unknown, but can be obtained/computed from
time series/trajectory data of h(t) and/or x(t), e.g., using finite
difference, and if needed, the errors introduced by applying
finite difference can be considered as noise and incorporated
in the learning process. Interested readers are referred to [19],
[20] for more details.

Note that the candidate CBF h can be any desired safety
condition, e.g., lane keeping with desired maximum acceler-
ation [2]; thus, it is reasonable and realistic to assume that
h is known even when the system dynamics is not. Further,
note that we do not assume knowledge of the function ḣ(x, u),
even when {ḣ(xi, ui)} is measured or approximated. Thus, the
constraints in (2) and (3b) cannot be directly enforced. In
light of the above, instead of first learning the functions ẋ
from data (as is commonly done in the literature), this let-
ter proposes to directly learn the function ḣ(x, u) from data
(cf. Assumption 1). The benefit of doing this end-to-end
process is that only a 1-dimensional function ḣ(x, u) needs
to be learned instead of an n-dimensional function ẋ; thus,
the resulting robust data-driven CBF is simpler and more
computationally efficient.
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In particular, we wish to learn an over-approximation of the
function ḣ(x, u) such that its generalization errors can be char-
acterized. For this, we will employ non-parametric learning
approaches under some continuity assumptions.

Assumption 2 (Several Continuity Cases): The function
ḣ : X × U → R is

I globally Lipschitz continuous with known Lipschitz con-
stants Lx ∈ R≥0 and Lu ∈ R+, i.e., |ḣ(x′, u′) −
ḣ(x′′, , u′′)| ≤ Lx‖x′ − x′′‖p + Lu‖u′ − u′′‖p, with p ∈
{1, 2, . . . ,∞},

II globally componentwise Lipschitz continuous with
known componentwise Lipschitz constants Lx ∈ Rn

≥0
and Lu ∈ Rm

+, i.e., |ḣ(x′, u′)− ḣ(x′′, u′′)| ≤ L.
x |x′ − x′′|+

L.
u |u′ − u′′|, and/or

III differentiable with respect to x and u with globally
bounded Jacobians with known finite-valued matrices
J, J ∈ Rn+m

≥0 , i.e., J ≤ ∇ḣ(x, u) ≤ J,
for all x′, x′′ ∈ X ⊆ Rn and u′, u′′ ∈ U ⊆ Rm, where all
inequalities and absolute values are componentwise.

A sufficient condition for the above continuity assumptions
to hold for ḣ is that they also hold for h, f and g. Moreover,
when p = 1, Assumptions 2-II) and 2-III) are less restrictive
than 2-I) (cf. Proposition 3).

Then, the problem we seek to address in this letter can be
formally stated as follows.

Problem 1 (Robust Data-Driven CBF (CBF-DD)): Given
a nonlinear unknown control affine system (1) as well as a
continuously differentiable CBF candidate h : Rn → R sat-
isfying one of the continuity assumptions in Assumption 2
and an a priori data set satisfying Assumption 1, find suf-
ficient conditions for the robust controlled invariance of the
safe set S ! {x ∈ X | ∃u ∈ U s.t. h(x) ≥ 0} (with state feed-
back), i.e., the controlled invariance of S despite worst-case
generalization errors.

A CBF candidate h that satisfies the robust controlled invari-
ance condition using (only) data is called a robust data-driven
control barrier function (CBF-DD).

III. MAIN RESULTS

In this section, we derive CBF-DDs under some continuity
assumptions (cf. Assumption 2), and provide and categorize
the corresponding optimization problems for optimization-
based control in terms of their computational complexity.

A. Data-Driven Control Barrier Functions (CBF-DDs)
First, we define CBF-DDs for the various continuity cases.
1) Case I (Lipschitz Continuous): We begin with the glob-

ally Lipschitz continuous case in Assumption 2-I). From
definition, we can directly obtain a CBF-DD for this case using
Lipschitz interpolation [20].

