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Abstract— In this paper, we consider the optimal input design
problem for active model discrimination (AMD) among a set of
switched nonlinear models that are constrained by metric/signal
temporal logic specifications and affected by uncontrolled
inputs and noise. To deal with nonlinear and non-convex
constraints in the resulting bilevel optimization problem, we
first over-approximate the nonlinear dynamics using piecewise
affine abstractions. Then, we solve the relaxed inner prob-
lem of the bilevel AMD problem as parametric optimization
problems and substitute the parametric solutions into the
outer problem to obtain sufficient separating inputs for AMD.
Moreover, since the parametric optimization problems are often
computationally demanding, we propose several strategies to
reduce the computational time, while preserving feasibility of
the separating inputs for AMD. Finally, we demonstrate the
effectiveness of our approach on several illustrative examples
on fault detection and lane changing scenario.

I. INTRODUCTION

Model estimation and fault detection are crucial for suc-
cessful operation of cyber-physical systems (CPS) such as
distributed robots, autonomous vehicles and medical devices,
since CPS often interact with other systems whose operating
modes are unknown or partially observed. Further, CPS often
involve logical/discrete elements, e.g., temporal logic task or
safety specifications. Thus, to guarantee and improve CPS
safety, it is of great interest to develop approaches for model
discrimination with temporal logic constraints.
Literature Review. Model discrimination, with applications
in fault detection and intent estimation, can generally be
grouped into passive and active approaches. The passive
method seeks to identify the true model among a set of
healthy/normal and faulty models given a sequence of input-
output data [1], [2], while the active approach, also known as
AMD, designs a minimally perturbing input sequence for the
system such that the (output) behaviors of different models
are guaranteed to be distinct [3]–[5].

This paper mainly focuses on AMD approaches, which
have been mainly considered using polyhedral projection
[4], ellipsoids [6] and mixed-integer optimization [5], [7].
Moreover, closed-loop active model discrimination using
set-valued observers has been studied in [8], [9], where
the latter also employed multi-parametric programming. On
the other hand, partition-based AMD approaches have been
proposed to utilize run-time revealed information [10] and
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measurement [11] to further minimize the separating (per-
turbation) input by building a partition tree. However, the
above-mentioned papers are only applicable for linear or
affine models, while [12] proposed an AMD method for
nonlinear or uncertain affine models by constructing (single-
region/non-switched) affine inclusion/abstraction models.

On the other hand, for systems subjected to temporal logic
specifications, including for fault and anomaly detection
problems [13], [14] showed that temporal logic specifica-
tions can be formulated using mixed-integer constraints via
the construction of a nondeterministic finite state machine
called a monitor, while [15] proposed an optimization-based
method by directly converting signal/metric temporal logic
specifications into mixed-integer constraints.
Contribution. In this paper, we propose an optimization-
based approach for active model discrimination among
switched nonlinear systems based on piecewise affine ab-
straction [16], [17], as an extension of [12], where only a
single-domain/piece affine abstraction/over-approximation is
considered that may result in overly conservative solutions.
Moreover, we consider switched nonlinear models whose
switching/mode sequence is constrained by metric/signal
temporal logic (MTL/STL) specifications, as a counterpart
to the passive model discrimination problem in [15].

In particular, to design a separating input sequence such
that the trajectories of all models are distinct from each
other in spite of noise and uncontrolled inputs, we formulate
the AMD problem as a bilevel optimization problem with
multiple inner problems that involve nonlinear, integral and
non-convex constraints, which is generally computationally
intractable. Thus, we leverage piecewise affine abstractions
[16], [17] as affine over-approximations of the nonlinear
models and solve the relaxed inner problems with mixed-
integer linear constraints as parametric optimization prob-
lems. Then, we utilize the parametric inner problem solutions
to solve the AMD problem using (tractable) linear programs.

Furthermore, since the parametric problems are also often
computationally expensive or intractable for large problems,
we propose several strategies based on horizon truncation and
input domain partitioning to render them applicable to larger
problems. Finally, we demonstrate the effectiveness of the
approach on several illustrative examples on fault detection
and intent estimation in a lane changing scenario.

II. PRELIMINARIES

A. Notations
For vectors v 2 Rn and a matrix M 2 Rp⇥q , kvk ,

maxi |vi| denotes its 1-norm, MT its transpose and M � 0
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element-wise non-negativity. The set of positive integers up
to n is denoted by Z+

n , and the set of integers from l to n is
denoted by Zn

l . The vec operator is defined for a collection
of vectors vk, k 2 Zn

l as vecnk=l{vk} =
⇥
vTl . . . vTn

⇤T .
We will also make use of Special Ordered Set of degree

1 (SOS-1) constraint1 and set partitions, defined as follows:

Definition 1 (SOS-1 Constraint [18]). A special ordered set
of degree 1 (SOS-1) constraint is a set of integer, continuous
or mixed-integer scalar variables for which at most one
variable in the set may take a value other than zero, denoted
as SOS-1: {v1, . . . , vN}. For instance, if vi 6= 0, then this
constraint imposes that vj = 0 for all j 6= i.

Definition 2 (Partition for Polyhedral Sets). A partition of
a polyhedral set P is a collection of |S| disjoint subsets Pi

such that
S|S|

i=1 Pi = P , where each partition Pi is also a
polyhedral set.

