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EXCEPTIONAL COMPLETE INTERSECTION MAPS
OF LOCAL RINGS

SRIKANTH B. IYENGAR, JANINA C. LETZ, JIAN L1U AND JOSH POLLITZ

This work concerns surjective maps ¢ : R — S of commutative noetherian
local rings with kernel generated by a regular sequence that is part of a
minimal generating set for the maximal ideal of R. The main result provides
criteria for detecting such exceptional complete intersection maps in terms
of the lattices of thick subcategories of the derived category of complexes
of finite length homology. A key input is a characterization of such maps in
terms of the truncated Atiyah class of ¢.

Introduction

This work is part of an ongoing project to understand properties of commutative
noetherian rings, and of maps between them, in terms of the triangulated structure of
their derived categories. Building on the work of Dwyer, Greenlees and Iyengar [20],
Pollitz [35] established a homotopical description of locally complete intersection
rings as those commutative noetherian rings such that any nonzero thick subcategory
of their bounded derived category contains a nonzero perfect complex. Similar
homotopical characterizations of the complete intersection property have since
appeared in the works of Briggs, Grifo and the authors [14; 15; 30]; the most
general result is contained in [15].

A surjective map ¢ : R — § of local rings is a complete intersection map if its
kernel is generated by an R-regular sequence. The focus of the present manuscript
is on a special class of complete intersection maps where, in addition, the regular
sequence is part of a minimal generating set for the maximal ideal of R. Such maps
arise naturally in various contexts; for example, the diagonal of a smooth map has
this property locally. They also arose in recent work of Iyengar with Brochard and
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Khare [16], where they are called exceptional complete intersection maps; we adopt
this terminology.

Our motivation for the present undertaking comes from [15], which raises the
prospect of defining locally complete intersection maps in the broader setting of
tensor triangulated categories. However, to realize this goal requires a homotopical
description of the diagonal of a smooth map, and more generally, of a weakly
regular map. Our main result provides such a description for general exceptional
complete intersection maps; see also the discussion in §5.8. Let DE(R) be the
subcategory of the derived category of R consisting of complexes with finite length
homology. The statement involves the functor ¢, : D‘;' S) — be' (R) induced by
restriction along ¢.

Theorem A. Let ¢ : R — S be a surjective map of commutative noetherian local
rings. Then ¢ is exceptional complete intersection if and only if proj dimp, S is finite
and @, induces an isomorphism between the lattice of thick subcategories of DL' S
and that of D'(R).

See Corollary 5.10 for a more precise statement. The exceptional complete
intersection property does not localize and so, unsurprisingly, our characterization
is in terms of the complexes supported only at the maximal ideals of R and S. One
cannot, in general, relax this hypothesis to allow thick subcategories with bigger
support; see Example 3.7 and Lemma 5.3. It is also worth pointing out that the
characterizations of the complete intersection property in [14; 15; 35] use objects
from DE(R) in an essential way.

Questions about the thick subcategories of D';(R), the bounded derived category
of R, can often be reduced to those about the thick subcategories of D‘;'(Rp) as p
ranges over the prime ideals in R; this is the upshot of local-to-global principles
from [12]. When the ring R is Cohen—Macaulay, Theorem A allows one to further
reduce to the case of artinian rings. This idea is illustrated in Corollary 5.13.

For each S-complex M there is a naturally defined morphism in D(S) called the
truncated Atiyah class of ¢ at M, denoted at? (M), which was introduced in [27];
see §2.1. The following characterization of exceptional complete intersection maps
in terms of the truncated Atiyah class of & is an input in our proof of Theorem A.

Theorem B. Let ¢ : R — S be a surjective map of commutative noetherian local
rings, and let k be their common residue field. Then ¢ is exceptional complete
intersection if and only if projdimg S is finite and at¥ (k) = 0.

This result is part of Theorem 3.4. It is essentially contained in [3, Proposition 2.8]
and [15, §3.11], though couched in terms of actions of Hochschild cohomology.
Our contribution is to clarify the connection with the Atiyah class; see, especially,
Lemma 2.8.
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Theorem B also sheds light on the faithfulness (or lack thereof) of the restriction
functor ¢, : D};(S )— D{)(R), at least when ¢ is complete intersection. In this case, ¢,
is faithful if and only if at? (M) is zero for each M in D(S); see §3.8. This holds, for
example, when ¢ is an algebra retract, but not always, even for exceptional complete
intersection maps. This is connected to the “lifting problem”; see Example 3.9. This
connection also makes it clear that in Theorem B the vanishing of at? (k) cannot be
replaced with the stronger conclusion that at? (M) is zero for each M in D(S); see
Examples 3.7 and 3.9. One can thus view the nonvanishing of the truncated Atiyah
class as a homological obstruction to ¢ admitting an algebra retract.

1. Hochschild cohomology

The Atiyah class of a map is closely connected to the Hochschild cohomology of the
algebras involved. In this section we record the necessary facts about Hochschild
cohomology and its characteristic action on derived categories. Some constructions
require dg (differential graded) algebras and the corresponding derived category of
dg modules; everything we need is explained in [4; 10].

1.1. We only consider graded-commutative dg algebras, so let A be such a dg
algebra. The derived category of dg A-modules is denoted D (A), and its suspension
functor is denoted X. One has the usual bifunctors RHom4(—,—) and — ®Ig — on
D(A); for dg A-modules M and N, we set

Ext, (M, N) := H*(RHomu (M, N)) and Tor?(M, N) :=H,(M ®% N).

An element « in Ext’y (M, N) corresponds to a morphism M — X" N in D(A); by
a slight abuse of notation we also write « for this morphism. Given « : M — X" M
we write o' for the composition

n n(i—1) .
MLZ”M a0 X o LSV

in D(A), and say « is nilpotent if a' =0 in D(A) for some i > 0.

1.2. Let ¢ : R — S be a map of commutative rings. Set Sp := S ®I§ S, the (derived)
enveloping algebra of § over R, and let Mfe : Sg — S be the multiplication map.
We can model Sy as S @z A where ¢ factors as maps of dg algebras

R—> A5 S

with A a dg R-algebra such that each R-module A; is flat, and € is a quasi-
isomorphism. The multiplication map M}ge ismodeled by 1 ® ¢ : S®r A — S. This
is independent of the choice of factorization of ¢ in the sense that if R — A" — S is
another such factorization of ¢, then A’ @z S ~ A ®g S as dg algebras augmented
to S. In particular, S is fixed under the equivalence D(S ®z A) = D(S ®r A')
induced by the aforementioned quasi-isomorphism of dg algebras.
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We view S as a dg Sg-module through the multiplication map Mfe-

1.3. The Hochschild cohomology of S over R is the graded-commutative S-algebra
HH*(S/R) := Extf@; (S, 9).
For each M in D(S) there is a morphism of graded S-algebras
xm : HH*(S/R) — Extg(M, M)

induced by the functor — ®]§ M :D(8% — D(S). We call xy the characteristic
map of M. It defines a central action of HH*(S/R) on D(S): for N in D(S) and
maps « in HH*(S/R) and B in Extg(M, N), one has

xn (@B = (=D1FIBx ().

1.4. A subset U of HH*(S/R) acts trivially, respectively, nilpotently, on M if for
each « € U, the element y () in Extgs(M, M) is zero, respectively, nilpotent. For
example, HHZ!(S/R) acts trivially on the S-complex § ®II; L for any R-complex L.
The subcategory of D(S) consisting of S-complexes on which U acts nilpotently
is thick; that is to say, it is a triangulated subcategory of D(S) closed under direct
summands. These observation will be used often in what follows.

2. The truncated Atiyah class

In this section we recall the construction of the truncated Atiyah class, introduced by
Huybrechts and Thomas [27], and discuss its connection to Hochschild cohomology.
While the truncated Atiyah class, like the Atiyah class itself, can be defined for any
map of rings, we only need it for surjective maps.

Throughout, ¢ : R — § will be a surjective map of commutative noetherian rings
with kernel /. The discussion below is extracted from [15].

2.1. The multiplication map ,ufe from § 1.2 extends in an exact triangle
Sy > S—¥J—

in D(Sg). From the triangle above, it is clear that

Tor% (S, 8) ifi>1,

0 if i <O0.

Thus the canonical truncation yields a morphism J — %1/I? in D(Sg). The

truncated Atiyah class of ¢, denoted at?, is the composition of morphisms

Hi(J)={

S—xJ— X%I/I?
in D(Sg). Consider the map sending o in Homg (/1 2, S) to the composition

s 2 w212 2, 52
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in D(Sg). By [15, Lemma 2.8], this is an isomorphism
8¢ : Homg(I /I, S) => HH?(S/R).
For each M in D(S) and « in Homg (1 /12, S), applying — ®I§M yields the following

commutative diagram in D(S):

at? @M
M5 s ey

(2.1.1)
X1 (8% (@) a®l
M
The horizontal map in this diagram is the truncated Atiyah class of ¢ at M, denoted
at?(M). Thus we can interpret at” (M) as a class in Ext%(M, I/1? ®§ M).

2.2. As discussed in [27], the truncated Atiyah class at? (M) can be recovered from
the universal Atiyah class
At? . S — XL(p)

where L(¢) is the cotangent complex of ¢; see [28; 36]. Namely, at¥ (M) factors
® A @M L 27 /72 oL

M —— SL(p) Qs M — Z°I /1" @3 M
where the second map is induced by the soft truncation using Hy(L(¢)) = 0 and
H;(L(¢)) = I/I*. The cotangent complex and universal Atiyah class of ¢ are
defined via simplicial resolutions, and since this machinery is not needed in this
article, we direct the interested reader to the references in this paragraph for details.

2.3. Suppose now that the surjective map ¢ : R — § is complete intersection of
codimension c; that is to say, that the ideal [ is generated by an R-regular sequence
of length ¢. Then the S-module //1? is a free S-module of rank ¢, and the map 8
induces the isomorphism of S-algebras

Sym(8¢) : Symg(Homg(I/1%, S)) => HH*(S/R)

where Homg (1 /12, S) sits in cohomological degree 2. See [6, Section 3] for a proof.
Choosing a basis for the S-module 1/1? gives rise to a description of HH*(S/R)
as a polynomial ring over S, in ¢ variables of cohomological degree 2. These are
the operators of Gulliksen [24] and Eisenbud [21]; see also [8].

Lemma 2.4. Let ¢ : R — S be a surjective complete intersection map, and M an
S-complex. One has at? (M) = 0 if and only if HH>(S/R) acts trivially on M.

Proof. Set I := Ker ¢ and consider the composition in D(S)
M2, S22 R M~ 2211 @5 M.

The desired result follows from this, (2.1.1), and the freeness of 1/1 Zover S. O
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2.5. Assume ¢ is complete intersection of codimension one. By §2.3, HH?(S /R) is
isomorphic to S, and so choosing a basis element 7 for the free S-module HH?(S/R)
identifies at¥ (M) with xas(n) in Exté(M , M). Finally, from the triangle defining
the Atiyah class, one obtains the exact triangle in D(S)

M2 520 BS®Y 0, (M) —

where ¢, : D(S) — D(R) is the restriction functor; see, for example, [3].

The arguments in the next section use some basic results on André—Quillen
cohomology and homotopy Lie algebras of local rings. We recall the relevant points
below; for further details see [29; 32] and [4, Section 10].

2.6. Let ¢ : R — S be a surjective map of local rings, and let k be their common
residue field. We write D' (S/R; k) for the i-th André—Quillen cohomology module
of ¢ with coefficients in k. We need elementary properties whose proofs are
contained in the references above.

First, there is a natural identification

D!(S/R; k) = Homy (I /mgl, k)

where mp is the maximal ideal of R and [ is the kernel of ¢. Second, there is a
canonically induced exact sequence of k-spaces

0— D'(k/S; k) — D' (k/R; k) — D' (S/R; k) 2> D*(k/S: k) — - - -
called the Jacobi—Zariski sequence corresponding to the composition R > § — k.

2.7. Fix a local ring R with residue field k. Let 7 (R) denote the homotopy Lie
algebra of R. It is a graded Lie algebra over k whose universal enveloping algebra
is Extg(k, k). By the Poincaré-Birkhoff—Witt theorem, a k-basis for Extg (k, k)
consists of all compositions of the form

i1 .02 i
0 Ly

where ¢; is in w(R) with i; > 0 when [¢;| is even and i; is either O or 1 when ||
is odd; see, for example, [4, Theorem 10.2.1]. In particular, a nonzero element in
m(R) of even degree is not nilpotent when regarded as an element of Extg (k, k).

Let ¢ : R — S be a surjective map of local rings. There is a naturally defined
map of graded Lie algebras

w(p):m(S) —> 7 (R).
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An important point is that for i =1, 2, the map ¢ determines a commutative diagram

D (k/S; k) —— 7 (S) — Extiy(k, k)
(2.7.1) D"(k/go;k)l ln"«p) lExtfp(k,k)

D' (k/R; k) —— 7' (R) > Exth(k, k)
Consider the diagram of S-modules

HH(S/R) <>— Homg(I/I%, §) —— Homs(I/I*, k)

I2

(2.7.2) X ; D!(S/R; k)
la
Extg(k, k) ———— 7%(8) «———— D*(k/S; k)

where ¢ is the canonical inclusion and the unlabeled horizontal arrow is induced by
S — k; the map v is obtained by applying Homp sy (—, £%k) to the composition

kY w21 el k — 221/ @k
where the second map is the augmentation.

Lemma 2.8. Diagram (2.7.2) is commutative, and Im(y¥r) D xx (HHZ(S/R)) with
equality when ¢ is complete intersection.