Definition 2 (CBF-DD-L): For an unknown control
affine system (1) with input-output data set D satisfy-
ing Assumption 1, a continuously differentiable function
h : X → R whose time-derivative ḣ satisfies Assumption 2-I)
is a Lipschitz robust data-driven control barrier function (CBF-
DD-L) for the safety set S ! {x ∈ X | ∃u ∈ U s.t. h(x) ≥ 0},
if there exists a class K∞ function α(·) such that

sup
u∈U

max
i∈Z+

N

ḣi − Lx‖x − xi‖p − Lu‖u − ui‖p ≥ −α(h(x)),

for all x ∈ X and t ≥ 0. Moreover, for any x ∈ S , we define
the corresponding safe input set:

KL
S(x) = {u ∈ ∪N

i=1U
L
i (x)}, (4)

where UL
i (x) is defined as follows:

UL
i (x) ! {u|ḣi − Lx‖x − xi‖p − Lu‖u − ui‖p ≥ −α(h(x))}.

2) Case II (Componentwise Lipschitz Continuous): Next, we
consider the globally componentwise Lipschitz continuous
case in Assumption 2-II). From definition, we can directly
obtain a CBF-DD for this case using componentwise Lipschitz
interpolation [19].

Definition 3 (CBF-DD-CL): For an unknown control
affine system (1) with input-output data set D satisfy-
ing Assumption 1, a continuously differentiable function
h : X → R whose time-derivative ḣ satisfies Assumption 2-II)
is a componentwise Lipschitz robust data-driven con-
trol barrier function (CBF-DD-CL) for the safety set
S ! {x ∈ X | ∃u ∈ U s.t. h(x) ≥ 0}, if there exists a class
K∞ function α(·) such that

sup
u∈U

max
i∈Z+

N

ḣi − L.
x |x − xi| − L.

u |u − ui| ≥ −α(h(x)),

for all x ∈ X and t ≥ 0. Moreover, for any x ∈ S , we define
the corresponding safe input set:

KCL
S (x) = {u ∈ ∪N

i=1U
CL
i (x)}, (5)

where UCL
i (x) is defined as follows:

UCL
i (x) ! {u|ḣi − L.

x |x − xi| − L.
u |u − ui| ≥ −α(h(x))}.

3) Case III (Bounded Jacobians): Finally, we consider the
globally bounded Jacobian case in Assumption 2-III). From
definition and by leveraging Proposition 1, we can obtain two
CBF-DD variants for this case using results from [19].

Definition 4 (CBF-DD-J1): For an unknown control
affine system (1) with input-output data set D sat-
isfying Assumption 1, a continuously differentiable
function h : X → R whose time-derivative ḣ satisfies
Assumption 2-III) is a bounded Jacobian robust data-driven
control barrier function (CBF-DD-J1) for the safety set
S ! {x ∈ X | ∃u ∈ U s.t. h(x) ≥ 0}, if there exists a class
K∞ function α(·) such that

sup
u∈U

max
i∈Z+

N

ḣi + Jx#x+
i − Jx#x−

i
+Ju#u+

i − Ju#u−
i

≥ −α(h(x)),

for all x ∈ X and t ≥ 0, where #xi ! x−xi and #ui ! u−ui.
Moreover, for any x ∈ S , we define the corresponding safe
input set:

KJ1
S (x) = {u ∈ ∪N

i=1U
J1
i (x)}, (6)

where UJ1
i (x) is defined as follows:

UJ1
i (x) ! {u|ḣi + Jx#x+

i − Jx#x−
i + Ju#u+

i

− Ju#u−
i ≥ −α(h(x))}. (7)

Definition 5 (CBF-DD-J2): For an unknown control
affine system (1) with input-output data set D sat-
isfying Assumption 1, a continuously differentiable
function h : X → R whose time-derivative ḣ satisfies
Assumption 2-III) is a bounded Jacobian robust data-driven
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control barrier function (CBF-DD-J2) for the safety set
S ! {x ∈ X | ∃u ∈ U s.t. h(x) ≥ 0}, if there exists a class
K∞ function α(·) and auxiliary (decision) variables u⊕

i , u3
i

such that

sup u∈U ,
u⊕

i ,u3
i

maxi∈Z+
N

ḣi + Jx#x+
i − Jx#x−

i + Juu⊕
i − Juu3

i

s.t. u⊕
i ≥ 0, u3

i ≥ 0, u⊕
i − u3

i = u − ui

≥ −α(h(x)),

for all x ∈ X and t ≥ 0, where #xi ! x − xi. Moreover, for
any x ∈ S , we define the corresponding safe input set:

