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» Introduction
3 Throughout, we fix a Koszul complex E over a (commutative noetherian) local ring
+ (R m, k) onalist of elements f = fi, ..., f; in m. As explained in [25] studying the homo-
s logical properties of differential graded (abbreviated to dg), E-modules allows one to unify
s and extend the results about quotients R — R/(f) when f is an R-regular sequence as
7 well as those about exterior algebras over R. The dg E-modules perfect when regarded
s as R-complexes—in the sense that they are quasi-isomorphic to a bounded complex of
o finite rank free R-modules—are the ones that exhibit especially structured homological
10 phenomena; see, for example, [1,4,6,9,11,16,20,26]. The homological properties of such
1 adg E-module M are often encoded in its cohomological support, denoted Vg (M), which
12 is a naturally associated Zariski closed subset of }P’Z_l; cf. 5.2
13 The main result of this article is the following.
12 Theorem For dg E-modules M, N that are perfect over R, there is an equality
18 VE(M ®% N) = Join(VE(M), VE(N)).
16 The join of closed subsets U, V' of IP’,C:I, denoted Join(l/, V'), is the closure of the union
17 of lines connecting a point from U to a point from V; see 1.1 for details. Specializing the
@ Springer © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.

a Journal: 40687 Article No.: 0321 [_] TYPESET []DISK [JLE []CP Disp.:2022/4/12 Pages: 15 Layout: BMC-OneCol




_####_ Page2of 15 lyengar et al. Res Math Sci_###########H###RARA#H

18 theorem above to the case where R is a regular ring, f is an R-regular sequence, and M, N
1w are finitely generated R/(f)-modules satisfying Torf (M, N) = 0 for all i > 1 recovers
2 [15, Theorem 3.1]. The proof in [oc. cit. involves a series reductions and ad hoc geometric
2 arguments. Besides generalizing this result, a main point of this article is to offer a simpler
2 proof by a passage to an exterior algebra, as briefly described below.

i3 The theorem above is proved in Sect. 6. As a corollary, we deduce that when R is
x#  Gorenstein and RHomg(M, N) is perfect as an R-complex, there is an equality

2 Ve(RHomg(M, N)) = Join(Ve(M), VE(N)).

s Thisis Corollary 6.4 and it generalizes [15, Theorem 4.7]. Theorem 6.6 relates the support
»  of the dg module M ®}§ N to that of its homology modules, namely, Torjl-E (M, N), thereby
s providing a positive answer to [15, Question 2].

»»  The key ingredient in our work is a functor, denoted t, from the derived category of dg
s E-modules D(E) to the derived category of dg A-modules D(A) where A is an exterior
5 algebra on Xk¢; see Sect. 5. The relevance of this functor arises from Lemma 5.3 which
2 identifies VE(M) with V (tM), and that as dg A-modules

3 t(M ®F N) ~ tM ®% tN.
s The expression for VE(M ®% N) in the theorem above is a consequence of Proposition 4.4
55 that asserts if X, Y are dg A-modules with finite-dimensional homology, then

% VAa(X ®% Y) = Join(V A (X), VA(Y)). ()

37

ss  This equality is in turn deduced using a contravariant version, from [2], of the Bernstein-
3 Gelfand-Gelfand correspondence functor:

40 d: D(A) — D(S),

s where S is the symmetric algebra on ¥ ~2k¢. The main calculation in the proof of () is
22 the interaction between tensor products and the functor d, namely: Given dg A-modules
s X, Y with homology finite dimensional over &, there is an isomorphism of dg S-modules

“ d(X ®% v) ~ dX @, dY,

s where the right-hand side is regarded as a dg S-module through a natural map of k-
s algebras A: § — S®; S, which makes S into a Hopf algebra; see (1.1.1). Given this result,
w (1) follows by a standard argument concerning supports of modules over polynomial rings,
s discussed in Sect. 1; see especially Lemma 1.4. The isomorphism above, which is folklore,
s is contained in Proposition 4.4.

so 1 Joins and supports

si  Let k be a field. In what follows, we encounter graded k-vector spaces W whose natural
sz grading is lower and also those whose natural grading is upper. It is convenient to adopt
s the convention that W has both an upper and a lower grading, with W# = W_; for each
s« integer i. We indicate the primary grading when necessary.

ss Fix a finite-dimensional graded k-space W:={W};cz concentrated in positive even
ss  degrees. Let S:=Sym,; W be the symmetric algebra (over k) on W and ProjS the set
s of homogeneous prime ideals of S not containing the irrelevant maximal ideal S>° of
ss S, equipped with the Zariski topology. In this section, we recall some basics on joins of

a Journal: 40687 Article No.: 0321 [_J TYPESET []DISK [_JLE [[]CP Disp.:2022/4/12 Pages: 15 Layout: BMC-OneCol




lyengar et al. Res Math Sci _##########H##HAAARARS Page 3 of 15

59

60

61

62

63

64

65

66

67

68

69

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

closed subsets of Proj S and of supports of graded S-modules. Our standard references
are [18, Sect. 1.3], for joins, and [19], for supports.

1.1 Themap W — W @& W given by w — (w, 0) + (0, w) induces a map
A:S—> S S (1.1.1)

of graded k-algebras and makes S into a graded Hopf algebra over k. It also defines a
rational map

8: Proj(S ®; S) --» Proj S

that is defined (and regular) off of the anti-diagonal D in Proj(S ® S); here, D is the image
of the embedding Proj S — Proj(S ®j S) determined by the map W & W — W given
by (w1, wa) > w1 + wa.

Given closed subsets U:=V(Z) and V:=V(J) of Proj S, consider

J(U, V):=Proj(S/I ®x §/J)

viewed as a closed subset of Proj(S ®x S). The join of U and V, denoted Join(lJ, V), is the
closure in Proj S of the set

SJWUL V)N D).

When £ is algebraically closed, the Nullstellensatz identifies Proj S with projective space
IPZ_I where d = dimy W. Under this identification, the join of U and V is the closure of
the union of lines in Proj S containing a point «# in U and a point v in V.

Remark 1.1 The join can also be defined as follows: Consider the rational map
8" Proj(S ® S) --» Proj S,

that is regular of the diagonal in Proj(S ® S), induced by the k-algebramap S — S®x S
determined by w = w®1—1®w. The linear automorphism « of Proj(S ®x S) determined
by

w1l w®1l and 1Qwr— —1Qw

fixes J(U, V') for any pair of closed subsets U, V of Proj S, maps D bijectively to D’ and
8 = §’a. Hence,

SU(ULV)ND) =80 V)~ D),

where the right-hand side is the definition of the join used in [18, Sect. 1.3]. That is the
definitions of joins from loc. cit. and 1.1 coincide. We opt for the latter as the isomorphism
in Proposition 4.4 respects A.
1.2 Let X be a graded S-module. The support of X over S is the subset

Suppg X:={p € ProjS | X, # 0},

where X, denotes the homogeneous localization of X at p. Following Foxby [19], the small
support of X is

suppg X:={p € ProjS | X ®§ k(p) # 0},
where « (p) is the graded field S, /pS;,. Consider the closed subset
V(anng X):={p € ProjS | p 2 anng X}
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s of ProjS. In general, there are inclusions
o7 supps X € Suppg X € V(anns X). (1.3.1)

s« Moreover, Supps X is the specialization closure of supp s X; see [10, Lemma 2.2]. Equali-
9o ties hold when the S-module X is finitely generated.

1w Lemma 1.4 Let X, Y be finitely generated graded S-modules. There is an equality
101 Supps(X ®x Y) = Join(Suppg X, Suppg Y),
02 where X Qi Y is regarded as a graded S-module via (1.1.1).

103 Proof As a matter of notation, we write S€ for S ®; S and use m for closure in the
s Zariski topology. For any finite generated S¢-module N and p € Proj S, one has

N ®% «(p) = N ®ke (S® ®% «(p)).

s This leads to the following equivalences:

107 p € suppg N <= suppge(N) N suppge(S® ®I§ k(p) £ 0
> suppse(N) N (81 (p) D) # @
109 <= p € 3(suppge(N) \ D).

m  Applying this observation to N:=X ®j Y justifies the last equality below:

2 Join(Suppg X, Suppg Y) = §(Suppge(X Qk Y) N\ D)
13 = 6(supp5e(X Rk Y)\ D)
14 = supps(X ®x Y).

ne The first equality holds as X, Y are finitely generated over S, while the second equality
17 holds because X ®y Y is finitely generated over S€. Thus, for the desired statement, it
ne  suffices to verify that

no supps (X ® Y) = Supps(X ® Y).

10 To that end, given 1.2, it suffices to verify that Suppg(X ®; Y) is closed in Proj S. As an
1 S-module X ® Y need not be finitely generated, but it is finitely generated over S¢, and
122 that suffices.

3 Indeed, let G be a finite generating set for X ®; Y over S€ and T the S-submodule of
122 X ®p Y generated by G; here, S is acts via the diagonal map (1.1.1). Since T is finitely
15 generated over S, one gets the first equality below:

126 V(anng T) = Suppg T

127 C Supps(X ® Y)
128 C V(anns(X ® Y))
129 =V(anns T).

1 The containments are from 1.2; the last equality holds as anng(X ®; Y) = anng T. Thus,
13 the inclusions above are equalities, as desired. O
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2 Dg modules over graded algebras
Let A = {A;}icz be a strictly graded-commutative dg algebra. Its homology algebra, H(A),
is thus also strictly graded-commutative.

2.1 A dgA-module F is semifree provided it admits an exhaustive filtration
0=F(-1)CFOCFQ)<c...CF

where each subquotient F(i)/F(i — 1) is a coproduct of suspensions of A. A semifree
resolution of a dg A-module M is a surjective quasi-isomorphism of dg A-modules F >M
where F is a semifree dg A-module. Such resolutions of M exist and any two are unique
up to homotopy equivalence; see, for example, [17, 6.6].

2.2 Let M be a dg A-module and fix F = M a semifree resolution over A. By [17, ],
the functors F ®4 — and Homy (F, —) preserve (surjective) quasi-isomorphisms. Hence
by replacing objects with their semifree resolutions, we obtain bi-functors — ®1];‘ —and
RHomy(—, —) on D(A); that is to say,

M ®II:1 —=F®4 — and RHomyu(M, —):=Homyu(F, —).
As usual, we set
Tor (M, N):=H.(M ® N) and Ext}(M, N):= H*(RHomu (M, N)).

As A is graded-commutative, these are graded H(A)-modules.

2.3 The derived category of dg A-modules is denoted D(A), and it is regarded as a
triangulated category in the standard way; see, for example, [5, Sect. 2]. The suspension
functor associates with each dg A-module M the dg module XM with

(EM)i=Mi—1, ™M =—-M and a-Zm=(-1)"am,

where |a| denotes the degree a. A thick subcategory of a triangulated category is a trian-
gulated subcategory that is closed under retracts.

2.4 Let A be a dg algebra over a field k. We define several thick subcategories of D(A)
that will be of interest in what follows.

Let Di (A) denote the full subcategory of D(A) consisting of dg A-modules M with each
H;(M) finite dimensional and H;(M) = 0 for all i < 0; define Df (4) analogously where
the second condition is replaced with H;(M) = 0 for all i > 0. We let DL(A) denote
Df+ (A)nDE (A). That is, DL (A) consists exactly of those dg A-modules whose homology is
finite-dimensional over k. We write Perf(A) for the thick subcategory of D(A) generated
by A; see [5, Theorem 4.2] for an alternative characterization.

3 Exterior algebras
In this section, V:={V}};cz is a finite graded k-space concentrated in positive odd degrees.
Set (—)V:=Homy(—, k), the graded dual, and W:=%~1(VV). Let
A::/\ V and S:=Sym; W;
k
the former being the exterior algebra, over k, on V. Set I':=S" with the standard S-module
structure: For ¢ € I and x € S, one has

X -o=a(x - —).
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1 We view A as a graded Hopf algebra, with coproduct A — A ®; A induced by the map
2 of k-spaces v > (v, 1) + (1, v), for v € V. Hence for any left dg A-module, the antipode
173 defines a dg A-module structure on M". Also, for a pair of dg A-modules M, N, their
17 tensor product M ® N is regarded as a dg A-module through the coproduct. See, for
s example, [7, Remark 5.2]. We also view S as a graded Hopf algebra over k, with coproduct
s defined in 1.1.

w77 Notation 3.1 Fix abasisey,...,e. for V, and let xi, ..., x. be the dual basis for W; thus
e xi has lower degree —|e;| — 1. These determine isomorphisms

A= N\(kei®...®ke) and S=klxy,..., xl.

1w 3.2 Foradg A-module M, its universal resolution uM is the dg (A ®x S)-module with
w1 underlying graded (A ®; S)-module A ®; I"' ®; M, with A ®; S acting by left multiplication
12 on the two left factors, and differential

c
- 18100 +) (1@ ®e—e®x®1).
i=1
1« The canonical projection uM — M is a semifree resolution of M over A; see [3, Propo-
s sition 2.6] or [5, Sect. 7]. Moreover, since uM is a dg module over A ®; S, the graded
s k-space Homp (UM, —) retains a dg S-module structure and so

187 Ext (M, —) = H*(Homy (uM, —))
s is a graded S-module.
1 3.3 Let M be dg A-module with M; degreewise finite dimensional over k for each i and

wo 0 for i <« 0; up to quasi-isomorphism any object in Dﬁr(A) has this form. There is an
101 isomorphism of dg S-modules

192 Homa (UM, k) = S @ MY, (3.3.1)

193 where the right-hand term has differential 1 ® M 4 Y i1 xi ® e;; we denote the
e dg S-module on the right by Sys. From this isomorphism and [25, Proposition 1.2.8],
s Homp (ud, k) is a semifree dg S-module.

19 The contravariant functor Hom p (u(—), k) induces the exact functor

197 d: D(A)°P — D(S).

e By [2], this restricts to an exact equivalence

109 d: D, (A)°P 5 Df (8),

20 that further restricts to equivalences

DE(A)P = Perf(S) and  Perf(A)®® = DE(S).

202 One has also the functor Hom (uk, —) that induces an exact functor
203 b: D(A) — D(S)

24 which restricts to equivalences

DE(A) = Perf(S) and  Perf(A) = D{(S).
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cf. [5]. There is the following commutative diagram

Df. ()" —2 Df(8).

ol AL

D (A)

3.4 The functors b, d defined above determine two notions of cohomological support
for dg A-modules. Namely, for a dg A-module M, consider subsets of Proj S

V® (M):= Supps H(bM) = Supp Exta (k M),
V4 (M):= Suppg H(dM) = Supp Ext (M, k).

In [14], the supports V?\(—) are used to classify the thick subcategories of DL(A), Our
focus will be on V‘/j\ (—) but it is worth recording their relationship.

Proposition 3.1 Let M be in DQ(A). There is an equality V‘j\ M) = VS’\(M V). Moreover,
if M is in Df(A), then V4. (M) = V5 (M).

Proof The first equality is immediate from b((—)Y) = d; see 3.3. The second equality
follows from the first. Indeed, it is easy to check that if N is in the thick subcategory
generated by N/, then

VEWN) S VBE(N) and VIWN) S VIW).
When M is in DL (A), the dg A-modules M and M"Y generate the same thick subcategory—

see [23, Sect. 4]—so the second equality follows from the first. O

4 Support for tensor products, |
As in the previous section, V:={V;};~¢ is a finite graded k-space concentrated in positive

even degrees, and
A::/\ V and S:=Sym W,

where W:=%~"1(VV). In this section, we analyze the interaction between the functor
d: DfF(A)op — Df (S), from 3.3, and the tensor products ®; and ®];\. The main results,
Proposition 4.2 and Proposition 4.4, are folklore but we could not find adequate references,

so we give complete proofs; see also Remark 4.3.

Lemma 4.1 For S-modules X, Y with finitely generated homology,
Supps H(X ®5 Y) = Supps H(X) N Supps H(Y).

Proof Since X, Y have finitely generated homology, there are equalities

Supps H(X) = {p € Proj S | X ®% «(p) # 0},
Supps H(Y) = {p € Proj S | Y ®% «(p) # 0}.
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28 See, for instance, [14, Theorem 2.4]. Since S has finite global dimension, the S-module
20 H(X ®{§ Y) is also finitely generated and so

210 Supps H(X ®% Y) = {p € Proj S | X ®% Y ®% «(p) 2 0}.

21 The desired equality follows from the ones above and the isomorphism

wmo X ®FY ®k(p) = (X O k(P) D) (¥ s k(p)). =
284 The result below records the relationship between d and tensor products.

us  Proposition 4.2 For M, N in D:_(A), there is an isomorphism of dg S-modules
d(M ®; N) ~ dM ®% dN .
w Furthermore if M, N are in DE(A), then

o~ V4 (M @ N) = V4 (M) N VY (N).

29 Proof Replacing M and N with semifree resolutions over A, we may assume both M and
0 N are bounded below and degreewise finite dimensional over k, as in 3.3. Let ® denote
251 the composition of the isomorphisms of dg S-modules

252 (S ®/<Mv) Rs (S ®kNv) — (S®s S) ®ka (X)k]\[v — S(X)kMV ®kNv,
23 where the first one is the twist isomorphism given by
254 Ru)B(E P> (s®s)® (@R p)

s and the second map is the multiplication isomorphism. It is straightforward to see

c c
256 @OZ(X,’@@)@I‘FI@(X;’@Q):ZXi®(3i®1+1®ei)oq>'
i=1 i=1

7 As M, N are degreewise finite dimensional and bounded below, there is a natural isomor-
s phism of dg A-modules

259 MxN)Y =M @ NV.

20 Hence, ® yields an isomorphism

Sy ®s SN = SmaN -

22 As a consequence, (3.3.1) establishes the isomorphisms in D(S):

263 d(M @ N) ~ dM ®s dN ~ dM ®% dN . (4.2.1)

4 As for the statement regarding supports, consider the following equalities:

285 V4 (M ®; N) = Suppg H(d(M @ N))

26 = Suppg H(dM ®% dN)

27 = Suppg H(dM) N Suppg H*(dN)

28 =ViM)NVIWN).

20 The second equality is from (4.2.1), while the third is Lemma 4.1. O
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Remark 4.3 Buchweitz proved that if M, N are graded A-modules that are bounded below
and are degreewise finite rank over k, then

b(M ®; N) ~ bM &% bN ; (3.3.2)

see [13, (9.4.10)]. It is easy to see that this isomorphism holds for all pairs of objects in
DL(A). From the equality b((—)") = d, the isomorphisms in (3.3.2) can also be deduced
from (and imply) the ones in Proposition 4.2.

Proposition 4.4 For M, N in D:_(A), there is an isomorphism of dg S-modules
dM ®% N) ~ dM ® dN,

where the right-hand side is a dg S-module through the diagonal A: S — S®; S described
in (1.1.1). Furthermore, if M, N are in DL(A), then

VM ®% N) = Join(V4 (M), VS (V).

Proof Replacing M and N with suitable resolutions, we can assume M and N are bounded
above, degreewise finite dimensional over k, and semifree. As in 3.2, we consider ' = SV,
regarded as a graded S-module. Forgetting differentials, one has a commutative diagram

UM @p UN oo > UM ®p N)

.| T

AT @ M@ N 25 A @ T @ (M ®4 N)

of graded S-modules, where the map on the bottom is defined using the multiplication
u: T ® I' — T map which is dual to the diagonal A: S — S ®; S in (1.1.1), and
w: M Qr N — M ®p N is the canonical projection. It is straightforward to check ® is a
A-linear morphism of complexes that is compatible with the canonical augmentations to
M ®@p N. Thus, @ is a comparison map between semifree resolutions of M ®];\ N over A,
and so it is a homotopy equivalence.
Applying Hom (—, k) to ® yields the top map in the commutative diagram

Hom s (UM ®4 N), k) =223 Homa (UM ®4 uN, k)

= IE

AQm*
SM®AN > Sm Rk SN

of dg S-modules, where Spr ®x Sn is viewed as a dg S-module through A. The vertical
parallel maps are isomorphisms by (3.3.1); the one on the right also uses the standard

isomorphisms

Hom (UM ® A UN, k) = Hom p (UM, Hom (UN, k))
= Homp (UM, k) ®; Hom (UN, k).

This is where the assumption that both M and N are degreewise finite rank and bounded
below is needed. As ® is a homotopy equivalence, from the commutativity of the diagram
above it follows that A ® 7* is a homotopy equivalence of dg S-modules justifying the
first assertion; cf. 3.3.

With this in hand, we have

H(d(M ®% N)) = H(dM @ dN) = H(dM) ®; H(dN),
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16 where the second map is the Kiinneth isomorphism. This gives the second of the following
w7 equalities:

- V3 (M ®% N) = Suppg HA(M &% N))
300 = Supps (H(dM) ®; H(dN))
310 = Join(Supp s H(dM), Suppg H(dN))

= Join(V4 (M), VA (N)).
s3  The third equality is Lemma 1.4. O

s« 5 Passage to the exterior algebra
ns  Throughout this section and the next (R, m, k) is a commutative noetherian local ring. Fix
ne alistof elementsf = fj, ..., f; in m and set

317 E::R(el, ... €C | 36,’ :fz>;

ns  the Koszul complex on f over R, regarded as a local dg R-algebra in the standard way. One
ne  could take R to be alocal dg algebra where f is a list of cycles in even degrees, contained in
20 the maximal ideal of R; we stick to the situation above for ease of exposition. Two special

;1 cases are worth mention.

2 Remark 5.1 When f forms an R-regular sequence, the augmentation E S R/(f) is a
2 quasi-isomorphism of dg algebras and the map R — R/(f) is complete intersection.
24 When f is the zero sequence, E is the exterior algebra over R on ¢ generators of degree

325 One.

326 Set A:=k ®p E and V:=A1. We identify ey, . . ., e; with their images in A; they are a
27 basis for the k-space V. Set W:=%~1(V"), and

328 S:: Symk w.

229 Let x1,..., xc be the basis of W dualtoey, .. ., e.

30 5.2 Let M be adg E-module whose homology is finitely generated over R. Let F be a dg
3 E-module that is semifree as a dg R-module, and F > M an E-linear quasi-isomorphism.
1 By [25, Proposition 4.2.8], RHomg (M, k) can be equipped with a dg S-module structure
;3 through the isomorphism

334 RHompg(M, k) ~ S ®; Homp(F, k),
135 where the differential of the complex on the right is

c
336 1® gHomg(Ek) + Z xi ® Hom(e;, k) ;
i=1

s we let Cr denote this dg S-module. Following [24, Definition 3.3.1], the cohomological
18 support of M over E is
330 VE(M) = Suppg Ext} (M, k) = Supps H*(Cr).

10 A bridge to exterior algebras has been used effectively to acquire cohomological informa-
s tion on these support varieties when R is regular and f is an R-regular sequence; see, for
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instance, [7,14,23]. This path is still sensible at this generality and can be used to establish
results over E, as we do now.

Consider the functor t: D(E) — D(A) given by k ®1L? —. In the statement below, the
construction of the dg S-module Si is given in 3.3.

Lemma 5.3 Let M be a dg E-module with finitely generated homology over R and fix
F = M a quasi-isomorphism of dg E-modules where F is semifree when regarded as dg
R-module. There is the following isomorphism of dg S-modules

Cr = Sir.
In particular, VE(M) = V‘}\(tM).

Proof For the isomorphism, since m Hompg(F, k) = 0 the E-action on Homg(F, k) factors
through A. It is immediate to check the adjunction isomorphism

« : Homg(E, k) = Homy (tF, k)

is one of A-modules. