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1

Introduction2

Throughout, we fix a Koszul complex E over a (commutative noetherian) local ring3

(R,m, k) on a list of elements f = f1, . . . , fc in m. As explained in [25] studying the homo-4

logical properties of differential graded (abbreviated to dg), E-modules allows one to unify5

and extend the results about quotients R → R/(f ) when f is an R-regular sequence as6

well as those about exterior algebras over R. The dg E-modules perfect when regarded7

as R-complexes—in the sense that they are quasi-isomorphic to a bounded complex of8

finite rank free R-modules—are the ones that exhibit especially structured homological9

phenomena; see, for example, [1,4,6,9,11,16,20,26]. The homological properties of such10

a dg E-moduleM are often encoded in its cohomological support, denoted VE(M), which11

is a naturally associated Zariski closed subset of P
c−1
k

; cf. 5.2.12

The main result of this article is the following.13

Theorem For dg E-modules M,N that are perfect over R, there is an equality14

VE(M ⊗L
E N ) = Join(VE(M),VE(N )) .15

The join of closed subsets U,V of P
c−1
k

, denoted Join(U,V ), is the closure of the union16

of lines connecting a point from U to a point from V ; see 1.1 for details. Specializing the17

123 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
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theorem above to the case where R is a regular ring, f is an R-regular sequence, andM,N18

are finitely generated R/(f )-modules satisfying TorEi (M,N ) = 0 for all i ≥ 1 recovers19

[15, Theorem 3.1]. The proof in loc. cit. involves a series reductions and ad hoc geometric20

arguments. Besides generalizing this result, a main point of this article is to offer a simpler21

proof by a passage to an exterior algebra, as briefly described below.22

The theorem above is proved in Sect. 6. As a corollary, we deduce that when R is23

Gorenstein and RHomE(M,N ) is perfect as an R-complex, there is an equality24

VE(RHomE(M,N )) = Join(VE(M),VE(N )) .25

This is Corollary 6.4 and it generalizes [15, Theorem 4.7]. Theorem 6.6 relates the support26

of the dg moduleM ⊗L
E N to that of its homology modules, namely, TorEi (M,N ), thereby27

providing a positive answer to [15, Question 2].28

The key ingredient in our work is a functor, denoted t, from the derived category of dg29

E-modules D(E) to the derived category of dg �-modules D(�) where � is an exterior30

algebra on �kc; see Sect. 5. The relevance of this functor arises from Lemma 5.3 which31

identifies VE(M) with V�(tM), and that as dg �-modules32

t(M ⊗L
E N ) � tM ⊗L

� tN .33

The expression for VE(M⊗L
E N ) in the theorem above is a consequence of Proposition 4.434

that asserts if X, Y are dg �-modules with finite-dimensional homology, then35

V�(X ⊗L
� Y ) = Join(V�(X),V�(Y )) . (†)36

37

This equality is in turn deduced using a contravariant version, from [2], of the Bernstein-38

Gelfand-Gelfand correspondence functor:39

d : D(�) → D(S) ,40

where S is the symmetric algebra on �−2kc. The main calculation in the proof of (†) is41

the interaction between tensor products and the functor d, namely: Given dg �-modules42

X, Y with homology finite dimensional over k , there is an isomorphism of dg S-modules43

d(X ⊗L
� Y ) � dX ⊗k dY ,44

where the right-hand side is regarded as a dg S-module through a natural map of k-45

algebras� : S → S⊗k S , whichmakesS into aHopf algebra; see (1.1.1). Given this result,46

(†) follows by a standard argument concerning supports ofmodules over polynomial rings,47

discussed in Sect. 1; see especially Lemma 1.4. The isomorphism above, which is folklore,48

is contained in Proposition 4.4.49

1 Joins and supports50

Let k be a field. In what follows, we encounter graded k-vector spaces W whose natural51

grading is lower and also those whose natural grading is upper. It is convenient to adopt52

the convention that W has both an upper and a lower grading, with W i = W−i for each53

integer i. We indicate the primary grading when necessary.54

Fix a finite-dimensional graded k-space W :={W i}i∈Z concentrated in positive even55

degrees. Let S := Symk W be the symmetric algebra (over k) on W and ProjS the set56

of homogeneous prime ideals of S not containing the irrelevant maximal ideal S>0 of57

S , equipped with the Zariski topology. In this section, we recall some basics on joins of58
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closed subsets of ProjS and of supports of graded S-modules. Our standard references59

are [18, Sect. 1.3], for joins, and [19], for supports.60

1.1 The mapW → W ⊕ W given by w �→ (w, 0) + (0, w) induces a map61

� : S → S ⊗k S (1.1.1)62

of graded k-algebras and makes S into a graded Hopf algebra over k . It also defines a63

rational map64

δ : Proj(S ⊗k S) ��� ProjS65

that is defined (and regular) off of the anti-diagonalD in Proj(S ⊗k S); here,D is the image66

of the embedding ProjS ↪→ Proj(S ⊗k S) determined by the map W ⊕ W → W given67

by (w1, w2) �→ w1 + w2.68

Given closed subsets U :=V(I) and V :=V(J ) of ProjS , consider69

J (U,V ):=Proj(S/I ⊗k S/J )70

viewed as a closed subset of Proj(S ⊗k S). The join ofU and V , denoted Join(U,V ), is the71

closure in ProjS of the set72

δ (J (U,V ) � D) .73

When k is algebraically closed, the Nullstellensatz identifies ProjS with projective space74

P
d−1
k

where d = dimk W. Under this identification, the join of U and V is the closure of75

the union of lines in ProjS containing a point u in U and a point v in V .76

Remark 1.1 The join can also be defined as follows: Consider the rational map77

δ′ : Proj(S ⊗k S) ��� ProjS ,78

that is regular of the diagonal in Proj(S ⊗k S), induced by the k-algebra map S → S ⊗k S79

determined byw �→ w⊗1−1⊗w.The linear automorphismα of Proj(S⊗kS) determined80

by81

w ⊗ 1 �→ w ⊗ 1 and 1 ⊗ w �→ −1 ⊗ w82

fixes J (U,V ) for any pair of closed subsets U,V of ProjS , maps D bijectively to D′ and83

δ = δ′α. Hence,84

δ(J (U,V ) � D) = δ′(J (U,V ) � D′),85

where the right-hand side is the definition of the join used in [18, Sect. 1.3]. That is the86

definitions of joins from loc. cit. and 1.1 coincide.We opt for the latter as the isomorphism87

in Proposition 4.4 respects �.88

1.2 Let X be a graded S-module. The support of X over S is the subset89

Supp
S
X :={p ∈ ProjS | Xp 
= 0} ,90

whereXp denotes the homogeneous localization ofX at p. Following Foxby [19], the small91

support of X is92

supp
S
X :={p ∈ ProjS | X ⊗L

S κ(p) 
= 0} ,93

where κ(p) is the graded field Sp/pSp. Consider the closed subset94

V(annS X):={p ∈ ProjS | p ⊇ annS X}95
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of ProjS . In general, there are inclusions96

supp
S
X ⊆ Supp

S
X ⊆ V(annS X) . (1.3.1)97

Moreover, Supp
S
X is the specialization closure of supp

S
X ; see [10, Lemma 2.2]. Equali-98

ties hold when the S-module X is finitely generated.99

Lemma 1.4 Let X, Y be finitely generated graded S-modules. There is an equality100

Supp
S
(X ⊗k Y ) = Join(Supp

S
X, Supp

S
Y ),101

where X ⊗k Y is regarded as a graded S-module via (1.1.1).102

Proof As a matter of notation, we write Se for S ⊗k S and use (−) for closure in the103

Zariski topology. For any finite generated Se-module N and p ∈ ProjS , one has104

N ⊗L
S

κ(p) � N ⊗L
Se (Se ⊗L

S
κ(p)) .105

This leads to the following equivalences:106

p ∈ supp
S
N ⇐⇒ supp

Se (N ) ∩ supp
Se (Se ⊗L

S
κ(p)) 
= ∅107

⇐⇒ supp
Se (N ) ∩ (δ−1(p) � D) 
= ∅108

⇐⇒ p ∈ δ(supp
Se (N ) � D) .109

110

Applying this observation to N :=X ⊗k Y justifies the last equality below:111

Join(Supp
S
X, Supp

S
Y ) = δ(Supp

Se (X ⊗k Y ) � D)112

= δ(supp
Se (X ⊗k Y ) � D)113

= supp
S
(X ⊗k Y ) .114

115

The first equality holds as X, Y are finitely generated over S , while the second equality116

holds because X ⊗k Y is finitely generated over Se. Thus, for the desired statement, it117

suffices to verify that118

supp
S
(X ⊗k Y ) = Supp

S
(X ⊗k Y ) .119

To that end, given 1.2, it suffices to verify that Supp
S
(X ⊗k Y ) is closed in ProjS . As an120

S-module X ⊗k Y need not be finitely generated, but it is finitely generated over Se, and121

that suffices.122

Indeed, let G be a finite generating set for X ⊗k Y over Se and T the S-submodule of123

X ⊗k Y generated by G; here, S is acts via the diagonal map (1.1.1). Since T is finitely124

generated over S , one gets the first equality below:125

V(annS T ) = Supp
S
T126

⊆ Supp
S
(X ⊗k Y )127

⊆ V(annS (X ⊗k Y ))128

= V(annS T ) .129
130

The containments are from 1.2; the last equality holds as annS (X ⊗k Y ) = annS T . Thus,131

the inclusions above are equalities, as desired.132
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2 Dgmodules over graded algebras133

Let A = {Ai}i∈Z be a strictly graded-commutative dg algebra. Its homology algebra, H(A),134

is thus also strictly graded-commutative.135

2.1 A dg A-module F is semifree provided it admits an exhaustive filtration136

0 = F (−1) ⊆ F (0) ⊆ F (1) ⊆ . . . ⊆ F,137

where each subquotient F (i)/F (i − 1) is a coproduct of suspensions of A. A semifree138

resolution of a dgA-moduleM is a surjective quasi-isomorphismof dgA-modulesF
�
−→ M139

where F is a semifree dg A-module. Such resolutions of M exist and any two are unique140

up to homotopy equivalence; see, for example, [17, 6.6].141

2.2 Let M be a dg A-module and fix F
�
−→ M a semifree resolution over A. By [17, ],142

the functors F ⊗A − and HomA(F,−) preserve (surjective) quasi-isomorphisms. Hence143

by replacing objects with their semifree resolutions, we obtain bi-functors − ⊗L
A − and144

RHomA(−,−) on D(A); that is to say,145

M ⊗L
A −:=F ⊗A − and RHomA(M,−):=HomA(F,−) .146

As usual, we set147

TorA∗ (M,N ):=H∗(M ⊗L
A N ) and Ext∗A(M,N ):=H∗(RHomA(M,N )) .148

As A is graded-commutative, these are graded H(A)-modules.149

2.3 The derived category of dg A-modules is denoted D(A), and it is regarded as a150

triangulated category in the standard way; see, for example, [5, Sect. 2]. The suspension151

functor associates with each dg A-moduleM the dg module �M with152

(�M)i = Mi−1, ∂�M = −∂M and a · �m = (−1)|a|am ,153

where |a| denotes the degree a. A thick subcategory of a triangulated category is a trian-154

gulated subcategory that is closed under retracts.155

2.4 Let A be a dg algebra over a field k . We define several thick subcategories of D(A)156

that will be of interest in what follows.157

Let Df
+(A) denote the full subcategory of D(A) consisting of dg A-modulesM with each158

Hi(M) finite dimensional and Hi(M) = 0 for all i � 0; define Df
−(A) analogously where159

the second condition is replaced with Hi(M) = 0 for all i � 0. We let Df
b(A) denote160

Df
+(A)∩Df

−(A). That is, D
f
b(A) consists exactly of those dg A-modules whose homology is161

finite-dimensional over k . We write Perf(A) for the thick subcategory of D(A) generated162

by A; see [5, Theorem 4.2] for an alternative characterization.163

3 Exterior algebras164

In this section,V :={Vi}i∈Z is a finite graded k-space concentrated in positive odd degrees.165

Set (−)∨:=Homk (−, k), the graded dual, andW :=�−1(V∨). Let166

�:=
∧

k

V and S := Symk W ;167

the former being the exterior algebra, over k , onV . Set
:=S∨ with the standardS-module168

structure: For α ∈ 
 and χ ∈ S , one has169

χ · α:=α(χ · −) .170
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We view � as a graded Hopf algebra, with coproduct � → � ⊗k � induced by the map171

of k-spaces v �→ (v, 1) + (1, v), for v ∈ V . Hence for any left dg �-module, the antipode172

defines a dg �-module structure on M∨. Also, for a pair of dg �-modules M,N , their173

tensor product M ⊗k N is regarded as a dg �-module through the coproduct. See, for174

example, [7, Remark 5.2]. We also view S as a graded Hopf algebra over k , with coproduct175

defined in 1.1.176

Notation 3.1 Fix a basis e1, . . . , ec for V , and let χ1, . . . ,χc be the dual basis for W ; thus177

χi has lower degree −|ei| − 1. These determine isomorphisms178

� ∼=
∧

(ke1 ⊕ . . . ⊕ kec) and S ∼= k[χ1, . . . ,χc] .179

3.2 For a dg �-module M, its universal resolution uM is the dg (� ⊗k S)-module with180

underlying graded (�⊗kS)-module�⊗k
⊗kM, with�⊗kS acting by leftmultiplication181

on the two left factors, and differential182

1 ⊗ 1 ⊗ ∂M +

c
∑

i=1

(1 ⊗ χi ⊗ ei − ei ⊗ χi ⊗ 1) .183

The canonical projection uM → M is a semifree resolution of M over �; see [3, Propo-184

sition 2.6] or [5, Sect. 7]. Moreover, since uM is a dg module over � ⊗k S , the graded185

k-space Hom�(uM,−) retains a dg S-module structure and so186

Ext∗�(M,−) = H∗(Hom�(uM,−))187

is a graded S-module.188

3.3 LetM be dg �-module withMi degreewise finite dimensional over k for each i and189

0 for i � 0; up to quasi-isomorphism any object in Df
+(�) has this form. There is an190

isomorphism of dg S-modules191

Hom�(uM, k) ∼= S ⊗k M
∨, (3.3.1)192

where the right-hand term has differential 1 ⊗ ∂M
∨

+
∑c

i=1 χi ⊗ ei; we denote the193

dg S-module on the right by SM . From this isomorphism and [25, Proposition 1.2.8],194

Hom�(uM, k) is a semifree dg S-module.195

The contravariant functor Hom�(u(−), k) induces the exact functor196

d : D(�)op → D(S) .197

By [2], this restricts to an exact equivalence198

d : Df
+(�)op

≡
−→ Df

−(S) ,199

that further restricts to equivalences200

Df
b(�)op

≡
−→ Perf(S) and Perf(�)op

≡
−→ Df

b(S) .201

One has also the functor Hom�(uk,−) that induces an exact functor202

b : D(�) → D(S)203

which restricts to equivalences204

Df
b(�)

≡
−→ Perf(S) and Perf(�)

≡
−→ Df

b(S) .205
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cf. [5]. There is the following commutative diagram206

Df
+(�)op Df

−(S) .

Df
−(�)

(−)∨

d

b
207

208

3.4 The functors b,d defined above determine two notions of cohomological support209

for dg �-modules. Namely, for a dg �-moduleM, consider subsets of ProjS210

Vb
�(M):= Supp

S
H(bM) = Supp

S
Ext�(k,M),211

Vd
�(M):= Supp

S
H(dM) = Supp

S
Ext�(M, k) .212

213

In [14], the supports Vb
�(−) are used to classify the thick subcategories of Df

b(�). Our214

focus will be on Vd
�(−) but it is worth recording their relationship.215

Proposition 3.1 Let M be in Df
+(�). There is an equality Vd

�(M) = Vb
�(M

∨). Moreover,216

if M is in Df
b(�), then Vd

�(M) = Vb
�(M).217

Proof The first equality is immediate from b((−)∨) = d; see 3.3. The second equality218

follows from the first. Indeed, it is easy to check that if N is in the thick subcategory219

generated by N ′, then220

Vb
�(N ) ⊆ Vb

�(N
′) and Vd

�(N ) ⊆ Vd
�(N

′) .221

WhenM is inDf
b(�), the dg�-modulesM andM∨ generate the same thick subcategory—222

see [23, Sect. 4]—so the second equality follows from the first.223

4 Support for tensor products, I224

As in the previous section, V :={Vi}i>0 is a finite graded k-space concentrated in positive225

even degrees, and226

�:=
∧

V and S := Symk W ,227

where W :=�−1(V∨). In this section, we analyze the interaction between the functor228

d : Df
+(�)op → Df

−(S), from 3.3, and the tensor products ⊗k and ⊗L
�. The main results,229

Proposition 4.2 andProposition 4.4, are folklore butwe could not find adequate references,230

so we give complete proofs; see also Remark 4.3.231

Lemma 4.1 For S-modules X, Y with finitely generated homology,232

Supp
S
H(X ⊗L

S Y ) = Supp
S
H(X) ∩ Supp

S
H(Y ) .233

Proof Since X, Y have finitely generated homology, there are equalities234

Supp
S
H(X) = {p ∈ ProjS | X ⊗L

S
κ(p) 
� 0},235

Supp
S
H(Y ) = {p ∈ ProjS | Y ⊗L

S
κ(p) 
� 0} .236

237
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See, for instance, [14, Theorem 2.4]. Since S has finite global dimension, the S-module238

H(X ⊗L
S
Y ) is also finitely generated and so239

Supp
S
H(X ⊗L

S
Y ) = {p ∈ ProjS | X ⊗L

S
Y ⊗L

S
κ(p) 
� 0} .240

The desired equality follows from the ones above and the isomorphism241

X ⊗L
S
Y ⊗L

S
κ(p) � (X ⊗L

S
κ(p)) ⊗κ(p) (Y ⊗L

S
κ(p)) .242243

The result below records the relationship between d and tensor products.244

Proposition 4.2 For M,N in Df
+(�), there is an isomorphism of dg S-modules245

d(M ⊗k N ) � dM ⊗L
S
dN .246

Furthermore if M,N are in Df
b(�), then247

Vd
�(M ⊗k N ) = Vd

�(M) ∩ Vd
�(N ) .248

Proof ReplacingM andN with semifree resolutions over �, we may assume bothM and249

N are bounded below and degreewise finite dimensional over k , as in 3.3. Let � denote250

the composition of the isomorphisms of dg S-modules251

(S ⊗k M
∨) ⊗S (S ⊗k N

∨) −→ (S ⊗S S) ⊗k M
∨ ⊗k N

∨ −→ S ⊗k M
∨ ⊗k N

∨,252

where the first one is the twist isomorphism given by253

(s ⊗ α) ⊗ (s′ ⊗ β) �→ (s ⊗ s′) ⊗ (α ⊗ β)254

and the second map is the multiplication isomorphism. It is straightforward to see255

� ◦

c
∑

i=1

(χi ⊗ ei) ⊗ 1 + 1 ⊗ (χi ⊗ ei) =

c
∑

i=1

χi ⊗ (ei ⊗ 1 + 1 ⊗ ei) ◦ � .256

AsM,N are degreewise finite dimensional and bounded below, there is a natural isomor-257

phism of dg �-modules258

(M ⊗k N )∨ ∼= M∨ ⊗k N
∨ .259

Hence, � yields an isomorphism260

SM ⊗S SN

∼=
−→ SM⊗kN .261

As a consequence, (3.3.1) establishes the isomorphisms in D(S):262

d(M ⊗k N ) � dM ⊗S dN � dM ⊗L
S
dN . (4.2.1)263

As for the statement regarding supports, consider the following equalities:264

Vd
�(M ⊗k N ) = Supp

S
H(d(M ⊗k N ))265

= Supp
S
H(dM ⊗L

S
dN )266

= Supp
S
H(dM) ∩ Supp

S
H∗(dN )267

= Vd
�(M) ∩ Vd

�(N ) .268
269

The second equality is from (4.2.1), while the third is Lemma 4.1.270

Journal: 40687 Article No.: 0321 TYPESET DISK LE CP Disp.:2022/4/12 Pages: 15 Layout: BMC-OneCol



P
ro

o
f

Iyengar et al. Res Math Sci _#####################_ Page 9 of 15 _####_

Remark 4.3 Buchweitz proved that ifM,N are graded�-modules that are bounded below271

and are degreewise finite rank over k , then272

b(M ⊗k N ) � bM ⊗L
S
bN ; (3.3.2)273

see [13, (9.4.10)]. It is easy to see that this isomorphism holds for all pairs of objects in274

Df
+(�). From the equality b((−)∨) = d, the isomorphisms in (3.3.2) can also be deduced275

from (and imply) the ones in Proposition 4.2.276

Proposition 4.4 For M,N in Df
+(�), there is an isomorphism of dg S-modules277

d(M ⊗L
� N ) � dM ⊗k dN,278

where the right-hand side is a dgS-module through the diagonal� : S → S⊗kS described279

in (1.1.1). Furthermore, if M,N are in Df
b(�), then280

Vd
�(M ⊗L

� N ) = Join(Vd
�(M),Vd

�(N )) .281

Proof ReplacingM andN with suitable resolutions, we can assumeM andN are bounded282

above, degreewise finite dimensional over k , and semifree. As in 3.2, we consider 
 = S∨,283

regarded as a graded S-module. Forgetting differentials, one has a commutative diagram284

uM ⊗� uN u(M ⊗� N )

� ⊗k 
⊗2 ⊗k M ⊗k N � ⊗k 
 ⊗k (M ⊗� N )

�

∼=

1⊗µ⊗π

∼=285

of graded S-modules, where the map on the bottom is defined using the multiplication286

µ : 
 ⊗k 
 → 
 map which is dual to the diagonal � : S → S ⊗k S in (1.1.1), and287

π : M ⊗k N → M ⊗� N is the canonical projection. It is straightforward to check � is a288

�-linear morphism of complexes that is compatible with the canonical augmentations to289

M ⊗� N. Thus, � is a comparison map between semifree resolutions ofM ⊗L
� N over �,290

and so it is a homotopy equivalence.291

Applying Hom�(−, k) to � yields the top map in the commutative diagram292

Hom�(u(M ⊗� N ), k) Hom�(uM ⊗� uN, k)

SM⊗�N SM ⊗k SN

�∨

∼= ∼=

�⊗π∗

293

of dg S-modules, where SM ⊗k SN is viewed as a dg S-module through �. The vertical294

parallel maps are isomorphisms by (3.3.1); the one on the right also uses the standard295

isomorphisms296

Hom�(uM ⊗� uN, k) ∼= Hom�(uM,Hom�(uN, k))297

∼= Hom�(uM, k) ⊗k Hom�(uN, k) .298
299

This is where the assumption that bothM and N are degreewise finite rank and bounded300

below is needed. As� is a homotopy equivalence, from the commutativity of the diagram301

above it follows that � ⊗ π∗ is a homotopy equivalence of dg S-modules justifying the302

first assertion; cf. 3.3.303

With this in hand, we have304

H(d(M ⊗L
� N )) ∼= H(dM ⊗k dN ) ∼= H(dM) ⊗k H(dN ),305
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where the secondmap is the Künneth isomorphism. This gives the second of the following306

equalities:307

Vd
�(M ⊗L

� N ) = Supp
S
H(d(M ⊗L

� N ))308

= Supp
S (H(dM) ⊗k H(dN ))309

= Join(Supp
S
H(dM), Supp

S
H(dN ))310

= Join(Vd
�(M),Vd

�(N )) .311
312

The third equality is Lemma 1.4.313

5 Passage to the exterior algebra314

Throughout this section and the next (R,m, k) is a commutative noetherian local ring. Fix315

a list of elements f = f1, . . . , fc in m and set316

E:=R〈e1, . . . , ec | ∂ei = fi〉 ,317

the Koszul complex on f over R, regarded as a local dg R-algebra in the standard way. One318

could take R to be a local dg algebra where f is a list of cycles in even degrees, contained in319

the maximal ideal of R; we stick to the situation above for ease of exposition. Two special320

cases are worth mention.321

Remark 5.1 When f forms an R-regular sequence, the augmentation E
�
−→ R/(f ) is a322

quasi-isomorphism of dg algebras and the map R → R/(f ) is complete intersection.323

When f is the zero sequence, E is the exterior algebra over R on c generators of degree324

one.325

Set �:=k ⊗R E and V :=�1. We identify e1, . . . , ec with their images in �; they are a326

basis for the k-space V . SetW :=�−1(V∨), and327

S := Symk W .328

Let χ1, . . . ,χc be the basis ofW dual to e1, . . . , ec.329

5.2 LetM be a dg E-module whose homology is finitely generated over R. Let F be a dg330

E-module that is semifree as a dg R-module, and F
�
−→ M an E-linear quasi-isomorphism.331

By [25, Proposition 4.2.8], RHomE(M, k) can be equipped with a dg S-module structure332

through the isomorphism333

RHomE(M, k) � S ⊗k HomR(F, k),334

where the differential of the complex on the right is335

1 ⊗ ∂HomE (F,k) +

c
∑

i=1

χi ⊗ Hom(ei, k) ;336

we let CF denote this dg S-module. Following [24, Definition 3.3.1], the cohomological337

support of M over E is338

VE(M) = Supp
S
Ext∗E(M, k) = Supp

S
H∗(CF ) .339

A bridge to exterior algebras has been used effectively to acquire cohomological informa-340

tion on these support varieties when R is regular and f is an R-regular sequence; see, for341
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instance, [7,14,23]. This path is still sensible at this generality and can be used to establish342

results over E, as we do now.343

Consider the functor t : D(E) → D(�) given by k ⊗L
R −. In the statement below, the344

construction of the dg S-module StF is given in 3.3.345

Lemma 5.3 Let M be a dg E-module with finitely generated homology over R and fix346

F
�
−→ M a quasi-isomorphism of dg E-modules where F is semifree when regarded as dg347

R-module. There is the following isomorphism of dg S-modules348

CF ∼= StF .349

In particular, VE(M) = Vd
�(tM).350

Proof For the isomorphism, since mHomR(F, k) = 0 the E-action on HomR(F, k) factors351

through �. It is immediate to check the adjunction isomorphism352

α : HomR(F, k)
∼=
−→ Homk (tF, k)353

is one of �-modules. Therefore from the definitions of CF and StF in 5.2 and 3.3, respec-354

tively, the map355

1 ⊗ α : CF → StF356

is an isomorphism of dg S-modules. The equality of supports follows:357

VE(M) = Supp
S
H(CF )358

= Supp
S
H(StF )359

= Supp
S
H(StM)360

= Supp
S
H(dtM)361

= Vd
�(tM) ;362

363

the second equality holds by the established isomorphism above and the others are clear364

from the various definitions.365

Remark 5.4 Suppose f is an R-regular sequence and M a finitely generated R-module366

such that fM = 0. The cohomological support of M over E agrees with support variety367

of M introduced by Avramov in [1], and further developed in the work of Avramov and368

Buchweitz [4].369

More generally, without the assumption f is regular, VE(M) specializes to the support370

sets of Jorgensen [22] and Avramov and Iyengar [8]; cf. [25, Sect. 6.2]. WhenM has finite371

projective dimension over R, the cohomological support VE(M) agrees with those above;372

hence Lemma 5.3 reveals how, in this setting, all of these supports are cohomological373

supports over an exterior algebra.374

5.5 LetDb(E/R) denote the full subcategory ofD(E) consisting of objectsM such thatM375

is perfect when regarded as an object ofD(R) via restriction of scalars. That is, if η : R → E376

is the structure map and η∗ : D(E) → D(R) denotes the restriction of scalars functor along377

η, thenM is inDb(E/R) if and only if η∗(M) is isomorphic inD(R) to a bounded complex of378

finite rank free R-modules. In particular,M has bounded and finitely generated homology379

over R. When R is regular Db(E/R) is just the bounded derived category of dg E-modules.380
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The result below is a particular case of a theorem of Gulliksen [21] and Avramov,381

Gashasrov, and Peeva [6].382

Proposition 5.6 For a dg E-module M, the following conditions are equivalent:383

(1) TorR(k,M) is finitely generated over k;384

(2) Ext�(tM, k) is finitely generated over S ;385

(3) Ext�(k, tM) is finitely generated over S .386

Moreover, when H(M) is finite over R, the conditions above are equivalent to:387

(4) M is in Db(E/R).388

Proof The equivalence of (1), (2), and (3) is from a special case of [25, Theorem 4.3.2], and389

the fact (1) and (4) are equivalent when H(M) is finite over R, is classical; see, for example,390

[12, Corollary 1.3.2].391

6 Support for tensor products, II392

The notation in this section is as in the previous one. The result below is the theorem393

announced in the introduction.394

Theorem 6.1 Suppose E is a Koszul complex over a local ring (R,m, k) on a finite list of395

elements in m. For M,N in Db(E/R),396

VE(M ⊗L
E N ) = Join(VE(M),VE(N )) .397

Proof We need only pass to the exterior algebra:398

VE(M ⊗L
E N ) = Vd

�(t(M ⊗L
E N ))399

= Vd
�(tM ⊗L

� tN )400

= Join(Vd
�(tM),Vd

�(tN ))401

= Join(VE(M),VE(N )) .402
403

The first and fourth equalities hold by Lemma 5.3; the second one follows from the404

isomorphism405

t(M ⊗L
E N ) � tM ⊗L

� tN .406

By Proposition 5.6, the dg �-modules tM, tN are in Df
b(�) and so the third equality holds407

by Proposition 4.4.408

Remark 6.2 There is an alternative proof ofTheorem6.1, using theHopf algebra structure409

on Ext∗E(k, k). The key point is that for any dg E-modules the maps410

Ext∗E(M, k) ⊗k Ext
∗
E(N, k) → Ext∗E(M ⊗L

E N, k ⊗L
E k) → Ext∗E(M ⊗L

E N, k) (6.2.1)411

are Ext∗E(k, k)-linear. The secondmap is induced bymultiplication, k⊗L
E k → k. In (6.2.1),412

the graded Ext-module on the left is given an Ext∗E(k, k)-module structure through the413

diagonal414

Ext∗E(k, k) → Ext∗E(k, k) ⊗k Ext
∗
E(k, k) .415
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This is a straightforward calculation. However, this approach requires a bit of background416

on dg algebras with divided powers and suitably adapting classical material to this more417

general setting; cf. [21]. The main point is that Ext∗E(k, k) is generated, as a k-algebra, by418

primitives induced by derivations that respect divided powers on the minimal semifree419

resolution of k over E.420

One can identify S as a Hopf subalgebra of Ext∗E(k, k) so the maps in (6.2.1) are also421

S-linear.WhenM,N are inDb(E/R), the S-modules Ext∗E(M, k),Ext∗E(N, k) are finite over422

S , see Proposition 5.6, so the assertion of Theorem 6.1 follows directly from Lemma 1.4423

once noting the composition in (6.2.1) is an isomorphism.424

Consider the equivalence425

(−)† : Db(E/R)op −→ Db(E/R),426

whereM†:=RHomE(M,E) for eachM.427

Lemma 6.3 If M is in Db(E/R), then VE(M) = VE(M
†).428

Proof. AsM is perfect over R there is an isomorphism of dg �-modules429

t(M†) � RHom�(tM,�) .430

By [23, Theorem 4.1], tM and RHom�(tM,�) generate the same thick subcategory in431

D(�). Thus the second equality below holds:432

VE(M) = Vd
�(tM) = Vd

�(RHom�(tM,�)) = Vd
�(t(M

†)) = VE(M
†) .433

Corollary 6.4 If R is Gorenstein and RHomE(M,N ) belongs to Db(E/R), then434

VE(RHomE(M,N )) = Join(VE(M),VE(N )).435

Proof As R is Gorenstein and the R-modules H(M),H(N ) are finitely generated, there is436

an isomorphism437

RHomE(M,N )† � M ⊗L
E N† .438

Thus, the second equality below holds439

VE(RHomE(M,N )) = VE(RHomE(M,N )†)440

= VE(M ⊗L
E N†)441

= Join(VE(M),VE(N
†))442

= Join(VE(M),VE(N )) ;443
444

the first and fourth equalities are by Lemma 6.3 and the third is by Theorem 6.1.445

Remark 6.5 In light of Theorem 6.1, it would be interesting to determine whether Corol-446

lary 6.4 holds without the assumption that RHomE(M,N ) is in Db(E/R).447

The result below relates the cohomological support ofM⊗L
E N to those of its homology448

modules. Specializing to the case R is regular and f is an R-regular sequence, yields a449

positive answer to [15, Question 2]. The containment in the statement of the theorem can450

be strict; see [15, Example 5.3].451
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Theorem 6.6 Let M,N be in Db(E/R) and suppose the S-modules Ext∗E(M, k) and452

Ext∗E(N, k) are generated in cohomological degrees at most s and t, respectively. There453

is a containment of closed subsets454

VE(M ⊗L
E N ) ⊆

⋃

i≤s+t

VE(Tor
E
i (M,N )) .455

Proof By Proposition 4.4 and Lemma 5.3, one may identify Ext∗E(M ⊗L
E N, k) with456

Ext∗E(M, k) ⊗k Ext
∗
E(N, k)457

viewed as a graded S-module via restriction along the diagonal map (1.1.1). Let T denote458

its graded S-submodule of Ext∗E(M ⊗L
E N, k) generated by459

⊕

i+j�u

ExtiE(M, k) ⊗k Ext
j
E(N, k),460

where u = s + t. The (S ⊗k S)-module generated by T is Ext∗E(M ⊗L
E N, k), so arguing as461

in the proof of Lemma 1.4, one gets an equality462

VE(M ⊗L
E N ) = Supp

S
T . (6.6.1)463

Fix a semifree resolution F
�
−→ M ⊗L

E N over E, and let F ′ be the soft truncation of F in464

lower degrees at most u. Thus there is morphism of dg E-modules τ : F → F ′ with the465

property that466

τ�u : F�u → F ′
�u467

is the identity map. Hence,468

Ext(τ , k) : Ext∗E(F
′, k) → Ext∗E(M ⊗L

E N, k)469

is an isomorphism in upper degrees at most u. In particular, under the identification470

discussed above471

T ⊆ Im

(

Ext∗E(F
′, k)

Ext(τ ,k)
−−−−→ Ext∗E(M ⊗L

E N, k)

)

,472

and hence, one has an inclusion473

Supp
S
T ⊆ Supp

S
Ext∗E(F

′, k) .474

Since F ′ has bounded homology, it is in the thick subcategory of D(E) generated by H(F ′)475

regarded as dg E-module via the augmentation E → H0(E). Thus,476

Supp
S
T ⊆ Supp

S
ExtE

(

⊕i�u Tor
E
i (M,N ), k

)

=
⋃

i�u

VE(Tor
E
i (M,N )),477

where for the first containment, we are also using the equality478

H(F ′) =
⊕

i�u

TorEi (M,N ) .479

Combining this with (6.6.1) finishes the proof.480

Remark 6.7 Theorem6.6 implies thatwhenR is regular andM⊗L
EN has finitely generated481

homology over R, the complexity ofM ⊗L
E N , in the sense of [1, Sect. 3], is bounded above482

by the maximum of the complexities of TorEi (M,N ) for i ≤ s + t, where s and t are from483

Theorem 6.6.484
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