KJ2
S (x) = {u ∈ ∪N

i=1U
J2
i (x)}, (8)

where UJ2
i (x) is defined as follows:

UJ2
i (x) ! {u|ḣi + Jx#x+

i − Jx#x−
i + Juu⊕

i − Juu3
i

≥ −α(h(x)), u⊕
i ≥ 0, u3

i ≥ 0, u⊕
i − u3

i = u − ui}. (9)

These CBF-DDs are then shown to guarantee robust safety.
Theorem 2 (Robust Safety with CBF-DD-φ): For an

unknown control affine system (1) with input-output data
set D satisfying Assumption 1, a CBF-DD-φ with φ ∈
{L, CL, J1, J2}, h : X → R, as defined in Definitions 2–5,
respectively, and their associated safety sets S , any Lipschitz
continuous controller u(x) ∈ Kφ

S(x) for the system (1) render
the set S robustly controlled invariant.

Proof: We prove the results for each φ:
I φ = L: Lipschitz interpolation approaches, e.g., [20],

ensure that despite worst-case generalization errors,

ḣ(x, u) ≥ max
i∈Z+

N

ḣi − Lx‖x − xi‖p − Lu‖u − ui‖p.

II φ = CL: From the definition of componentwise
Lipschitz continuity (cf. Assumption 2-II)), the follow-
ing holds despite worst-case generalization errors:

ḣ(x, u) ≥ max
i∈Z+

N

ḣi − L.
x |x − xi| − Lu|u − ui|.

III φ = J1 or J2: From the learning approach for bounded
Jacobian functions in [19] and Proposition 1, despite
worst-case generalization errors, we have

ḣ(x, u) ≥ max
i∈Z+

N

ḣi + Jx#x+
i − Jx#x−

i + Ju#u+
i − Ju#u−

i

≥ max
i∈Z+

N

ḣi + Jx#x+
i − Jx#x−

i + Juu⊕
i − Juu3

i , (10)

where #xi ! x − xi, #ui ! u − ui, u⊕
i , u3

i ≥ 0 and
u⊕ − u3 = u − ui = #ui.

Thus, for all cases, the constraint in (2) holds and robust
controlled invariance follows from Theorem 1.

The generalization error for each of the above cases can be
defined as the difference between the left and right hand sides
of the inequalities in the proof. As the data size increases (to
more densely cover the entire X and U), the generalization
error decreases. More importantly, since we bound the right
hand side by −α(h(x)), ḣ(x, u) is always robustly bounded,
independently of the data size or sampling procedure.

B. Optimization-Based Controller and Problem Classes
Next, equipped with the various CBF-DDs in the previous

section, we can directly obtain an optimization-based con-
troller that to slightly perturb any (legacy) feedback controller
to guarantee safety in the exact same way as (3), except

that the constraint in (3b) is replaced by u ∈ Kφ
S(x), φ ∈

{L, CL, J1, J2} from (4), (5), (6) or (8).
Moreover, we show that despite the controlled invariance

condition for CBF-DD-J2 being more conservative than the
one for CBF-DD-J1, as seen in (10), there is no loss of opti-
mality for an optimization-based controller (3) with (3b) using
u ∈ KJ2

S (x) when compared to using u ∈ KJ1
S (x).