Proof. By [15, §3.11], the image of v is Ker 7%(p). Now the commutativity of
(2.7.2), and hence the desired containment, follows from the observations in §2.6
and (2.7.1). When ¢ is complete intersection, the containment is an equality since
I/1% is a free S-module. O

3. Exceptional complete intersections

In this section we prove Theorem B from the introduction, and present examples
that witness some, perhaps, surprising behavior.

3.1. Let ¢ : R — S be a surjective map of noetherian local rings; set I := Ker ¢.
Following [16] we say ¢ is exceptional complete intersection provided [ is generated
by a regular sequence that can be extended to a minimal generating set for mg, the
maximal ideal of R. The latter condition means that the natural map

I/mgl —>mR/mf,e

is one-to-one. We refer to [16], where this notion is introduced for not necessarily
surjective maps of local rings, for various characterizations of exceptional complete
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intersection maps in terms of numerical invariants associated to R and S. Here is
one more, extracted from the proof of [16, Theorem 3.1].

Lemma 3.2. Let ¢ : R — S be a surjective map of noetherian local rings. The map
@ is exceptional complete intersection if and only if projdimy S is finite and the
natural map I /mgl — mR/m%e is one-to-one.

Proof. Since a complete intersection map has finite projective dimension, the
“only if” direction is clear. As to the converse: We can assume / # 0. Then the
hypothesis that proj dimy S is finite means that / contains a nonzero divisor, say x,
by a result of Auslander and Buchsbaum [17, Corollary 1.4.7]. Since I £ mﬁ, we
can ensure that x is not in m,ze by a variation of the prime avoidance argument [17,
Lemma 1.2.2]. Setting R := R/x R, the map ¢ factors as

R— R — S.

By the choice of x, the map R — R’ is exceptional complete intersection. Thus
since projdimp S is finite, so is projdimg S, by a result of Nagata to be stated
shortly. We can verify easily that the hypothesis on [ is inherited by the kernel of
the map R’ — S. We can thus proceed by induction on the number of generators
of I to deduce that ¢ is exceptional complete intersection. U

We now state the result of Nagata [33, Corollary 27.5] used above; this will be
generalized later in Theorem 4.1.

3.3. When ¢ : R — S is exceptional complete intersection and M is a finitely
generated S-module, projdimy M is finite if and only if proj dimg¢ M is finite.

The next result contains Theorem B (page 276). Most of the groundwork for the
proof has been laid in Section 2.

Theorem 3.4. Let ¢ : R — S be a surjective map of noetherian local rings with
projdimy S finite. The following conditions are equivalent:

(1) @ is exceptional complete intersection.

(2) ¢ is complete intersection and HH?(S /R) acts trivially on k.
(3) @ is complete intersection and HH*(S/R) acts nilpotently on k.
(4) at?(k) =0, where k is the residue field of S.

Proof. (1) = (2) From the assumption and [3, Proposition 2.8] it follows that
HH?(S/R) acts trivially on k.

(2) <= (3) This follows from Lemma 2.8, since nonzero elements of 772(S) cannot
be nilpotent when regarded as maps in Exté (k, k); see §2.7.

(2) = (4) This is contained in Lemma 2.4.
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(4) = (1) Given that projdimy S is finite, it suffices to prove that the natural map
I/mgl — mpg /mlz,e is one-to-one, or equivalently, that its k-vector space dual is
onto, and to apply Lemma 3.2. By assumption the commutative diagram (2.7.2)
yields 0 = 0 in the Jacobi—Zariski sequence corresponding to R — S — k from
§2.6. Thus the latter reduces to an exact sequence

0— (mg/m%)¥ — (mg/m%)Y — (I/mgl)¥ — 0

where (—)" denotes the vector space dual and the maps are the canonically induced
ones. This is the desired conclusion. ([

3.5. Recall from §2.2 that in D(S) there is a commutative diagram

K 2K S 10) @k

| |

27772 L
k o X1/ ®g k
where the map on the right is induced by the soft truncation 7 : L(¢) — X1/I7%;
it is an isomorphism when ¢ is complete intersection. It follows from this obser-
vation and Theorem 3.4 that ¢ is exceptional complete intersection if and only if
projdimpg S is finite and the map At? ®g k is zero in D(S).

3.6. Let DE(S) denote the full subcategory of D(S) consisting of S-complexes
M such that the S-module H(M) has finite length. Since DL' (S) is the smallest
thick subcategory of D(S) containing kK — see, for example, [20, Example 3.5] —it
follows from Theorem 3.4 that when ¢ is exceptional complete intersection, the
action of HHZ(S /R) on DE(S) is nilpotent; however there may be no bound on the
nilpotence degree. Moreover HH?(S/R) need not act nilpotently on objects not in
DL'(S ). The example below illustrates these points.

Example 3.7. Let k be a field, and consider the hypersurface ring
R:=k[x, y, 2]/ (x* = y2)
and the exceptional complete intersection map
¢:R—S:=R/()Zk[x,y]/(x*).

Let n denote the class dual to the class of z in (z)/ (z%), viewed as an element of
HH?(S/R) via the isomorphism §¢.

Set M := §/(x), regarded as an S-module via the surjection S — S/(x). The
minimal resolution of M over S is - - - %2+ § %+ S — 0. From there it is clear that
Extis (M, M) =M for all i > 0. Using the construction of cohomology operators
from [21, Section 1], one sees that multiplication by x,(n) on Exts(M, M) is
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represented by
M5 M.

In particular HH?(S/R) does not act nilpotently on M.
In the same vein, for N := §/(x, "), where n is any positive integer, one gets
. N ifi=0
Ext. (N, N) = ’
s(N. N {N€B2 ifi >0,

and the action of xy (1) is represented by
)
(55)
NEBZ N®2.
Thus the action of HH! (S /R) on N is nontrivial for 0 < i < 2n and trivial for
i >2n.

3.8. Let ¢ : R — S be complete intersection. Consider the restriction functor
¢« : D(S) = D(R).

It is straightforward from Lemma 2.4 and §2.5 to see the following are equivalent:
(1) @, is faithful on morphisms.

(2) HH%(S /R) acts trivially on each object of D(S).

(3) at?(M) is zero for each object M in D(S).

When ¢ admits an algebra section — that is to say, a map of rings o : S — R such
that o = idS — the restriction functor ¢, is faithful and so at?(M) vanishes for
each M in D(S).

Contrast this with the exceptional complete intersection map in Example 3.7

where a class of modules present a nonzero, even nonnilpotent, truncated Atiyah
class. Hence, when ¢ is exceptional complete intersection, the nonvanishing of
truncated Atiyah classes serve as homological obstructions to the regular sequence
generating Ker ¢ being, loosely speaking, independent power series variables in R.
These can also be viewed as obstructions to the notion of weak liftability discussed
in [2; 37].
Example 3.9. Assume ¢ : R — S is exceptional complete intersection with R,
and hence S, a complete regular local ring. Whether ¢, is faithful depends on the
characteristic of R. When R is equicharacteristic, ¢ admits an algebra section;
hence by §3.8 we conclude that ¢, is faithful.

In contrast, an example of Hochster [25, Example 1] settled Grothendieck’s lifting
problem in the negative. By combining a calculation of Dao [19, Example 3.5] and
a result of Yoshino [37, Theorem 3.11], the module considered by Hochster has
nonvanishing truncated Atiyah class over an exceptional complete intersection map
whose base ring is a mixed characteristic regular local ring.
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4. Homological invariants

In this section we track the change of certain homological invariants along excep-
tional complete intersection maps. The results obtained suggest that, notwithstand-
ing the remarks in §3.8 and Example 3.9, homological properties of the source and
target of an exceptional complete intersection map are tightly linked.

As before, given a local ring S, we write D‘;(S ) for the full subcategory of D(S)
consisting of objects with finitely generated homology.

Theorem 4.1. Let ¢ : R — S be exceptional complete intersection and M, N in
DL(S ). Then the following hold:

(1) Exty(M, N) =0 fori > 0 if and only if Exty(M, N) = 0 for i > 0;
(2) Tor®(M, N) =0 fori > 0 if and only if Tor? (M, N) = 0 for i > 0.

Proof. We first reduce to the case when H(M) has finite length. Let K be the Koszul
complex on a system of parameters for S and consider the S-complex K ®g M.
Then the length of the S-module H(K ®g M) is finite. Moreover, since K ®s M
can be realized as an iterated mapping cone of maps defined by multiplication by
an element of §, a straightforward argument yields that

Exth (M, N) =0 for i 3 0 <= ExtR(K ®s M, N) =0 fori >0,
Exti(M, N) =0 for i > 0 <= Ext5(K ®s M, N) =0 for i > 0;

see, for instance, [20, §2.9]. Thus replacing M by K ®s M we can assume the
length of H(M) is finite.

(1) Since the length of H(M) is finite, the HH*(S/R)-action on Extg(M, M), and
hence also on Extg(M, N), is nilpotent; see §3.6. The desired equivalence is now
immediate from [24, Theorem 3.1] and [9, Theorem 4.2], which state that the
R-module Extg (M, N) is finitely generated if and only if the HH*(S/R)-module
Extg(M, N) is finitely generated.

