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Abstract— This paper considers the problem of designing

interval observers for hidden mode switched nonlinear systems

with bounded noise signals that are compromised by false

data injection and switching attacks. The proposed observer

consists of three components: i) a bank of mode-matched

observers, which simultaneously estimates the corresponding

mode-matched continuous states and discrete states (modes), as

well as learns a model of the unknown attack policy, ii) a mode

observer that eliminates the incompatible modes based on a

residual-based set-membership criterion, and iii) a global fusion

observer that combines the outputs of i) and ii). Moreover, in

addition to showing the correctness, stability and convergence

of the mode-matched estimates, we provide sufficient conditions

to guarantee that all false modes will be eliminated after

sufficiently large finite time steps, i.e., the system is mode-

detectable under the proposed observer.

I. INTRODUCTION
Computation and communication constituents are tightly

intertwined in Cyber-Physical Systems (CPS). While this
coupling can enhance the functionality of control systems
and improve their performance, it might also become a
source of vulnerability to faults or attacks. On the other hand,
given various sources of real world uncertainties, complete
information/direct knowledge of the decisions and intentions
of other systems/agents, is not available to autonomous de-
cision makers, e.g., self-driving cars or robots. These safety-
critical systems can be studied using a general framework of
hidden mode hybrid/switched systems (HMHS, see, e.g., [1]
and references therein). The ability to estimate the continu-
ous states, attacks/unknown inputs and modes/discrete states
of such systems is important for monitoring them as well as
for designing safe and secure (optimal) feedback controllers.

There has been a relatively large body of literature on
the problem of designing filters/observers for hidden mode
systems without considering unknown inputs/faults/data in-
jection attacks, e.g., in [2] and references therein. For a
stochastic setting, extensions were proposed, e.g., in [1],
to obtain state and unknown input point estimates, i.e., the
most likely or best single estimates. However, especially
when hard guarantees or bounds are important, it might be
preferable to consider set-valued uncertainties, e.g., bounded-
norm noise. Moreover, probabilistic distributions/stochastic
characteristics of uncertainty are often unavailable in real
world applications. Consequently, to estimate the set of
compatible states, set-valued or set-membership observers,
e.g., [3], have been proposed. Later, the study in [4] extended
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this framework to include estimation of unknown inputs.
Nonetheless, these approaches are not directly applicable to
systems with hidden modes that are considered in this paper.

A common approach to consider hidden modes for rep-
resenting attack or fault models is to construct residual
signals (see, e.g., [1], [2], [5]), where to distinguish between
consistent and inconsistent modes, some residual-based cri-
teria/thresholds are used. The work in [6] presented a robust
control-inspired approach for linear systems with bounded-
norm noise that consists of local estimators, residual detec-
tors, and a global fusion detector for resilient state estimation
against sparse data injection attacks. Similar residual-based
approaches have been proposed for uniformly observable
nonlinear systems in [7] and some classes of nonlinear
systems in [8], where only sensors were compromised by
sparse attacks, which is a special case of hidden mode
switched systems discussed in our previous works [1], [9],
where actuators were also compromised by attack signals.

On the other hand, when the system model is not exactly
known, in order to find a set of dynamics that frame/bracket
the unknown system dynamics [10], set-valued data-driven
approaches have been developed to use input-output data to
abstract or over-approximate unknown dynamics or func-
tions [10], [11], under the assumption that the unknown
dynamics is continuous, e.g., [11]. In our previous work [12],
we leveraged interval observers for such data-driven models,
for resilient state and data injection attack estimation, assum-
ing that the attack signal has an unknown dynamics. In this
work, we assume mode/switching attacks in addition to data
injection attacks, where the attack signals are governed by
an unknown and to-be-learned attack policy.

To tackle this problem, leveraging a multiple-model frame-
work proposed in our previous works [9], [13], we first
design a bank of mode-matched set-valued observers, where
we combine a model-based interval observer approach used
in [12], [14], with our previously introduced set-membership
learning technique [15], to derive set-valued mode-matched
estimates for the states and attack signal values, as well as to
learn model abstractions/over-approximations for the attack
policy, where we derive several desired properties for the
mode-matched estimates, such as correctness, stability and
convergence. Then, we introduce a novel elimination-based
mode observer, based on a set-membership criterion, to elim-
inate inconsistent modes from the bank of observers. Further,
we provide sufficient conditions for mode-detectability, i.e.,
all false modes will be eventually ruled out under some rea-
sonable assumptions. Finally, we illustrate the performance
of our proposed design through a power system example.
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II. PRELIMINARIES

Notation. Rn, Rn⇥m and Dn denote the n-dimensional
Euclidean space, the space of n by m matrices and the set of
all diagonal matrices in Rn⇥n with their diagonal arguments
being 0 or 1. For vectors v, w 2 Rn and a matrix M 2 Rp⇥q ,
kvk ,

p
v>v and kMk denote their (induced) 2-norm, and

v  w is an element-wise inequality. The transpose, Moore-
Penrose pseudoinverse, (i, j)-th element and rank of M are
given by M

>, M†, Mi,j and rk(M), while M(r:s) is a sub-
matrix of M , consisting of its r-th through s-th rows, and
its row support is r = rowsupp(M) 2 Rp, where ri = 0
if the i-th row of M is zero and ri = 1 otherwise, 8i 2
{1 . . . p}. Also, M+ , max(M, 0p⇥q),M� , M

+�M and
|M | , M

+ +M
�. M is a non-negative matrix, if Mi,j �

0, 8(i, j) 2 {1 . . . p}⇥ {1 . . . q}.
Next, we introduce some useful definitions and results that

will be used later in our derivations and proofs.

Definition 1 (Interval, Interval Width). A multi-dimensional
interval I ⇢ Rn is the set of all vectors x 2 Rn satisfying
s  x  s, where ks� sk is called the width of I.

Proposition 1 (Slight Generalization of [16, Lemma 2]). Let
B 2 IRn⇥p be an interval matrix satisfying B  B  B.

i) if A 2 Rm⇥n is a constant matrix, then A
+
B�A

�
B 

AB  A
+
B �A

�
B.

ii) if A 2 IRm⇥n is an interval matrix satisfying A  A 
A, then A

+
B

+ � A
+
B

� � A
�
B

+
+ A

�
B

�  AB 
A

+
B

+ �A
+
B

� �A
�
B

+ +A
�
B

�

Proof. The results follow from defining xi as the ith column
of B, applying [16, Lemma 2] on A and xi for all i 2 Np

and then stacking the resulting inequalities. ⌅

Proposition 2 (Parallel Affine Abstractions [12]). Let the
entire space be defined as X and suppose that X is bounded.
Consider the vector fields  (.), (.) : X ⇢ Rn

0 ! Rm
0

satisfying  (x)   (x), 8x 2 X, a (given) global parallel
affine abstraction with known (A , e , e ) on X, i.e.,

A x+ e
   (x)   (x)  A x+ e

 
, 8x 2 X. (1)

and the following Linear Program (LP):

min
✓
 
B ,A

 
B ,e

 
B ,e

 
B

✓
 

B (2a)

s.t. A
 

Bxs+e
 

B+�
   (xs)   (xs)  A

 

Bxs+e
 

B��
 
,

e
 

B � e
 

B � 2�  ✓
 1m0 ,

e
 � e

 

B  (A B � A )xs  e
 � e

 

B, 8xs 2 VB, (2b)

where B = [x, x] ✓ X is a local interval domain and VB
being its maximal, minimal and set of vertices, respectively,
1m 2 Rm is a vector of ones, � is given in [17, Proposition
1 and (8)] for different classes of continuous vector fields.
Then, (A B, e

 

B, e
 

B) are the local parallel affine abstraction
matrices for the pair of functions  (.), (.) on B, i.e.,

A
 

Bx+ e
 

B   (x)   (x)  A
 

Bx+ e
 

B, 8x 2 B. (3)

Definition 2 (Mixed-Monotone Mappings and Decomposi-
tion Functions). [18, Definition 4] A mapping f : X ✓

Rn ! T ✓ Rm is mixed-monotone if there exists a
decomposition function fd : X ⇥ X ! T satisfying: i)
fd(x, x) = f(x), ii) x1 � x2 ) fd(x1, y) � fd(x2, y)
and iii) y1 � y2 ) fd(x, y1)  fd(x, y2).

Proposition 3. [19, Theorem 1] Let f : X ✓ Rn !
T ✓ Rm be a mixed-monotone mapping with decomposition
function fd : X⇥X ! T and x  x  x, where x, x, x 2 X .
Then fd(x, x)  f(x)  fd(x, x).

Corollary 1 (Nonlinear Bounding). Let f : X ✓ Rn !
T ✓ Rm satisfies the assumptions in Propositions 2 and 3.
Then, for all x, x, x 2 X satisfying x  x  x, the following
inequality holds: f(x, x)  f(x)  f(x, x), where

f(x, x) = min(fd(x, x), Af+
x�A

f�
x+ e

f ),
f(x, x) = max(fd(x, x), Af+

x�A
f�

x+ e
f ),

(4)

fd is a decomposition function of f (cf. Definition 2) and
A

f
, e

f
, e

f are the affine abstraction slope and errors of f ,
computed over the interval [x, v], through Proposition 2.

Proof. The results directly follow from Propositions 1–3. ⌅

Note that the decomposition function of a vector field
is not unique and a specific one is given in [18, Theorem
2]: If a vector field q =

⇥
q
>
1 . . . q

>
n

⇤>
: X ✓ Rn !

Rm is differentiable and its partial derivatives are bounded
with known bounds, i.e., @qi

@xj
2 (aq

i,j
, b

q

i,j
), 8x 2 X 2

Rn, where a
q

i,j
, b

q

i,j
2 R, then q is mixed-monotone with

a decomposition function qd =
⇥
q
>
d1 . . . q

>
di

. . . q
>
dn

⇤>,
where qdi(x, y) = qi(z) + (↵q

i
� �

q

i
)>(x � y), 8i 2

{1, . . . , n}, and z,↵
q

i
,�

q

i
2 Rn can be computed in terms of

x, y, a
q

i,j
, b

q

i,j
as given in [18, (10)–(13)]. Consequently, for

x = [x1 . . . xj . . . xn]>, y = [y1 . . . yj . . . yn]>, we have

qd(x, y) = q(z) + C
q(x� y), (5)

where C
q ,

⇥
[↵q

1 � �
q

1 ]. . . [↵q

i
� �

q

i
] . . . [↵q

m
� �

q

m
]
⇤> 2

Rm⇥n, with ↵
q

i
,�

q

i
given in [18, (10)–(13)], z =

[z1 . . . zj . . . zm]> and zj = xj or yj (dependent on the
case, cf. [18, Theorem 1 and (10)–(13)] for details). More
recently, a tractable way for computing tight remainder-form
decomposition functions was proposed in [20].

III. PROBLEM STATEMENT

System Assumptions. Consider a discrete-time hidden mode
switched nonlinear system with bounded-norm noise and
unknown inputs (i.e., a hybrid system with nonlinear and
noisy system dynamics in each mode, and the mode and
some inputs are not known/measured):

xk+1 = f̂
q(xk, u

q

k
, G

q
d
q

k
, wk) , f

q(xk, d
q

k
, wk),

yk = ĝ
q(xk, u

q

k
, H

q
d
q

k
, vk) , g

q(xk, d
q

k
, vk),

d
q

k
= µ̂

q(xk, u
q

k
) , µ

q(xk),
(6)

where xk 2 Rn is the continuous system state and q 2
Q = {1, 2, . . . , Q} is the hidden discrete state or mode.
For each (fixed) mode q, u

q

k
2 U

q

k
⇢ Rm is the known

input, dq
k
2 Rp is the unknown but sparse input, i.e., every

vector d
q

k
has precisely ⇢ 2 N nonzero elements where ⇢ is

a known parameter and yk 2 Rl is the measured output. The
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unknown input signal dq
k

is considered as the realization of an
attacker’s unknown policy µ

q : Rn ⇥Rm ⇥Rs ! Rp, which
is an unknown mapping from state and known input to the
set of attack signals. Moreover, wk 2 W , [w,w] ⇢ Rnw

and vk 2 V , [v, v] ⇢ Rnv are bounded process and
measurement disturbances with known minimal and maximal
values w,w, v, v, respectively. Further, the mappings f, g, as
well as the matrices G

q 2 Rn⇥p and H
q 2 Rl⇥p are known.

More precisely, G
q and H

q represent the different hy-
pothesis for each mode q 2 Q, about the sparsity pattern of
the unknown inputs, which in the context of sparse attacks
corresponds to which actuators and sensors are attacked or
not attacked. In other words, we assume that Gq = GIq

G
and

H
q = HIq

H
for some input matrices G 2 Rn⇥ta and H 2

Rl⇥ts , where ta and ts are the number of vulnerable actuator
and sensor signals respectively. Note that ⇢q

a
 ta  m and

⇢
q

s
 ts  l, where ⇢q

a
(⇢q

s
) is the number of attacked actuator

(sensor) signals and clearly cannot exceed the number of
vulnerable actuator (sensor) signals, which in turn cannot
exceed the total number of actuators (sensors). Further, we
assume that the maximum number of unknown inputs/attacks
in each mode is known and equals ⇢ = ⇢a + ⇢s (sparsity
assumption). Moreover, the index matrix Iq

G
2 Rta⇥⇢ (Iq

H
2

Rts⇥⇢) represents the sub-vector of dk 2 R⇢ that indicates
signal magnitude attacks on the actuators (sensors).

We are interested in estimating the state trajectories, as
well as the unknown mode and the attack policy mapping in
the system in (6), when they are initialized in a given interval
X0 ⇢ X ⇢ Rn. Furthermore, we assume the following:

Assumption 1. The vector fields f, g are known and Lip-
schitz continuous (hence, mixed-monotone). Moreover, the
input uq

k
and output yk signals are known at all times and for

all modes. The set of all possible modes, Q, is also known.

Assumption 2. Given mode q, the attacker’s policy map-
ping µ

q(·) = [µq>
1 (·), . . . , µq>

p
(·)]> is unknown, but each

µ
q

j
(·), 8j 2 {1, . . . , p} is known to be Lipschitz continuous.

Moreover, for simplicity and without loss of generality we
assume that the Lipschitz constants Lµ

q

j
, 8j 2 {1, . . . , p} are

known, otherwise, they can be estimated with any desired
precision using the approach in [15, Equation (12) and
Proposition 3].

Assumption 3. There is only one “true” mode, i.e., the true
mode q

⇤ 2 Q is constant over time.

Note that the approach in our paper can be easily extended
to handle mode-dependent f , g, w,w, v and v, but is omitted
to simplify the notations. Further, we define the notions of
framers, correctness and stability, used throughout the paper.

Definition 3 (Correct Interval Framers). Given a hidden
mode switched nonlinear system (6), let us define the aug-
mented state zk , [x>

k
d
>
k
]>, for all k 2 K , N [ {0},

where dk , d
q
⇤

k
is the true attack signal. The sequences

{zk, zk}1k=0 are called upper and lower framers for the
augmented states of system (6), if 8k 2 K, z

k
 zk 

zk. In other words, starting from the initial interval z0 2

[z0, z0], the true augmented state of the system in (6), zk, is
guaranteed to evolve within the interval flow-pipe [z

k
, zk],

for all k 2 K. Finally, any algorithm that returns framers for
the states of system (6) is called a correct interval framer.

Definition 4 (Stability). The mode-matched observer (8a)–
(11b) is stable, if the sequence of interval widths {k�z

q

k
k ,

kzq
k
� z

q

k
k}1

k=0 is uniformly bounded, and consequently, the
sequence of estimation errors {kz̃q

k
k , max(kzq

k
�z

q

k
k, kzq

k
�

z
q

k
k) is also uniformly bounded.

An interval observer is then an estimator that is both
correct and stable. Using the modeling framework above,
the simultaneous state, hidden mode and policy estimation
problem is threefold and can be stated as follows:

Problem 1. Given a discrete-time bounded-error hidden
mode switched nonlinear system with unknown inputs (6)
and assuming that Assumptions 1–3 hold,

i) Design a bank of mode-matched observers that for each
mode, conditioned on the mode being the true mode,
finds uniformly bounded set estimates of compatible
(augmented) states and learns a guaranteed model ab-
straction of the attacker’s policy.

ii) Develop a mode observer via elimination and the cor-
responding criteria to eliminate false modes.

iii) Find sufficient conditions for eliminating all false modes.

IV. PROPOSED OBSERVER DESIGN

Leveraging a multiple-model approach similar to [9], [13],
our goal in this section is to propose an observer for simulta-
neous mode, state and attack policy (SMSP) estimation, i.e.,
to find set estimates X̂k, D̂k and Q̂k for the states xk, attacks
dk and modes q 2 Q at time step k, respectively, as well as
to compute a model abstraction {µ

k
, µ

k
}k2K for the attack

policy, such that µ
k
(xk)  µ(x)  µ(xk) for all k 2 K.

A. Multiple-Model Approach: An Overview
Similar to the approach in [13], we propose a three-

step multiple-model design consisting of: (i) a bank of
mode-matched interval observers to obtain mode-matched
state and attack estimates, as well as mode-matched pol-
icy abstractions/over-approximations, (ii) a mode estimation
algorithm to eliminate incompatible modes using residual
detectors, and (iii) a global fusion observer that outputs the
desired set-valued mode, attack (policy) and state estimates.

1) Mode-Matched Set-Valued State and Attack Policy Ob-
server: First, we design a bank of mode-matched observers,
which consists of Q , |Q| simultaneous state, attack
and policy mode-matched interval observers, designed in a
similar manner as our approach in [12], with the difference
that in [12], the unknown input (i.e., attack) signal is treated
as a state with unknown and to-be-learned dynamics, whereas
in the current work, the attack signal is governed by an un-
known policy/state feedback law, i.e., an unknown function
of the actual state, that should be learned/approximated. With
that in mind, given mode q, each mode-matched interval
observer at time step k 2 N, recursively returns

X̂ q

k
, [xq

k
, x

q

k
], D̂q

k
, [dq

k
, d

q

k
], {µq

k
, µ

q

k
}, (7)
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such that the true state xk and unknown input dk are
contained in X̂ q

k
and D̂q

k
, respectively, i.e., xk 2 X̂ q

k
, dk 2 D̂q

k

and the true attack policy dk = µ(xk) is also contained in
the learned function framer, i.e., µ(xk) 2 [µq

k
(xk), µ

q

k
(xk)].

This can be achieved through the following steps (with
known x0 and x0 such that x0  x0  x0), where we defined
the augmented state z

q

k
,

⇥
x
>
k

d
q>
k

⇤>
, propagated framers

z
q,p

k
=
h
x
q,p>
k

d
q,p>
k

i>
, zq,p

k
=

⇥
x
q,p>
k

d
q,p>
k

⇤>
and updated

framers z
q

k
=
h
x
q>
k

d
q>
k

i>
, zq

k
=

⇥
x
q>
k

d
q>
k

⇤>
:

State Propagation (with f
q

, f
q in Corollary 1):


x
q,p

k

x
q,p

k

�
=


f
q

(zq
k�1, z

q

k�1)
f
q(zq

k�1, z
q

k�1)

�
, (8a)

Attack Policy Learning:
µ
q

k,j
(xk)= min

t2{0,...,T�1}
(d

q

k�t,j
+Lµ

q

j
kxk�x̃q

k�t
k)+"q,j

k�t
, (9a)

µ
q

k,j
(xk)= max

t2{0,...,T�1}
(dq

k�t,j
�Lµ

q

j
kxk�x̃q

k�t
k)+"q,j

k�t
, (9b)

Unknown Input Estimation (with µ
q
, µ

q in Corollary 1):

d
q,p

k

d
q,p

k

�
=


µ
q(zq

k�1, z
q

k�1)
µ
q(zq

k�1, z
q

k�1)

�
, (10a)

Measurement Update:
⇥
z
q

k
z
q

k

⇤
= lim

i!1

⇥
z
q,u

i,k
z
q,u

i,k

⇤
, (11a)


x
q

k
x
q

k

d
q

k
d
q

k

�
=

"
z
q

k,(1:n) z
q

k,(1:n)

z
q

k,(n+1:n+p) z
q

k,(n+1:n+p)

#
, (11b)

with j 2 {1 . . . p}, where {x̃q

k�t
= 1

2 (x
q

k�t
+x

q

k�t
)}k

t=0 and
{dq

k�t
, d

q

k�t
}k
t=0 are the augmented input-output data set.

The state propagation step predicts the framers for the
states at time step k using framers from the previous time
step k� 1. The approach is based on nonlinear bounding in
Corollary 1 for the nonlinear function f

q in (6), where we
take the tighter estimates between the over-approximation of
propagation of fq via decomposition functions and the ones
obtained from the abstracted dynamics with (Aq,f

k
, e

q,f

k
, e

q,f

k
)

as the solution to the problem in (2a) for fq .
In the attack policy learning step, the unknown function

d
q

k
= µ

q(·) is learned/over-approximated, i.e., {µq

k
(.), µq

k
(.)}

is computed, by applying the nonparametric learning ap-
proach in [15, Theorem 1] using the augmented data set con-
structed from the estimated propagated framers, x

q,p

k
, x

q,p

k
,

from the initial to the current time step. Note that the
learning approach in [15, Theorem 1] guarantees that the
true attack policy is contained in the approximated model,
i.e., µ

q

k
(.)  d

q

k
= µ

q(.)  µ
q

k
(.). Next, in the unknown

input estimation step, the learned attack policy is used to find
abstracted dynamics with (Aq,µ

k
, e

q,µ

k
, e

q,µ

k
) as the solution to

the abstraction problem in (2a) for {µq

k
(.), µq

k
(.)}, where we

again utilize the nonlinear bounding result in Corollary 1 to
obtain the unknown input framers in (10).

Then, the measurement update step improves the prop-
agated framers [zq,p

k
, z

q,p

k
] by “intersecting” them with the

approximated inverse of the function g
q from the measure-

ment/output equation in (6). To perform this inversion, we

first find its affine abstraction using the abstraction problem
in (2a) for gq to obtain (Aq,g

k
,

⇥
A

q,g

k
W

q,g

k

⇤
, e

q,g

k
, e

q,g

k
) and

then we obtain all solutions [zq,u
k

, z
q,u

k
] of the resulting lin-

ear/affine equation using the Moore-Penrose pseudoinverse.
Finally, since the abstraction problem in (2a) is dependent on
its domain, the updated framers can be iteratively improved
with shrinking domains and thus, we iteratively compute the
sequences of updated framers {zq,u

i,k
, z

q,u

i,k
}1
i=1 as follows:

⇥
z
q,u

0,k z
q,u

0,k

⇤
=
⇥
z
q,p

k
z
q,p

k

⇤
, 8i 2 {1 . . .1} : (12)


z
q,u

i,k

z
q,u

i,k

�
=

"
min(Aq,g†+

i,k
↵
q

i,k
�Aq,g†�

i,k
↵
q

i,k
+!q

i,k
, z

q,u

i�1,k)

max(Aq,g†+
i,k

↵
q

i,k
�Aq,g†�

i,k
↵
q

i,k
�!q

i,k
, z

q,u

i�1,k)

#
,(13)

where

↵
q

i,k

↵
q

i,k

�
=

"
min(t

q

i,k
, A

q,g+
i,k

z
q,u

i�1,k �A
q,g�
i,k

z
q,u

i�1,k)

max(tq
i,k

, A
q,g+
i,k

z
q,u

i�1,k �A
q,g�
i,k

z
q,u

i�1,k)

#
, (14)


t
q

i,k

t
q

i,k

�
=


yk

yk

�
+

"
W

q,g�
i,k

�W
q,g+
i,k

�W
q,g+
i,k

W
q,g�
i,k

#
v

v

�
�

e
q,g

i,k

e
q,g

i,k

�
, (15)

!
q

i,k
=rowsupp(I � A

q,g†
i,k

A
q,g

i,k
), 8i 2 {1 . . .1} and  is a

very large positive real number (infinity).
2) Mode Estimation Observer: To estimate the set of

compatible modes, we consider a membership-based elim-
ination approach that checks if residual signals are within
some compatible intervals. We first define the mode-matched
residual signal r

q

k
as the difference between the measured

output yk and the predicted output based on the predicted
framers

⇥
z
q,p

k
, z

q,p

k

⇤
in (6) as follows.

Definition 5 (Residuals). For each mode q at time step k,
the residual signal rq

k
is defined as:

r
q

k
, yk � 1

2
(gq

k
+ g

q

k
), (16)

where g
q

k
, g

q

k
are values of bounding signals g

q
, g

q at time
k, computed based on (4) applied to the mapping g

q(·) in
(6) with the predicted framer [zq,p

k
, z

q,p

k
] and [v, v].

Then, we eliminate a specific mode q, if its corresponding
residual signal rq

k
satisfy a specific criterion, as follows:

Proposition 4 (Mode Elimination Criterion). Mode q is not
a true mode if

r
q

k
/2 Rq

k
, 1

2
[�(gq

k
� g

q

k
), gq

k
� g

q

k
]. (17)

Proof. If q is the true mode, then yk = g
q(xk, dk, vk) by (6).

Consequently, yk 2 [g
k
, g

k
] which is equivalent to r

q 2 Rq

k
,

given the definition of r
q

k
in (16), and with g

k
, g

k
obtained

from (4) in Corollary 1. ⌅

By Proposition 4, if the residual signal of a particular mode
q is not within the given interval in (17) conditioned on this
mode being true, then q can be ruled out as incompatible.

3) Global Fusion Observer: Finally, combining the re-
sults above, our proposed global fusion observer will provide
mode, attack and state set-valued estimates, as well as attack
policy abstractions, at each time step k as:

Q̂k={q 2 Q̂k�1 r
q

k
2 Rq

k
},

X̂k = [
q2Q̂k

X q

k
, D̂k = [

q2Q̂k
Dq

k
,

µ
k
(·) = max

q2Q̂ µ
q

k
(·), µ

k
(·) = min

q2Q̂ µ
q

k
(·).
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Algorithm 1 Simultaneous Mode, State and Attack Policy
(SMSP) Estimation

1: Q̂0 = Q;
2: for k = 1 to N do

3: for q 2 Q̂k�1 do

. Mode-Matched State and Attack Policy Set-Valued Estimates
Compute xq

k, x
q
k, d

q
k, d

q
k through (8a)–(11b);

. Mode Observer via Elimination
Q̂k = Q̂k�1;
Compute rqk via Definition 5;

4: if (17) holds then Q̂k = Q̂k\{q};
5: end if

6: end for

. State and Input Estimates
7: X̂k = [q2Q̂k

X̂ q
k ; D̂k = [q2Q̂k

D̂q
k;

. Attack Policy Abstraction
8: µk(·) = maxq2Q̂ µq

k(·); µ
k
(·) = minq2Q̂ µq

k
(·);

9: end for

The simultaneous mode, state and attack policy (SMSP)
estimation approach is summarized in Algorithm 1.

B. Properties of Mode-Matched Observers

In this section, following a similar approach to our pre-
vious work [12], we show that each of the mode-matched
observers is correct (cf. Definition 3) and stable (cf. Def-
inition 4) under some sufficient conditions. Moreover, the
sequence of mode-matched interval widths is convergent to
some computable steady state values.

Lemma 1 (Correctness). Consider System (6) and suppose
Assumptions 1–3 hold. Then, for all mode q 2 Q, the
dynamical system in (8a)–(11b) constructs a correct mode-
matched interval observer for System (6), conditioned on the
mode being the true mode, i.e., q = q

⇤. In other words,
8k 2 K , N [ {0}, zq

k
 z

q

k
 z

q

k
, where z

q

k
, [x>

d
q>]>

and [zq
k
, z

q

k
] are the augmented vectors of state and unknown

inputs in the dynamical systems in (6) and the updated framer
from (11a) at time k 2 K, respectively.

Proof. Using induction, the proof is similar to the proof of
[12, Theorem 1]. ⌅

Next, we address the stability of each mode-matched
observer. Note that similar to [12], our goal is to obtain
sufficient stability conditions that can be checked a priori
instead of for each time step k. On the other hand, for
the implementation of the update step, we iteratively find
new mode-matched local parallel abstraction slopes A

q,g

i,k
by

iteratively solving the LP (2a) for gq on the intervals obtained
in the previous iteration, Bq,u

i,k
= [zq,u

i�1,k, z
q,u

i�1,k], to find local
framers z

q,u

i,k
, z

q,u

i,k
(cf. (12)–(14)), with additional constraints

given in (2b) in the optimization problems, which guarantees
that the iteratively updated local intervals obtained using the
local abstraction slopes are inside the global interval, i.e.,

z
q,u

k
 z

q,u

0,k  · · ·  z
q,u

i,k
 · · ·  limi!1 z

q,u

i,k
, z

q

k
,

z
q

k
, limi!1 z

q,u

i,k
 · · ·  z

q,u

i,k
 · · ·  z

q,u

0,k  z
q,u

k
.

With that in mind, we next show through the following
proposition that the sequence of the widths of the interval-
valued estimates are upper bounded by a difference equation,

i.e., a discrete-time dynamical system, for each mode.

Proposition 5 (Interval Widths Upper System). Consider
System (6) along with the observer in (8a)–(11b) and suppose
that all the assumptions in Lemma 1 hold and the decompo-
sition function fd is constructed using (5). Define the mode-
matched width of the interval-valued estimate [zq

k
, z

q

k
], at

time k, as �z
q

k
, z

q

k
� z

q

k
. Then, for each mode q 2 Q,

the following holds: 8(Dq

1, D
q

2, D
q

3) 2 Dn+p ⇥ Dl ⇥ Dn,

�z
q

k
 Ag

q
(Dq

1, D
q

2)Af,h

q
(Dq

3)�
z
q

k�1 (18)
+�g

q
(Dq

1, D
q

2) +Ag

q
(Dq

1, D
q

2)�
f,h

q
(Dq

3) + 2Dq

1r
q
,

where

Ag

q
(Dq

1, D
q

2) , D
q

1|Ag†
q
|Dq

2|Ag

q
|+ (I �D

q

1),

Af,µ

q
(Dq

3) ,
⇥
(|Af

q
|+ 2(I �D

q

3)C
f
q

z
)> [|Aµ

q
| 0]>

⇤>
,

�g

q
(Dq

1, D
q

2) , D
q

1|Ag†
q
|Dq

2(|W g

q
|�v +�g

q

e
),

�f,h

q
(Dq

3) , (|W f

q
|+2(I �D

q

3)C
f
q

w
)�w+�f

q

e
,

while rq , rowsupp(I � A
g†
q
A

g

q
), Cf

q
,

⇥
C

f
q

z
C

f
q

u
C

f
q

w

⇤

from (5),  is a very large positive real number (infinity) and
�g

q

e
, e

f
q � e

f
q

,�f
q

e
, e

g
q � e

g
q

,�v , v � v,�w ,
w � w, {As

q
, As

(1:n+p)}s2{fq,gq}, A
µ

q
, Aµ

q

,W
f

q
,

As

(n+p+1:n+p+nw),W
g

q
, Ag

(n+p+1:n+p+nv)
, with As and

Aµ
q

obtained using Proposition 2.

Proof. The proof is similar to the proof of [12, Theorem 2],
with some minor modifications, by replacing the unknown
mapping h with the unknown policy µ and making all
variables mode-dependent. ⌅

Now, armed with the results in Proposition 5, we provide
sufficient conditions for the stability of each of the mode-
matched observers in the sense of Definition 4, in a similar
manner to [12, Theorem 2], through the following lemma.

Lemma 2 (Stability). Consider the hidden mode switched
system (6) along with the mode-matched observer in (8a)–
(11b). Suppose that all the assumptions in Proposition 5
hold. Then, for each mode q 2 Q, the mode-matched
observer in (8a)–(11b) is stable (cf. Definition 4), if there
exist Dq

1 2 Dn+p, D
q

2 2 Dl, D
q

3 2 Dn that satisfy D
q

1,i,i = 0

if rq(i) = 1, i.e., if there exist (Dq

1, D
q

2, D
q

3) 2 D⇤ ,
{(D1, D2, D3) 2 Dn+p ⇥Dl ⇥Dn D1,iir(i) = 0} such that

L⇤(Dq

1, D
q

2, D
q

3) , kAg

q
(Dq

1, D
q

2)Af,µ

q
(Dq

3)k  1, (19)

with Ag

q
(Dq

1, D
q

2) and Af,µ

q
(Dq

3) defined in Proposition 5.

Proof. Our goal is to show that our specific choices for
D

q

1, D
q

2, D
q

3 make the right hand side of (18) finite in
finite time. To do this, since  can be infinitely large, we
choose D

q

1 2 Dn+p such that D
q

1r
q = 0, i.e., D

q

1,i,i =
0 if rq(i) = 1, i = 1, . . . , n + p. Then, by the comparison
lemma [21, Lemma 3.4], it suffices for uniform boundedness
of {�z

q

k
}1
k=0 that the following system:

�z
q

k
= Ag

q
(Dq

1, D
q

2)Af,µ

q
(Dq

3)�
z
q

k�1 + �̃q(D
q

1, D
q

2) (20)

be stable, where �̃q(D
q

1, D
q

2) , �g

q
(Dq

1, D
q

2) +
Ag

q
(Dq

1, D
q

2)�
f,µ

q
(Dq

3) is a bounded disturbance by
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construction. This implies that the system (20) is stable (in
the sense of uniform stability of the interval sequnces) if and
only if the matrix Aq(D

q

1, D
q

2, D
q

3) , Ag

q
(Dq

1, D
q

2)Af,µ

q
(Dq

3)
is (non-strictly) stable for at least one choice of
(Dq

1, D
q

2, D
q

3), and equivalently, (19) should hold. ⌅

Finally, the mode-matched interval widths are upper
bounded and convergent to steady-state values, as follows.

Proposition 6 (Convergence of Upper Bounds of the Interval
Widths). Consider System (6) and the observer (8a)–(11b)
and suppose all assumptions in Lemma 2 hold. Then, for
each mode q 2 Q, the sequence of {�z

q

k
, z

q

k
� z

q

k
}1
k=0 is

uniformly upper bounded by a convergent sequence:

�z
q

k
 Ak

q
�z

q

0 +
P

k�1
j=0 A

j

q
�q

k!1����! e
Aq�q,

where Aq = Aq(D
q?

1 , D
q?

2 , D
q?

3 ) , A �
q
g(Dq?

1 , D
q?

2 )Af,µ

q
(Dq?

3 ),�q = �g

q
(Dq?

1 , D
q?

2 ) +
Ag

q
(Dq?

1 , D
q?

2 )�f,µ

q
(Dq?

3 ), and (Dq?

1 , D
q?

2 , D
q?

3 ) is a
solution of the following problem:

min
D1,D2,D3

keAq(D1,D2,D3)(�g
q(D1, D2)+Ag

q(D1, D2)�
f,µ
q (D3))k

s.t.(D1, D2, D3)2{(D1, D2, D3)2D⇤ L⇤
q(D1, D2, D3) < 1}.

Consequently, the interval widths {k�z
q

k
k}1

k=1 are uni-
formly upper bounded by a convergent sequence, i.e.,
k�z

q

k
k  �

z
q

k
,kAk

q
�z

q

0 +
P

k�1
j=0 A

j

q
�qk

k!1����!keAq�qk.

Proof. The proof is straightforward by applying [22, Lemma
1], computing (18) iteratively, using triangle inequality and
the fact that by Theorem 2, Aq(D

q?

1 , D
q?

2 , D
q?

3 ) is a stable
matrix and (Dq?

1 , D
q?

2 , D
q?

3 ) is a solution of (19). ⌅

V. MODE-DETECTABILITY

In addition to the nice properties regarding the correctness,
stability and convergence of the mode-matched interval es-
timates of states and inputs, as discussed in the previous
section, we now provide some sufficient conditions for the
system dynamics and attack policies, which guarantee that
regardless of the observations, after some large enough time
steps, all the false (i.e., not true) modes can be eliminated,
when applying Algorithm 1. To do so, first, we define the
concept of mode-detectability and state some assumptions
for deriving our sufficient conditions for mode-detectability.

Definition 6 (Mode-Detectability). System (6) is called
mode-detectable under Algorithm 1, if there exists a natural
number K 2 N, such that for all time steps k � K, all false
modes are eliminated.

Assumption 4 (Bounded Jacobians). For all q 2 Q, the
vector fields f

q(x, µq(x), w) and µ
q(x) satisfy the following

bounds on their Jacobians: 8j 2 {x, d}, 8(x,w) 2 X ⇥
W , Jf

q

j
(x, µq(x), w) 2 [Jf

q

j
, J

f
q

j
] and J

µ
q

(x) 2 [Jµ
q

, J
µ
q

],
with known J

f
q

, J
f
q

, J
µ
q

, J
µ
q

a priori, where J
f
q

x
, J

f
q

d
are

Jacobians of f
q , with respect to its first argument, x, and

second argument d, respectively.

Assumption 5 (Destabilizing Attack Policy). The matrix
J

m
q
, 1

2 (J
f
q

x
+J

f
q

x
+J

f
q
,µ

q

d
+J

f
q
,µ

q

d
) is strictly Schur unsta-

ble, where J
f
q
,µ

q

d
, J

f
q+

d
J
µ
q+�J

f
q+

d
J
µ
q��J

f
q�

d
J
µ
q+

+

J
f
q�

d
J
µ
q�

and J
f
q
,µ

q

d
, J

f
q+

d
J
µ
q+ � J

f
q+

d
J
µ
q� �

J
f
q�

d
J
µ
q++J

f
q�

d
J
µ
q�, i.e., Jm

q
has at least one eigenvalue

whose absolute value is strictly greater than 1.

Corollary 2. Assumption 5 implies that the attack policy
µ(·) , µ

q
⇤
(·) destabilizes the system in (6), and hence, xk,

the true state trajectory of (6) becomes unbounded.

Proof. Defining f , f
q
⇤
, µ(x) , µ

q
⇤
(x) and f̃(x,w) ,

f(x, µ(x), w), as well as using chain rule, we have J
f̃

x
=

J
f

x
(x, µ(x), w) + J

f

d
(x, µ(x), w)Jµ(x). Combining this and

Assumption 5, as well as applying Proposition 1, returns
J
f̃

x
2 [Jf

x
+ J

f,µ

d
, J

f

x
+ J

f,µ

d
]. Now, note that since J

m
q⇤ is

strictly Schur unstable by Assumption 5, then the interval
matrix J

f̃

x
is strictly Schur unstable by [23, Theorem 1a],

and hence, the linearized form of the system in (6) is strictly
Schur unstable. Consequently, the nonlinear system in (6)
is unstable by the Chetaev instability theorem [24], i.e., the
attack policy µ is a destabilizing policy. ⌅

Now, we are ready to state our main result on mode-
detectability, through the following theorem.

Theorem 1 (Sufficient Conditions for Mode-Detectability).
Suppose Assumptions 4 and 5 and all the assumptions in
Lemma 2 hold for all q 2 Q. Then, using Algorithm 1, System
(6) is mode-detectable in the sense of Definition 6.

Proof. We need to show that there exists K 2 N, such that
(17) holds for all k � K, 8q 6= q

⇤ 2 Q, where q
⇤ is the

true mode. Given the definition of the residual signal in (16)
and since q

⇤ is unknown, a sufficient condition for (17) to
hold is that 8q1 6= q2 2 Q, 9K 2 N, 8k � K, g

q2(⇠q2
k
) /2

[gq1
k
, g

q1

k
], where 8q 2 Q, ⇠

q

k
, [x>

k
d
q>
k

v
q>
k

]. Equivalently,
there should exist a dimension i 2 Nl, such that

g
q2
i
(⇠q2

k
) < g

q1

i,k
or gq2

i
(⇠q2

k
) > g

q1

i,k
. (21)

Since q1 6= q2 can be any two arbitrary modes, then without
loss of generality, we only consider the former inequality in
(21) that holds, if

g
q2

i,k
< g

q1

i,k
, (22)

since g
q2

i,k
is an over-approximation for gq2

i
(⇠q2

k
). Further, by

defining �
q

gi
, g

q

i,k
�g

q

i
(⇠q

k
) � 0 and �q

gi
, g

q

i
(⇠q

k
)�g

q

i,k
�

0, (22) is equivalent to g
q2
i
(⇠q2

k
) + �

q2

gi
< g

q1
i
(⇠q1

k
) � �q1

gi
,

that can be rewritten as:

�
q2

gi
+�q1

gi
 g

q1
i
(⇠q1

k
)� g

q2
i
(⇠q2

k
). (23)

Note that the left hand side of (23) can be verified to be
bounded as follows: 0  �

q2

gi
+ �q1

gi
 �q2

gi
+ �q1

gi
, where

8q 2 Q,�q

gi
, g

q

i,k
� g

q

i,k
is bounded by the the Lipschitz-

like property of the decomposition functions (cf. [12, Lemma
2]), and the stability of each of the mode-matched observers
(cf. Lemma 2). Now that the left hand side of (23) is proven
to be bounded, if we show that the right hand side grows
unboundedly, then the inequality in (23) must always hold
after some sufficiently large time step K 2 N. To do so, we
consider some x0 2 X0 and apply the mean value theorem
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on both g
q1
i

and g
q2
i

to obtain

g
q1
i
(⇠q1

k
)� g

q2
i
(⇠q2

k
)=(Jq2

g,i
(⇠̃2

k
)� J

q1
g,i
(⇠̃1

k
))(xk � x0), (24)

where ⇠̃2
k
, ⇠̃

1
k
2 X ⇥ Rp ⇥ V and for all q 2 Q, Jq

g
(⇠) and

J
q

g,i
(⇠) denote the Jacobian matrix of g

q and its i’th row,
evaluated at ⇠. Finally, the right hand side of (24) eventually
becomes unbounded, since the Jacobian matrix of J

q is
bounded for all q 2 Q by Lipschitz continuity of g

q (cf.
Assumption 1), and xk, i.e., the true state trajectory becomes
unbounded by Assumption 5 and Corollary 2. Hence, the
left hand side of the above equality also becomes eventually
unbounded, which returns the desired result. ⌅

VI. SIMULATION EXAMPLE

In this section, we illustrate the effectiveness our proposed
observer using a power network with multiple control areas.
Specifically, we consider a 3-area system as shown in Figure
1 where each control area consists of generator and load
buses. In addition, there are transmission lines between areas.
The nonlinear model of bus i is adopted from [25]:
✓̇i(t) = fi(t) + w1,i(t),

ḟi(t)=�
Difi(t)+

P
l2Si

Pil(t)�(PMi(t)+di(t))+PLi(t)

mi
+w2,i(t),

with the output model: yi,k = [✓i,k, fi,k]>+ [0, 1]>di+ vi,k,
where ✓i is phase angle, fi is the angular frequency, PMi(t)
is the mechanical power (the control input), PLi(t) is a
known power demand, and Si is the set of neighboring buses
of i. In our simulations, both PMi(t) and PLi(t) are set to be
identically zero and the process noise wi(t) and measurement

noise vi(t) are both bounded by


�0.1
�0.1

�
,


0.1
0.1

��
. When the

circuit breakers are not engaged (or attacked), the power flow
Pil between areas i and l is as follows:

Pil(t) = �Pli(t) = til sin(✓i(t)� ✓j(t)).

A malicious agent is assumed to have access to circuit
breakers that control the tie-lines, and is thus able to sever
the connection between control areas. Two types of attack are
considered based on the topology of the tie-line interconnec-
tion graph: (1) a node/vertex/bus attack (disconnection of a
control area from all others); or (2) a link/edge/line attack
(disabling of a specific tie-line between two control areas),
i.e., the power flow across the tie lines is altered, if (1) there
is an attack on control area i (node/bus attack): Pil(t) =
�Pli(t) = 0, 8l 6= i; or (2) if there exists an attack on
circuit breaker (i, l) (link/line attack): Pil(t) = �Pli(t) = 0.

For the radial tie-line interconnection topology in Figure 1,
the circuit breaker attacks result in Q = 5 possible modes of
operation: all switches are safe (q = 1), only circuit breaker
i is attacked (q = i+1, i = 1, 2, 3) and two or more circuit
breakers are attacked (q = 5). Further, we denote the value of
the variables at sampling time tk by adding subscript k, e.g.,
fi(tk) = fi,k and apply the Euler method to discretize the
system: ✓i,k+1 = ✓i,k+ ✓̇i,kdt, fi,k+1 = fi,k+ ḟi,kdt, where
the sampling time dt is 0.01s in our example. Moreover, we
choose di(t) = ✓i(t) sin(✓i(t)) as to-be-learned unknown

Fig. 1: Example of a three-area power station in a radial topology
(corresponding to node/bus attack).

Fig. 2: The true values of the states: ✓1, f1, and their
upper and lower framers returned by the SMSP approach:
✓
SMSP
1 , ✓SMSP

1 , f
SMSP
1 , fSMSP

1
, as well as the SMSI approach:

✓
SMSI
1 , ✓SMSI

1 , f
SMSI
1 , fSMSI

1
.

nonlinear attack policy and assume that we have 400 initial
data points for each unknown attack policy di.

Due to space limitations, we only show the results for
the case when the true operation mode is assumed to be
q
⇤ = 1 and provide figures for selected states and attack

signals in Figure 2 and 3. Moreover, we compare our
results with our previously developed simultaneous mode,
state and unknown input (SMSI) observer in [13], where no
unknown policy/feedback law was assumed to govern the
attack signals, and hence, no learning step were included
in the proposed observer design. As can be observed from
Figures 2 and 3, the SMSP observer (proposed in this paper)
returns tighter interval estimates than SMSI for both states
and attack signals, when compared to SMSI. It is also worth
mentioning that all the state interval widths converge to
steady state values by using SMSP with “learned” model for
the attack policy, while the interval widths for some states do
not converge when applying SMSI (not depicted for brevity),
which highlights the effectiveness of the learning step.

Moreover, we compare the upper and lower learned model
abstractions for k = 0 and k = 1500 in Figure 4, which
showed tighter over-approximations with increasing number
of data points. Further, as can be seen in Figure 5, all modes,
except the true mode q

⇤ = 1, are eliminated within 1500
time steps. Finally, the actual state and input estimation error
sequence, as shown in Figure 6, is upper bounded by the
interval widths and converges to steady-state values.

VII. CONCLUSION

This paper addresses the problem of designing interval
observers for hidden mode switched nonlinear systems with
bounded noise signals that are compromised by false data
injection and switching attacks. An interval observer with
three constituents was proposed: i) a bank of mode-matched
observers, where each of them simultaneously outputs the
corresponding mode-matched state, mode and unknown in-
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Fig. 3: The true values of the attacks: d1, d2, and their
upper and lower framers returned by the SMSP approach:
d
SMSP
1 , dSMSP

1 , d
SMSP
2 , dSMSP

2 , as well as the SMSI approach:
d
SMSI
1 , dSMSI

1 , d
SMSI
2 , dSMSI

2 .

Fig. 4: The true attack policy µ(·), and its learned abstraction
model {µ(·), µ(·)} at time steps k = 0 and k = 1500.

put/attack estimates, as well as computes upper and lower
abstractions/over-approximations for the attack policies, ii) a
mode estimator that rules out the incorrect modes based on
a residual-based set-membership criterion, and iii) a global
fusion observer that returns the union of compatible state and
attack estimates, as well as learned abstractions of the attack
policy/state feedback law. Moreover, sufficient conditions for
mode-detectability, i.e., for guaranteeing that all false modes
will be eliminated after sufficiently large finite time steps,
were provided. Finally, the effectiveness of our proposed
approach was demonstrated using a 3-area power network.
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