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Data-Driven Abstraction and Model Invalidation
for Unknown Systems With Bounded Jacobians
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and Sze Zheng Yong , Member, IEEE

Abstract—In this letter, we consider data-driven
abstraction and model invalidation problems for unknown
nonlinear discrete-time dynamical systems with bounded
Jacobians, where only prior noisy sampled data of
the systems, instead of mathematical models, are
available. First, we introduce a novel non-parametric
learning approach to over-approximate the unknown
model/dynamics with upper and lower functions, i.e.,
to find model abstractions, under the assumption of
known bounded Jacobians. Notably, the resulting data-
driven models can be mathematically proven to be equal
to or more accurate than componentwise Lipschitz
continuity-based methods. Further, we show that the
resulting data-driven model can be used to determine its
(in)compatibility with a newly observed length-T output
trajectory, i.e., to (in)validate models, using a tractable
feasible check. Finally, we propose a method to estimate
the Jacobian bounds if they are not known or given.

Index Terms—Nonlinear systems identification, model
validation.

I. INTRODUCTION

MATHEMATICAL models of systems/processes are
often assumed to be known or available during system

design and analysis in most cyber-physical systems applica-
tions. However, since noise/disturbances and model uncertain-
ties are inevitable in the real world, it is often impossible
to compute the precise model of the complex dynamics. Even
when the models are known, abstraction approaches have been
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widely developed to approximate the original complex dynam-
ics of nonlinear, uncertain or hybrid systems, with simpler
dynamics. Hence, the development of methods for obtaining
accurate model abstractions from noisy sampled data will be
beneficial for control design and analysis.

Literature Review: The model (in)validation problem, i.e.,
to determine whether a finite sequence of experimental input-
output data can be generated by an admissible model set [1],
is crucial in many engineering applications such as model
identification and fault diagnosis [2], [3]. Similarly, when
mathematical models are available, abstraction approaches
have been widely studied for linear systems [4], nonlinear
systems [5], [6], uncertain affine and nonlinear systems [3],
and discrete-time hybrid systems [7] for the purpose of finding
simpler dynamics/models that retain most properties of interest
with the original system to reduce computational complexity.
However, these approaches are not applicable when accurate
mathematical models are unavailable.

On the other hand, in order to abstract, i.e., to over-
approximate unknown dynamics when (bounded) set-valued
uncertainties are considered, data-driven approaches have been
leveraged extensively over the last few years to take advan-
tage of observed/sampled input-output data for finding a set
of known systems that retain most properties of interest with
the unknown system dynamics [8], [9]. In this context, data-
driven approaches [10], [11] have been proposed to obtain
finite-state/symbolic abstractions. On the other hand, the work
in [12] proposes a recursive algorithm to compute upper and
lower bounding functions without state discretization for uni-
variate Lipschitz continuous unknown dynamics, while the
study in [13], [14] considered the extension to multivariate
functions. This technique was extended to Hölder continuous
unknown dynamics in [15]. In [16], the authors further consid-
ered componentwise Hölder continuous functions where the
contribution of each input to each output of the function is
independently counted.

Contributions: In this letter, we consider a novel conti-
nuity assumption in the form of bounded Jacobian matrices
that can be mathematically proven to lead to equivalent or
tighter data-driven abstractions when compared to abstractions
based on (componentwise) Lipschitz continuity assumptions.
Then, leveraging this approach to over-approximate/abstract
unknown dynamic systems from observed/sampled data, we
consider the data-driven model invalidation problem, where we
determine if a newly observed noisy length-T output trajectory
can be generated by the learned data-driven model/abstraction.
Note that while the proposed bounded Jacobian-based abstrac-
tion models may sometimes be more conservative than those
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based on componentwise Hölder continuity, the advantage of
this approach is that we obtain a data-driven model invalida-
tion algorithm that can be posed as a mixed-integer linear
feasibility check problem, instead of an intractable mixed-
integer nonlinear optimization problem. Further, when the
Jacobian bounds are unavailable, we design some offline
mixed-integer linear programs (MILP) to learn/estimate the
Jacobian bounds.

