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EXCEPTIONAL COMPLETE INTERSECTION MAPS

OF LOCAL RINGS

SRIKANTH B. IYENGAR, JANINA C. LETZ, JIAN LIU AND JOSH POLLITZ

This work concerns surjective maps ϕ : R → S of commutative noetherian

local rings with kernel generated by a regular sequence that is part of a

minimal generating set for the maximal ideal of R. The main result provides

criteria for detecting such exceptional complete intersection maps in terms

of the lattices of thick subcategories of the derived category of complexes

of finite length homology. A key input is a characterization of such maps in

terms of the truncated Atiyah class of ϕ.

Introduction

This work is part of an ongoing project to understand properties of commutative

noetherian rings, and of maps between them, in terms of the triangulated structure of

their derived categories. Building on the work of Dwyer, Greenlees and Iyengar [20],

Pollitz [35] established a homotopical description of locally complete intersection

rings as those commutative noetherian rings such that any nonzero thick subcategory

of their bounded derived category contains a nonzero perfect complex. Similar

homotopical characterizations of the complete intersection property have since

appeared in the works of Briggs, Grifo and the authors [14; 15; 30]; the most

general result is contained in [15].

A surjective map ϕ : R → S of local rings is a complete intersection map if its

kernel is generated by an R-regular sequence. The focus of the present manuscript

is on a special class of complete intersection maps where, in addition, the regular

sequence is part of a minimal generating set for the maximal ideal of R. Such maps

arise naturally in various contexts; for example, the diagonal of a smooth map has

this property locally. They also arose in recent work of Iyengar with Brochard and
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Khare [16], where they are called exceptional complete intersection maps; we adopt

this terminology.

Our motivation for the present undertaking comes from [15], which raises the

prospect of defining locally complete intersection maps in the broader setting of

tensor triangulated categories. However, to realize this goal requires a homotopical

description of the diagonal of a smooth map, and more generally, of a weakly

regular map. Our main result provides such a description for general exceptional

complete intersection maps; see also the discussion in §5.8. Let Dfl

b
(R) be the

subcategory of the derived category of R consisting of complexes with finite length

homology. The statement involves the functor ϕ∗ : Dfl

b
(S) → D

fl

b
(R) induced by

restriction along ϕ.

Theorem A. Let ϕ : R → S be a surjective map of commutative noetherian local
rings. Then ϕ is exceptional complete intersection if and only if proj dimR S is finite
and ϕ∗ induces an isomorphism between the lattice of thick subcategories of Dfl

b
(S)

and that of Dfl

b
(R).

See Corollary 5.10 for a more precise statement. The exceptional complete

intersection property does not localize and so, unsurprisingly, our characterization

is in terms of the complexes supported only at the maximal ideals of R and S. One

cannot, in general, relax this hypothesis to allow thick subcategories with bigger

support; see Example 3.7 and Lemma 5.3. It is also worth pointing out that the

characterizations of the complete intersection property in [14; 15; 35] use objects

from D
fl

b
(R) in an essential way.

Questions about the thick subcategories of Df

b
(R), the bounded derived category

of R, can often be reduced to those about the thick subcategories of Dfl

b
(Rp) as p

ranges over the prime ideals in R; this is the upshot of local-to-global principles

from [12]. When the ring R is Cohen±Macaulay, Theorem A allows one to further

reduce to the case of artinian rings. This idea is illustrated in Corollary 5.13.

For each S-complex M there is a naturally defined morphism in D(S) called the

truncated Atiyah class of ϕ at M , denoted at
ϕ(M), which was introduced in [27];

see §2.1. The following characterization of exceptional complete intersection maps

in terms of the truncated Atiyah class of k is an input in our proof of Theorem A.

Theorem B. Let ϕ : R → S be a surjective map of commutative noetherian local
rings, and let k be their common residue field. Then ϕ is exceptional complete
intersection if and only if proj dimR S is finite and at

ϕ(k)= 0.

This result is part of Theorem 3.4. It is essentially contained in [3, Proposition 2.8]

and [15, §3.11], though couched in terms of actions of Hochschild cohomology.

Our contribution is to clarify the connection with the Atiyah class; see, especially,

Lemma 2.8.
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Theorem B also sheds light on the faithfulness (or lack thereof) of the restriction

functor ϕ∗ :Df

b
(S)→D

f

b
(R), at least when ϕ is complete intersection. In this case, ϕ∗

is faithful if and only if atϕ(M) is zero for each M in D(S); see §3.8. This holds, for

example, when ϕ is an algebra retract, but not always, even for exceptional complete

intersection maps. This is connected to the ªlifting problemº; see Example 3.9. This

connection also makes it clear that in Theorem B the vanishing of atϕ(k) cannot be

replaced with the stronger conclusion that atϕ(M) is zero for each M in D(S); see

Examples 3.7 and 3.9. One can thus view the nonvanishing of the truncated Atiyah

class as a homological obstruction to ϕ admitting an algebra retract.