Proposition 2: The solution to the optimization-based con-
troller (3) with (3b) replaced by u ∈ KJ1

S (x) (cf. (6)) is equiv-
alent to the solution to the optimization-based controller (3)
with (3b) replaced by u ∈ KJ2

S (x) (cf. (8)).
Proof: This can be proved by showing that the UJ1

i (x)
defined in (7) is same as the UJ2

i (x) constrained by (9).
First, we prove ∀u ∈ UJ1

i (x), u ∈ UJ2
i (x). For any u ∈

UJ1
i (x), u⊕ and u3 can be selected as (u − ui)

+ and (u − ui)
−

respectively, so that u satisfies (9).
Next, we prove ∀u /∈ UJ1

i (x), u /∈ UJ2
i (x). Since u /∈ UJ1

i (x),
ḣi+Jx#x+

i −Jx#x−
i +Ju#u+

i −Ju#u−
i < −α(h(x)). According

to Proposition 1, ḣi + Jx#x+
i − Jx#x−

i + Juu⊕ − Juu3 ≤
ḣi + Jx#x+

i − Jx#x−
i + Ju#u+

i − Ju#u−
i < −α(h(x)), which

means that there does not exist any u⊕ and u3 such that (9)
can be satisfied for u /∈ UJ1

i (x), i.e., u /∈ UJ2
i (x).

In addition, we derive the relationship between the safe
input sets for different CBF-DDs given the same data set.

Proposition 3: Given the same data point (ḣ(xi, ui), xi, ui),
the same comparison function α(·) and p is chosen to be 1 for
UL

i (x), then UL
i (x) ⊆ UCL

i (x) ⊆ UJ1
i (x) = UJ2

i (x).
Consequently, given the same data set D and if p = 1 in

KL
S(x), then KL

S(x) ⊆ KCL
S (x) ⊆ KJ1

S (x) = KJ2
S (x).

Proof: From [19, Th. 2], we have ḣi −Lx‖x−xi‖1 −Lu‖u−
ui‖1 ≤ ḣi − L.

x |x − xi| − L.
u |u − ui| ≤ ḣi + Jx#x+

i − Jx#x−
i +

Ju#u+
i − Ju#u−

i , and thus the above result.
Further, note that the “choice” of the CBF-DDs correspond-

ing to different continuity assumption leads to different classes
of optimization problems with different corresponding com-
putational complexity (see, e.g., [23] and references therein,
for a full discussion on complexity analysis for each class of
problems). This is an important point since one of the biggest
appeals of the standard CBF is its simplicity with the need to
only solve a quadratic program (QP) at run time. By contrast,
the data-driven approach in [16] involves a second-order cone
program (SOCP) that may not be as amenable for real-time
implementation. In particular, if p = 2 for Case I, then the
associated optimization-based controller with CBF-DD-L is
a mixed-integer quadratically constrained quadratic program
(MIQCQP) and if p = 1 or p = ∞, it becomes a mixed-
integer quadratic program (MIQP). The reason for the presence
of integers is because union operations are often encoded
using integer constraints. Similarly, in Case II, the associated
optimization problem with CBF-DD-CL is an MIQP, where the
absolute value operators incur additional integer constraints.
Finally, in Case III, the optimization-based controllers with
CBF-DD-J1 and CBF-DD-J2 are both MIQPs but the variant
with DDJ1 incurs additional integer constraints associated with
the maximum operator in the definition of #u+

i and #u−
i .

Mixed-integer convex optimization problems can be quite
computationally expensive; hence, in the next section, we will
describe complexity reduction techniques, including one to
reduce the mixed-integer convex problems to a (small) set
of convex optimization problems by specifically targeting the
union operator that incurs integer constraints. With this addi-
tional step, it can then be shown that using CBF-DD-L with
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p = 2 only involves quadratically constrained quadratic pro-
grams (QCQPs) and using CBF-DD-L with p = 1 or p = ∞
reduces to a QP. Further, using CBF-DD-J1 also still involves
MIQPs due to maximum operators, but with CBF-DD-J2, it
only involves QPs. Finally, the use of CBF-DD-CL still leads
to MIQPs due to the presence of absolute value operators, but
since they can be seen as a special case of Case III (including
CBF-DD-J2) with J = −J = L, it can be solved using QPs
similar to CBF-DD-J2.

Note that the observation that CBF-DD-J2 only involves
QPs coupled with Proposition 2 implies that the use of
CBF-DD-J2 is superior to using CBF-DD-J1 in terms of com-
putational complexity and they are equivalent in terms of the
obtained solution. Moreover, the use of CBF-DD-J2, CBF-DD-
CL and CBF-DD-L with p = 1 or p = ∞ that only involves
QPs potentially also require less computational time than the
approach in [16] that involves SOCPs.