B. Metric/Signal Temporal Logic (MTL/STL)
Definition 3 (Atomic Proposition). An atomic proposition is
an assertion whether a system variable or signal is either
True (1 or >) or False (0 or ?).

For a finite set of modes, denoted by ⌃, the syntax of
MTL/STL formulas over it is given by:

' ::= p | ¬' | '1 _ '2 | '1U[k1,k2]'2, (1)

where p 2 ⌃. The operations ¬, _, and U[k1,k2] are the
negation, disjunction, and time-constrained until operators,
respectively, whereas [k1, k2] ⇢ [0,1) is an integer interval.
Using the grammar in (1), we can define next (�) as �' =
>U[0,1]', conjunction (^) as '1^'2 = ¬(¬'1_¬'2), impli-
cation ()) as '1 ) '2 = ¬'1 _ '2, eventually in [k1, k2]
(⌃[k1,k2]) as ⌃[k1,k2]' = >U[k1,k2]' =

Wk2

⌧=k1
�

⌧', and
always in [k1, k2] (2[k1,k2]) as 2[k1,k2]' = ¬⌃[k1,k2]¬' =Vk2

⌧=k1
�

⌧'. For brevity, we will denote U[0,1), ⌃[0,1),
2[0,1) as U , ⌃, 2 throughout the paper.

Definition 4 (MTL/STL Semantics). Let � represent an !-
length word over ⌃, i.e., � 2 ⌃! , and let �k be kth element
of �. Then MTL/STL semantics are defined as follows:

1) (�, k) |= p , �k = p,
2) (�, k) |= ¬' , (�, k) 2 ',
3) (�, k) |= '1 _ '2 , (�, k) |= '1 or (�, k) |= '2,
4) (�, k) |= '1 ^ '2 , (�, k) |= '1 and (�, k) |= '2,
5) (�, k) |= '1U[k1,k2]'2 , 9k0 2 [k + k1, k + k2] :

(�, k0) |= '2 and 8k00 2 [k, k0] : (�, k00) |= '1,
6) (�, k) |= ⌃[k1,k2]' , 9k02[k+k1, k+k2], (�, k0) |= ',
7) (�, k) |= 2[k1,k2]' , 8k02[k+k1, k+k2], (�, k0)|='.

Moreover, � |= ' implies (�, 0) |= '.
Additionally, the following useful definitions from [15] for

(infinite-length) MTL/STL specifications are introduced.

Definition 5 (Valid Subtrace of an MTL/STL). A length-
T word q 2 ⌃T is called a valid subtrace from k0 of an
MTL/STL formula ', if there exist a k0-length prefix p 2 ⌃k0

1Off-the-shelf solvers such as Gurobi and CPLEX [18], [19] can readily
handle these constraints, which can significantly reduce the search space for
integer variables in branch and bound algorithms.

and a suffix r 2 ⌃! such that their !-word concatenation
pqr satisfies ', i.e., pqr |= '. Further, the set of length-T
valid subtraces from k0 is denoted as V T

k0
(').

Definition 6 (MTL/STL Bound of an MTL/STL). The bound
of an MTL/STL formula ', denoted by b', is the time
length required to evaluate the satisfaction of ' and is
recursively computed as follows: 1) b¬' = b'; 2) b'1^'2 =
max(b'1 , b'2); 3) b⌃[t1,t2]' = b2[t1,t2]' = t2 + b'; and 4)
b'1U[t1,t2]'2 = t2 +max(b'1 , b'2).

To solve active model discrimination problems involving
MTL/STL specifications, equivalent integer encodings of
the specifications have been introduced in [15], which are
provided in the Appendix for the sake of completeness.

C. Modeling Framework

Consider N discrete-time switched nonlinear system mod-
els {Gl}

N
l=1, each with states xl 2 Rn, measurements/outputs

zl 2 Rnz , inputs ul 2 Rm, process noise wl 2 Rmw ,
measurement noise vl 2 Rmv , �l is the (controlled or
uncontrollable) discrete switching signal/mode, from a finite
set ⌃l with cardinality |⌃l| = K. The models are given by:

xl(k + 1) = h
�l,k

l (xl(k),ul(k), wl(k)), (2)
zl(k) = g

�l,k

l (xl(k),ul(k), vl(k)), (3)

where, h
�l,k

l and g
�l,k

l are continuous functions/mappings
and xl(k + 1) denotes the state at the next time instant.

The states xl can be divided into controlled states xl 2

Rnx and uncontrolled states yl 2 Rny with ny = n � nx

accordingly. Similarly, the first mu components of ul are
controlled inputs denoted as u 2 Rmu , while the other
md = m � mu components of ul, denoted as dl 2 Rmd ,
are uncontrolled inputs that are model-dependent. As a
consequence, we have

xl(k) ,

xl(k)
yl(k)

�
,ul(k) ,


u(k)
dl(k)

�
. (4)

The initial condition (or the initial state of a moving
horizon starting at time k0) for model l, denoted by xk0

l =
xl(k0), is constrained to a polyhedral set with c0 inequalities:

xk0
l 2 Xk0 = {x 2 Rn : Pk0x  pk0}, 8l 2 Z+

N . (5)

Moreover, the states xl and yl satisfy polyhedral state
constraints with cx and cy inequalities:

xl(k) 2 Xx,l ={x 2 Rnx : Px,lx  px,l}, (6)
yl(k) 2 Xy,l ={y 2 Rny : Py,ly  py,l}, (7)