1. Hochschild cohomology

The Atiyah class of a map is closely connected to the Hochschild cohomology of the

algebras involved. In this section we record the necessary facts about Hochschild

cohomology and its characteristic action on derived categories. Some constructions

require dg (differential graded) algebras and the corresponding derived category of

dg modules; everything we need is explained in [4; 10].

1.1. We only consider graded-commutative dg algebras, so let A be such a dg

algebra. The derived category of dg A-modules is denoted D(A), and its suspension

functor is denoted 6. One has the usual bifunctors RHomA(−,−) and − ⊗L
A − on

D(A); for dg A-modules M and N , we set

Ext∗A(M, N ) := H∗(RHomA(M, N )) and TorA
∗ (M, N ) := H∗(M ⊗L

A N ).

An element α in ExtnA(M, N ) corresponds to a morphism M →6n N in D(A); by

a slight abuse of notation we also write α for this morphism. Given α : M →6n M
we write αi for the composition

M α
−→6n M 6nα

−−→ · · ·
6n(i−1)α
−−−−→6ni M

in D(A), and say α is nilpotent if αi = 0 in D(A) for some i ⩾ 0.

1.2. Let ϕ : R → S be a map of commutative rings. Set Se
R := S ⊗L

R S, the (derived)

enveloping algebra of S over R, and let µS
R : Se

R → S be the multiplication map.

We can model Se
R as S ⊗R A where ϕ factors as maps of dg algebras

R → A ϵ
−→ S

with A a dg R-algebra such that each R-module Ai is flat, and ϵ is a quasi-

isomorphism. The multiplication map µS
R is modeled by 1 ⊗ ϵ : S ⊗R A → S. This

is independent of the choice of factorization of ϕ in the sense that if R → A′ → S is

another such factorization of ϕ, then A′ ⊗R S ≃ A ⊗R S as dg algebras augmented

to S. In particular, S is fixed under the equivalence D(S ⊗R A) ≡ D(S ⊗R A′)

induced by the aforementioned quasi-isomorphism of dg algebras.
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We view S as a dg Se
R-module through the multiplication map µS

R .

1.3. The Hochschild cohomology of S over R is the graded-commutative S-algebra

HH∗(S/R) := Ext∗Se
R
(S, S).

For each M in D(S) there is a morphism of graded S-algebras

χM : HH∗(S/R)→ Ext∗S(M,M)

induced by the functor − ⊗L
S M : D(Se)→ D(S). We call χM the characteristic

map of M . It defines a central action of HH∗(S/R) on D(S): for N in D(S) and

maps α in HH∗(S/R) and β in ExtS(M, N ), one has

χN (α)β = (−1)|α||β|βχM(α).

1.4. A subset U of HH∗(S/R) acts trivially, respectively, nilpotently, on M if for

each α ∈ U , the element χM(α) in ExtS(M,M) is zero, respectively, nilpotent. For

example, HH⩾1(S/R) acts trivially on the S-complex S ⊗L
R L for any R-complex L .

The subcategory of D(S) consisting of S-complexes on which U acts nilpotently

is thick; that is to say, it is a triangulated subcategory of D(S) closed under direct

summands. These observation will be used often in what follows.

2. The truncated Atiyah class

In this section we recall the construction of the truncated Atiyah class, introduced by

Huybrechts and Thomas [27], and discuss its connection to Hochschild cohomology.

While the truncated Atiyah class, like the Atiyah class itself, can be defined for any

map of rings, we only need it for surjective maps.

Throughout, ϕ : R → S will be a surjective map of commutative noetherian rings

with kernel I . The discussion below is extracted from [15].

2.1. The multiplication map µS
R from §1.2 extends in an exact triangle

Se
R

µ
−→ S →6 J →

in D(Se
R). From the triangle above, it is clear that

Hi (J )=

{

TorR
⩾1(S, S) if i ⩾ 1,

0 if i ⩽ 0.

Thus the canonical truncation yields a morphism J → 6 I/I 2 in D(Se
R). The

truncated Atiyah class of ϕ, denoted at
ϕ , is the composition of morphisms

S →6 J →62 I/I 2

in D(Se
R). Consider the map sending α in HomS(I/I 2, S) to the composition

S at
ϕ

−→62 I/I 2 62α
−−→62S
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in D(Se
R). By [15, Lemma 2.8], this is an isomorphism

δϕ : HomS(I/I 2, S)
∼=−→ HH2(S/R).

For each M in D(S) and α in HomS(I/I 2, S), applying −⊗L
S M yields the following

commutative diagram in D(S):

(2.1.1)

M 62 I/I 2 ⊗L
S M

62 M

at
ϕ⊗L

S M

χM (δ
ϕ(α))

62α⊗1

The horizontal map in this diagram is the truncated Atiyah class of ϕ at M, denoted

at
ϕ(M). Thus we can interpret atϕ(M) as a class in Ext2S(M, I/I 2 ⊗L

S M).

