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Abstract— This paper proposes a robust output feedback

state estimator for uncertain/bounded-error affine systems sub-

ject to data losses modeled by an automaton. Specifically, by

introducing a novel property known as recurrent recovery,

where the estimation errors are required to be recurrent to

some minimum recovery levels at each node of the data loss

automata, we design a robust estimator design that guarantees

that the state estimation errors remain bounded in a recurrent

manner despite worst-case realizations of process and sensor

noise/uncertainties in addition to missing data. Our design can

directly deal with infinite-horizon missing data specifications

modeled by automata by recasting the problem into multiple

finite-horizon problems of varying lengths, which results in

an optimization-based approach with only a finite number of

constraints. Moreover, our design is built upon system-level

parameterization and for this purpose, we propose a novel affine

output feedback strategy that also contributes to the literature

of finite-horizon optimal control.

I. INTRODUCTION

State estimation plays a crucial role in many engineering
and control applications since system states may not be
directly measured by sensors or the sensor measurements
may be noisy. A great deal of current state estimators
heavily rely on the availability of the sensor measurements to
properly operate. However, as cyber-physical systems such
as autonomous vehicles, smart buildings, power grids, etc.
become increasingly integrated and networked, significant
packet drops or missing data may be inevitable and this
may lead to performance deterioration or even instabil-
ity/malfunctions. Thus, the possibility of missing/lossy data
needs to be addressed in estimator designs.

Literature Review. State estimation for networked systems
that are susceptible to packet drops has been primarily
investigated using a probabilistic and Bayesian filtering
framework, where intermittent data is often assumed to
follow some known probability distributions, e.g., [1], [2],
[3], [4], [5]. Moreover, these methods are usually focused
on obtaining the best average/expected estimates as opposed
to achieving best worst-case or robust estimation errors when
knowledge of the probability distributions is unavailable or
if the missing data phenomenon is not stochastic, e.g., due to
sensor glitches, occlusions, or denial of service attacks [6].

On the other hand, set-valued estimators have been pro-
posed to consider the worst-case/robust estimation perfor-
mance, e.g., [7], [8], [9]. In the context of systems with miss-
ing observations, [10], [11] modeled the feasible missing data
patterns with a fixed-length language and proposed finite-
horizon affine estimators to satisfy an equalized recovery
property, which implies that within a finite time horizon,
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especially for times when observations may go missing, the
estimation error can have a more relaxed upper bound, but by
the end of the horizon must recover the initial upper bound.
However, this approach does not directly apply for infinite
horizon problems or missing data models with time-varying
lengths such as (m, k)-firmness [12] that indicates that at
least m out of k consecutive measurements are available, or
more general formal specification using automata [13].

Moreover, similar to our prior work [10], [11], our estima-
tor design will rely on finite-horizon optimal control. Thus,
another set of relevant literature pertains to optimal control
parameterizations such as output feedback, e.g., [14], output
error (or disturbance) feedback, e.g., [15], and system-level
synthesis, e.g., [16], [17]. In particular, while the first two
parameterizations have been explored for estimation/control
with missing data, to our best knowledge, designs based on
system-level synthesis have not been investigated. Moreover,
[16] has only considered linear state and output feedback
laws, while [17] has recently considered affine state feed-
back; thus, to our knowledge, system-level affine output
feedback designs have also not been studied in the literature.

Contributions. In this paper, we propose a system-level
synthesis-based robust state estimator for affine systems sub-
ject to data losses modeled by automata as described in more
detail in [13]. In particular, we introduce a novel property
known as recurrent recovery that extends the notions of
equalized recovery [10], [18] and equalized performance
[19], where the estimation errors are required to be recurrent
at each node of the data loss automaton. Using this notion,
we then present an estimator design that guarantees recurrent
recovery of the estimation errors for uncertain/bounded-error
affine systems with missing data despite worst-case realiza-
tions of noise and uncertainties. Our design relies on trans-
lating the infinite-length missing data signal that satisfy an
automaton into multiple finite-horizon problems with varying
horizon lengths, resulting in optimization problems with only
a finite number of constraints that can be solved using off-
the-shelf solvers. Moreover, our design is built upon system-
level parameterization-based affine output feedback that is
on its own a novel contribution to the literature of finite-
horizon optimal control and we further show that missing
data specifications can be somewhat easily encoded as simple
constraints on the system response matrices. Finally, we
demonstrate the usefulness of our proposed robust estimator
design in simulation despite missing data modeled by an
automaton representing (m,k)-firmness.