On the other hand, the controlled and uncontrolled inputs u
and dl must also satisfy the following polyhedral constraints
with cu and cd inequalities:

u(k) 2 U = {u 2 Rmu : Quu  qu}, (8)
dl(k) 2 Dl = {d 2 Rmd : Qd,ld  qd,l}. (9)

The process and measurement noises, wl and vl, are also
polyhedrally constrained with cw and cy inequalities:

wl(k) 2 W l = {w 2 Rmw : Qw,lw  qw,l}, (10)
vl(k) 2 V l = {v 2 Rmv : Qv,lv  qv,l}. (11)
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Each given Gl also contains an MTL/STL formula 'l that
governs the set of allowed switching signals �l , {�l,k}

1
0 2

⌃!
l , i.e., �l |= 'l must hold. Moreover, we assume that

formulas 'l are of the (unbounded global/safety) form:
'l = �b,l ^2�g,l, (12)

where �b,l and �g,l are bounded negation-free MTL/STL
formulas with bounds b�b,l and b�g,l (cf. Definition 6). This
assumption allows us to formulate the problem and the
proposed algorithms using a finite number of variables.

Further, given a time horizon of length T , we define:

xl,T = veck0+T
k=k0

{xl(k)}, dl,T = veck0+T�1
k=k0

{dl(k)},

wl,T = veck0+T�1
k=k0

{wl(k)}, vl,T = veck0+T�1
k=k0

{vl(k)},

uT = veck0+T�1
k=k0

{u(k)}, zl,T = veck0+T�1
k=k0

{zl(k)},

�l,T = {�l,k}
k
k=k,

for model l 2 Z+
N , as well as the subtrace set V k�k+1

k ('l),
where k = k0 � maxl{b�g,l} and k = k0 + T � 1 +
maxl{b�g,l} if k0 > maxl{b�b,l}, otherwise, with k = k0
and k = max{k0 + T � 1 + maxl{b�g,l},maxl{b�b,l}}.

1) Abstraction of Nonlinear Functions: To deal with
nonlinearities in Gl in active model discrimination problems,
i.e., the functions h�l

l and g�l
l , an affine abstraction/over-

approximation method is considered in [12], however, it can
only considers a single domain. Here, we propose to leverage
the piecewise affine abstraction approaches in [16], [17]
to over-approximate the nonlinearities with piecewise affine
inclusions, where the precision of the abstraction can be
improved with more and better chosen partitions, as defined
below, although it may lead to longer computation times
and even intractability due to more integer variables in our
solutions in Section IV (cf. [17] for details).

Definition 7 (Partition for h�l
l ). For each function h�l

l , a
partition I

h,�l

l of the closed bounded region X ⇥ U ⇥W ✓

Rn+m+mw is a collection of qh,�l

l subregions I
h,�l

l =

{Ih,�l

l,i |i 2 Zq
h,�l
l

1 } such that X ⇥ U ⇥ W ✓
Sq

hl,�l
l

i=1 Ih,�l

l,i

and Ih,�l

l,i \ Ih,�l

l,j = @Ih,�l

l,i \ @Ih,�l

l,j , 8i 6= j 2 Zq
1, where

@Ih,�l

l,i is the boundary of set Ih,�l

l,i . Similarly, a partition
I
g,�l

l of the closed bounded region X ⇥U ⇥V ✓ Rn+m+nv

for each function g�l
l can be defined.

We assume the partitions to be polytopic. Then, for each
polytopic subregion Ih,�l

l,i 2 I
h,�l

l (or Ig,�l

l,j 2 I
g,�l

l ) that
partitions the domain of interest, the nonlinear function h�l

l
(or g�l

l ) can be over-approximated/abstracted by a pair of
affine functions h�l

l,i, h
�l

l,i (or g�l

l,j
, g�l

l,j) via the abstraction
algorithms in [16], [17]. As a result, for all (x,u, w) 2

Ih,�l

l,i (or (x,u, v) 2 Ig,�l

l,j ), the function h�l
l,i(x,u, w) (or

g�l
l,j(x,u, v)) is sandwiched/framed by a pair of affine func-

tions, i.e., h�l
l,i(x,u, w)  h�l

l,i(x,u, w)  h
�l

l,i(x,u, w) (or
g�l

l,j
(x,u, v)  g�l

l,j(x,u, v)  g�l
l,j(x,u, v)) with

h�l
l,i(x,u, w) = A�l

l,ix+B�l
l,iu+W �l

l,iw + f�l

l,i
,

h
�l

l,i(x,u, w) = A
�l

l,ix+B
�l

l,iu+W
�l

l,iw + f
�l

l,i,

g�l

l,j
(x,u, v) = C�l

l,jx+D�l
l,ju+ V �l

l,jv + o�l
l,j ,

g�l
l,j(x,u, v) = C

�l

l,jx+D
�l

l,ju+ V
�l

l,jv + o�l
l,j ,

where A�l
l,i, A

�l

l,i, B�l
l,i, B

�l

l,i, C�l
l,j , C

�l

l,j , D�l
l,j , D

�l

l,j , W �l
l,i,

W
�l

l,i, V
�l
l,j , V

�l

l,j , f�l

l,i
, f

�l

l,i, o
�l
l,j and o�l

l,j are of appropriate
dimensions and are constants that are determined by the
abstraction algorithms in [16], [17]. The abstracted piecewise
affine inclusion models Hl is then given by:
✓
A