2.2. As discussed in [27], the truncated Atiyah class atϕ(M) can be recovered from

the universal Atiyah class

At
ϕ : S →6L(ϕ)

where L(ϕ) is the cotangent complex of ϕ; see [28; 36]. Namely, atϕ(M) factors

as

M
At
ϕ⊗L

S M
−−−−→6L(ϕ)⊗L

S M →62 I/I 2 ⊗L
S M

where the second map is induced by the soft truncation using H0(L(ϕ)) = 0 and

H1(L(ϕ)) = I/I 2. The cotangent complex and universal Atiyah class of ϕ are

defined via simplicial resolutions, and since this machinery is not needed in this

article, we direct the interested reader to the references in this paragraph for details.

2.3. Suppose now that the surjective map ϕ : R → S is complete intersection of

codimension c; that is to say, that the ideal I is generated by an R-regular sequence

of length c. Then the S-module I/I 2 is a free S-module of rank c, and the map δϕ

induces the isomorphism of S-algebras

Sym(δϕ) : SymS(HomS(I/I 2, S))
∼=−→ HH∗(S/R)

where HomS(I/I 2, S) sits in cohomological degree 2. See [6, Section 3] for a proof.

Choosing a basis for the S-module I/I 2 gives rise to a description of HH∗(S/R)
as a polynomial ring over S, in c variables of cohomological degree 2. These are

the operators of Gulliksen [24] and Eisenbud [21]; see also [8].

Lemma 2.4. Let ϕ : R → S be a surjective complete intersection map, and M an
S-complex. One has atϕ(M)= 0 if and only if HH2(S/R) acts trivially on M.

Proof. Set I := Kerϕ and consider the composition in D(S)

M
at
ϕ(M)

−−−→62 I/I 2 ⊗L
S M ≃62 I/I 2 ⊗S M.

The desired result follows from this, (2.1.1), and the freeness of I/I 2 over S. □
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2.5. Assume ϕ is complete intersection of codimension one. By §2.3, HH2(S/R) is

isomorphic to S, and so choosing a basis element η for the free S-module HH2(S/R)
identifies at

ϕ(M) with χM(η) in Ext2S(M,M). Finally, from the triangle defining

the Atiyah class, one obtains the exact triangle in D(S)

M
χM (η)
−−→62 M →6S ⊗L

R ϕ∗(M)→

where ϕ∗ : D(S)→ D(R) is the restriction functor; see, for example, [3].

The arguments in the next section use some basic results on André±Quillen

cohomology and homotopy Lie algebras of local rings. We recall the relevant points

below; for further details see [29; 32] and [4, Section 10].

2.6. Let ϕ : R → S be a surjective map of local rings, and let k be their common

residue field. We write Di (S/R; k) for the i-th André±Quillen cohomology module

of ϕ with coefficients in k. We need elementary properties whose proofs are

contained in the references above.

First, there is a natural identification

D1(S/R; k)∼= Homk(I/mR I, k)

where mR is the maximal ideal of R and I is the kernel of ϕ. Second, there is a

canonically induced exact sequence of k-spaces

0 → D1(k/S; k)→ D1(k/R; k)→ D1(S/R; k) ð
−→ D2(k/S; k)→ · · ·

called the Jacobi±Zariski sequence corresponding to the composition R
ϕ

−→ S → k.

2.7. Fix a local ring R with residue field k. Let π(R) denote the homotopy Lie

algebra of R. It is a graded Lie algebra over k whose universal enveloping algebra

is ExtR(k, k). By the Poincaré±Birkhoff±Witt theorem, a k-basis for ExtR(k, k)
consists of all compositions of the form

ζ
i1

1 ζ
i2

2 · · · ζ in
n

where ζ j is in π(R) with i j ⩾ 0 when |ζ j | is even and i j is either 0 or 1 when |ζ j |

is odd; see, for example, [4, Theorem 10.2.1]. In particular, a nonzero element in

π(R) of even degree is not nilpotent when regarded as an element of ExtR(k, k).
Let ϕ : R → S be a surjective map of local rings. There is a naturally defined

map of graded Lie algebras

π(ϕ) : π(S)→ π(R).
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An important point is that for i =1, 2, the map ϕ determines a commutative diagram

(2.7.1)

Di (k/S; k) π i (S) ExtiS(k, k)

Di (k/R; k) π i (R) ExtiR(k, k)

∼=

Di (k/ϕ;k) π i (ϕ) Extiϕ(k,k)

∼=

Consider the diagram of S-modules

(2.7.2)

HH2(S/R) HomS(I/I 2, S) HomS(I/I 2, k)

D1(S/R; k)

Ext2S(k, k) π2(S) D2(k/S; k)

χk

δϕ

∼=

∼=

ψ

ð

ι ∼=

where ι is the canonical inclusion and the unlabeled horizontal arrow is induced by

S → k; the map ψ is obtained by applying HomD(S)(−, 6
2k) to the composition

k
at
ϕ(k)

−−→62 I/I 2 ⊗L
S k →62 I/I 2 ⊗S k

where the second map is the augmentation.

Lemma 2.8. Diagram (2.7.2) is commutative, and Im(ψ)⊇ χk(HH2(S/R)) with
equality when ϕ is complete intersection.