Remark 2: The Lipschitz constants/Jacobian bounds are not
required to be minimal or tight, but smaller/tighter Lipschitz
constants/Jacobian bounds can improve the performance of
robust data-driven CBF methods. Moreover, if unknown, the
Lipschitz constants/Jacobian bounds can be estimated from
data with high probability from a sufficiently large data set
by leveraging probably approximately correct (PAC) learn-
ing theory. More details on the estimation approach and the
application of PAC learning can be found in [18], [19], [20].

Remark 3: For a continuously differentiable robust con-
trol Lyapunov function V for the unknown control affine
system (1), if V̇(x, u) is as assumed in Assumption 2 and
a data set {(V̇(xi, ui), xi, ui)}N

1 with xi ∈ X , i = 1, . . . , N is
available, similar techniques to the ones proposed in this letter
can also be applied to ensure robust stabilization using robust
data-driven control Lyapunov functions.

IV. COMPLEXITY REDUCTION STRATEGIES

Solving the resulting optimization-based controllers using
CBF-DDs can often be computationally expensive; hence, this
section will introduce two strategies that can significantly
reduce the complexity of the resulting optimization problems.

A. Simplified Implementation
First, we propose a method to break down the optimization

problem in (3) with data-driven CBFs into multiple subprob-
lems that can be solved in parallel (if desired) and to recover
the optimal control input from the subproblems’ solutions.

Specifically, we consider the following subproblems.
Definition 6 (CBF-DD-sub): Consider a data point

(ḣi, xi, ui) in the data set D = {(ḣi, xi, ui)}N
1 that satis-

fies Assumption 1, a continuously differentiable function
h : X → R, a class K∞ function α(·) and any controller
u = k(x), we can find the ui that is closest to the u in the
safe input set Ui(x) by solving the following optimization
problem:

u∗
i (x) = arg minu

1
2
‖u − k(x)‖2

2 (11a)

s.t. u ∈ Uφ
i (x). (11b)

with Uφ
i (x),φ ∈ {L, CL, J1, J2} based on the given continuity

case in Assumption 2.

Fig. 1. CBF h(x) (left) and input u (right) trajectories for the inverted
pendulum example. The CCF result is obtaining by applying the
approach in [16].

Since all u∗
i are independent to each other, they can be

computed in parallel. After obtaining u∗
i for i = 1, . . . , N by

solving (11), the u(x) can be selected by:

u(x) = arg minu∈{u∗
1(x),...,u∗

N (x)}
1
2
‖u − k(x)‖2

2. (12)

In practice, (11) need not be feasible for all data points and
u∗

i can be set to be ∞ when U%
i (x) = ∅.

B. Downsampling Method
Finally, we can rely on the following proposition to further

reduce the complexity of the problem.
Proposition 4 (Monotonicity): The safe input sets in

Definitions 2–5 satisfy monotonicity, in the sense that given
two data sets D and D′ and their corresponding safe input sets
KS(x) and K′

S(x), D′ ⊆ D implies that K′
S(x) ⊆ KS(x).

Proof: Let I and I′ be the set of indices corresponding to
data points included in D and D′. Then D′ ⊆ D ⇒ I′ ⊆ I ⇒
K′
S(x) = {u ∈ ∪i∈I′Ui} ⊆ KS(x) = {u ∈ ∪i∈IUi}.
By Proposition 4, we can apply downsampling meth-

ods, e.g., kNN and clustering method (cf. [20] for exam-
ples), to reduce the number of constraints in the original
optimization problem (3) with (3b) replaced by CBF-DD-
φ, φ ∈ {L, CL, J1, J2} (cf. Theorem 2) or the number of
corresponding subproblems (11), thus reducing computation
without losing robust safety of the CBF-DDs.

V. SIMULATION EXAMPLES

We evaluate the proposed methods on two examples that
are implemented in MATLAB and solved using Gurobi on a
2.2 GHz Intel Core i7 CPU with 16 GB RAM.

