
Multi-Model Affine Abstraction of Nonlinear Systems with Model

Discrimination Guarantees

Syed M. Hassaan, Zeyuan Jin and Sze Zheng Yong

Abstract— This paper presents a novel optimization-based

method for multi-model affine abstraction (i.e., for simultaneous

model reduction of multiple models), which solves for the

existence of affine abstractions of a pair of different nonlinear

systems with guarantees of model discrimination with the

minimum detection time T under worst-case uncertainties and

approximation errors. Our approach combines mesh-based

affine abstraction methods with T -distinguishability analysis in

the literature into a bilevel bilinear optimization problem. Then,

to obtain a tractable solution, we leverage robust optimization

techniques and a suitable change of variables to obtain a

sufficient linear program (LP). Finally, the efficacy of proposed

methods is illustrated by several numerical examples.

I. INTRODUCTION

Abstraction-based methods (i.e., a specific class of model
reduction techniques) can simplify the process for analyzing
and controlling smart and complex (nonlinear or hybrid)
systems [1] by computing a simpler but over-approximated
system, i.e., to find an over-approximation of its original
dynamics f(·) by a simpler inclusion model f(·) and f(·) as
bracketing functions or framers, such that for all x in defined
domain, f(x)  f(x)  f(x). By design, abstraction models
must include all possible behaviors of the original system to
maintain properties of interest. For instance, to verify that
a given complex system satisfies certain properties, we can
test for the desired property on the abstracted simple system
which provides an equivalent or sufficient result as when
testing for the property on the original complex system.

Literature Review. Numerous abstraction approaches have
been developed for different classes of systems in the
literature, e.g., nonlinear systems [2]–[5], hybrid systems
[6], and uncertain affine and nonlinear systems [7], [8].
Two important classes of abstraction methods are symbolic
approaches [1], [9] and hybridization [2], [10]. In these
methods, the growth of the number of symbolic states and
inputs (or partitions) is exponential with state and input
dimensions. Thus, [11] presented a incremental method to
find abstraction by solving a sequence of linear programs
(LP) to overcome the scalability issue. In addition, when
the exact dynamic model is unknown, the abstraction can be
identified using data-driven approaches [12], [13].

Another specific interest of this paper is the model discrim-
ination/identification problem, which seeks to distinguish
between models based on the compatibility and consistency
of newly observed input-output data with the models using a
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model (in)validation framework [14], [15]. Multiple methods
to solve the model invalidation problem has been proposed
for various types of systems, e.g., linear parameter varying
systems [16], [17], nonlinear systems [18], uncertain systems
[8], switched auto-regressive models [19] and switched affine
systems [15], [20]. Further, given a pair of models, the notion
of T -detectability/distinguishability is introduced in [15],
[20] to analyze the distinction of these two models, which is
defined as the upper bound on the required time horizon
T to distinguish the model pair, if such a T exists. The
notion of T -distinguishability is also related to state/mode
distinguishability in the literature for switched linear [21],
finite-state [22] and switched nonlinear [23] systems.

Contributions. In this paper, we propose a mesh-based
method to compute affine abstractions for a pair of different
nonlinear systems and to find the minimum guaranteed
detection time T such that the two abstractions with the
same sets of initial state and noise signals are guaranteed to
be distinguished within finite time steps T under worst-case
realizations of uncertainties and abstraction/modeling errors.
In contrast to existing two-step methods that separate the
processes of finding abstraction and analyzing distinguisha-
bility, e.g., [24], we propose a bilevel optimization problem
that, if solved, simultaneously provide the abstraction model
and required time horizon T to distinguish one model from
the other. To solve the bilevel problem, we rely on robust
optimization techniques [25] to obtain a single-level dual
problem. However, this problem involves bilinear terms
that might lead to intractability; thus, we further convert
the bilinear optimization problem into a sufficient linear
programming (LP) problem by a suitable change of variables.
To the best of our knowledge, this is the first work that
can simultaneously find abstractions for multiple different
nonlinear systems to maximize the “difference” between
the abstractions to facilitate model discrimination, e.g., in
fault detection and (intent) model estimation applications.
Finally, we demonstrate the effectiveness of our approaches
to distinguish pairs of 1D and 2D models.

II. PRELIMINARIES

Notation. We use Rn to denote a real vector of length
n, Zb

a to denote a set with integers from a to b, In to
denote an n-by-n identity matrix and 1 2 Rn to denote
a vector of ones, i.e., 1 = [1, 1, . . . , 1]>. Moreover, we use
vec
i
(Di) to denote a row vector constructed by concatenating

scalars/vectors Di. For a vector v and a matrix M , |v|, kvki
and kMki denote their component-wise absolute values and
their (induced) i-norms with i = {1, 2,1}.
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A. Modeling Framework
In this paper, we consider a pair of nonlinear discrete-time

system dynamics over a common domain given by:

xi,k+1 = fi(xi,k, ui,k) + wi,k, (1)
yi,k = Cixi,k + vi,k, (2)

where the subscript i 2 {1, 2} is used to refer to the different
models and xi,k 2 X ✓ Rn is the system state, wi,k 2 W ✓