Proof. By [15, §3.11], the image of ψ is Kerπ2(ϕ). Now the commutativity of

(2.7.2), and hence the desired containment, follows from the observations in §2.6

and (2.7.1). When ϕ is complete intersection, the containment is an equality since

I/I 2 is a free S-module. □

3. Exceptional complete intersections

In this section we prove Theorem B from the introduction, and present examples

that witness some, perhaps, surprising behavior.

3.1. Let ϕ : R → S be a surjective map of noetherian local rings; set I := Kerϕ.

Following [16] we say ϕ is exceptional complete intersection provided I is generated

by a regular sequence that can be extended to a minimal generating set for mR , the

maximal ideal of R. The latter condition means that the natural map

I/mR I → mR/m
2
R

is one-to-one. We refer to [16], where this notion is introduced for not necessarily

surjective maps of local rings, for various characterizations of exceptional complete
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intersection maps in terms of numerical invariants associated to R and S. Here is

one more, extracted from the proof of [16, Theorem 3.1].

Lemma 3.2. Let ϕ : R → S be a surjective map of noetherian local rings. The map
ϕ is exceptional complete intersection if and only if proj dimR S is finite and the
natural map I/mR I → mR/m

2
R is one-to-one.

Proof. Since a complete intersection map has finite projective dimension, the

ªonly ifº direction is clear. As to the converse: We can assume I ̸= 0. Then the

hypothesis that proj dimR S is finite means that I contains a nonzero divisor, say x ,

by a result of Auslander and Buchsbaum [17, Corollary 1.4.7]. Since I ̸⊆ m2
R , we

can ensure that x is not in m2
R by a variation of the prime avoidance argument [17,

Lemma 1.2.2]. Setting R′ := R/x R, the map ϕ factors as

R → R′ → S.

By the choice of x , the map R → R′ is exceptional complete intersection. Thus

since proj dimR S is finite, so is proj dimR′ S, by a result of Nagata to be stated

shortly. We can verify easily that the hypothesis on I is inherited by the kernel of

the map R′ → S. We can thus proceed by induction on the number of generators

of I to deduce that ϕ is exceptional complete intersection. □

We now state the result of Nagata [33, Corollary 27.5] used above; this will be

generalized later in Theorem 4.1.

3.3. When ϕ : R → S is exceptional complete intersection and M is a finitely
generated S-module, proj dimR M is finite if and only if proj dimS M is finite.

The next result contains Theorem B (page 276). Most of the groundwork for the

proof has been laid in Section 2.

Theorem 3.4. Let ϕ : R → S be a surjective map of noetherian local rings with
proj dimR S finite. The following conditions are equivalent:

(1) ϕ is exceptional complete intersection.

(2) ϕ is complete intersection and HH2(S/R) acts trivially on k.

(3) ϕ is complete intersection and HH2(S/R) acts nilpotently on k.

(4) at
ϕ(k)= 0, where k is the residue field of S.

Proof. (1) =⇒ (2) From the assumption and [3, Proposition 2.8] it follows that

HH2(S/R) acts trivially on k.

(2) ⇐⇒ (3) This follows from Lemma 2.8, since nonzero elements of π2(S) cannot

be nilpotent when regarded as maps in Ext2S(k, k); see §2.7.

(2) =⇒ (4) This is contained in Lemma 2.4.
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(4) =⇒ (1) Given that proj dimR S is finite, it suffices to prove that the natural map

I/mR I → mR/m
2
R is one-to-one, or equivalently, that its k-vector space dual is

onto, and to apply Lemma 3.2. By assumption the commutative diagram (2.7.2)

yields ð = 0 in the Jacobi±Zariski sequence corresponding to R → S → k from

§2.6. Thus the latter reduces to an exact sequence

0 → (mS/m
2
S)

∨ → (mR/m
2
R)

∨ → (I/mR I )∨ → 0

where (−)∨ denotes the vector space dual and the maps are the canonically induced

ones. This is the desired conclusion. □

3.5. Recall from §2.2 that in D(S) there is a commutative diagram

k 6L(ϕ)⊗S k

k 62 I/I 2 ⊗L
S k

At
ϕ⊗Sk

at
ϕ(k)

where the map on the right is induced by the soft truncation τ : L(ϕ)→ 6 I/I 2;

it is an isomorphism when ϕ is complete intersection. It follows from this obser-

vation and Theorem 3.4 that ϕ is exceptional complete intersection if and only if

proj dimR S is finite and the map At
ϕ ⊗S k is zero in D(S).

3.6. Let Dfl

b
(S) denote the full subcategory of D(S) consisting of S-complexes

M such that the S-module H(M) has finite length. Since D
fl

b
(S) is the smallest

thick subcategory of D(S) containing k Ð see, for example, [20, Example 3.5] Ð it

follows from Theorem 3.4 that when ϕ is exceptional complete intersection, the

action of HH2(S/R) on D
fl

b
(S) is nilpotent; however there may be no bound on the

nilpotence degree. Moreover HH2(S/R) need not act nilpotently on objects not in

D
fl

b
(S). The example below illustrates these points.