II. PROBLEM FORMULATION

Notations. k · k denotes the 1-norm, and 1, 0 and I are
used to represent a vector of ones, a matrix of zeros and
an identity matrix of appropriate dimensions, respectively,
whereas 1n is used for a vector of ones of length n and In
is used for an n⇥ n identity matrix.
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A. System Dynamics and Data Loss Model
System Dynamics: We consider a discrete-time linear time-

varying system subject to process noise and output noise. The
model of the system dynamics is described as follows:

xk+1 = Axk +Buk +Wwk,

yk =

⇢
Cxk + V vk, qk = 1,
;, qk = 0,

(1)

where xk 2 Rn, uk 2 Rm and wk 2 Rnw represent
the system states, inputs and process noise respectively at
time k. yk 2 Rp and vk 2 Rnw denote the model output
obtained by the sensors and the measurement noise at time
k, respectively, and qk represents whether the sensor data is
available (qk = 1) or missing/absent (qk = 0). We assume
that wk and vk are bounded with kwkk  ⌘w and kvkk  ⌘v
for all k. The system matrices A, B, C, W , V , ⌘w and ⌘v
are all known. Without loss of generality, we assume that the
initial time is k = 0.

With regards to the missing data specification, instead of
using probabilistic models, we consider models that are con-
strained by some temporal logic specifications. An example
specification is (m, k)-firmness, which specifies that within
k consecutive time steps, there are at most m instances
of data loss. Another specification could be that there can
be at most l consecutive packet losses, where l is known.
Moreover, an obvious assumption, to ensure that the system
is observable, is that qk 6= 0 8k. To model such types of
missing data specifications, researchers in [13] proposed the
use of automata, which we will adopt in this work. Further,
for the system dynamics described in (1), [13] covers in detail
the observability conditions that need to hold.

Definition 1 (Data Loss/Missing Data Automaton). An au-
tomaton is defined as a triplet A = {E,S, E} where S is a
set of nodes (representing discrete states/modes) of cardinal-
ity |S| = N , E 2 {0, 1}N⇥N is a transition matrix, where
E(s, s0) = 1, s, s0 2 S represents an allowed transition and
0 otherwise, and E contains the events associated with each
allowed transition.

To give an idea of construction of an automaton based
on some specification, we provide a simple (m, k)-firmness
based automaton below:

Example 1. A missing data specification of (1, 3)-firmness,
i.e., within a window of 3 consecutive time steps, data from
at most 1 step is missing, can be captured by the automaton
in Figure 1. The nodes correspond to the “state” of the data
memory for the past three time steps. For instance, s1 = 111
represents the memory state that the data for the past 3 time
steps, i.e., at time steps t� 2, t� 1 and t, are available and
s2 = 110 represents the case when the data for t � 2 and
t�1 are available/present while the data for t is missing/lost,
with the edge connecting the two states representing the event
‘0’2 E that the data at time t is missing/not received.

Next, we label/designate certain nodes and paths of the
automaton that will be useful later for our estimator design.

Definition 2 (Recurrent Node and Recurrent Node Set). Any
node in an automaton A (cf. Definition 1) with an out-
degree (i.e., the number of outgoing edges) that is strictly
greater than 1 is called a recurrent node, denoted as sR.
A set containing all recurrent nodes defined in A is called
a recurrent node set SR ✓ S. In the special case where A

Fig. 1: Automaton for (1, 3)-firm signal.

consists of only one loop, either if it is a single node with
a self-loop or a set of nodes in a single loop, the recurrent
node set is then SR = S.

Example 2. For the automaton A given in Figure 1, its
recurrent node set is then SR = {s1, s4}, since both s1 and
s4 have two outgoing edges.

Definition 3 (Direct Path and Path Set). A finite sequence
of nodes dba = {{s(t)}T

b
a

t=1 2 SN | E(s(t), s(t+ 1)) = 1} of
length T b

a of an automaton A (cf. Definition 1) is called
a direct path (between recurrent nodes) if the following
conditions hold: (1) s(1) = sa 2 SR, i.e., the first node
in the sequence is a recurrent node, (2) s(T b

a) = sb 2 SR,
i.e., the last node in the sequence is a recurrent node, and (3)
s(t) /2 SR for all 1 < t < T b

a , i.e., none of the intermediate
nodes in the sequence is a recurrent node.
A path set D is then a set containing all possible direct paths
in an automaton A.

Example 3. For the automaton A given in Figure 1,
there are four possible direct paths: d11 = {s1, s1}, d41 =
{s1, s2, s3, s4}, d14 = {s4, s1}, and d44 = {s4, s2, s3, s4}.
Moreover, the path set is then D = {d11, d41, d14, d44}.

For simplicity, we assume the following:

Assumption 1. The missing data signal is initialized at a
node that is on a direct path of the automaton and the
automaton does not have a terminal node (i.e., no deadlocks).

Note that this assumption is without any loss of generality
since it can be relaxed by designating the initial and terminal
nodes as recurrent nodes and including the corresponding
direct paths to the path set D.

In the following proposition, we introduce certain proper-
ties of the direct paths and the path set:

Proposition 1 (Properties of Direct Path and Path Set). For
every direct path dba 2 D, the following are true:
1) No two direct paths have overlapping transitions.
2) The combination of all paths dba 2 D in the path set forms
the automaton.

Proof. To prove 1), suppose there are two paths dba, d
d
c 2 D

that have at least one overlapping transition. Since all of the
intermediate nodes are non-recurrent, it is possible only if
sa = sc and sb = sd. Hence dba = ddc .