Rn is measurement noise linearly affecting the dynamics
and ui,k 2 U ✓ Rm is the known control input with a
bounded and closed interval domain U . yi,k 2 Y ✓ Rm is
the observation and vi,k 2 V ✓ Rm is the measurement
noise. We assume X , U and W to be known bounded and
closed interval domains, with specifically kwi,kk1  ⌘w
and kvi,kk1  ⌘v . The vector fields fi : X ⇥ U ! Rn are
continuous functions. Moreover, (xs, us) 2 Rn+m represents
a sample point, and a partition of the domain is denoted by
I , X⇥U . The following definitions are introduced to define
a sample set M ⇢ X ⇥ U :

Definition 1 (Uniform Mesh, Mesh Elements, Grid Points
and Diameter [11]). A uniform mesh of each domain I is
a collection of polytopic partitions, called mesh elements,
with a total of smax number of points, called grid points,
uniformly distributed along all directions and dimensions.
The diameter � of a uniform mesh is the greatest distance
between vertices of each mesh element.

Definition 2 (Sample and Vertex Sets). A sample set is the
set of grid points, denoted as M and by construction, the
convex hull of M is the domain I , i.e., I = Conv(M). The
set of all vertices of X is called the vertex set of state x,
and denoted as Xc. Similarly, the set of all vertices of U is
called the vertex set of input u, and denoted as Uc. Because
we are considering both X and U to be bounded, they both
are polytopes and have well-defined vertex sets.

For ease of exposition and to reduce notational burden, we
introduce the following assumption on the model outputs:

A1. For the given nonlinear dynamics (1), each system has
full-state output with measurement noise, i.e., C = I .

Note that our proposed algorithm can be easily extended to
consider any linear matrix C and/or more than two models.

B. Abstraction/Over-approximation
The abstraction model for fi for each i 2 {1, 2} is

defined as a pair of functions f
i

and f i which over-
approximate/frame the original function fi(·) : X ⇥U ! Rn

such that 8(xs, us) 2 M, f
i
(xs, us)  fi(xs, us) 

f i(xs, us). Specifically, we aim to find an affine abstraction
model Hi for each i 2 {1, 2} with respect to (1) over domain
I , X ⇥ U which is given by:

Ai,kxi,k +Bi,kui,k + hi,k + wi,k  xi,k+1

 Ai,kxi,k +Bi,kui,k + hi,k + wi,k,
(3)

where Ai,k, Bi,k, hi,k, Ai,k, Bi,k and hi,k are (time-varying)
matrices/vectors of appropriate dimensions.

Remark 1. If desired, a global affine abstraction model Hg
i

can be found by further abstracting (3) in a post-processing
step (with given Ai,k, Bi,k, hi,k, Ai,k, Bi,k and hi,k for k 2

ZT�1
0 and i 2 {1, 2}) such that: Aixi,k+Biui,k+hi+wi,k 

Ai,kxi,k + Bi,kui,k + hi,k + wi,k  xi,k+1  Ai,kxi,k +
Bi,kui,k +hi,k +wi,k  Aixi,k +Biui,k +hi+wi,k, where
Ai, Bi, hi, Ai, Bi and hi are time-invariant matrices/vectors
of appropriate dimensions. Our future work will consider an
extension for directly finding global abstraction models H

g
i .

In preparation for finding the affine abstraction for fi
(performed dimension-wise, i.e., for f (j)

i , 8j 2 Zn
1 ), we rely

on the following definitions and proposition:

Definition 3 (Abstraction Error [3]). The abstraction error
of an affine abstraction model Hi of a sampled nonlinear
function fi(xs, us) over its domain I is defined as ✓i =
max(xs,us)2M kf i(xs, us)� f

i
(xs, us)k1.

Proposition 1 ([26, Theorem 4.1 & Lemma 4.3]). Let S be
an (n+m)-dimensional mesh element such that S ✓ Rn+m

with diameter � (see Definition 1). Let f (j)
i : S ! R be a

nonlinear function and let f (j)
l,i be the linear interpolation of

f (j)
i (·) evaluated at the vertices of the mesh element S. Then,

the approximation error � defined as the maximum error
between f (j)

i and f (j)
l,i on S, i.e., � = maxs2S(|f

(j)
i (s) �

f (j)
l,i (s)|), is upper-bounded by

(i) �  2 maxs2S kf (j)
i (s)k1, if f (j)

i 2 C0 on S,
(ii) �  ��s, if f (j)

i is Lipschitz continuous on S,
(iii) �  �s maxs2S kf 0(j)

i (s)k2, if f (j)
i 2 C1 on S,

(iv) � 
1
2�

2
s maxs2S kf 00(j)

i (s)k2, if f (j)
i 2 C2 on S,

where C0, C1 and C2 are sets of continuous, continuously
differentiable and twice continuously differentiable functions
respectively, � is the Lipschitz constant, f 0(j)

i (s) is the
Jacobian of f (j)

i (s), f 00(j)
i (s) is the Hessian of f (j)

i (s) and
�s satisfies �s 

q
n+m

2(n+m+1)�.

Since this paper involves a pair of nonlinear functions f1
and f2, we denote their respective approximation errors with
�1 and �2 for the remainder of the paper.

C. Length-T Behavior
To solve the model discrimination problem, we utilize the

definition in [15] of the length-T behaviors of the original
nonlinear model G and the abstracted model H:

Definition 4 (Length-T Behaviors of Original and Abstracted
Models Gi and Hi). The length-T behaviors of the original
(nonlinear) model Gi and affine abstracted model Hi with
the model output governed by Assumption 1 are the sets of
all length-T output trajectories compatible with Gi and Hi,
respectively, given by the sets:

B
T (Gi) :={{uk, yk}

T�1
k=0 | 9xk 2 X , uk 2 U , yk 2 Y,

wk 2 W, vk 2 V, for k 2 Z0
T�1, s.t. (1)–(2) hold},

B
T (Hi) :={{uk, yk}

T�1
k=0 | 9xk 2 X , uk 2 U , yk 2 Y,

wk 2 W, vk 2 V, for k 2 Z0
T�1, s.t. (2)–(3) hold}.

Thus, by definition, BT (Gi) ✓ B
T (Hi).
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III. PROBLEM FORMULATION

When two nonlinear models, usually encompassing dif-
ferent behaviors of a system over the same domain, are
given, the problem that we aim to tackle in this paper is
to find an affine over-approximation of each of these models
such that there is some way to discriminate between these
abstractions when utilized. The discrimination solution using
the abstraction models is sufficient for the problem with the
original nonlinear models because B

T (Gi) ✓ B
T (Hi) (cf.

Definition 4). For that purpose, we look into the concept of
T -distinguishability for model discrimination. Formally, we
define the problem we consider in this paper as:

Problem 1. For a given pair of nonlinear dynamics defined
in (1) with (x, u) 2 X ⇥ U , find affine abstractions Hi,
i 2 {1, 2} of the form (3) for their respective fi(x, u) over
I , such that both Hi’s are T-distinguishable for a minimum
T , i.e., find the minimum horizon T and Hi such that:

T2
i=1 B

T (Hi) = ;. (4)

To solve Problem 1, we will also consider a special case
of the problem, where we find the abstractions that are T -
distinguishable for a specified T .

Problem 1.1. Given a pair of nonlinear dynamics defined in
(1) with (x, u) 2 X ⇥U , determine whether there exist affine
abstractions Hi, i 2 {1, 2} of the form (3) for their respective
fi(x, u) over I , such that both Hi’s are T-distinguishable for
a specified T , i.e., for a fixed T , determine if there exist Hi,
i 2 {1, 2}, such that:

T2
i=1 B

T (Hi) = ;. (5)

IV. MAIN RESULTS

In this section, we propose solution approaches that can be
used to solve Problem 1. Specifically, we start by leveraging
the concept of affine abstraction of the nonlinear functions
from [3], and combine it with the T -distinguishability con-
ditions for the abstracted models from [15]. The purpose
of applying the T -distinguishability condition is to aid in
yielding affine abstractions of the pair of functions that
can be distinguished from each other within T time steps,
hence separating the two models, solving the second part of
Problem 1.

To design such an optimization problem, we first start
by fixing the horizon to an arbitrary T . Then, for the two
nonlinear dynamics (1), we first propose an optimization
problem to tackle the Problem 1.1 as follows:

Proposition 2. Given a pair of nonlinear systems of the
form (1) with initial state and input values bounded by
x0 2 X0 ✓ X and u0 2 U0 ✓ U , respectively, along with
Assumption 1, there exist time-varying affine abstractions
Fi,k = {f i,k, f i,k

} for each system i = {1, 2} that are T -
distinguishable for a known T if the following optimization
problem is feasible:

min
A1,k,A1,k,B1,k,B1,k,h1,k,h1,k,

A2,k,A2,k,B2,k,B2,k,h2,k,h2,k,
✓1,✓2,✏

� ✏+ d(✓1 + ✓2)

subject to:
8((xs, us) 2 M, xc 2 Xc, uc 2 Uc, i 2 {1, 2}, k 2 ZT�1

0 ) :

Ai,kxs +Bi,kus + hi,k � fi(xs, us),
Ai,kxs +Bi,kus + hi,k  fi(xs, us),

(Ai,k�Ai,k)xc + (Bi,k �Bi,k)uc + hi,k � hi,k  ✓i1,
(6a)�? , min

x,u,y,z,�
� � ✏

subj. to: 8k 2 ZT�1
0 :

xk+1  A1,kxk +B1,kuk + h1,k + �1 + ⌘w1,
xk+1 � A1,kxk +B1,kuk + h1,k � �1 � ⌘w1,
yk+1  A2,kyk +B2,kzk + h2,k + �2 + ⌘w1,
yk+1 � A2,kyk +B2,kzk + h2,k � �2 � ⌘w1,
Pkxk  pk, Pkyk  pk, Qkuk  qk, Qkzk  qk,
|xk � yk|  (� + 2⌘v)1,

(6b)

where d is an arbitrarily small scalar, xs and us are values
at the grid points on the mesh M, and xc and uc are vertices
of the domain X ⇥ U . The matrix-vector pairs (Pk, pk) and
(Qk, qk) are polytopic representations of the domains X0

and U0 when k = 0, and X and U otherwise, respectively.

Proof. To obtain the abstraction Hi of fi, it needs to fulfil the
property given in (3). Moreover, for the T -distinguishability
condition with Assumption 1, the following needs to hold
for all k 2 ZT�1

0 :

xk+1  A1,kxk +B1,kuk + h1,k + �1 + wk,
xk+1 � A1,kxk +B1,kuk + h1,k � �1 � wk,
yk+1  A2,kyk +B2,kzk + h2,k + �2 + wk,
yk+1 � A2,kyk +B2,kzk + h2,k � �2 � wk,
Pkxk  pk, Pkyk  pk, Qkuk  qk, Qkzk  qk,
|xk + v1,k � yk � v2,k|  �1,

The above can be sufficiently described by replacing the
noise variables w and v with their bounds, resulting in:

xk+1  A1,kxk +B1,kuk + h1,k + �1 + ⌘w1,
xk+1 � A1,kxk +B1,kuk + h1,k � �1 � ⌘w1,
yk+1  A2,kyk +B2,kzk + h2,k + �2 + ⌘w1,
yk+1 � A2,kyk +B2,kzk + h2,k � �2 � ⌘w1,
Pkxk  pk, Pkyk  pk, Qkuk  qk, Qkzk  qk,
|xk � yk|  (� + 2⌘v)1,

(7)

where the objective is to minimize �. But at the same time,
we want to find abstractions that maximize the minimum
�, giving rise to the condition maxmin �, resulting in the
bilevel problem:

max ✏ subj. to: ✏  min �. (8)

Further, since the separating abstraction models may not
be tight, a secondary goal is to enforce tightness of Hi over
its corresponding fi, i.e., its abstraction error (cf. Definition
3) is to be minimized, implying:

min ✓i subj. to: (f i(xs, us)� f
i
(xs, us))  ✓i,
8(xs, us) 2 M.

(9)

Combining the constraints (3), (9), (7) and considering
the weighted sum of the costs in (9) and (8) in the form of
�✏+ d(✓1 + ✓2) with d chosen to be very small since tight-
ness is secondary to separation guarantees, the optimization
problem, by construction, solves Problem 1.1 if a solution to
(6) exists.
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Observing the optimization problem (6), it can be seen
that it is a bilevel problem that also involves bilinear terms
in constraints (6b), making it extremely hard to solve. To
obtain a tractable problem that can be easily solved using off-
the-shelf solvers, we first utilize robustification techniques to
obtain an equivalent single-level dual problem as follows:

Lemma 1. A robust dual of the solution in Proposition 2
takes the following form:

min
A1,k,A1,k,B1,k,B1,k,h1,k,h1,k,

A2,k,A2,k,B2,k,B2,k,h2,k,h2,k,
✓1,✓2,✏

� ✏+ d(✓1 + ✓2)

subject to:
8((xs, us) 2 M, xc 2 Xc, uc 2 Uc, i 2 {1, 2}, k 2 ZT�1

0 ) :

Ai,kxs +Bi,kus + hi,k � fi(xs, us),
Ai,kxs +Bi,kus + hi,k  fi(xs, us),

(Ai,k�Ai,k)xc + (Bi,k �Bi,k)uc + hi,k � hi,k  ✓i1,
(10a)

⇧>

2

664

r1 + � + ⌘w1
r2
c
g

3

775  �✏,

⇧>

2

664

R1 S1 0
R2 0 �1
C 0 0
0 G 0

3

775 =
⇥
0 0 1

⇤
,⇧>

� 0,

(10b)

where R1, S1, R2, C, G, r1, �, r2, c and g are stacked
matrices and vectors defined in the Appendix.

Proof. Since the inner problem (6b) constraints involve a
finite time horizon T , we can stack the constraint inequal-
ities over the horizon k 2 ZT�1

0 to obtain the following
inequalities for i 2 {1, 2}:

M ix+N iu+ F i � �̄i � ⌘w1  0,
M ix+N iu+ F i � �̄i � ⌘w1  0,

|x� y|  (� + 2⌘v)1,
Px  p, Py  p,Qu  q,Qz  q,

(11)

where M i, N i, F i, M i, N i and F i for i 2 {1, 2} are the
time-stacked matrices defined in the Appendix and x, y, u,
z and �̄i are stacked versions of the corresponding signals
defined as:

x = [x>
0 , · · · , x

>
T ]

>, u = [u>
0 , · · · , u

>
T�1]

>,

y = [y>0 , · · · , y
>
T ]

>, z = [z>0 , · · · , z>T�1]
>,

�̄i = [�(1)
i , · · · ,�(T )

i ]> 2 RnT
8i 2 {1, 2}.

Now, as x and y correspond to state trajectories following
the abstracted dynamics of f1 and f2 respectively, we further
stack the equations in (11) to obtain the following:

R1x̄+ S1ū  r1 + � + ⌘w1 , r̄1,
R2x̄  r2 + �1, Cx̄  c, Gū  g,

(12)

where R1, S1, r1, R2, r2, C and c are defined in Appendix
and x̄, ū and � are defined as:

x̄ = [x>, y>]>, ū = [u>, z>]>,� = [�̄>
1 , �̄

>
2 ]

>.

Rewriting the problem (6b) using the stacked forms in
(12), we obtain:

[0 0 �1][x̄> ū> �]>  �✏, 8[x̄> ū> �]> 2 J(R1, S1, r1),
(13)

where

J(R1, S1, r1) ,

8
>><

>>:

2

4
x̄
ū
�

3

5 :

2

664

R1 S1 0
R2 0 �1
C 0 0
0 G 0

3

775

2

4
x̄
ū
�

3

5 

2

664

r̄1
r2
c
g

3

775

9
>>=

>>;
.

(14)
As all the constraints involved in (13)–(14) are linear in the

decision variables, applying duality theory from the robust
optimization literature, e.g., [25], results in a dual problem
given in (10b) with the dual variable ⇧.

Note that the optimization problem in (10) still involves
bilinear terms in (10b). To overcome this, a suitable change
of variables is applied to obtain a sufficient problem that
is linear in the decision variables involved. The resulting
optimization problem is as follows:

Theorem 1. Given a pair of systems as nonlinear functions
of the form (1) with initial state bounded by x0 2 X0 ✓ X

and initial control input bounded by u0 2 U0 ✓ U , along
with Assumption 1, then, for a specified T , there exist time-
varying affine abstractions Fi,k = {f i,k, f i,k

} for each
system i = {1, 2} that are T -distinguishable if the following
optimization problem has a solution:

min
�1,k,�1,k, 1,k, 1,k,

⌦1,k,⌦1,k,�2,k,�2,k,

 2,k, 2,k,⌦2,k,⌦2,k,
⇧,✏,↵1,↵2

� ✏+ d(↵1 + ↵2) (15)

subject to:
8((xs, us) 2 M, xc 2 Xc, uc 2 Uc, i 2 {1, 2}, j 2 Zn

1 , k 2

ZT�1
0 ) :

�(j)
i,kxs + 

(j)
i,kus + ⌦

(j)
i,k  ⇧(j)

1,i,kf
(j)
i (xs, us),

�
(j)
i,kxs + 

(j)
i,kus + ⌦

(j)
i,k � ⇧

(j)
1,i,kf

(j)
i (xs, us),

(�
(j)
i,k � �(j)

i,k)xc + ( 
(j)
i,k � (j)

i,k)uc + ⌦
(j)
i,k � ⌦(j)

i,k  ↵i1,

↵i > 0, �i,k =
nX

j=1

�(j)
i,k , i,k =

nX

j=1

 (j)
i,k ,⌦i,k =

nX

j=1

⌦(j)
i,k ,

�i,k =
nX

j=1

�
(j)
i,k , i,k =

nX

j=1

 
(j)
i,k ,⌦i,k =

nX

j=1

⌦
(j)
i,k ,

⇧>
1,i,k =

n
vec
j=1

(⇧(j)
1,i,k),⇧

>
1,i,k =

n
vec
j=1

(⇧
(j)
1,i,k),

⇧1,i,k > 0,⇧1,i,k > 0,⇧2 � 0,⇧3 � 0,⇧4 � 0,⇧>
2 1 = 1,

⌅+⇧>
2 R2 +⇧

>
3 C = 0,⇤+⇧>

4 G = 0,
T�1X

k=0

2X

i=1

(⌦i,k � ⌦i,k)  �✏�⇧>
1 (� + ⌘w1)�⇧

>
2 r2

�⇧>
3 c�⇧

>
4 g,

⇧> =
h
⇧>

1,1,⇧
>
1,1,⇧

>
1,2,⇧

>
1,2,⇧

>
2 ,⇧

>
3 ,⇧

>
4

i
,

(16a)

where � is defined in Proposition 1 and ⌅, ⇤, R2, C, G, r2,
�, c and g are defined in the Appendix.
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Proof. Analyzing the dimensions of ⇧ in (10b), it is evident
that it is a column vector. Breaking it down into the form:

⇧> =
⇥
⇧>

1 ,⇧
>
2 ,⇧

>
3 ,⇧

>
4

⇤
,

=
h
⇧>

1,1,⇧
>
1,1,⇧

>
1,2,⇧

>
1,2,⇧

>
2 ,⇧

>
3 ,⇧

>
4

i
,

where each {⇧>
1,i,⇧

>
1,i} for i 2 {1, 2} can be further

expanded as follows:

⇧>
1,i = [⇧>

1,i,0, · · · ,⇧
>
1,i,T�1],⇧1,i,k 2 Rn, 8k 2 ZT�1

0 ,

⇧
>
1,i = [⇧

>
1,i,0, · · · ,⇧

>
1,i,T�1],⇧1,i,k 2 Rn, 8k 2 ZT�1

0 .
(17)

Then, expanding the first constraint in (10b), we obtain:

⇧>
1 r̄1 +⇧

>
2 r2 +⇧

>
3 c+⇧

>
4 g  �✏. (18)

In (18), the first term is the only term that is bilinear. Taking
it and expanding it further using matrix definitions from the
Appendix, it takes the following form:

⇧>
1 r̄1 =

T�1X

k=0

2X

i=1

(⇧
>
1,i,khi,k �⇧>

1,i,khi,k) +⇧
>
1 (� + ⌘w1).

Observing the two bilinear terms in the above equation, let:
⌦i,k , ⇧>

1,i,khi,k, ⌦i,k , ⇧>
1,i,khi,k.

With the above change of variables, the algebraic manipula-
tion of the inequality (18) results in:

T�1X

k=0

2X

i=1

(⌦i,k � ⌦i,k) +⇧
>
1 (� + ⌘w1) +⇧

>
2 r2 +⇧

>
3 c

+⇧>
4 g  �✏,

(19)
which is linear in all the variables involved.

Similarly evaluating the second constraint in (10b) with
the following change of variables:

�i,k , ⇧>
1,i,kAi,k, �i,k , ⇧>

1,i,kAi,k,

 i,k , ⇧>
1,i,kBi,k,  i,k , ⇧>

1,i,kBi,k,

we obtain the following set of inequalities equivalent to the
second constraint in (10b):

⌅+⇧>
2 R2 +⇧

>
3 C = 0, ⇤+⇧>

4 G = 0, ⇧>
2 1 = 1, (20)

where ⌅ and ⇤ are given in the Appendix.
Although originally ⇧1, being a part of ⇧, is non-negative

in the problem (10), but due of the proposed change of vari-
ables, to avoid trivial solutions, we additionally require ⇧1

to be strictly positive, making our approach only sufficient.
Furthermore, based on Equations (17), let us represent

each scalar component of ⇧1,i,k and ⇧1,i,k as ⇧(j)
1,i,k and

⇧
(j)
1,i,k respectively, where j 2 Zn

1 . Using these scalars to
scale the abstraction constraints in (10a) for each row j 2 Zn

1

and i 2 {1, 2}, we have

⇧
(j)
1,i,kA

(j)
i,kxs +⇧

(j)
1,i,kB

(j)
i,kus +⇧

(j)
1,i,kh

(j)
i,k

� ⇧
(j)
1,i,kf

(j)
i (xs, us),

⇧(j)
1,i,kA

(j)
i,kxs +⇧

(j)
1,i,kB

(j)
i,kus +⇧

(j)
1,i,kh

(j)
i,k

 ⇧(j)
1,i,kf

(j)
i (xs, us).

(21)

Replacing the bilinear terms with:

�
(j)
i,k , ⇧(j)

1,i,kA
(j)
i,k , �

(j)
i,k , ⇧(j)

1,i,kA
(j)
i,k ,

 
(j)
i,k , ⇧(j)

1,i,kB
(j)
i,k ,  

(j)
i,k , ⇧(j)

1,i,kB
(j)
i,k ,

the constraints (21) take the following form:

�(j)
i,kxs + 

(j)
i,kus + ⌦

(j)
i,k  ⇧(j)

1,i,kf
(j)
i (xs, us),

�
(j)
i,kxs + 

(j)
i,kus + ⌦

(j)
i,k � ⇧

(j)
1,i,kf

(j)
i (xs, us).

(22)

For the third constraint in (10a) that governs abstraction
tightness, we start by breaking it down into two sets of
sufficient constraints for i 2 {1, 2}:

A
(j)
i,kxc +B

(j)
i,kuc + h

(j)
i,k  a✓i1, (23a)

�A(j)
i,kxc �B(j)

i,kuc � h(j)
i,k  (1� a)✓i1, (23b)

for some arbitrary scalar a satisfying 0 < a < 1. Multi-
plying j-th row of (23a) and (23b) with ⇧

(j)
1,i,k and ⇧(j)

1,i,k,
respectively, and then adding them, the following expression
is obtained:

(�
(j)
i,k � �(j)

i,k)xc + ( 
(j)
i,k � (j)

i,k)uc + (⌦
(j)
i,k � ⌦(j)

i,k)

 (a⇧
(j)
1,i,k + (1� a)⇧(j)

1,i,k)✓i1.

As a > 0, (1�a) > 0, ⇧
(j)
1,i,k > 0, ⇧(j)

1,i,k > 0 and ✓i, we can

use ↵i , (a⇧
(j)
1,i,k+(1�a)⇧(j)

1,i,k)✓i where ↵i > 0, resulting
in the following form:

(�
(j)
i,k � �(j)

i,k)xc + ( 
(j)
i,k � (j)

i,k)uc + (⌦
(j)
i,k � ⌦(j)

i,k)  ↵i1.
(24)

Lastly, �i,k, �i,k,  i,k,  i,k, ⌦i,k, ⌦i,k also algebraically
form the following relationships:

�i,k = ⇧
>
1,i,kAi,k =

nX

j=1

⇧
(j)
1,i,kA

(j)
i,k =

nX

j=1

�
(j)
i,k ,

�i,k = ⇧>
1,i,kAi,k =

nX

j=1

⇧(j)
1,i,kA

(j)
i,k =

nX

j=1

�(j)
i,k ,

 i,k = ⇧
>
1,i,kBi,k =

nX

j=1

⇧
(j)
1,i,kB

(j)
i,k =

nX

j=1

 
(j)
i,k ,

 i,k = ⇧>
1,i,kBi,k =

nX

j=1

⇧(j)
1,i,kB

(j)
i,k =

nX

j=1

 (j)
i,k ,

⌦i,k = ⇧
>
1,i,khi,k =

nX

j=1

⇧
(j)
1,i,kh

(j)
i,k =

nX

j=1

⌦
(j)
i,k ,

⌦i,k = ⇧>
1,i,khi,k =

nX

j=1

⇧(j)
1,i,kh

(j)
i,k =

nX

j=1

⌦(j)
i,k .

(25)

Combining (19), (20), (22), (24) and (25), along with the
relevant bounds on the decision variables, the constraints
(16a) for the proposed design problem are formed.

The cost function, after replacing the terms involving ✓i
with ↵i, then becomes:

D(✏,↵1,↵2) = �✏+ d(↵1 + ↵2).

482

Authorized licensed use limited to: Northeastern University. Downloaded on May 06,2023 at 18:57:12 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Abstraction obtained for the 1D dynamics for k = 2.

If the solution of (15) exists, the parameters of the ab-
stractions can be extracted using the following equations:

A
(j)
i,k = �

(j)
i,k/⇧

(j)
1,i,k, B

(j)
i,k =  

(j)
i,k/⇧

(j)
1,i,k, h

(j)
i,k = ⌦

(j)
i,k/⇧

(j)
1,i,k,

A(j)
i,k = �(j)

i,k/⇧
(j)
1,i,k, B

(j)
i,k =  (j)

i,k/⇧
(j)
1,i,k, h

(j)
i,k = ⌦(j)

i,k/⇧
(j)
1,i,k,

where ⇧
(j)
1,i,k and ⇧(j)

1,i,k are scalars.
On its own, the existence of a solution to the proposed dual

sufficient problem in (15) can guarantee that the obtained
abstractions Hi, i 2 {1, 2} of the two nonlinear models are
distinguishable within the specified T , solving Problem 1.1.
Then, by performing a line search over T , abstractions Hi,
i 2 {1, 2} that are T -distinguishable with the minimum guar-
anteed detection time T can be obtained, solving Problem 1.
Remark 2. Starting from T = 1, incorporating a line
search on T and solving the design problem in (15) for each
increasing T , abstractions Hi with minimum T -detectability
can be found, solving Problem 1.

V. SIMULATION EXAMPLES

We apply our proposed approach on some illustrative
examples, where all optimization problems are implemented
in MATLAB® 2020b and solved using GUROBI 9.0.3 [27].

A. 1D Model Pair
In the first example, a pair of illustrative discrete-time 1D

models are considered:

xk+1 = f1(xk) = 1 + 0.1(xk � 5)2 � cos(2⇡(x� 5)),

xk+1 = f2(xk) = 1 +
(xk + 6)2

4000
� cos(x+ 6),

where the state for both models is bounded by x 2 [0, 5.1].
The process and measurement noise bounds are set as ⌘w =
0.1 and ⌘v = 0.01. Evaluating the abstractions of the given
functions using Theorem 1, with a line search over T with
the aim to have the smallest guaranteed detection time T ,
results in the model abstractions as shown in Figure 1 with
the abstractions being 3-distinguishable, i.e., with Tmin = 3.

B. 2D Single-Arm Manipulator Model Pair
For the second example, the nonlinear models taken into

consideration are different forms of a single-arm manipulator
system with the states as x = [✓, ✓̇]>, representing the

(a) Abstraction of ✓1 (b) Abstraction of ✓2
Fig. 2: Abstractions for the first state of the 2D dynamics.
The (middle) white surface is the function f1, the (top) blue
plane is H1 + �1 and the (bottom) red plane is H1 � �1.

(a) Abstraction of ✓̇1 (b) Abstraction of ✓̇2
Fig. 3: Abstractions for the second state of the 2D dynamics.
The (middle) white surface is the function f2, the (top) blue
plane is H2 + �2 and the (bottom) red plane is H2 � �2.

angular position and angular velocity of the arm respectively.
The first model is a simple pendulum with a discrete-time
model given as:

xk+1 =


✓k + ✓̇kTs

✓̇k � (5.28sin✓k + 7.9✓̇ke�|✓k| + 1.32✓̇k)Ts

�
,

where Ts = 0.01 is the sampling interval/period. For the sec-
ond model, a 1-link robot arm with the following dynamics
is considered:

xk+1 =


✓k + ✓̇kTs

✓̇k + (10�5cos✓k � 10✓ke2|✓k| � 60✓̇k)Ts

�
,

where Ts = 0.01 is the sampling interval/period. For both
models, the states are bounded by x 2 [�⇡/2,⇡/2]⇥ [�7, 7]
and initial state bounds are x 2 [�⇡/4,⇡/4] ⇥ [�3.5, 3.5].
The process and measurement noise bounds are set at
kwk1, kvk1  0.1. Solving the design problem (15) with
increasing values of T starting from T = 1, the abstractions
obtained are shown in Figures 2 and 3, with the models being
1-detectable, i.e., Tmin = 1.

VI. CONCLUSIONS

This paper proposed an optimization-based approach to
solve the problem of finding abstractions of two functions
that are guaranteed to be distinct from each other. The notion
of T -distinguishability is used to enforce the distinction and
the resulting algorithm is a sufficient linear programming
problem, from which the abstractions can be obtained. Our
proposed approach allows for linearization/model reduction
of a class of systems that have different nonlinear behavioral
models for easy distinction. Viable paths to explore in the
future are to consider nonlinear system outputs, as opposed to
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linear outputs considered in this paper, as well as to consider
piecewise abstractions for each model.
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[26] M. Stämpfle, “Optimal estimates for the linear interpolation error for
simplices,” Jour. of Approximation Theory, vol. 103, pp. 78–90, 2000.

[27] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,”
2015. [Online]. Available: http://www.gurobi.com

APPENDIX

Time-stacking the expressions in (6b) results in the fol-
lowing terms for i 2 {1, 2}:

M i =

2

66664

Ai,0 �In 0 · · · 0

0 Ai,1 �In
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 Ai,T�1 �In

3

77775
, p =

2

64
p0
...
pT

3

75 ,

N i =

2

66664

Bi,0 0 · · · 0

0 Bi,1

. . .
...

...
. . .

. . . 0
0 · · · 0 Bi,T�1

3

77775
, F i =

2

64

hi,0

...
hi,T�1

3

75 ,

M i =

2

66664

�Ai,0 In 0 · · · 0

0 �Ai,1 In
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 �Ai,T�1 In

3

77775
, q =

2

64
q0
...

qT�1

3

75 ,

N i =

2

66664

Bi,0 0 · · · 0

0 Bi,1

. . .
...

...
. . .

. . . 0
0 · · · 0 Bi,T�1

3

77775
, F i =

2

64
�hi,0

...
�hi,T�1

3

75 ,

P =

2

66664

P0 0 · · · 0

0 P1

. . .
...

...
. . .

. . . 0
0 · · · 0 PT

3

77775
, Q =

2

66664

Q0 0 · · · 0

0 Q1

. . .
...

...
. . .

. . . 0
0 · · · 0 QT�1

3

77775
.

Further, stacking of the inequalities in (11) results in the
following matrices and vectors:

R1 =

2

664

M1 0
M1 0
0 M2

0 M2

3

775 , S1 =

2

664

N1 0
N1 0
0 N2

0 N2

3

775 , r1 =

2

664

�F 1

�F 1

�F 2

�F 2

3

775 ,

R2 =


InT �InT

�InT InT

�
, r2 = 2⌘v1,

C =


P 0
0 P

�
, G =


Q 0
0 Q

�
, c =


p
p

�
, g =


q
q

�
.

Finally, expanding ⇧>
1 R1 and ⇧>

1 S1 in the second con-
straint in (10b) yields the following row vectors, respectively,
after substituting the appropriate change of variables intro-
duced in Theorem 1:

⇧>
1 R1 = ⌅ =

⇥
(⌅1 � ⌅1) (⌅2 � ⌅2)

⇤
,

⇧>
1 S1 = ⇤ =

⇥
(⇤1 � ⇤1) (⇤2 � ⇤2)

⇤
,

where, for i 2 {1, 2}:

⌅i=
h
T�1
vec
k=0

(�i,k) 0
i
�

h
0

T�1
vec
k=0

(⇧>
1,i,k)

i
,⇤i=

T�1
vec
k=0

( i,k),

⌅i=
h
T�1
vec
k=0

(�i,k) 0
i
�

h
0

T�1
vec
k=0

(⇧
>
1,i,k)

i
,⇤i=

T�1
vec
k=0

( i,k).

484

Authorized licensed use limited to: Northeastern University. Downloaded on May 06,2023 at 18:57:12 UTC from IEEE Xplore.  Restrictions apply. 