A. Inverted Pendulum
We first consider an inverted pendulum whose true system

dynamics (with g = 10, l = 0.7, m = 0.7), CBF (h(x) = 0.2−
x.Px with P =

[√
3 1

1
√

3

]
) and comparison function (α(r) =

0.268r) are the same as described in [16]. We also adopt the
same controller (with Lyapunov function V(x) = x.Px) and
data set (with θ ∈ [0, 1], θ̇ ∈ [ − 0.25, 0.25] with grid sizes
0.025). The system is simulated with an initial condition of
x0 = [0.1, 0.1]. for 10 seconds with control inputs given at
100 Hz. For the CBF-DD-L method, p = 1.

From Figure 1, we observe that safety is maintained with
both CBF-DD-CL and CBF-DD-J2 (while the states are stabi-
lized), albeit with very slight input chattering that presumably
is due to the non-smooth nature (due to max operators) of
CBF-DD conditions. In comparison, the approach in [16]
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TABLE I
CPU TIME COMPARISON FOR DIFFERENT METHODS

Fig. 2. CBF h(x) (left) and velocity v (right) trajectories for the ACC-TTC
example with fixed vl = 13.89.

appeared to allow the states to go closer to the safety bound-
aries. Further, we compared the computation/CPU time of the
various proposed methods for the entire trajectories. From
Table I, solving CBF-DD-J2 (involving QP subproblems) was
faster than other CBF-DDs that solve MIQP subproblems,
and they are all approximately 100 times faster than the
SOCP-based approach in [16].

B. Adaptive Cruise Control With Safe Time-to-Collision
We consider the adaptive cruise control of self-driving cars

with similar dynamics as [5] with system parameters from [2],
but with a given lead vehicle velocity vl = 13.89 and a CBF,
h(D, v) = D − Tc(v − vl), which is derived from time-to-
collision (TTC) safety constraint with Tc = 1.8 as the time-to-
collision. Moreover, we consider a control Lyapunov function
V = (v − vd)

2 to enable tracking of a desired velocity vd =
40, when possible. The data set is obtained by gridding the
state and input space (i.e., v ∈ [11.5, 24], D ∈ [0, 100] and
u ∈ [−10, 10]) with 10 grids per dimension.

We tested both the CBF-DD-CL and CBF-DD-J2 methods
using an initial condition of x0 = [16, 50].. CBF-DD-CL
(that is more conservative than CBF-DD-J2, cf. Proposition 3)
was infeasible, thus, incapable of guaranteeing safety, with the
same amount of data (hence, not depicted), while CBF-DD-J2
was able to guarantee safety, as shown in Figure 2.

VI. CONCLUSION

In this letter, we proposed robust data-driven control bar-
rier functions to guarantee robust safety of unknown con-
trol affine systems under several continuity assumptions. We
leveraged non-parametric data-driven approaches to provide
guaranteed lower bounds of the robust controlled invariance
condition despite worst-case generalization errors. By incor-
porating the corresponding safe input set into an optimization-
based controller, the safety of the unknown system can
be ensured. We additionally presented several complexity
reduction approaches (i.e., parallel subproblems and down-
sampling strategies) to improve computational performance.
As expected, our proposed approaches are observed to guar-
antee robust safety in all our simulation examples, including
for adaptive cruise control of (semi-)autonomous vehicles.

REFERENCES

[1] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case
and stochastic safety verification using barrier certificates,” IEEE Trans.
Autom. Control, vol. 52, no. 8, pp. 1415–1428, Aug. 2007.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[3] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of
control barrier functions for safety critical control,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 54–61, 2015.

[4] S. Kolathaya and A. D. Ames, “Input-to-state safety with control bar-
rier functions,” IEEE Control Syst. Lett., vol. 3, no. 1, pp. 108–113,
Jan. 2019.

[5] A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier
functions,” in Proc. Amer. Control Conf., 2020, pp. 1399–1405.

[6] B. T. Lopez, J.-J. E. Slotine, and J. P. How, “Robust adaptive control
barrier functions: An adaptive and data-driven approach to safety,” IEEE
Control Syst. Lett., vol. 5, no. 3, pp. 1031–1036, Jul. 2021.