(2) With (—)" denoting Matlis duality of S-modules, there are isomorphisms
TorR(M, N)¥ = Exty(MY,N) and Tor} (M, N)" = Exti(M", N).

Since H(M) has finite length, so does H(M "); the desired equivalence now follows
from (1) and the faithfulness of Matlis duality. U

Setting N := k in either part of Theorem 4.1 recovers Nagata’s theorem (see
§3.3), whilst setting M := k in Theorem 4.1(1) yields an analogous result for
injective dimension. Here is a more precise statement; see [7] for the definitions of
the projective dimension and injective dimension of a complex.
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Corollary 4.2. If ¢ : R — S is exceptional complete intersection, then for each M
in D{)(S ) there are equalities

projdimy M = projdimg M +dim R —dim §,
injdimp M =injdimg M +dim R —dim S.
Proof. As noted above, from Theorem 4.1 we know projdim, M is finite if and
only if proj dimg M is; so assume both values are finite. Now we can apply a gen-

eralization of the Auslander—-Buchsbaum formula to complexes in [23, Theorem II]
to obtain the first and third equalities in this computation:

projdimy M = depth R —depth, M
= depth R — depth S + depth § — depthg M
= depth R — depth S + proj dimg M
=dim R — dim S + proj dimg M.
The last equality holds because ¢ is complete intersection.

For the equality involving injective dimensions, from Theorem 4.1, we can
assume inj dimy M and injdimg¢ M are both finite. Now observe that

injdimp M =depth R —inf{i € Z: H; (M) # 0}
=depth R — depth S +depth S —inf{i € Z: H; (M) # 0}
= depth R — depth S +inj dimg M
=dim R —dim § +inj dimg M

where the first and third equalities hold by [11, Lemma 1.4]. ([l

5. Homotopical characterization

In this section, ¢ : R — S is a surjective map of commutative noetherian local rings
with (common) residue field k. Set I := Ker ¢. The main result in this section is
Theorem 5.6. An essential point is that when ¢ is complete intersection, information
regarding finite building, in the sense recalled below, is related to nilpotence of the
action of HH(S/R).

Given an S-complex M we write thicks(M) for the smallest thick subcategory
of D(S) containing M see [13, Section 2] or [10, Section 2]. Any S-complex N in
thicks(M) is said to be finitely built from M; we write M =g N to indicate that
this is so.

Hopkins [26] and Neeman [34] proved that if M and N in DL(S ) are S-complexes
of finite projective dimension, and suppg H(M) 2 suppg H(N), then M =g N. Here
supps(—) denotes support. This result has the following consequence.
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5.1. Let M in DE(S ) be an S-complex of finite projective dimension and H(M) # 0.
If K is the Koszul complex on a finite set of elements that generate an mg-primary
ideal, then M =5 K.
Lemma 5.2. [fprojdimg S is finite, then thickg (M) = thickg (S ®Ilg M) for any M
in D(S).
Proof. The desired result translates to M = S ®I,; M and S ®£§ MEr M.
As projdimp, S is finite, R =g S, and so applying — ®II§ M yields M =g S®I§ M.
Let K be the Koszul complex on a generating set for the ideal /. As projdimy S
is finite, it follows that S =g K; see §5.1. Applying — ®11§ M, one sees that

S®F M =g K ®r M.
It remains to observe that since R acts on M through S, in D(R) the complex
K ®pr M is isomorphic to a finite direct sum of suspensions of M. (]

Our interest is in the statement corresponding to Lemma 5.2 in D(S). Let M be
an object of D(S). In what follows, S ®11; M is always regarded as an S-complex
via the left S-action. That is, S ®% M denotes S ®k ¢..(M) as an object of D(S).

By [20, Theorem 8.3], we have

(5.2.1) Mg S5 M

when ¢ : R — S is a surjective complete intersection homomorphism, but the reverse
building is not guaranteed. The obstruction is the nonnilpotence of the action of
HH?(S /R) on M; this is the content of the result below.

Lemma 5.3. Let ¢ : R — S be a surjective complete intersection map. For an
S-complex N the following conditions are equivalent:

(1) HH?(S/R) acts nilpotently on N.

(2) S®% N finitely builds N in D(S).