For 2), suppose there is a path dba /2 D formed from a
sequence of transitions. The only conditions for which any
node on the path does not lie on any direct path of the
automaton are: (i) sa /2 SR, or (ii) sb /2 SR. However, these
are not possible by Assumption 1. Since there is no valid
condition that results in a dba /2 D, hence all direct paths in
path set can be combined to form the whole automaton. ⌅
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As a result of item 1) in Proposition 1, each non-recurrent
node of the automaton appears in exactly one direct path.
And item 2) in Proposition 1 implies that the missing data
signal qk always lies on some direct path of the automaton.

B. Recurrent Recovery
Next, in view of the goal of this paper to maintain esti-

mation error bounds below prescribed bounds despite data
losses/packet drops, we prescribe recovery levels represent-
ing the maximum estimation error bound to each recurrent
node s 2 SR (cf. Definition 2) and define the property of
recurrent recovery for direct paths (cf. Definition 3), where
the estimation error must start from and recover to the
recovery levels. Formally, this is defined as follows:

Definition 4 (Path Recurrent Recovery). Given a direct path
dba 2 D of length T b

a in an automaton-based missing-data
model A with recovery levels (i.e., estimation error bounds)
of the initial recurrent node at time step 0 and final recurrent
node at time step kT b

a
= T b

a being µa and µb, respectively, an
estimator achieves path recurrent recovery if for any initial
estimation error x̃0 satisfying kx̃0k  µa, the final estimation
error satisfies kx̃kk  µk for all 0  k  T b

a and kx̃T b
a
k 

µb, where x̃k , xk � x̂k is the estimation error with x̂k

being the state estimate, and µk for all 0 < k < T b
a are the

intermediate error bounds/recovery levels associated with the
non-recurrent nodes s(k) 2 S \ SR on the direct path dba.

Note that if µa and µb in the above definition are equal,
then the definition coincides with equalized recovery that
was defined in [10], [18]; hence path recurrent recovery is
a slight generalization of equalized recovery.

Now, the overall recurrent recovery property of an es-
timator can be established by extending the path recurrent
recovery property to all possible paths in D.

Definition 5 (Recurrent Recovery). An estimator is said to
have the property of recurrent recovery in the presence of
missing data modeled by an automaton A if it achieves the
path recurrent recovery property in Definition 4 for all direct
paths dba 2 D of A.

C. Problem Statement
With the system and the missing-data model introduced,

and equipped by the above definitions, the problem we seek
to solve in this paper can be cast as follows:

Problem 1 (Estimator Design with Missing Data). Given
the system dynamics (1) and a missing data model specified
by an automaton A, design an optimal state estimator
with estimate x̂k and estimation error x̃k = xk � x̂k that
minimizes a cost J({µi}Ni=1) (representing the aggregate
estimation errors for the nodes of A) subject to the property
of recurrent recovery in Definition 5 being satisfied, where
µi are finite estimation error bounds associated with the
corresponding nodes si 2 S.

Consequently, from the solution of Problem 1, if the initial
node is known and the initial estimation error is below the
corresponding estimation error bound, then the estimation
error of the estimator is guaranteed to always satisfy the
estimation error bounds corresponding to the nodes that the
system is in. Finally, if the initial node is unknown or if
the initial estimation is high, we can initialize the estimation
process with any asymptotic estimator until the current node

is inferred and the estimation error is below the associated
estimation error bound.

III. SYSTEM-LEVEL RECURRENT RECOVERY STATE
ESTIMATOR DESIGN

In this section, we propose an estimator synthesis ap-
proach that is inspired by system-level synthesis in [16],
[17] to solve Problem 1. We do this by first designing a
solution without taking into consideration any data losses
(i.e., the perfect observation case), followed by the design
modifications to cater to the problem involving data losses.
Note that the proposed system-level state estimator for the
perfect observation case is obtained by first translating the
problem into an equivalent finite-horizon optimal control
problem with affine output feedback law, which itself is an
extension of the approaches in [16] that only considered
linear output feedback laws and in [17] that considered
affine state feedback laws, and is thus a contribution of this
paper. On the other hand, our treatment of the case with
missing data/dropped packet is an extension of our prior
works [20], [10], [21], [11], [18] that considered only fixed-
length languages to the case where the formal specifications
are infinite-length and modeled by a missing data automaton.
A. Perfect Observation Case with Fixed Time Horizon

We first focus on designing an estimator with a fixed
horizon T when there is no missing data (i.e., the perfect
observation case) of the following form:

x̂k+1 = Ax̂x +Buk � ue,k,

ŷ = Cx̂k,
(2)

where x̂k 2 Rn is the estimate of xk and ue,k 2 Rn is an
affine causal output feedback term defined as:

ue,k = ⌫k +
kX

i=0

M(k,i)ỹk, (3)

where M(k,i) 2 Rn⇥p and ⌫k 2 Rn are design gains, and
ỹk = yk � ŷk is the output error between the system and
the estimator outputs. With the system defined in (1) and
the estimator (2), we can define the estimation error as x̃k ,
xk�x̂k and obtain the corresponding estimation error system:

x̃k+1 = Ax̃x +Beue,k +Wwk,

ỹk = Cx̃k + V vk,
(4)

where Be = In. Thus, we have converted the optimal
estimator design problem to a finite-horizon optimal control
problem with output feedback for the estimation error system
with ue,k as the “control” input with an affine output
feedback law in (3) with feedback gains M(k,i) and ⌫k.