�l,k

l,i xl(k)+B
�l,k

l,i u(k)
+f

�l,k

l,i +W
�l,k

l,i wl(k)

◆
xl(k+1)

✓
A

�l,k

l,i xl(k)+B
�l,l,k

l,i u(k)
+f

�l,k

l,i +W
�k
l,iwl(k)

◆
,

✓
C

�l,k

l,j xl(k)+D
�l,k

l,j u(k)
+o

�l,k

l,j + V
�l,k

l,j vl(k)

◆
 zl(k) 

✓
C

�l,k

l,j xl(k)+D
�l,k

l,j u(k)
+o

�l,k

l,j + V
�l,k

l,j vl(k)

◆
,

(13)
where their corresponding polytopic subregions Ih,�l

l,i and
Ig,�l

l,j are given by the following linear constraints:

S
x,�l,k

l,i xl(k) + S
u,�l,k

l,i u(k) + S
w,�l,k

l,i wl(k)  �
�l,k

l,i ,
Mx,�k

l,j xl(k) +M
u,�l,k

l,j u(k) +M
v,�l,k

l,j vl(k)  ↵
�l,k

l,j ,
(14)

respectively, with S
x,�l,k

l,i , Su,�l,k

l,i , Sw,�l,k

l,i , Mx,�l,k

l,j , Mu,�l,k

l,j ,
M

v,�l,k

l,j , ��l,k

l,i and ↵
�l,k

l,j of appropriate dimensions.

III. PROBLEM FORMULATION

In this paper, we aim to design a separating input sequence
such that the (output) trajectories of all the models diverge,
even temporarily, regardless of any realization of uncertain-
ties. Formally, the problem of AMD is defined as follows:

Problem 0 (Active Model Discrimination for {Gl}
N
l=1).

Given N nonlinear models {Gl}
N
l=1, and state, input and

noise constraints, i.e., (5)–(11), find an optimal input se-
quence u⇤

T to minimize a given cost function J(uT ) such that
for all possible initial states xk0

l , uncontrolled inputs dl,T ,
process noise wl,T , measurement noise vl,T and switching
signals �l,k, only one model is valid, i.e., the output trajec-
tories of any pair of models have to differ by a threshold ✏
in at least one time instance. The optimization problem can
be formally stated as follows:

u?
T = arg min

uT ,xT ,zT
J(uT )

s.t. 8k 2 Zk0+T�1
k0

:(8) holds, (15a)

8l 2 Z+
N , 8k 2 Zk0+T�1

k0
,

8xl(k0), dl,T , wl,T ,�l,T :
(2),(5),(7),(9),(10) and
�l,T 2V k�k+1

k ('l) hold

9
>>>=

>>>;
:(6) holds, (15b)

8i, j 2 Z+
N, i<j, 8k 2 Zk0+T�1

k0
,

8xl(k0), dl,T , wl,T , vl,T ,�l,T ,
l 2 {i, j} : (2),(3),(5),(7),(9)-(11)

and �l,T 2V k�k+1
k ('l) hold

9
>>>=

>>>;
:
{9k0 2 Zk0+T�1

k0
:

kzi(k0)�zj(k0)k�✏}.

(15c)

where the subtrace set V k�k+1
k ('l) is constructed recur-

sively using mixed-integer linear program (MILP) formula-
tions of MTL/STL specifications given in the Appendix.

In the above, constraint (15b) means that for all possible
realizations of initial states, uncontrolled states, uncontrolled
inputs, process noise and possible switching sequence (on
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the left side of the brace), the controlled state constraint (6)
holds over the entire horizon for each model. Meanwhile,
constraint (15c) defines the model separability condition,
which means the output trajectories of all pairs of models
have to differ by a threshold ✏ in at least one time instant.

However, since the original models Gl are nonlinear and
thus, “hard” to directly compute with since it would result in
an intractable mixed-integer nonlinear program, we propose
to solve a “simplified” problem by leveraging the piecewise
affine abstraction tools described in the previous section to
obtain a more tractable MILP, in lieu of solving Problem
0. Since the behavior of the abstracted models Hl contains
the behavior of the original models Gl (c.f. [15] for details),
the following problem provides a sufficient solution that still
guarantees model discrimination:
Problem 1 (Active Model Discrimination for {Hl}

N
l=1).

Given N abstracted piecewise affine inclusion models
{Hl}

N
l=1, and state, input and noise constraints, i.e., (5)–

(11), find an optimal input sequence u⇤
T to minimize a

given cost function J(uT ) such that for all possible initial
states xk0

l , uncontrolled inputs dl,T , process noise wl,T and
measurement noise vl,T , switching signals �l,k, only one
model is valid, i.e., the output trajectories of any model pair
have to differ by a threshold ✏ in at least one time instance.
The optimization problem can be formally stated similar to
(15) with the slight modification of replacing (2) and (3) with
(13) and (14).

As we will see in Section V, the resulting optimization
problem for solving Problem 1 is generally still computa-
tionally demanding for even relatively small problems. This
is due to potentially large input domains and the involvement
of binary variables to denote the active partition of the
piecewise abstraction model and to represent the switching
mode. A secondary goal of this paper is thus to tackle the
issue of computational efficiency.