Example 3.7. Let k be a field, and consider the hypersurface ring

R := kJx, y, zK/(x2 − yz)

and the exceptional complete intersection map

ϕ : R → S := R/(z)∼= kJx, yK/(x2).

Let η denote the class dual to the class of z in (z)/(z2), viewed as an element of

HH2(S/R) via the isomorphism δϕ .

Set M := S/(x), regarded as an S-module via the surjection S → S/(x). The

minimal resolution of M over S is · · ·
x

−→ S x
−→ S → 0. From there it is clear that

ExtiS(M,M)= M for all i ⩾ 0. Using the construction of cohomology operators

from [21, Section 1], one sees that multiplication by χM(η) on ExtS(M,M) is
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represented by

M
y·

−→ M.

In particular HH2(S/R) does not act nilpotently on M .

In the same vein, for N := S/(x, yn), where n is any positive integer, one gets

ExtiS(N , N )=

{

N if i = 0,

N⊕2 if i > 0,

and the action of χN (η) is represented by

N⊕2

( y
0

0
y

)

−−−→ N⊕2.

Thus the action of HHi (S/R) on N is nontrivial for 0 ⩽ i < 2n and trivial for

i ⩾ 2n.

3.8. Let ϕ : R → S be complete intersection. Consider the restriction functor

ϕ∗ : D(S)→ D(R).

It is straightforward from Lemma 2.4 and §2.5 to see the following are equivalent:

(1) ϕ∗ is faithful on morphisms.

(2) HH2(S/R) acts trivially on each object of D(S).

(3) at
ϕ(M) is zero for each object M in D(S).

When ϕ admits an algebra section Ð that is to say, a map of rings σ : S → R such

that ϕσ = idS Ð the restriction functor ϕ∗ is faithful and so at
ϕ(M) vanishes for

each M in D(S).
Contrast this with the exceptional complete intersection map in Example 3.7

where a class of modules present a nonzero, even nonnilpotent, truncated Atiyah

class. Hence, when ϕ is exceptional complete intersection, the nonvanishing of

truncated Atiyah classes serve as homological obstructions to the regular sequence

generating Kerϕ being, loosely speaking, independent power series variables in R.

These can also be viewed as obstructions to the notion of weak liftability discussed

in [2; 37].

Example 3.9. Assume ϕ : R → S is exceptional complete intersection with R,

and hence S, a complete regular local ring. Whether ϕ∗ is faithful depends on the

characteristic of R. When R is equicharacteristic, ϕ admits an algebra section;

hence by §3.8 we conclude that ϕ∗ is faithful.

In contrast, an example of Hochster [25, Example 1] settled Grothendieck’s lifting

problem in the negative. By combining a calculation of Dao [19, Example 3.5] and

a result of Yoshino [37, Theorem 3.11], the module considered by Hochster has

nonvanishing truncated Atiyah class over an exceptional complete intersection map

whose base ring is a mixed characteristic regular local ring.
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4. Homological invariants

In this section we track the change of certain homological invariants along excep-

tional complete intersection maps. The results obtained suggest that, notwithstand-

ing the remarks in §3.8 and Example 3.9, homological properties of the source and

target of an exceptional complete intersection map are tightly linked.

As before, given a local ring S, we write D
f

b
(S) for the full subcategory of D(S)

consisting of objects with finitely generated homology.

Theorem 4.1. Let ϕ : R → S be exceptional complete intersection and M, N in
D
f

b
(S). Then the following hold:

(1) ExtiR(M, N )= 0 for i ≫ 0 if and only if ExtiS(M, N )= 0 for i ≫ 0;

(2) TorR
i (M, N )= 0 for i ≫ 0 if and only if TorS

i (M, N )= 0 for i ≫ 0.

Proof. We first reduce to the case when H(M) has finite length. Let K be the Koszul

complex on a system of parameters for S and consider the S-complex K ⊗S M .

Then the length of the S-module H(K ⊗S M) is finite. Moreover, since K ⊗S M
can be realized as an iterated mapping cone of maps defined by multiplication by

an element of S, a straightforward argument yields that

ExtiR(M, N )= 0 for i ≫ 0 ⇐⇒ ExtiR(K ⊗S M, N )= 0 for i ≫ 0,

ExtiS(M, N )= 0 for i ≫ 0 ⇐⇒ ExtiS(K ⊗S M, N )= 0 for i ≫ 0;

see, for instance, [20, §2.9]. Thus replacing M by K ⊗S M we can assume the

length of H(M) is finite.

(1) Since the length of H(M) is finite, the HH∗(S/R)-action on ExtS(M,M), and

hence also on ExtS(M, N ), is nilpotent; see §3.6. The desired equivalence is now

immediate from [24, Theorem 3.1] and [9, Theorem 4.2], which state that the

R-module ExtR(M, N ) is finitely generated if and only if the HH∗(S/R)-module

ExtS(M, N ) is finitely generated.

(2) With (−)∨ denoting Matlis duality of S-modules, there are isomorphisms

TorR
i (M, N )∨ ∼= ExtiR(M

∨, N ) and TorS
i (M, N )∨ ∼= ExtiS(M

∨, N ).

Since H(M) has finite length, so does H(M∨); the desired equivalence now follows

from (1) and the faithfulness of Matlis duality. □

Setting N := k in either part of Theorem 4.1 recovers Nagata’s theorem (see

§3.3), whilst setting M := k in Theorem 4.1(1) yields an analogous result for

injective dimension. Here is a more precise statement; see [7] for the definitions of

the projective dimension and injective dimension of a complex.
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Corollary 4.2. If ϕ : R → S is exceptional complete intersection, then for each M
in D

f

b
(S) there are equalities

proj dimR M = proj dimS M + dim R − dim S,

inj dimR M = inj dimS M + dim R − dim S.

Proof. As noted above, from Theorem 4.1 we know proj dimR M is finite if and

only if proj dimS M is; so assume both values are finite. Now we can apply a gen-

eralization of the Auslander±Buchsbaum formula to complexes in [23, Theorem II]

to obtain the first and third equalities in this computation:

proj dimR M = depth R − depthR M

= depth R − depth S + depth S − depthS M

= depth R − depth S + proj dimS M

= dim R − dim S + proj dimS M.

The last equality holds because ϕ is complete intersection.

For the equality involving injective dimensions, from Theorem 4.1, we can

assume inj dimR M and inj dimS M are both finite. Now observe that

inj dimR M = depth R − inf{i ∈ Z : Hi (M) ̸= 0}

= depth R − depth S + depth S − inf{i ∈ Z : Hi (M) ̸= 0}

= depth R − depth S + inj dimS M

= dim R − dim S + inj dimS M

where the first and third equalities hold by [11, Lemma 1.4]. □

5. Homotopical characterization

In this section, ϕ : R → S is a surjective map of commutative noetherian local rings

with (common) residue field k. Set I := Kerϕ. The main result in this section is

Theorem 5.6. An essential point is that when ϕ is complete intersection, information

regarding finite building, in the sense recalled below, is related to nilpotence of the

action of HH2(S/R).
Given an S-complex M we write thickS(M) for the smallest thick subcategory

of D(S) containing M ; see [13, Section 2] or [10, Section 2]. Any S-complex N in

thickS(M) is said to be finitely built from M ; we write M |HS N to indicate that

this is so.

Hopkins [26] and Neeman [34] proved that if M and N in D
f

b
(S) are S-complexes

of finite projective dimension, and suppS H(M)⊇ suppS H(N ), then M |HS N . Here

suppS(−) denotes support. This result has the following consequence.
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5.1. Let M in D
f

b
(S) be an S-complex of finite projective dimension and H(M) ̸= 0.

If K is the Koszul complex on a finite set of elements that generate an mS-primary

ideal, then M |HS K .

Lemma 5.2. If proj dimR S is finite, then thickR(M)= thickR(S ⊗L
R M) for any M

in D(S).

Proof. The desired result translates to M |HR S ⊗L
R M and S ⊗L

R M |HR M .

As proj dimR S is finite, R |HR S, and so applying −⊗L
R M yields M |HR S⊗L

R M .

Let K be the Koszul complex on a generating set for the ideal I . As proj dimR S
is finite, it follows that S |HR K ; see §5.1. Applying − ⊗L

R M , one sees that

S ⊗L
R M |HR K ⊗R M.

It remains to observe that since R acts on M through S, in D(R) the complex

K ⊗R M is isomorphic to a finite direct sum of suspensions of M . □

Our interest is in the statement corresponding to Lemma 5.2 in D(S). Let M be

an object of D(S). In what follows, S ⊗L
R M is always regarded as an S-complex

via the left S-action. That is, S ⊗L
R M denotes S ⊗L

R ϕ∗(M) as an object of D(S).
By [20, Theorem 8.3], we have

(5.2.1) M |HS S ⊗L
R M

when ϕ : R → S is a surjective complete intersection homomorphism, but the reverse

building is not guaranteed. The obstruction is the nonnilpotence of the action of

HH2(S/R) on M ; this is the content of the result below.

Lemma 5.3. Let ϕ : R → S be a surjective complete intersection map. For an
S-complex N the following conditions are equivalent:

(1) HH2(S/R) acts nilpotently on N.

(2) S ⊗L
R N finitely builds N in D(S).

(3) For any S-complex M , we have M |HR N ⇐⇒ M |HS N.