II. BACKGROUND

Notation: Rn,R+, IRn, IRn×m denote the n-dimensional
Euclidean space and the sets of positive real numbers, n-
dimensional real intervals and n by m interval matrices.
For v, w ∈ Rn, v(i) is the i-th element of v, ‖v‖p !
(
∑n

i=1 |v(i)|p)1/p, 1 ≤ p ≤ ∞, in particular, ‖v‖∞ !
max1≤i≤n v(i). v ≤ w is a component-wise inequality. For M ∈
Rp×q, M⊕ ! max(M, 0p×q), M( ! M⊕−M, |M| ! M⊕+M(

and M(i,j) denotes the (i, j)’th entry of M.
Next, we introduce some useful results that will be used

throughout this letter.
Proposition 1 [17, eq. (2.53)]: Let a ! [a, a], b ! [b, b] ∈

IR be real intervals. Then,

a * b ! {xy|x ∈ a, y ∈ b}
= [h(a, a, b, b) ≤ ab ≤ h(a, a, b, b)],

where h(·) and h(·) are defined as following:

h(a, a, b, b) ! min{ab, ab, ab, ab}, (1a)
h(a, a, b, b) ! max{ab, ab, ab, ab}. (1b)

Corollary 1: If the sign of a is known, the h(·) and h(·) in
Proposition 1 can be simplified as:

h(a, a, b, b) !






min{ab, ab}, a ≥ a ≥ 0,

min{ab, ab}, a ≥ 0 ≥ a,

min{ab, ab}, 0 ≥ a ≥ a,

(2a)

h(a, a, b, b) !






max{ab, ab}, a ≥ a ≥ 0,

max{ab, ab}, a ≥ 0 ≥ a,
max{ab, ab}, 0 ≥ a ≥ a.

(2b)

Proof: First, since we only consider proper intervals, we
have b ≤ b. Thus, when a ≥ a ≥ 0, then ab ≤ ab and
ab ≤ ab, thus, min{ab, ab} = ab and max{ab, ab} = ab. On
the other hand, when 0 ≥ a ≥ a, then ab ≥ ab and ab ≥ ab,
thus, min{ab, ab} = ab and max{ab, ab} = ab. The second
case with a ≥ 0 ≥ a can be similarly obtained.

Proposition 2: Let A ! [A, A] ∈ IRm×n and b ! [b, b] ∈
IRn be an interval matrix and an interval vector, respectively.
Then, the following inequalities hold:

g(A, A, b, b) ≤ Ab ≤ g(A, A, b, b),

where g(·) and g(·) are obtained via either of the following:
i) For i ∈ {1, . . . , m},

g(i)(A, A, b, b) !
n∑

j=1

h(A
(i,j)

, A(i,j), b
(j)

, b(j)), (3a)

g(i)(A, A, b, b) !
n∑

j=1

h(A
(i,j)

, A(i,j), b
(j)

, b(j)), (3b)

with h(·) and h(·) given in (1).

ii) g(A, A, b, b) ! A⊕b⊕ − A
⊕

b( − A(b
⊕ + A

(
b
(
, (4a)

g(A, A, b, b) ! A
⊕

b
⊕ − A⊕b

( − A
(

b⊕ + A(b(. (4b)

Proof: The results in (3) can be obtained by applying
Proposition 1 element-wise to bound Ab from below and above
and the bounds in (4) are derived in [18, Proposition 1].

A. Modeling Framework
We consider a noisy discrete-time nonlinear auto-regressive

dynamic system model G of (known) order ny (with time step
k ≥ 0):

yk+1 = f (sk) + wk, (5)
ỹk = yk + vk, (6)

where yk !
[
y(1)

k y(2)
k · · · y(m)

k

],
∈ Y ! [Yl,Yu] ⊂ IRm, sk !

[y(1)
k · · · y(m)

k · · · y(1)
k−ny+1 · · · y(m)

k−ny+1], ∈ S ! Yny ⊂ IRn with

n = mny and f (·) ! [f (1)(·) · · · f (i)(·) · · · f (m)(·)], with
f (i)(·) : Rn → R for all i ∈ {1 . . . m}, as well as process and
measurement noise signals wk ∈ W, vk ∈ V that are bounded,
i.e., W ! {wk | |w(i)

k | ≤ ε
(i)
w ,∀i ∈ {1, 2, . . . , m}},V !

{vk | |v(i)
k | ≤ ε

(i)
v ,∀i ∈ {1, 2, . . . , m}}, with ε

(i)
w , ε

(i)
v > 0.