Next, we define x̃, ue, ỹ, w, and v as the time-
concatenated estimation error states, estimator “inputs”, out-
put errors, and process and measurement noises over the hori-
zon T , respectively, and � as the initial state x0 concatenated
with the disturbance sequence w:

x̃ =
⇥
x̃>
0 x̃>

1 . . . x̃>
T

⇤>
,ue =

⇥
u>
e,0 u>

e,1 . . . u>
e,T�1

⇤>
,

ỹ =
⇥
ỹ>0 ỹ>1 . . . ỹ>T�1

⇤>
,w =

⇥
w>

0 w>
1 . . . w>

T�1

⇤>
,

v =
⇥
v>0 v>1 . . . v>T�1

⇤>
, � =

⇥
x>
0 w>⇤> .

The dynamics can then be compactly defined as trajectories
over the horizon T :

x̃ = Ax̃+Bue +D�,
ỹ = Cx̃+Vv, (5)
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with A =


0 0

IT ⌦A 0

�
, B =


0

IT ⌦Be

�
=


0

InT

�
, D =


In 0
0 IT ⌦W

�
, C = [IT ⌦ C 0], and V = IT ⌦ V , where

⌦ is the Kronecker product. Moreover, the estimator “inputs”
can be written as:

ue = Mỹ + ⌫ (6)

with M=

2

664

M0,0 0 . . . 0
M1,0 M1,1 . . . 0

...
...

. . . 0
MT�1,0 MT�1,1 . . . MT�1,T�1

3

775 and ⌫=

2

664

⌫0
⌫1
...

⌫T�1

3

775.

Next, inspired by [17] to obtain the case with affine feed-
back term in (3), we further define expanded estimation error
states x̄ =

⇥
1>
pT x̃>⇤>, output errors ȳ =

⇥
1>
pT ỹ>⇤>, and

disturbance �̄ =
h
1>
pT �>

i>
, and represent the expanded

dynamics and estimator “inputs” in (5) and (6) as follows:
x̄ = Āx̄+ B̄ue + D̄�̄,
ȳ = C̄x̄+ V̄ v,
ue = M̄ ȳ,

(7)

with Ā =


0 0
0 A

�
, B̄ =


0
B

�
, D̄ =


IpT 0
0 D

�
, C̄ =


IpT 0
0 C

�
, V̄ =


0
V

�
, and M̄ = [⌫̄ M], where we decom-

pose the affine term ⌫ as follows: ⌫ = ⌫̄1p(T�1).
Then, analogous to the output feedback case for system-

level parameterization in [16], we can find the finite-horizon
system response {�xx,�ux,�xy,�uy} from perturbations
(�x, �y), with �x = D̄�̄ and �y = V̄ v, to the expanded
estimation error state and estimator “input” (x̄,ue) via the
following relation:

x̄
ue

�
=


�xx �xy

�ux �uy

� 
�x
�y

�
, (8)

where, by substituting ue = M̄ ȳ into the expanded dynamics
in (7) and noticing that I� Ā� B̄M̄C̄ is invertible since M̄
is proper, we can find the system response in (8) as

�xx = (I � Ā� B̄M̄C̄)�1,
�xy = (I � Ā� B̄M̄C̄)�1B̄M̄ ,
�ux = M̄C̄(I � Ā� B̄M̄C̄)�1,
�uy = (M̄C̄(I � Ā� B̄M̄C̄)�1B̄ + I)M̄,

(9)

where �uy , �xx and �xy have the following structure:

�xx =


IpT 0
�xx,1 �xx,2

�
,�xy =


0 0

�xy,1 �xy,2

�
,

�uy =[�uy,1 �uy,2] .

(10)

Equipped by the above, we now present a lemma for
finding the observer gain M̄ such that the two system
responses (7) and (8) are equivalent. It is based on a finite-
horizon variant of the system-level parameterization in [16].

Lemma 1 (System-Level Parameterization). Consider the
estimation error system over a horizon T with output feed-
back gain M̄ defining the output feedback term as ue =
M̄ ȳ = Mỹ + ⌫. The following statements are true:

1) The affine subspace defined by
⇥
I⌧�Ā �B̄

⇤ �xx �xy

�ux �uy

�
= [I⌧ 0] , (11)


�xx �xy

�ux �uy

� 
I⌧�Ā
�C̄

�
=


I⌧
0

�
, (12)

parameterizes all system responses (8) with ⌧ ,
pT + n(T + 1).