Proof. (1) ⇒ (2) As HH2(S/R) acts nilpotently on N , any factorization of ϕ into

a composition of complete intersection maps

R → R′ → S

has the property that HH2(R′/R) and HH2(S/R′) act nilpotently on N in D(R′) and

D(S), respectively; this follows from [8, §3.1] or [3, Proposition 2.3]. Furthermore,

there is an isomorphism

S ⊗L
R′ (R′ ⊗L

R N )≃ S ⊗L
R N

in D(S). Hence, by induction on the codimension of ϕ, it is enough to show (2)

holds when ϕ is complete intersection of codimension one.
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In this case, there is an exact triangle

N
χN (η)−−→62 N →6S ⊗L

R N →

where η is a basis element for the free S-module HH2(S/R); see §2.5. Iteratively

applying the octahedral axiom yields

(5.3.1) S ⊗L
R N |HS cone(χN (η)

n)

for any n ⩾ 1. The assumption that HH2(S/R) acts nilpotently on N means there

is some n ⩾ 1 such that χN (η)
n = 0 and so cone(χN (η)

n)≃6N ⊕62n N in D(S).
Combining this with (5.3.1) we obtain the desired result.

(2) ⇒ (3) Evidently, if M |HS N then M |HR N . When M |HR N , by applying the

functor S ⊗L
R − we obtain

S ⊗L
R M |HS S ⊗L

R N ;

from this and the assumption in (2), we obtain that S ⊗L
R M |HS N . Finally

M |HS S ⊗L
R M

by (5.2.1), so combining this with the already established building S ⊗L
R M |HS N ,

we conclude that M |HS N as desired.

(3) ⇒ (1) From Lemma 5.2 and the hypothesis in (3) we get S ⊗L
R N |HS N . As

discussed in §1.3, the full subcategory of D(S) consisting of objects for which

HH2(S/R) is nilpotent is a thick subcategory of D(S). In particular, this subcategory

is closed under finite building. Note that HH2(S/R) has trivial action on S ⊗L
R N

and so HH2(S/R) acts nilpotently on N . □

5.4. Let ϕ∗ : D(S)→ D(R) be the restriction functor and S a subcategory of D(S).
We say that ϕ∗ has ascent of finite building on S if whenever M and N are objects

of S with ϕ∗(M) |HR ϕ∗(N ), then M |HS N . By a slight abuse of notation we will

say ϕ has ascent of finite building on S.

As discussed in the introduction, much of this work is motivated by the homo-

topical characterizations of surjective complete intersection maps in [14; 15; 30;

35]. Before continuing to the main result of the article, we recall a method from

[15] used to detect the complete intersection property among surjective maps of

finite projective dimension.

5.5. Let K denote the Koszul complex on a minimal generating set for mS over

S. If proj dimR S is finite, then there exist M1, . . . ,Mn in D
fl

b
(S) satisfying the

following properties:

(1) Each Mi finitely builds K in D(R).

(2) If each Mi finitely builds K in D(S), then ϕ is complete intersection.
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Explicitly, one can take the Mi as mapping cones in D(S) on a generating set for

Kerπ2(ϕ); see §2.7. The first point is justified by [15, Lemmas 2.5 and 3.6] while

the second condition holds by [15, Theorem 3.12].

Theorem 5.6. A surjective map ϕ : R → S of commutative noetherian local rings
is exceptional complete intersection if and only if proj dimR S is finite and ϕ has
ascent of finite building on D

fl

b
(S).

Proof. (⇒) As ϕ is exceptional complete intersection, §3.6 implies HH2(S/R)
acts nilpotently on each object of D

fl

b
(S). Now the desired result follows from

Lemma 5.3.

(⇐) Since proj dimR S is finite, there exist M1, . . . ,Mn in D
fl

b
(S) from §5.5. Using

the assumption that ϕ has ascent of finite building, it follows from the two properties

of the Mi from §5.5 that ϕ is complete intersection.

As proj dimR S is finite, S ⊗L
R k |HR k in D

fl

b
(R). Since ϕ has ascent of finite

building on D
fl

b
(S), we conclude that

S ⊗L
R k |HS k.

In particular HH2(S/R) acts nilpotently on k, for HH2(S/R) acts trivially on S⊗L
R k.

Thus ϕ is exceptional complete intersection by Theorem 3.4. □

Remark 5.7. Instead of invoking Theorem 3.4 in the proof of the necessary direction

of Theorem 5.6, we can use the same argument that ϕ is complete intersection as

before. Next we factor R → E → S where E is the Koszul complex over R on a

minimal generating set for Kerϕ. The following commutative diagram is obtained

by restricting scalars, and the vertical map is an equivalence since E ≃
−→ S.

D(R) D(E)

D(S)

≡

Now as ϕ has ascent of finite building on D
fl

b
(S), so does R → E on D

fl

b
(E).

The main point is that the Koszul complex over R on a minimal generating set

for mR , denoted K R, is an object of Dfl

b
(E) with the property

E ⊗R K R |HE K R

if and only if ϕ is exceptional complete intersection; this can be verified by a direct

calculation. Now as R → E has ascent of finite building on D
fl

b
(E) and one always

has the finite building

E ⊗R K R |HR K R,

we obtain the desired conclusion from the previous remark.
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Note that the argument sketched above justifies that when ϕ is complete inter-

section, ϕ is exceptional complete intersection if and only if S ⊗L
E K R has finite

projective dimension over S.

5.8. Theorem 5.6 is a characterization of exceptional complete intersection maps

purely in terms of the structure of D(R) and D(S) as triangulated categories. Namely,

for a triangulated category T, consider its thick subcategory of compact objects,

denoted T
c. Define T

fl

b
to be the full subcategory of T consisting of objects X such

that HomT(C, X) is a finite length HomT(C,C)-module for each C in T
c. In the

context of D(R), it is well known an R-complex belongs to D(R)c precisely when

it has finite projective dimension over R, and D(R)fl
b
= D

fl

b
(R).

Let ThickT be the lattice of thick subcategories of a triangulated category T.

5.9. Let ϕ : R → S be a surjective map of local rings, and ϕ∗ : D(S) → D(R)
the restriction functor. For a thick subcategory U of D

fl

b
(R), we write F(U) to

denote the smallest thick subcategory containing all objects M in D
fl

b
(S) such that

ϕ∗(M) is in U. If S is a thick subcategory of Dfl

b
(S), then G(S) is the smallest thick

subcategory containing all objects ϕ∗(M) in D
fl

b
(R) such that M is in S. Thus there

exist maps of lattices

ThickD
fl

b
(R)

F

G
⇄ ThickD

fl

b
(S).

The following result is Theorem A.

Corollary 5.10. The map ϕ is exceptional complete intersection if and only if
proj dimR S is finite and F and G are mutually inverse lattice isomorphisms.

Proof. (⇐) This follows immediately from Theorem 5.6.

(⇒) From §3.6 and Lemma 5.3, FG is the identity on ThickD
fl

b
(S).

Fix a thick subcategory U in ThickDfl

b
(R). To show G F(U)= U, it suffices to

show that for each object L in U,

(5.10.1) thickR L = thickR ϕ∗(M) where M = S ⊗L
R L .

Since proj dimR S is finite, L |HR ϕ∗(M), by Lemma 5.2. Let K be the Koszul

complex on a minimal generating set for mR and E the Koszul complex on a

minimal generating set for Ker(ϕ). By §5.1, E |HR K and so

ϕ∗(M)≃ E ⊗R L |HR K ⊗R L .

Furthermore, as H(L) has finite length over R, it follows that K ⊗R L |HR L and

so ϕ∗(M) |HR L; thus, (5.10.1) holds. □

We end this article with two applications. The first should be compared with the

factorization theorems in [5, Lemma 5.7.1] and [15, Corollary 4.2]
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Corollary 5.11. Consider surjective maps R
ϕ

−→ S
ψ

−→ T of commutative noe-
therian local rings. If ϕ and ψ are exceptional complete intersection, then ψϕ is
exceptional complete intersection. The converse holds when proj dimS T is finite.

Proof. It is clear from the definition that the class of exceptional complete in-

tersection maps is closed under composition. It also follows trivially from the

characterization in Theorem 5.6.

Assume that proj dimS T is finite and ψϕ is exceptional complete intersection. It

can be argued as in [15, Corollary 4.2] that proj dimR S is finite. Also, it is clear that

ψ has ascent of finite building on D
fl

b
(S) since ψϕ does. Hence, ψ is exceptional

complete intersection. Now as ψ and ψϕ have ascent of finite building on finite

length objects, we can apply Corollary 5.10 to deduce ϕ is exceptional complete

intersection. □

Another application of Corollary 5.10 is provided when R is an equicharacter-

istic Cohen±Macaulay ring of minimal multiplicity. When R is Cohen±Macaulay,

Abhyankar [1] proved the Hilbert±Samuel multiplicity of R is bounded below by

codim R + 1; when equality holds R is said to be of minimal multiplicity.

5.12. For the rest of the section, assume R is an equicharacteristic Cohen±Macaulay

ring of minimal multiplicity and infinite residue field k. There exists an exceptional

complete intersection map R → S such that m2
S = 0; see [17, Exercise 4.6.14]. As

S is equicharacteristic, it has the form k[x1, . . . , xn]/(x1, . . . , xn)
2 for some n ⩾ 0.

The structure of the lattice T = ThickD
fl

b
(R) is especially simple when R is also

Gorenstein; this forces n ⩽ 1.

If n = 0, then R is regular and so T is simply 0 ⊊ D
fl

b
(R).

If n = 1, then the lattice T is

0 ⊊ thickR(K )⊊ D
fl

b
(R),

where K is a Koszul complex on any system of parameters for R. This is a

consequence of Corollary 5.10 and [18; 31].

When R is not Gorenstein, ThickD
fl

b
(R) possesses a far wilder structure.

Corollary 5.13. Let R be an equicharacteristic Cohen±Macaulay non-Gorenstein
ring of minimal multiplicity with infinite residue field k. Then there exists an infinite
descending binary tree of finitely generated thick subcategories in ThickD

fl

b
(R).

Proof. The assumptions on R force S, from §5.12, to be k[x1, . . . , xn]/(x1, . . . , xn)
2

with n ⩾ 2. Now the stated result is a consequence of Corollary 5.10 and the work

of Elagin and Lunts [22, Theorem A]. □
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