Functions f i(·) are unknown but a noisy sampled data set
D = ⋃N

"=1 D" is available, consisting of N trajectories each
of length T" represented by D" = {ỹj,"|j = 0, . . . , T" − 1},
where ỹk," are noise corrupted measurements of yk," ∈ Y
according to (6). We further define noise corrupted input
s̃j," ! [(ỹj,")

, · · · (ỹj−ny+1,")
,], and ε

(i)
s as the upper bound

of |s(im)
j," − s̃(im)

j," | with ε
(i)
s = ε

(i)
v (i.e., εs = εv) for all

i ∈ {1, . . . , m}, j ∈ {ny, . . . , T" − 1} and " ∈ {1, . . . , N}. Then,
a concatenated data set D" ! {(s̃j,", ỹj+1,")|j = ny, . . . , T" −1}
can be constructed from D" for simplicity and similarly,
D = ⋃N

"=1 D".
Further, we assume the following about the function f :
Assumption 1: The vector-valued function f (·) is contin-

uous in its domain and the Jacobian matrix ∇f (·) of f is
bounded, i.e., there exists two finite-valued matrices Ju and
Jl such that Jl ≤ ∇f (x) ≤ Ju for all x in the domain of f .

B. Abstraction/Over-Approximation
The abstraction/over-approximation procedure aims to find

a pair of functions f and f to over-approximate the unknown
function f in the system dynamics in (5), i.e., f and f satisfy:

f (sk) ≤ f (sk) ≤ f (sk), ∀sk ∈ S,

and consequently, for all sk ∈ S, wk ∈ W , the system
dynamics in (5) is over-approximated by an abstraction model
H ! {f , f } satisfying:

f (sk) − εw ≤ yk+1 = f (sk) + wk ≤ f (sk) + εw. (7)

C. Length-T Behavior
Next, to introduce the model invalidation problem, we uti-

lize the definition in [2] of the length-T behavior of the original
unknown model G and the abstracted model H based on the
prior sampled data D, as follows.

Definition 1 (Length-T Behaviors of Original and
Abstracted Models G and H): The length-T behaviors
of the (unknown) original model G and the abstracted model
H are the sets of all length-T output trajectories compatible
with G and H, respectively, given by the sets
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BT(G) := {{ỹk}T−1
k=0 | ∃yk ∈ Y, wk ∈ W, vk ∈ V,

for k ∈ Z0
T−1, s.t. (5)–(6) hold}. (8)

BT(H) := {{ỹk}T−1
k=0 | ∃yk ∈ Y, wk ∈ W, vk ∈ V,

for k ∈ Z0
T−1, s.t. (6)–(7) hold}. (9)

Furthermore, by definition, BT(G) ⊆ BT(H).

III. PROBLEM STATEMENT

Equipped with definitions from the previous section, we
now state the data-driven model invalidation problem.

Problem 1 (Model Invalidation for G): Given a new noisy
output trajectory {ỹn

k}T−1
k=0 , an unknown target model G, for

which only prior sampled data DG is available, and an inte-
ger T , determine whether the trajectory belongs to the target
model, i.e., to determine if {ỹn

k}T−1
k=0 ∈ BT(G) holds.

However, solving Problem 1 is non-trivial since the exact
dynamics of original model G is not available. Thus, we pro-
pose to solve an auxiliary problem that provides a sufficient
solution to Problem 1. Specifically, we propose a two-step pro-
cess, where the first step obtains an abstraction model of the
unknown dynamics G from prior sampled data DG :

Problem 2 (Data-Driven Abstraction): For a set of N sam-
pling data points DG , find a pair of upper and lower functions
f and f (i.e., H ! {f , f }) such that:

f (s) ≤ f (s) ≤ f (s), ∀s ∈ S, (10)

where f (·) : S ⊂ Rn → Rm is the unknown function in the
system dynamics (5), and correspondingly determine BT(H).

Then, the second step seeks to solve the following model
invalidation problem for the abstracted models.

Problem 3 (Data-Driven Model Invalidation for H): Given
a new noisy input-output trajectory {ỹn

k}T−1
k=0 , an abstraction

model H of target model G and an integer T , determine
whether the trajectory belongs to the target model. That is,
to determine if {ỹn

k}T−1
k=0 ∈ BT(H) holds.

Leveraging the property that BT(G) ⊆ BT(H), it is trivial to
show that finding the solution to Problem 1.2 and 1.3 is suf-
ficient to solve Problem 1. Further, Problem 1.2 is interesting
in its own right and useful for many control problems.

IV. MAIN APPROACH

In this section, we first present an approach to obtain a
data-driven abstraction for the unknown system (5), which
solves Problem 1.2. Then, we propose an optimization-based
approach to invalidate the resulting abstraction model when
given new noisy output trajectories, which provides a solu-
tion to Problem 1.3. Together, the two algorithms we propose
provide a sufficient solution to Problem 1.

A. Data-Driven Abstraction Algorithm
In this section, we assume for the moment that the Jacobian

bounds in Assumption 1 are given. We will consider the case
when the bounds are unknown in Section IV-C.

Theorem 1: Consider system (5) and its corresponding data
set D = ⋃N

"=1{(s̃j,", ỹj+1,")|j = ny, . . . , T" − 1}. Suppose
Assumption 1 holds. Then, for all s ∈ S , f (·) and f (·) are
lower and upper abstraction functions for unknown function
f (·), i.e., ∀s ∈ S , f (s) ≤ f (s) ≤ f (s),

f (s) = min
j∈{ny,...,T"−1},

"∈{1,...,N}

(ỹj+1," + g(Ju, Jl,#sj,",#sj,")

+ εv + εw), (11a)
f (s) = max

j∈{ny,...,T"−1},
"∈{1,...,N}

(ỹj+1," + g(Ju, Jl,#sj,",#sj,")

− εv − εw), (11b)

where g(·) and g(·) are as defined in (3) or (4) in Proposition 2,
Ju and Jl are (known) bounds of Jacobian matrix ∇f (·) and
#sj," and #sj," are defined as s − s̃j,l + εs and s − s̃j,l − εs
respectively.

Proof: From the mean value theorem, for any s ∈ S ,
we have f (s) = f (sj,") + ∇f (s′)(s − sj,") for some s′ ∈
[ min(s, sj,"), max(s, sj,")]. Since the Jacobian matrix ∇f (·) is
bounded by [Jl, Ju] as assumed in Assumption 1 and s−sj," is
within the interval [s−s̃j,"−εs, s−s̃j,"+εs] according to defini-
tion of s̃j,", we have g(Ju, Jl,#sj,",#sj,") ≤ ∇f (s′)(s− sj,") ≤
g(Ju, Jl,#sj,",#sj,"), by applying Proposition 2. Furthermore,
from (5) and (6), we have f (sj,") = yj+1," − wj," = ỹj+1," −
wj," − vj,". Therefore, ỹj+1," + g(·) − wj," − vj," ≤ f (s) ≤
ỹj+1," +g(·)+wj," +vj,". Finally, since these inequalities must
hold for all the sampled data and all the possible values of
noise signals to obtain a model abstraction, we obtain (11a)
and (11b).

Proposition 3: Given two data sets D and D′, if D′ ⊆ D,
then HD is closer to the unknown model G than HD′ in the
sense that the abstraction model HD is over-approximated by
the abstraction model H′

D.
Proof: Let K and K′ be the set of indices corresponding

to data pairs included in D and D′ (constructed from D and
D′) and f (s) and f ′(s), and f (s) and f ′(s) are upper and lower
abstraction functions returned by the abstraction models HD
and HD′ , respectively. Then, D′ ⊆ D =⇒ D′ ⊆ D =⇒
K′ ⊆ K =⇒ f (s) = minj,"∈K(ỹj+1,"+g(Ju, Jl,#sj,",#sj,")+
εv+εw) ≤ minj,"∈K′(ỹj+1,"+g(Ju, Jl,#sj,",#sj,")+εv+εw) =
f ′(s) =⇒ f (s) ≤ f

′
(s), where the second inequality holds

since the two optimization problems have the same objective
function, but the constraint set of the latter is a subset of the
former. Similarly, we can obtain f (s) ≥ f ′(s). According to
the definition of abstractions, HD′ over-approximates HD.

This proposition implies that by increasing the number of
sample points, the abstraction model will become equally or
more accurate, which in turn implies that downsampling strate-
gies, e.g., in [14], can be beneficial to improve computational
time at the expense of slightly less accurate models.

Next, in preparation for comparing our result with (compo-
nentwise) Lipschitz interpolation methods [14], [16], we recap
the previous approaches in the following proposition.

Proposition 4 [(Componentwise) Lipschitz Interpolation
[14], [16]]: Consider system (5) and its corresponding data
set D = ⋃N

"=1{(s̃j,", ỹj+1,")|j = ny, . . . , T" − 1}. Suppose
f (·) is (componentwise) Lipschitz continuous. Then, f (i)

L
(·),

f
(i)
L (·) and f (i)

CL
(·), f

(i)
CL(·) for all i ∈ {1, . . . , m} are lower

and upper Lipschitz and componentwise Lipschitz abstrac-
tion functions for the unknown function f (i)(·), i.e., ∀s ∈ S ,
f (i)

L
(s) ≤ f (i)(s) ≤ f

(i)
L (s) and f (i)

CL
(s) ≤ f (i)(s) ≤ f

(i)
CL(s),

respectively, where for ∗ ∈ {L, CL},

f
(i)
∗ (s) = min

j∈{ny,...,T"−1},
"∈{1,...,N}

(ỹ(i)
j+1," + ϕ(i)

∗ (s(i), s̃(i)
j,") + ε(i)

∗ , (12a)
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f (i)
∗ (s) = max

j∈{ny,...,T"−1},
"∈{1,...,N}

(ỹ(i)
j+1," − ϕ(i)

∗ (s(i), s̃(i)
j,") − ε(i)

∗ , (12b)

with p = {1,∞}, ϕ
(i)
L (s, s̃j,") ! L(i)

p ‖s− s̃j,"‖p, ε
(i)
L ! εw +εv +

L(i)
p ‖εs‖p, ϕ

(i)
CL(s(i), s̃(i)

j,") ! ∑n
k=1 L(i,k)

c |s(k) − s̃(k)
j," | and ε

(i)
LC !

εw + εv +∑n
k=1 L(i,k)

c |ε(k)
s |, where L(i)

p > 0 is the functionwise
scalar Lipschitz constant and L(i,k)

c > 0 are the functionwise,
componentwise Lipschitz constants.

Then, we show that (componentwise) Lipschitz abstrac-
tions are special cases of our proposed Jacobian abstractions
and that the Jacobian abstractions enhance methods based on
(componentwise) Lipschitz abstractions.

Lemma 1: Suppose εs = 0. If the Jacobian matrix bounds
are Ju = −Jl = Lc, then f , f in Theorem 1 are equal to
the componentwise Lipschitz abstraction functions f

CL
, f CL.

Further, if Ju = −Jl = L11m×n, then f , f in Theorem 1
are equal to the Lipschitz abstraction functions f

L
, f L when

applied using the 1-norm.
Proof: For arbitrary i ∈ {1, . . . , m}, j ∈ {ny, . . . , T" − 1}

and " ∈ {1, . . . , N},

g(i)(·) =
n∑

k=1

max{J(i,k)
u #s

(k)
j," , J(i,k)

u #s(k)
j," ,

J(i,k)
l #s

(k)
j," , J(i,k)

l #s(k)
j," }. (13)

Then, with εs = 0 and Ju = −Jl = Lc, we have #s(k)
j," = #s

(k)
j,"

and (13) reduces to ϕ
(i)
CL in Proposition 4. Similarly, g(i)(·)

reduces to −ϕ
(i)
CL; thus, it is equivalent to the component-

wise Lipschitz case. The equivalence to the Lipschitz case
can be obtained by combining the above and the result from
[16, Lemma. 2].

Theorem 2: The Jacobian abstraction function using
Theorem 1 (with (3) in Proposition 2) is always tighter
than or equal to the (componentwise) Lipschitz abstraction
functions in Proposition 4, i.e.,

f
L
(s) ≤ f

CL
(s) ≤ f (s) ≤ f (s) ≤ f (s) ≤ f CL(s) ≤ f

L
(s).

Moreover, if |J(i,k)
l | < L(i,k)

c or |J(i,k)
u | < L(i,k)

c for any
i ∈ {1, . . . , m}, k ∈ {1, . . . , n}, the Jacobian abstraction
is always tighter than (componentwise) Lipschitz abstraction
unless |#s

(k)
j," | = |#s(k)

j," | = 0 (a measure zero set).
Proof: For arbitrary i ∈ {1, . . . , m}, j ∈ {ny, . . . , T" −1} and

" ∈ {1, . . . , N}, from (13),

g(i)(·) ≤
n∑

k=1

max{|J(i,k)
u ||#s

(k)
j," |, |J(i,k)

u ||#s(k)
j," |,

|J(i,k)
l ||#s

(k)
j," |, |J(i,k)

l ||#s(k)
j," |}. (14)

Since |J(i,k)
l | ≤ L(i,k)

c and |J(i,k)
u | ≤ L(i,k)

c based on
the definition s of the Jacobian matrix and component-
wise Lipschitz constants, then g(i)(J(i)

u , J(i)
l ,#sj,",#sj,") ≤

∑n
k=1 max{L(i,k)

c |#s
(k)
j," |, L(i,k)

c |#s(k)
j," |}. Next, by applying trian-

gular inequality, we obtain the fact that both L(i,k)
c |s(k) − s̃(k)

j,l +
ε
(k)
s | and L(i,k)

c |s(k) − s̃(k)
j,l − ε

(k)
s | are smaller than L(i,k)

c |s(k) −
s̃(k)

j,l | + L(i,k)
c |ε(k)

s |. Therefore, g(i)(J(i)
u , J(i)

l ,#sj,",#sj,") ≤

Fig. 1. Comparison of abstractions of y = s sin (s) with εs = εv = 0.4.
The dark green region enclosed by the blue dashed lines is obtained
by Theorem 1 with (3) in Proposition 2 and the light green region
within the red dashed lines is obtained by Theorem 1 with (4), with
[Jl , Ju ] = [−3.7, 6.28], while the yellow region within the black dashed
lines is obtained by the (componentwise) Lipschitz interpolation method
in [14], [16] with L = 6.28.

∑n
k=1(L

(i,k)
c |s(k)−s̃(k)

j,l |+L(i,k)
c |ε(k)

s |). Finally, by adding ỹ(i)
j+1,"+

εv + εw to both sides of inequality and leveraging the fact that
the inequality holds for all i ∈ {1, . . . , m}, j ∈ {ny, . . . , T" −1}
and " ∈ {1, . . . , N}, we can conclude that f (s) ≤ f CL(s).
Similarly, we can obtain f (s) ≥ f

CL
(s). Moreover, by

[16, Corollary 2], f
L
(s) ≤ f

CL
(s) ≤ f (s) ≤ f CL(s) ≤ f L(s).

Further, we can deduce that Jacobian abstractions are gen-
erally tighter than (componentwise) Lipschitz abstractions
from (14).

Figure 1 illustrates the results of our proposed abstrac-
tion method for the function y = s sin(s) when compared
to the (componentwise) Lipschitz interpolation method in
Proposition 4. From the figure, we observe that the abstrac-
tion is the tightest when adopting (3) from Proposition 2 in
Theorem 1. However, when using (4) from Proposition 2 in
Theorem 1, the abstraction model is less accurate in the regions
close to the sampled points than the other two methods.

B. Data-Driven Model Invalidation Algorithm
Next, we propose an optimization-based model invalida-

tion approach to determine if the data-driven abstraction
obtained in the previous section is incompatible with a newly
observed length-T output trajectory, i.e., we propose a model
invalidation algorithm for an abstracted model H as follows.

Theorem 3: Given an abstracted model H, a newly
observed length-T output sequence {ỹn

k}k=T−1
k=0 invalidates

model H, if the following MILP problem is infeasible:

Find yk, wk, vk ∀k ∈ Z0
T−1

subject to ∀k ∈ Zny
T−1,∀" ∈ Z1

N,∀(s̃j,", ỹj+1,") ∈ D":

yk+1 ≤ ỹj+1," + g(Ju, Jl,#sj,",k,#sj,",k) + wk,

(15a)
yk+1 ≥ ỹj+1," + g(Ju, Jl,#sj,",k,#sj,",k) + wk,

(15b)
∀k ∈ Z0

T−1:ỹn
k = yk + vk, y

k
≤ yk ≤ yk, (15c)

−εw1m ≤ wk ≤ εw1m,−εv1m ≤ vk ≤ εv1m,

(15d)

where D" = {(s̃j,", ỹj+1,")|j = ny, . . . , T" − 1} is a trajectory
of D, D = ⋃N

"=1 D" is the given sampled data set from which
we obtain a data-driven abstraction H with y

k
and yk as given

bounds of yk and sk = [yk, . . . , yk−ny+1]T . Moreover, #sj,",k
and #sj,",k are defined as sk − s̃j,l + εs and sk − s̃j,l − εs
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respectively, while the definition of g(·) and g(·) can be found
in Proposition 2.

Proof: By the definition of the model invalidation problem
for the abstracted model H, we know that the abstraction is
invalidated if the following problem is infeasible:

Find yk, wk, vk ∀k ∈ Z0
T−1 (MI)

subject to ∀k ∈ Zny
T−1 : yk+1 ≤ f (sk) + wk, (16a)

yk+1 ≥ f (sk) + wk, (16b)

∀k ∈ Z0
T−1 : n

k = yk + vk, y
k

≤ yk ≤ yk, (16c)
−εw1m ≤ wk ≤ εw1m,−εv1m ≤ vk ≤ εv1m. (16d)

Since the upper bound of the abstraction is given
by (11a), constraint (16a) is equivalent to (15a). Similarly,
by (11b), (15b) is equivalent to (16b). Thus, two optimization
problems are equivalent. If the above optimization problem
is infeasible, it means that the output sequence {ỹn

k}k=T−1
k=0

cannot be consistent with the length-T behavior of H, i.e.,
{ỹn

k}k=T−1
k=0 /∈ BT(H), hence the model is invalidated.

Note that the min and max operators in functions g(·) and
g(·) are encoded as integer constraints in the optimization
problem, which may generate a large number of integer con-
straints that lead to intractability. Hence, to help reduce the
computation complexity for large problems, the use of (4)
in Proposition 2 is preferable to (3) for the functions g(·)
and g(·) in Theorem 3. Although the abstraction model
may be less tight, the number of integer constraints can
be reduced. Another method to reduce computation cost is
to rely on Corollary 1, where we only need to compare
two instead of four values to find the min and max for
each multiplication since the Jacobian bounds Ju and Jl are
known.

C. Estimation of Jacobian Bounds
In the previous sections, the Jacobian bounds are assumed

to be given. However, in case that the bounds are not known,
we can estimate the Jacobian bounds from the noisy sampled
data set D = {(s̃j, ỹj+1)|j = ny, . . . , N − 1} by solving the
following mixed-integer linear program (MILP):

min
Ju,Jl

m∑

i=1

g(i)(Ju, Jl,#sj,", #sj,") − g(i)(Ju, Jl,#sj,",#sj,")

subject to ∀j, " ∈ {ny, . . . , N − 1}, j 6= ":

ỹj+1 − ỹ"+1 ≤ g(Ju, Jl,#sj,",#sj,") + 2εv, (17a)

ỹj+1 − ỹ"+1 ≥ g(Ju, Jl,#sj,",#sj,") − 2εv, (17b)

Ju ≥ Jl, (17c)

with g(·) and g(·) defined as in either (3) or (4) in Proposition 4,
#sj," ! s̃j − s̃" + 2εs and #sj," ! s̃j − s̃" − 2εs.

Equations (17a) and (17b) ensure that the Jacobian bounds
hold for all sampled points in the data set D where both
the input and output data, i.e., s̃j and ỹj+1 for all j, are cor-
rupted by bounded noise. The above expression can be simply
obtained from the same reasoning as in Theorem 1. However,
the optimization problem becomes intractable when the data
set is large. In this case, we propose to solve the problem
incrementally (using subsets of the data at each iteration simi-
lar to the approach in [19]) by adding the following constraint
from the previous iteration in (17):

Jl ≤ Ĵl, Ju ≥ Ĵu, (18)

Fig. 2. Illustration of abstractions with different sizes of data set for
function u cos (θ ) using (3). (a) Abstraction with 10 points (b) Abstraction
with 800 points.

where Ĵu and Ĵl are previously estimated Jacobian bounds.
Since the accuracy of Ju and Jl are crucial for the results in

the previous section, we proceed to find some guarantees that
we obtain the right estimate with high probability. To achieve
this, we leverage a classical result on probably approximately
correct (PAC) learning for linear separators.

Proposition 5 (PAC Learning [20]): Let ε, δ ∈ R+.
Suppose the number of sampling points, N, satisfies N ≥
1
ε ln 1

δ and the sample points ( are drawn from a probability
distribution P . Then, with a probability greater than 1 − δ, a
linear separator (a, b) (such that ∀(x, y) ∈ ( : x ≤ ay + b) has
an error errP of less than ε, where the error of the separator
(a, b) is defined as errP (a, b) = Pr((x, y) ∈ (|x > ay + b).

It is easy to verify that our estimate of Jacobian bounds
in (17) is a special case of the above linear separator with
b = 0. Thus, the estimated Ĵu and Ĵl using (17) is guaranteed
to be close to the true Jacobian bounds of the original unknown
function with high probability if we have sufficient data.

V. SIMULATION AND DISCUSSION

In this section, we compare the effectiveness of our
proposed Methods I and II (Theorem 1 using (4) and (3))
with Method III in [14] (Lipschitz interpolation) and Method
IV in [16] (componentwise Lipschitz interpolation) for data-
driven abstraction and model invalidation. Both data-driven
abstraction and model invalidation algorithms are implemented
in MATLAB with Yalmip and Gurobi on a 2.2 GHz machine
with 16 GB RAM.

A. Data-Driven Abstraction
To demonstrate the data-driven abstraction approach

described in Theorem 1 with (3) as g(·) and g(·), we first
consider the nonlinear functions in the Dubins car dynamics,
i.e., the u cos(θ) and u sin(θ) terms. For illustrative purposes,
in Figure 2, we show the data-driven abstraction (Method II)
results for the function f (u, θ) = u cos(θ) defined on the
domain u × θ ∈ [ − 2, 2] × [0, 2π ], where we additionally
assume that u is measured with a noise bound of 0.1, and
similarly, the bounds of the noise of measuring θ and f (u, θ)
are also assumed to be 0.1. As expected, the resulting abstrac-
tion is indeed an over-approximation of the unknown nonlinear
function on the defined domains of interest. Moreover, the
accuracy of the over-approximation improves with increasing
number of data points in D as proved in Proposition 3.

Next, we consider the Rastrigin’s function [21]:

f (x) = 10d +
d∑

j=1

[x2
j − 10 cos(2πxj)] (19)
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TABLE I
APPROXIMATED ABSTRACTION ERRORS FOR VARYING DIMENSIONS

TABLE II
MAXIMUM TIME STEPS AND AVERAGE SOLVER TIME TAKEN FOR

VARIOUS SIZE OF DATA SET IN 20 TRAJECTORIES

where x = [x1, . . . , xd]T ∈ Rd with d being the dimension of
state x. We also assume that xi ∈ [0, 5.1] for all i ∈ {1, . . . , d}.
To compare Jacobian and Lipschitz abstractions, we con-
sider the volume between upper and lower functions as the
abstraction error. For simplicity, we approximate the abstrac-
tion errors as the sum of the distances between the functions
on a uniform grid with 200 grid points in each dimension for
the results in Table I, where we observe that Jacobian abstrac-
tions are better than componentwise Lipschitz interpolations
for all cases with varying dimensions.

B. Application to Model Discrimination of Swarm Intents
We adopt the swarm intent identification example in [14]

with three swarm intent models (see [14] for details): the
swarm intends to move towards the centroid of the swarm
and the sampled data set D (with size |D|) is collected using
this model. Meanwhile, we consider another swarm intent that
moves away from the centroid and use this model to gen-
erate the new observed trajectories {ỹn

k}T−1
k=0 to invalidate the

abstraction based on the sampled data set D.
Next, using the data-driven abstractions of the unknown

dynamics based on the sampled data D, we compare the model
invalidation performances when using Methods I–IV. To com-
pare these methods, we vary the size of the data set, |D|, from
160 to 208, and compare the maximum steps the data-driven
model invalidation algorithms take to invalidate the (wrong)
model using 20 randomly generated noisy newly observed tra-
jectories from the true model. As shown in Table II, when
the data set size is small, the (wrong) model can be invali-
dated by Method I within fewer time steps than Method III
but when the data set size is increased, Method I is not always
better. Further, the average solver time of Method I is compa-
rable or shorter than (componentwise) Lipschitz interpolation
approaches (Methods III and IV), since we employed (4)
when applying Theorem 1 to reduce computational complex-
ity. When employing (3) in Theorem 1 (Method II), our
method always takes fewer or equal time steps than (com-
ponentwise) Lipschitz interpolation approaches (Methods III
and IV), as expected in light of Theorem 2, but at the cost of
slightly longer solver times.

VI. CONCLUSION

A data-driven model invalidation approach was proposed in
this letter for bounded-error unknown nonlinear discrete-time
dynamical systems with bounded Jacobians, where instead of
given mathematical models, only prior noisy sampled data
of the systems are available. The data-driven model inval-
idation problem was addressed by leveraging a tractable
feasibility check. Further, when the Jacobian bounds are
not given or known, we proposed an approach to esti-
mate them. Supported by theory, our simulations showed
that the proposed approach generally finds tighter abstrac-
tions than (componentwise) Lipschitz abstractions, and the
model invalidation problem also takes fewer time steps to
invalidate abstraction models obtained using our proposed
approach.
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