[7] M. Black, E. Arabi, and D. Panagou, “A fixed-time stable adaptation
law for safety-critical control under parametric uncertainty,” in Proc.
Eur. Control Conf. (ECC), 2021, pp. 1323–1328.

[8] M. Jankovic, “Robust control barrier functions for constrained sta-
bilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367,
Oct. 2018.

[9] K. Garg and D. Panagou, “Robust control barrier and control Lyapunov
functions with fixed-time convergence guarantees,” in Proc. Amer.
Control Conf. (ACC), 2021, pp. 2292–2297.

[10] J. Choi, F. Castaneda, C. J. Tomlin, and K. Sreenath, “Reinforcement
learning for safety-critical control under model uncertainty, using control
Lyapunov functions and control barrier functions,” in Proc. Robot. Sci.
Syst. (RSS), 2020, pp. 1–9.

[11] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “Learning for
safety-critical control with control barrier functions,” in Proc. Learn.
Dyn. Control, 2020, pp. 708–717.

[12] A. Nejati, B. Zhong, M. Caccamo, and M. Zamani, “Data-driven
controller synthesis of unknown nonlinear polynomial systems via con-
trol barrier certificates,” in Proc. Learn. Dyn. Control Conf., 2022,
pp. 763–776.

[13] P. Jagtap, G. J. Pappas, and M. Zamani, “Control barrier functions for
unknown nonlinear systems using Gaussian processes,” in Proc. IEEE
Conf. Decis. Control (CDC), 2020, pp. 3699–3704.

[14] V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov,
“Control barriers in Bayesian learning of system dynamics,” IEEE Trans.
Autom. Control, vol. 68, no. 1, pp. 214–229, Jan. 2023.

[15] F. Castañeda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath,
“Pointwise feasibility of Gaussian process-based safety-critical control
under model uncertainty,” in Proc. IEEE Conf. Decis. Control (CDC),
2021, pp. 6762–6769.

[16] A. J. Taylor, V. D. Dorobantu, S. Dean, B. Recht, Y. Yue, and
A. D. Ames, “Towards robust data-driven control synthesis for non-
linear systems with actuation uncertainty,” in Proc. IEEE Conf. Decis.
Control (CDC), 2021, pp. 6469–6476.

[17] Z. Zabinsky, R. Smith, and B. Kristinsdottir, “Optimal estimation of
univariate black-box Lipschitz functions with upper and lower error
bounds,” Comput. Oper. Res., vol. 30, no. 10, pp. 1539–1553, 2003.

[18] J. Calliess, “Conservative decision-making and inference in uncertain
dynamical systems,” Ph.D. dissertation, Dept. Eng. Sci., Univ. Oxford,
Oxford, U.K., 2014.

[19] Z. Jin, M. Khajenejad, and S. Z. Yong, “Data-driven abstraction and
model invalidation for unknown systems with bounded Jacobians,” IEEE
Control Syst. Lett., vol. 6, pp. 3421–3426, 2022.

[20] Z. Jin, M. Khajenejad, and S. Z. Yong, “Data-driven model invalidation
for unknown Lipschitz continuous systems via abstraction,” in Proc.
Amer. Control Conf. (ACC), 2020, pp. 2975–2980.

[21] D. Efimov, T. Ra’́ıssi, S. Chebotarev, and A. Zolghadri, “Interval state
observer for nonlinear time varying systems,” Automatica, vol. 49, no. 1,
pp. 200–205, 2013.

[22] M. Khajenejad and S. Z. Yong, “Simultaneous input and state interval
observers for nonlinear systems with rank-deficient direct feedthrough,”
in Proc. Eur. Control Conf., 2021, pp. 2311–2316.

[23] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex
Optimization: Analysis, Algorithms, and Engineering Applications.
Philadelphia, PA, USA: SIAM, 2001.

Authorized licensed use limited to: Northeastern University. Downloaded on May 06,2023 at 18:41:10 UTC from IEEE Xplore.  Restrictions apply. 