Problem 2 (Strategies for Tractable AMD). Design strate-
gies to make the AMD problem in Problem 1 more compu-
tationally efficient while guaranteeing model separation.

IV. MAIN RESULT

In this section, we first present optimization-based ap-
proaches to solve Problem 1 (and, in turn, Problem 0) by
formulating the constraints in Problem 1 as optimization
problems in Proposition 1 and 2, leading to a bilevel opti-
mization problem. Then, we propose to parametrically solve
the inner (optimization) problems given in Proposition 1
and 2 using a multi-parametric programming solver, e.g.,
MPT 3.0 [20], whose solutions are then incorporated into
the original Problem 1 in Theorem 1. As the parametric
problems (Proposition 1 and 2) are often computationally
demanding or even intractable, we also propose several
strategies/approaches to solve them efficiently.

A. Active Model Discrimination for {Hl}
N
l=1

We provide the following propositions for reformulating
the controlled states constraints in (15b), model separability

condition in (15c) of Problem 1 (with (13) and (14)). Note
that in each of the following propositions, we assume that
the other constraints in Problem 1 are satisfied.

Proposition 1. (State Constraint Reformulation) The poly-
topic state constraint for each model l 2 Z+

N (subscript l is
omitted for clarity), i.e., the controlled state constraint (6),
in (15b) of Problem 1 (with (13) and (14)) is equivalent to

⇢ � 0,, (16)

where ⇢ (implicitly dependent on the decision variable uT )
is the solution to:

⇢ = arg min
xT ,wT ,vT ,zT ,s⇤(k),

s̃†(k),a⇤(k),ã†(k),c
�(k),r�(k)

� (17a)

s.t. 8⇤2Z+
qh
, †2Z+

qg ,�2Z+
nx , k2Zk0+T�1

k0
: (17b)

x(k + 1)  A
�k
⇤ x(k)+B

�k
⇤ u(k)+W

�k
⇤ w(k)

+f
�k
⇤ +(s⇤(k) + c�(k))1, (17c)

x(k + 1) � A�k
⇤ x(k)+B�k

⇤ u(k)+W �k
⇤ w(k)

+f�k

⇤ +(s⇤(k) + c�(k))1, (17d)
Sx,�k
⇤ x(k)+Su,�k

⇤ u(k)+Sw,�k
⇤ w(k)  ��k

⇤

+(s⇤(k) + c�(k))1, (17e)
z(k)C

�k
† x(k)+D

�k
† u(k)+V

�k
† v(k)

+o�k
† +(s̃†(k) + c�(k))1, (17f)

z(k)�C�k
† x(k)+D�k

† u(k)+V �k
† v(k)

+o�k
† +(s̃†(k) + c�(k))1, (17g)

Mx,�k
† x(k)+Mu,�k

† u(k)+Mv,�k
† v(k)↵�k

†

+(s̃†(k) + c�(k))1, (17h)
�̃� = px,� � Px,�x(k), Pyy(k)  py, � = min �̃�, (17i)
a⇤(k) 2 {0, 1}, ã†(k) 2 {0, 1}, r�(k) 2 {0, 1}, (17j)
SOS-1:(a⇤(k), s⇤(k)), SOS-1:(ã†(k), s̃†(k)),

SOS-1:(c�(k), r�(k)), (17k)
Pqh,�

⇠=1 a⇠(k) = 1,
Pqg,�

⇠=1ã⇠(k)=1,
P|⌃|

⇠=1 r
⇠(k)=1, (17l)

w(k) 2 W, v(k) 2 V, u(k) 2 U , (17m)

{�k}kk=k2V k�k+1
k ('), (17n)

where s⇤(k), s̃†(k) and c�(k) are slack variables, r�(k) = 1

corresponds to �k = �, and the subtrace set V k�k+1
k (')

is constructed recursively using MILP formulations of
MTL/STL specifications given in the Appendix.

Proof. a⇤(k) = 1 and r�(k) = 1 in (17c)–(17e) imply that
the former inequalities in (13)–(14) hold, since the SOS-1
constraints in (17k) ensure that s⇤(k) = 0 and c�(k) = 0.
On the contrary, if a⇤(k) = 0 and/or r�(k) = 0, it means that
s⇤(k) and c�(k) are free and then (17c)–(17e) hold trivially.
Similarly, ã†(k) = 1 and r�(k) = 1 in (17f)–(17h) imply
that the latter inequalities in (13)–(14) hold. In addition,
(17l) ensures that, at each time step k, only one partition
is valid for each of the state and output equations, and only
one switching signal/mode is valid. Moreover, to completely
express the constraints induced by ' on �k and r�(k) as
MILP reformulation, the horizon of �k and r�(k) is extended
both backwards and forwards by a factor of max(�i

g,�
j
g)

via the definition of k and k. Finally, (16) (also see (17i))
guarantees that the state constraint (15b) holds.
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Proposition 2. (Separability Condition Reformulation) The
separability condition in (15c) (with (13) and (14)) for each
model pair i, j 2 Z+

N, i < j of Problem 1 is equivalent to

�(i,j) � ✏, (18)

where �(i,j) (implicitly dependent on uT ) is the solution to:
�(i,j) = arg min

xT ,wl,T ,vl,T ,zT ,s?,⇤(k),
s̃?,†(k),a?,⇤(k),ã?,†(k),c

�? (k),r�? (k)

⌘ (19a)

s.t. ?2{i, j}, 8i, j2Z+
N , i6=j, 8⇤2Zqh,�?

1 , †2Zqg,�?

1 , k2Zk0+T�1
k0

:
(19b)

x?(k + 1)  A
�?,k
?,⇤ x?(k)+B

�?,k
?,⇤ u(k)+W

�?,k
?,⇤ w?(k)

+f
�?,k
?,⇤ +(s?,⇤(k) + c�?(k))1, (19c)

x?(k + 1) � A�?,k
?,⇤ x?(k)+B

�?,k
?,⇤ u(k)+W �?,k

?,⇤ w?(k)

+f�?,k

?,⇤ +(s?,⇤(k) + c�?(k))1, (19d)

S
x,�?,k
?,⇤ x?(k)+S

u,�?,k
?,⇤ u(k)+S

w,�?,k
?,⇤ w?(k)  �

�?,k
?,⇤

+(s?,⇤(k) + c�?(k))1, (19e)
z?(k)C

�?,k

?,† x?(k)+D
�?,k

?,† u(k)+V
�?,k

?,† v?(k)

+o
�?,k

?,† +(s̃?,†(k) + c�?(k))1, (19f)

z?(k)�C
�?,k

?,† x?(k)+D
�?,k

?,† u(k)+V
�?,k

?,† v?(k)

+o
�?,k

?,† +(s̃?,†(k) + c�?(k))1, (19g)

M
x,�?,k

?,† x?(k)+M
u,�?,k

?,† u(k)+M
v,�?,k

?,† v?(k)↵
�?,k

?,†

+ (s̃?,†(k) + c�?(k))1, (19h)
kzi(k)� zj(k)k  ⌘, Py,?y?(k)  py,?, (19i)
a?,⇤(k) 2 {0, 1}, ã?,†(k) 2 {0, 1}, r�?(k) 2 {0, 1}, (19j)
SOS-1:(a?,⇤(k), s?,⇤(k)), SOS-1:(ã?,†(k), s̃?,†(k)),

SOS-1:(c�?(k), r�?(k)), (19k)
Pqh,�

?
⇠=1 a?,⇠(k) = 1,

Pqg,�?
⇠=1ã?,⇠(k)=1,

P|⌃|
⇠=1 r

⇠(k)=1, (19l)
w?(k) 2 W, v?(k) 2 V, u(k) 2 U , (19m)

{�?,k}kk=k2V k�k+1
k ('?), (19n)

where s?,⇤(k), s̃?,†(k) and c�?(k) are slack variables,
r�?(k) = 1 corresponds to �?,k = �, and the subtrace set
V k�k+1
k ('?) is constructed recursively using MILP formu-

lations of MTL/STL specifications given in the Appendix.

Proof. The construction follows similar steps to Proposition
1, but with two different models i, j and with the separation
condition in (19i).

Using Propositions 1, 2, it is straightforward to show that
the active model discrimination problem in Problem 1 can
be recast as the following bilevel optimization problem:

Theorem 1 (Bilevel AMD). Given a separability index ✏,
Problem 1 is equivalent to

u⇤
T =argmin

uT

J(uT ) (20a)

s.t. (16) and (18) hold, (20b)

where ⇢ and �(i,j) are solutions to the inner problems given
by (17) and (19), respectively.

Since the inner problems (17) and (19) contain integer
variables, standard reformulation methods using KKT or
robust optimization, which was employed in [7], [12], do

not apply. Thus, we propose to parametrically solve the inner
(optimization) problems given in Proposition 1 and 2 using
a multi-parametric programming solver, e.g., MPT 3.0 [20].
Their solutions are then incorporated into the outer problem
in Theorem 1 to find the minimal separating input.

Then, using the computed optimal input and the observed
measurements (corresponding to the unknown true model),
we can eliminate the false models with the model invalidation
algorithm proposed in [15].

B. Strategies for Tractable AMD

However, since even small parametric optimization prob-
lems can often be computationally demanding, we propose
the following two strategies to solve Problem 2.

1) Horizon Truncation: Another way to make the multi-
parametric optimization problems in Propositions 1 and 2
more tractable is by reducing the number of binary variables
involved in some way, as they are the major reasons leading
to intractable problems. The following horizon truncation
strategy is one such solution that can be applied to obtain a
potentially sub-optimal but tractable problem.

Proposition 3 (Tractable AMD with Truncated Horizon).
In Propositions 1 and 2, a tractable sufficient problem can
be obtained by reducing the extended time horizon for the
constraints (17n) and (19n), by setting the upper limit to
k = k0 + T � 1 when k0 > maxl{b�b,l}, or k = max{k0 +
T � 1,maxl{b�b,l}} otherwise.

Proof. By eliminating the binary variables �?,k and r�?
k

for all k > k0 + T � 1 when k0 > maxl{b�b,l}, or
k = max{k0 + T � 1,maxl{b�b,l}} otherwise, the resulting
optimization problem will have relaxed constraints (and also
fewer decision variables). Thus, when the relaxed problem is
solved, we obtain a smaller ⇢, denoted as ⇢. If the solution
to the relaxed problem exists, it provides a lower bound to
the cost of the original inner problem in Proposition 1 as
⇢ � ⇢, hence the separating input that satisfies ⇢ � 0 also
satisfies ⇢ � 0. A similar argument applies to its sufficiency
for Proposition 2.

Although the strategy proposed in Proposition 3 leads to
a sub-optimal solution in general, there are specific cases
where applying the strategy will not result in the loss of
optimality. One such case (cf. example in Section V-A) arises
when the given MTL/STL specifications are such that the
MTL/STL formulas only affect the switching modes and
the future truth conditions for �l,i, 8i > k0 + T � 1 are
independent of the choice of the separating input sequence.

2) Input Domain Partitioning: When the input domain
is large, existing multi-parametric tools can have difficulties
dealing with a large number of critical regions (e.g., in
the order of thousands). One way to tackle this issue is to
shrink/reduce the input region by partitioning the input set
(cf. Definition 2), and solve each individual problem with
the corresponding input subset separately (or in parallel, if
desired). In other words, we still consider the same problem
but we instead solve a finite number of “smaller” tractable
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problems. Finally, within the results from these tractable
problems, we choose the most optimal feasible solution.

Remark 1 (Tractable AMD with Input Domain Partitioning).
Using Definition 2, the input domain U in (17m) and (19m)
in Propositions 1 and 2 can be partitioned into Ui, where i 2
Z+
|U |. When using the partitioned input region Ui in lieu of U ,

the multi-parametric optimization problems in Propositions
1 and 2 typically result in much fewer critical regions, thus
making the problems tractable.

V. SIMULATION EXAMPLES

In this section, we apply our proposed approach to a
fault detection example and an intent estimation example
in a highway lane changing scenario. The fault detection
simulation is implemented in MATLAB 2020b with Gurobi
v9.0.3 [18] and MPT 3.0 [20] on a 2.6GHz hexa-core
machine with 32 GB RAM, whereas the intent estimation
example is implemented in MATLAB 2019b with Gurobi
v8.1 [18] and MPT 3.0 [20] on a 1.3 GHz dual-core machine
with 16 GB RAM.

A. Fault Detection Example
For the first example, we consider fault detection of a 2D

affine system {Gl}l2{h,f}. Here, the model Gl=h denotes the
healthy system, whereas Gl=f represents the faulty system.
The system Gl is considered as xl(k + 1) = A

�l,k

l xl(k) +
B

�l,k

l u(k) + h
�l,k

l + wl(k), zl(k) = xl(k) + vl(k), with
�l,k 2 {1, 2} acting as a controlled switching signal, with
disturbance wl(k) 2 [�0.1, 0.1] ⇥ [�0.1, 0.1], and noise
vl(k) 2 [�0.01, 0.01] ⇥ [�0.01, 0.01]. The states xl(k) lie
within X = [�5, 5] ⇥ [�5, 5] and the initial state set is
X0

l = [1.5, 2.5]⇥ [0.5, 1.5]. For the healthy system, its state-
space matrices are:

A1
h=


0.794 0.723
�0.260 0.794

�
, A2

h=


0.794 0.434
�0.434 0.794

�
,

B1
h=


1
0

�
, h1

h=


0
0

�
, B2

h=


1
0

�
, h2

h=


0.115
0.457

�
.

For the faulty system, a fault changes the dynamics of the
mode �f,k = 2 to be of the following form:

A2
f=0.8⇥


0.635 0.578
�0.208 0.635

�
, B2

f=


0
0

�
, h2

f=


0
0

�
.

The switching signal for the healthy system is required to
satisfy the MTL/STL specification 'h = �1

h ^ �2
h , where

�1
h = 2

�
2[0,2](� = 1) ) �

3
¬(� = 1)

�
,

�2
h = 2

�
2[0,2](� = 2) ) �

3
¬(� = 2)

�
,

(21)

whereas the faulty model does not have its switching signal
governed by any specification. Since the system considered
is affine, its abstraction will be the same as the system
itself. Using Theorem 1 for fault detection with the input
confined to u(k) 2 [�0.1, 0.1], the permanent fault in the
system can be detected in 5 time steps with {u(k)}4k=0 =
{0.0179,�0.0179,�0.0179,�0.0179,�0.0179}. On the
other hand, without any separating control input, the system
is 6-detectable when T -distinguishability solutions from
[15] are applied. Note that due to the presence of binary
variables in the form of switching modes, the resource

TABLE I: Comparison of computation times in the fault
detection example.

Strategy Binary Nodes Involved Solving Time (s) kuk1
Without Prop. 3 1854 47252.28 0.0179

With Prop. 3 298 6986.39 0.0179

requirement by MPT toolbox scales exponentially with the
total number of binary variables involved in the problem.
To observe the effect of the tractable strategy discussed in
Proposition 3, the problem of fault detection is run with and
without the strategy, and a comparison is shown in Table
I. For this problem, as the horizon is extended backwards
and forwards by 3 based on 'h, ignoring just 3 binary
variables by truncating the forward horizon extension (due
to the MTL/STL formulas) resulted in significant reduction
in binary nodes involved in finding the solution, resulting
in smaller solving time. Moreover, as the STL formula
in (21) is such that the truth value of a �k only depends
on switching modes and not the separating inputs, the
optimal solutions obtained with and without the strategy in
Proposition 3 are the same, as previously discussed.

B. Intent Estimation Example
Similar to [12], we consider an intent estimation problem

in a lane changing scenario with two intent models for the
other car l 2 {C,M} (see [12] for details): the Cautious
driver tends to yield the lane to ego car or the Malicious
driver does not want to yield the lane to the ego car.
The piecewise affine abstraction/inclusion model with two
pieces/subregions is obtained from the affine abstraction
approach in [17] and is given by:

A1=[(1, 3) :0.9048; (2, 4) :21.781]6⇥6;

A2=[(1, 3) :0.9048; (2, 4) :26.6212]6⇥6;

B1=B2=W1=W2=B=[(3, 1) :1; (4, 2) :1; (6, 3) :1]6⇥3;

F1=[f
1
, f1]= [(1, 1) : [�3.4680, 5.8193];

(1, 2) : [�9.2068, 9.2068]]6⇥1;

F2=[f
2
, f2] = [(1, 1) : [�4.1616, 6.9832];

(1, 2) : [�10.8352, 10.8352]]6⇥1;

with a sparse matrix notation with the size indicted in
the subscript. Combining the abstraction with the intention
models and using Euler method for time discretization with
sampling time �t = 0.4s, we have the following intention
models Hl, l 2 {C,M} (with C and M representing the
Cautious and Malicious driver models, respectively):

Ãl = [(6, 3) : �Kd,l; (6, 4) : Lp,l; (6, 6) : Kd,l]6⇥6,

B̃l = [(6, 2) : Ld,l]6⇥3,

Al,‡ = Al,‡ = I+ �t(A‡ + Ãl),

Bl,‡ = Bl,‡ = W l,‡ = W l,‡ = I+ �t(B‡ + B̃l),

Cl = Cl = [(1, 6) : 1]1⇥6, Dl = Dl = 0, V l = V l = 1,

f
l,‡ = �tf‡, f l,‡ = �tf‡, S

x
l,‡ = [(1, 3) : 1; (2, 3) : �1]2⇥6,

�l,1 = [25;�20],�l,2 = [30;�25],

where ‡ 2 {1, 2}, with Kd,C = 1, Lp,C = 12 Ld,C = 14,
Kd,M = �0.9, Lp,M = �12, and Ld,M = �14.

When applying Theorem 1 with kuT k as the cost function
based on multi-parametric optimization to this intent estima-
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Fig. 1: Optimal inputs obtained by solving the proposed
active model discrimination for intents, l 2 {C,M}.

tion example with the above intent models, the problem was
found to be computationally intractable. Thus, we employed
the input domain partitioning strategy in Section IV-B, and
with this strategy, we were able to obtain/compute a separat-
ing input sequence, as shown in Figure 1, where the ego car
has to speed up at the first time step due to the constraint that
the ego car can only move forwards. Further, the cost with the
proposed approach was found to be less than the result from
[12] by around 32%, which means that our approach that
uses a piecewise affine abstraction/inclusion model to over-
approximate nonlinear dynamics has better performance than
the approach in [12] with (single-domain) affine abstraction.
The computation time is longer than the previous method in
[12] but this is less important since the AMD problems are
meant to be solved only once offline and not at run time.

VI. CONCLUSIONS

This paper considered the AMD problem which distin-
guishes among a set of noisy switched nonlinear models
constrained by metric/signal temporal logic specifications.
To deal with nonlinear, integral and non-convex constraints
in the problem, we leveraged piecewise affine abstraction
tools and parametric optimization to tractably solve the
resulting bilevel optimization problem. Furthermore, since
these parametric optimization problems are often computa-
tionally demanding, we propose several strategies to reduce
computational time and make the problem more tractable.
Finally, the effectiveness of our approach is demonstrated via
illustrative examples on fault detection and intent estimation.
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APPENDIX

As discussed in [15], the MTL/STL formulas can be di-
rectly encoded into integer constraints for use in the proposed
model discrimination problem. For brevity, we will now only
present constraints for the satisfaction of each operator of
the MTL/STL semantics, i.e., (�, t) |= ' for the following
operators, where p, q and pi are atomic propositions, and P t

'

is the truth value of formula ' at time t:
Negation: The formula ' = ¬p can be modeled as:

P t
' = (1� P t

p).

Disjunction: The formula ' =
Wk

i=1 pi can be modeled as:

P t
'  ⌃k

i=1P
t
pi
; P t

' � P t
pi
, i 2 Zk

1 .

Conjunction: The formula ' =
Vk

i=1 pi can be modeled as:

P t
' � ⌃k

i=1P
t
pi

� (k � 1); P t
'  P t

pi
, i 2 Zk

1 .

Next: The formula ' = #p can be modeled as:

P t
' = P t+1

p .

Until: The formula ' = pU[t1,t2]q can be modeled as:
↵tj � P j

q + ⌃j�1
⌧=tP

⌧
p � (j � t), j 2 Zt+t2

t+t1 ;
↵tj  P j

q , ↵tj  P ⌧
p , j 2 Zt+t2

t+t1 , ⌧ 2 Zj�1
t ;

P t
'  ⌃t+t2

j=t+t1
↵tj , P t

' � ↵tj , j 2 Zt+t2
t+t1 .

Eventually: The formula ' = ⌃[t1,t2]p can be modeled as:

P t
'  ⌃t+t2

⌧=t+t1P
⌧
p ; P t

' � P ⌧
p , ⌧ 2 Zt+t2

t+t1 .

Always: The formula ' = 2[t1,t2]p can be modeled as:
P t
' � ⌃t+t2

⌧=t+t1P
⌧
p � (t2 � t1); P t

'  P ⌧
p , ⌧ 2 Zt+t2

t+t1 .
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