3) For any S-complex M, we have M =g N <= M =5 N.
Proof. (1) = (2) As HH?(S/R) acts nilpotently on N, any factorization of ¢ into
a composition of complete intersection maps

R— R —> S

has the property that HH?(R’/R) and HH?(S/R’) act nilpotently on N in D(R’) and
D(S), respectively; this follows from [8, §3.1] or [3, Proposition 2.3]. Furthermore,
there is an isomorphism

SQL (R N)~ Sk N

in D(S). Hence, by induction on the codimension of ¢, it is enough to show (2)
holds when ¢ is complete intersection of codimension one.
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In this case, there is an exact triangle
N2 52N S RS®EN —

where 7 is a basis element for the free S-module HH?(S/R); see §2.5. Iteratively
applying the octahedral axiom yields

(5.3.1) S ®% N [=s cone(xn (m)")

for any n > 1. The assumption that HH?(S/R) acts nilpotently on N means there
is some n > 1 such that xn ()" = 0 and so cone(xn (7)) =~ ZN @ 2N in D(S).
Combining this with (5.3.1) we obtain the desired result.

(2) = (3) Evidently, if M =g N then M =r N. When M =g N, by applying the
functor § ®I,; — we obtain

SQLM s SQ%N:;
from this and the assumption in (2), we obtain that § ®'I§ M =g N. Finally
ME=s S®5 M

by (5.2.1), so combining this with the already established building S ®I§ MEs N,
we conclude that M =g N as desired.

(3) = (1) From Lemma 5.2 and the hypothesis in (3) we get S ®Ilg N Es N. As
discussed in §1.3, the full subcategory of D(S) consisting of objects for which
HH?(S/R) is nilpotent is a thick subcategory of D(S). In particular, this subcategory
is closed under finite building. Note that HH?(S/R) has trivial action on § ®11; N
and so HH?(S/R) acts nilpotently on N. ([

5.4. Let ¢, : D(S) — D(R) be the restriction functor and S a subcategory of D(S).
We say that ¢, has ascent of finite building on S if whenever M and N are objects
of S with ¢, (M) =g ¢«(N), then M =5 N. By a slight abuse of notation we will
say ¢ has ascent of finite building on S.

As discussed in the introduction, much of this work is motivated by the homo-
topical characterizations of surjective complete intersection maps in [14; 15; 30;
35]. Before continuing to the main result of the article, we recall a method from
[15] used to detect the complete intersection property among surjective maps of
finite projective dimension.

5.5. Let K denote the Koszul complex on a minimal generating set for mg over
S. If projdimy S is finite, then there exist My, ..., M, in D‘;' (S) satisfying the
following properties:

(1) Each M; finitely builds K in D(R).

(2) If each M; finitely builds K in D(S), then ¢ is complete intersection.
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Explicitly, one can take the M; as mapping cones in D(S) on a generating set for
Ker w2 (¢p); see §2.7. The first point is justified by [15, Lemmas 2.5 and 3.6] while
the second condition holds by [15, Theorem 3.12].

Theorem 5.6. A surjective map ¢ : R — S of commutative noetherian local rings
is exceptional complete intersection if and only if projdimpg S is finite and ¢ has
ascent of finite building on D‘;'(S).

Proof. (=) As ¢ is exceptional complete intersection, §3.6 implies HH?(S/R)
acts nilpotently on each object of DL'(S). Now the desired result follows from
Lemma 5.3.

(<) Since proj dimy, S is finite, there exist My, ..., M, in DE(S) from §5.5. Using
the assumption that ¢ has ascent of finite building, it follows from the two properties
of the M; from §5.5 that ¢ is complete intersection.

As projdimy S is finite, S ®Ilg k Er kin DL' (R). Since ¢ has ascent of finite
building on DL'(S ), we conclude that

S®%k s k.

In particular HH?(S/R) acts nilpotently on k, for HH?(S/R) acts trivially on S ®kk.
Thus ¢ is exceptional complete intersection by Theorem 3.4. ([

Remark 5.7. Instead of invoking Theorem 3.4 in the proof of the necessary direction
of Theorem 5.6, we can use the same argument that ¢ is complete intersection as
before. Next we factor R — E — S where E is the Koszul complex over R on a
minimal generating set for Ker ¢. The following commutative diagram is obtained
by restricting scalars, and the vertical map is an equivalence since E —> .

D(R) +—— D(E)
&\\\ Tz
D(S)

Now as ¢ has ascent of finite building on DL'(S), so does R — E on DL'(E ).
The main point is that the Koszul complex over R on a minimal generating set
for mg, denoted K*, is an object of D[)'(E ) with the property

EQg KX =g KR

if and only if ¢ is exceptional complete intersection; this can be verified by a direct
calculation. Now as R — FE has ascent of finite building on DE(E ) and one always
has the finite building

E®g K® =g KX,

we obtain the desired conclusion from the previous remark.
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Note that the argument sketched above justifies that when ¢ is complete inter-
section, ¢ is exceptional complete intersection if and only if S ®% KR has finite
projective dimension over S.

5.8. Theorem 5.6 is a characterization of exceptional complete intersection maps
purely in terms of the structure of D (R) and D (S) as triangulated categories. Namely,
for a triangulated category T, consider its thick subcategory of compact objects,
denoted T¢. Define T‘;' to be the full subcategory of T consisting of objects X such
that Homt(C, X) is a finite length Hom(C, C)-module for each C in T¢. In the
context of D(R), it is well known an R-complex belongs to D(R)® precisely when
it has finite projective dimension over R, and D(R){ = D{!(R).

Let Thick T be the lattice of thick subcategories of a triangulated category T.

5.9. Let ¢ : R — S be a surjective map of local rings, and ¢, : D(S) — D(R)
the restriction functor. For a thick subcategory U of DE(R), we write F(U) to
denote the smallest thick subcategory containing all objects M in DE(S) such that
@«(M) is in U. If S is a thick subcategory of DE(S), then G (S) is the smallest thick
subcategory containing all objects ¢, (M) in DL'(R) such that M is in S. Thus there
exist maps of lattices

F
Thick Dy(R) £ Thick DE(S).
The following result is Theorem A.

Corollary 5.10. The map ¢ is exceptional complete intersection if and only if
projdimy S is finite and F and G are mutually inverse lattice isomorphisms.
Proof. (<) This follows immediately from Theorem 5.6.

(=) From §3.6 and Lemma 5.3, F'G is the identity on Thick DE(S).
Fix a thick subcategory U in Thick DE(R). To show G F(U) = U, it suffices to
show that for each object L in U,

(5.10.1) thickg L = thickg ¢.(M) where M =S ®11§ L.

Since projdimy S is finite, L =g ¢4«(M), by Lemma 5.2. Let K be the Koszul
complex on a minimal generating set for mp and E the Koszul complex on a
minimal generating set for Ker(¢). By §5.1, E =g K and so

os(M)~EQrLER KQgL.

Furthermore, as H(L) has finite length over R, it follows that K ® g L = L and
S0 @4 (M) =g L; thus, (5.10.1) holds. [l

We end this article with two applications. The first should be compared with the
factorization theorems in [5, Lemma 5.7.1] and [15, Corollary 4.2]
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Corollary 5.11. Consider surjective maps R > S Yo of commutative noe-
therian local rings. If ¢ and W are exceptional complete intersection, then V¢ is
exceptional complete intersection. The converse holds when projdimg T is finite.

Proof. 1t is clear from the definition that the class of exceptional complete in-
tersection maps is closed under composition. It also follows trivially from the
characterization in Theorem 5.6.

Assume that proj dimg 7 is finite and ¥ ¢ is exceptional complete intersection. It
can be argued as in [15, Corollary 4.2] that proj dimy, S is finite. Also, itis clear that
Y has ascent of finite building on D[,' (S) since ¥ ¢ does. Hence, 1 is exceptional
complete intersection. Now as ¢ and ¢ have ascent of finite building on finite
length objects, we can apply Corollary 5.10 to deduce ¢ is exceptional complete
intersection. U

Another application of Corollary 5.10 is provided when R is an equicharacter-
istic Cohen—Macaulay ring of minimal multiplicity. When R is Cohen—Macaulay,
Abhyankar [1] proved the Hilbert—Samuel multiplicity of R is bounded below by
codim R + 1; when equality holds R is said to be of minimal multiplicity.

5.12. For the rest of the section, assume R is an equicharacteristic Cohen—Macaulay
ring of minimal multiplicity and infinite residue field k. There exists an exceptional
complete intersection map R — S such that m% =0; see [17, Exercise 4.6.14]. As
S is equicharacteristic, it has the form k[xy, ..., x,]/(x1, ..., x,)? for some n > 0.

The structure of the lattice 7 = Thick D[)' (R) is especially simple when R is also
Gorenstein; this forces n < 1.

If n =0, then R is regular and so J is simply 0 C Dﬂ(R).

If n =1, then the lattice I is

0 C thickg (K) € D(R),

where K is a Koszul complex on any system of parameters for R. This is a
consequence of Corollary 5.10 and [18; 31].

When R is not Gorenstein, Thick Dﬂ (R) possesses a far wilder structure.

Corollary 5.13. Let R be an equicharacteristic Cohen—Macaulay non-Gorenstein
ring of minimal multiplicity with infinite residue field k. Then there exists an infinite
descending binary tree of finitely generated thick subcategories in Thick DL'(R).

Proof. The assumptions on R force S, from §5.12, tobe k[xy, ..., x,1/(x1, ..., xn)?
with n > 2. Now the stated result is a consequence of Corollary 5.10 and the work
of Elagin and Lunts [22, Theorem A]. O
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