2) For any block lower triangular matrices
{�xx,�ux,�xy,�uy} that satisfy the structure
in (10), the feedback gain M̄ , [⌫̄ M] =
�uy � �ux�

�1
xx�xy (and ⌫ = ⌫̄1p(T�1)) achieves

the desired system response.

Proof. For the first part, taking the left hand side of (11)
column-wise and substituting �xx, �xy , �ux and �uy with
their expressions in (9) yield
(I � Ā)�xx � B̄�ux

= (I � Ā)(I � Ā� B̄M̄C̄)�1�B̄M̄C̄(I � Ā� B̄M̄C̄)�1

= (I � Ā� B̄M̄C̄)(I � Ā� B̄M̄C̄)�1 = I,

(I � Ā)�xy � B̄�uy

= (I � Ā)(I � Ā� B̄M̄C̄)�1B̄M̄
�B̄(I + M̄C̄(I � Ā� B̄M̄C̄)�1B̄)M̄,

= (I � Ā� B̄M̄C̄)(I � Ā� B̄M̄C̄)�1B̄M̄ � B̄M̄ = 0.
Similar steps can be used on (12) to obtain the right hand
side from the left hand side.

For the second part of the lemma, if a system response
problem is solved with {�xx,�xy,�ux,�uy} while (11)
and (12) hold, we obtain

�uy ��ux�
�1
xx�xy,

= (M̄C̄(I � Ā� B̄M̄C̄)�1B̄ + I)M̄
�M̄C̄(I � Ā� B̄M̄C̄)�1B̄M̄ = M̄.

⌅

Since our output injection term in (3) must be causal,
we need the following conditions to ensure causality in M̄
obtained from the second part of Lemma 1:

Proposition 2 (Causality Condition for ū). The output
injection term in (7) is causal if both �xy,2 in �xy and
�uy,2 in �uy are block lower triangular.

Proof. Expanding ue from (7) while also using (10):

ue = M̄ ȳ = (�uy ��ux�
�1
xx�xy)


1pT

ỹ

�
,

= �uy,11pT + �uy,2ỹ ��ux�
�1
xx


0

�xy,11pT + �xy,2ỹ

�
.

Since �xy,2 and �uy,2 are to be multiplied with ỹ, so to
ensure causality, both �xy,2 and �uy,2 need to be block lower
triangular. ⌅

To our best knowledge, system-level parameterization for
affine output feedback has not been considered in the litera-
ture, so the above results are also a contribution to the finite-
horizon optimal control literature on system-level synthesis.

Then, the recurrent recovery problem for a finite horizon
T can be obtained via the following theorem:

Theorem 1 (Perfect Case Recurrent Recovery). For the case
when there is no output data loss within a fixed time horizon
T , i.e., when qk = 1 8k 2 [0, T ], there exists an affine
estimator that achieves path recurrent recovery over a finite
horizon T with given initial and final recovery levels µ0 and
µT , respectively, if the following is feasible:

min
�xx,�xy,�ux,�uy,{µk}T�1

k=1

J({µk}T�1
k=1 )

subject to 8(kwk  ⌘w, kvk  ⌘v, kx̃0k  µ0) :

kx̃kk  µk, 8k 2 {0, . . . , T}, (13a)
x̃ = [0 I] x̄, (13b)
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Proposition 2, Equations (8), (11), and (12) hold, (13c)
�xx,�xy,�ux,�uy satisfy the structure in (10). (13d)

If the optimization problem is feasible, the output feedback
estimator gains can be extracted via the following:

M̄ = [⌫̄ M] = �uy ��ux�
�1
xx�xy,

⌫ = ⌫̄1pT .
(14)

Proof. Firstly, the constraints in (13a) come directly from
the definition of path recurrent recovery in Definition 4.
Furthermore, the estimation error x̃ can be extracted from (8)
as in (13b), while Equations (11) and (12) define the affine
subspace (system-level parameterization) that parameterizes
all system responses in (8). Moreover, we require that the
recovery levels x̃k be satisfied for all possible realizations
of the process and measurement noises that are bounded by
⌘w and ⌘v , respectively, as well all initial estimation errors
bounded by the µ0. Finally, since the aim is to optimize
the estimation error bounds, the cost function is chosen as
a function of the error bounds {µk}T�1

k=1 and the feedback
gains can be obtained by item 2) of Lemma 1. ⌅

Note that if the initial and final recovery levels in the above
problem are set to be the same, i.e., µ0 = µT , then the path
satisfies the equalized recovery property that was considered
in [10], [11], [18], [20], [21]. Further, since the problem in
(13) has semi-infinite (i.e., ‘for all’) constraints, we leverage
duality in robust optimization [22] to obtain an equivalent
optimization problem with a finite number of constraints.

Proposition 3. The robust estimator design that achieves
path recurrent recovery via Theorem 1 when there is no
missing data is equivalent to the following problem:

min
�xx,�xy,�ux,�uy,{µk}T�1

k=1 ,⇧1,⇧2,⇧3

J({µk}T�1
k=1 )

subject to: ⇧1 � 0,⇧2 � 0,⇧3 � 0, µ � 0, (15a)

[⇧1 ⇧2 ⇧3] (I3 ⌦

I
�I

�
) =


I
�I

�
G

"
I 0 0
0 I 0
0 0 µ01n

#
, (15b)

[⇧1 ⇧2 ⇧3]

"
⌘w12nwT

⌘v12nvT

12n

#


µ
µ

�
�

I
�I

�
h, (15c)

Proposition 2, Equations (11) and (12) hold, (15d)
�xx,�xy,�ux,�uy satisfy the structure in (10). (15e)

where G , [0 I]

"
�xx

"
0
0

IT ⌦W

#
�xyV̄ �xx

"
0
In
0

##
, h ,

[0 I]�xx

"
1pT

0
0

#
, and µ , [µ01

>
n , · · · , µT1

>
n ]

>.

Proof. It can be shown that the estimation error dynam-
ics in (8) with its bound can be written as �µ 
x̃ = G

⇥
w> v> x̃>

0

⇤>
+ h  µ or compactly as

I
�I

�
(G

⇥
w> v> x̃>

0

⇤>
+h) 


µ
µ

�
, while the uncertainty

set can be written as (I3 ⌦

I
�I

�
)

"
w
v
x̃0

#


"
⌘w12nwT

⌘v12nvT

µ012n

#
.

The robust counterpart in (15) can then be obtained using
robust optimization techniques outlined in [22]. In addition,
we post-multiplied the equality constraint of the robust coun-

terpart with

"
I 0 0
0 I 0
0 0 µ01

#
and replace (⇧̃3µ0) with another

positive variable ⇧3 to obtain (15b). ⌅

Note that the small change described at the end of the
proof does not make any difference since we assumed that
µ0 is given. However, it has been found to be very beneficial
if µ0 is a decision variable, as described in [18, Proposition 1]
since the bilineary will be moved to the sparser side of (15b).
Further, the problem is bilinear (hence non-convex) but also
sparse; thus off-the-shelf solvers can still easily solve it.

B. Missing Data Case with Data Loss Automaton
So far, in Section III-A, we kept our focus on a single

path with no data loss at any instance in the path. To
design a framework that takes the missing data model in
the form of a data loss automaton A, we will discuss the
necessary modifications to the framework in Theorem 1 and
by extension, Proposition 3.

Since the whole framework surrounds the design of the
injection term ue in (7) with M̄ obtained from (14), then if
there are multiple direct paths in D involved in the automaton
A, along with the ability to keep track of the location of
the data loss signal via the nodes of A, we just need to
design the gain M̄ for each path dba 2 D in A, i.e., for each
d↵ = dba 2 D, there is a gain matrix associated with it as
M̄↵, where:

M̄↵ = �↵
uy � �↵

ux(�
↵
xx)

�1�↵
xy. (16)

Note that for notation efficiency, we will now use ↵ 2 N|D|
1

as the identifier for a direct path d↵ = dba 2 D for the
remainder of this paper.

Apart from the multiple paths, another difference from the
Section III-A is consideration of missing data. In that regard,
let us first redefine the injection term in (7) to reflect that it
is now dependent on path-specific gains:
ue = M̄↵ȳ = �↵

uy,11pT + �↵
uy,2ỹ

��↵
ux(�

↵
xx)

�1


0

�↵
xy,11pT + �↵

xy,2ỹ

�
.

(17)

Because any data loss in yk affects the corresponding entry
in ỹ, we will need to introduce some sort of constraints on
�↵

uy,2 and �↵
xy,2 to cater to the missing data.

When defining the automaton in Definition 1, we men-
tioned that the event set E contains the event of available
(‘1’) or missing (‘0’) corresponding to each transition in
E. Then, when the data ỹk is missing at a particular time
instance k on the node sequence of path d↵ and the event
associated event e 2 E is ‘0’, we can impose that constraint
that the k-th block columns of �↵

uy,2 and �↵
xy,2 are set to

zero, since these block columns multiplies the data ỹk and
if they are set to zero, then ue in (17) will be independent
of the missing ỹk.

Thus, for a direct path d↵ 2 D, since we have the
transition information between each of the states in the
sequence, we can also extract out the sequence of events,
represented as E↵ that results in transition sequences of
the direct path d↵. Then, E↵ contains the data loss signal
associated with the d↵ 2 D and can be used to set the
corresponding block columns of �↵

uy,2 and �↵
xy,2 to zero

when the data is missing.
The problem of designing an estimator that solves Problem

1 then becomes the problem of designing an estimator for

4122

Authorized licensed use limited to: Northeastern University. Downloaded on May 06,2023 at 18:54:48 UTC from IEEE Xplore.  Restrictions apply. 



each direct path d↵ with its own corresponding data loss
signal E↵ and thus, constraints on �↵

uy,2 and �↵
xy,2 that lead

to constraints on its gain M̄↵. These constraints on �↵
uy,2 and

�↵
xy,2 are imposed for simultaneously designing the estimator

gains M̄↵ for all d↵ 2 D to satisfy recurrent recovery (cf.
Definition 5) via the theorem below. Then, once the gains
M̄↵ = [⌫̄↵ M↵] (and hence, M↵ and ⌫↵ = ⌫̄↵1pT ) are
designed offline (once only), the estimator in (17), i.e.,

ue,k = ⌫↵k +
kX

i=0

M↵
(k,i)ỹk,

will be applied at real time by monitoring which direct
path d↵ the current missing data signal is traversing. This
monitoring is possible by combining the knowledge of qk
for all k 2 N and A, as a consequence of Proposition 1.

Theorem 2 (Recurrent Recovery with Missing Data). Given
a data loss automaton A with N nodes and its corresponding
direct path set D, an affine output feedback estimator that
achieve recurrent recovery (cf. Definition 5) can be synthe-
sized using the following optimization problem:

min
�↵

xx,�
↵
xy,�

↵
ux,�

↵
uy,{µs}N

s=1

J({{µs}Ns=1)

subject to

8d↵ = db(↵)a(↵)={s↵(0)=sa(↵), . . . , s
↵(T b(↵)

a(↵)) = sb(↵)}2D :

8(kw↵k  ⌘w, kv↵k  ⌘v, kx̃↵
0 k  µs↵(0)) :

kx̃↵
kk  µs↵(k), 8k 2 {0, . . . , T b(↵)

a(↵)}, (18a)

x̃↵ = [0 I] x̄↵, (18b)
Proposition 2, Equations (8), (11), and (12) hold for each
�↵

xx,�
↵
xy,�

↵
ux,�

↵
uy, (18c)

that satisfy the structure in (10), where the k-th block
columns of �↵

uy,2 and �↵
xy,2, i.e., �↵

uy,2(:, (k � 1)p + 1 :
kp) = 0 and �↵

xy,2(:, (k�1)p+1 : kp) = 0 (using MATLAB
notation for the elements of the matrices), are set to zero if
e↵(k) =‘0’ from the event sequence {e↵(0), . . . , e↵(T b(↵)

a(↵))}
corresponding to the direct path d↵.

If the optimization problem is feasible, the output feedback
estimator gains can be extracted via the following:

M̄↵ = [⌫̄↵ M↵] = �↵
uy ��↵

ux(�
↵
xx)

�1�↵
xy,

⌫↵ = ⌫̄↵1pT .
(19)

Proof. First, we assign a recovery level representing the
maximum estimation error bound to each node in the au-
tomaton A. Then, by Proposition 1, all traces/paths of the
automaton will lie on some direct path at each time instant.
Hence, by enforcing that for each direct path, the estimation
errors must satisfy the recovery levels for the nodes that are
being traversed using the constraints in (13), we can ensure
that the estimator satisfies recurrent recovery as defined in
Definition 5. ⌅

As with Theorem 1, the above contains for all constraints;
thus, we derive the robustified equivalent of Theorem 2:

Proposition 4. The robust estimator design that achieves
recurrent recovery via Theorem 2 with data loss automaton
A with N nodes and its corresponding direct path set D is
equivalent to the following optimization problem:

min
�↵

xx,�
↵
xy,�

↵
ux,�

↵
uy,{µs}N

s=1,⇧
↵
1 ,⇧↵

2 ,⇧↵
3

J({{µs}Ns=1)

subject to

8d↵=db(↵)a(↵)={s↵(0)=sa(↵), . . . , s
↵(T b(↵)

a(↵))=sb(↵)}2D :

⇧↵
1 � 0,⇧↵

2 � 0,⇧↵
3 � 0, µ � 0, (20a)

[⇧↵
1 ⇧↵

2 ⇧↵
3 ] (I3 ⌦


I
�I

�
) =


I
�I

�
G↵

"
I 0 0
0 I 0
0 0 µs↵(0)1n

#
,

(20b)

[⇧↵
1 ⇧↵

2 ⇧↵
3 ]

"
⌘w12nwT

⌘v12nvT

12n

#


µ↵

µ↵

�
�

I
�I

�
h↵, (20c)

Proposition 2, Equations (11) and (12) hold for each
�↵

xx,�
↵
xy,�

↵
ux,�

↵
uy, (20d)

that satisfy the structure in (10), where the k-th block
columns of �↵

uy,2 and �↵
xy,2, i.e., �↵

uy,2(:, (k � 1)p + 1 :
kp) = 0 and �↵

xy,2(:, (k � 1)p + 1 : kp) = 0 (using
MATLAB notation for the elements of the matrices),
are set to zero if e↵(k) =‘0’ from the event sequence
{e↵(0), . . . , e↵(T b(↵)

a(↵))} corresponding to the direct path

d↵, G↵ , [0 I]

"
�↵

xx

"
0
0

IT ⌦W

#
�↵

xyV̄ �↵
xx

"
0
In
0

##
,

h↵ , [0 I]�↵
xx

⇥
1pT

> 0 0
⇤> and µ↵ ,

[µs↵(0)1
>
n , · · · , µs↵(T b(↵)

a(↵)
)
1>
n ]

>.

Proof. This robustified equivalent is obtained using duality
in robust optimization [22] in the same way as Proposition
3 for each direct path of the data loss automaton. ⌅

Note that unlike the problem in Proposition 3 with given
µ0, in the above optimization problem, µs↵(0) is a decision
variable that leads to bilinearity since G↵ is also dependent
on decision variables �↵

xx and �↵
xy . This is the main reason

why we multiplied on both sides of the original equality
constraint to obtain (20b), as was described in the proof of
Proposition 3, since this was found in [18, Proposition 1]
to move the bilineary to the sparser side of (20b), resulting
in the optimization problem being more easily solved using
off-the-shelf solvers.

IV. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the effectiveness of our
proposed system-level recurrent state estimator design on
a simulation example. All simulations are performed in
MATLAB®2020b using YALMIP [23] and IPOPT [24] as a
solver, on a Windows 10 laptop with hexa-core Intel Core
i9 processor and 32GB RAM.
A. Batch Reactor Process

We consider the linearized model of batch reactor process
from [25], that was time-discretized with a sampling time of
Ts = 0.05 seconds using MATLAB c2d command using the
zero-order hold option. The resulting state space model is:

A=

2

64
1.0795 �0.0045 0.2896 �0.2367
�0.0272 0.8101 �0.0032 0.0323
0.0447 0.1886 0.7317 0.2354
0.0010 0.1888 0.0545 0.9115

3

75, B=

2

64
0.0006�0.0239
0.2567 0.0002
0.0837�0.1346
0.0837�0.0046

3

75,

C=


1 0 1 �1
0 1 0 0

�
, V = Ip,W = ;.

The measurement noise is bounded by the value of ⌘v =
0.05, while the missing-data specification considered for
this example is (1, 3)-firmness, meaning that in any 3-step
window, there can only be at most one missing data.
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Fig. 2: Estimation error spread at each node of the (1,3)-firm
automaton in Figure 2, where each box represents the area (2µs(i))

2

corresponding to each node si, with the center of the box implying
x̃k = 0 at that node and the deviation from the center equal to the
estimation error x̃k for some k.

B. Data Loss Automaton and Simulation Results
It can be shown that the missing-data specification of

(1,3)-firmness can be modeled by the automaton in Figure
1. Associating estimation error bounds (i.e., recovery lev-
els) {µs(1), µs(2), µs(3), µs(4)} to the nodes {s1, s2, s3, s4}
respectively, along with the cost function J(·) = µs(1) +
µs(2)+µs(3)+µs(4), we use the robust design in Proposition 4
to design the affine estimator gains (3) for the estimator given
by (2). The error bounds corresponding to each node after
solving the design problem are {µs(1), µs(2), µs(3), µs(4)} =
{0.3556, 0.5726, 0.3541, 0.3519}.

We then performed 50 simulation runs with different
randomly generated noise vectors v over a duration of 20
steps in each run, considering the node s1 as the starting
node with the initial estimation error x̃0 randomly generated
from within kx̃0k  µs(1). The data-loss signal considered
in all of the 50 runs is:
{qk}T�1

k=0 = {1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1}.
The resulting estimation error spread at each node of the

automaton is shown in Figure 2. As expected, the estimation
errors x̃k for all k in all runs are within the boxes, whose
sizes represent the maximum estimation errors µs(i) at each
node si and the scatter points represent actual estimation
errors x̃ at those nodes with the centers of the boxes as the
origins (i.e., x̃ = 0). Hence, the estimation errors with our
proposed estimator are guaranteed to be recurrent despite
missing data and always remain below maxs µs = 0.5726.

Moreover, we implemented two slight variations of the
proposed estimator design where we replaced the system-
level synthesis based estimator gains with the estimator gains
based on output feedback parameterization [10] and output
error feedback parameterization [11] (details omitted for
brevity). Our simulation results show that we obtain the exact
same estimation errors bounds/recovery levels at each node
as in Figure 2, which shows, at least for this example, that
the proposed system-level synthesis approach for satisfying
recurrent recovery is competitive with output feedback and
output error feedback parameterizations.

V. CONCLUSIONS

This paper introduced a system-level robust state es-
timator for uncertain/bounded-error affine systems subject
to data losses modeled by automata. Our robust estimator
design guarantees that the state estimation errors robustly
remain bounded in a recurrent manner despite worst-case
realizations of noise and sensor uncertainties by enforcing a
recurrent recovery property, where the estimation errors are
required to be recurrent to some minimum recovery levels
at each node of the automata. Our design was built upon

system-level parameterization for which we also proposed a
novel extension of system-level synthesis methods to the case
with affine output feedback. Our future work will include the
extension of this approach to obtain robustness to delayed
data that is also common in networked control systems as
well as the consideration of nonlinear system dynamics.
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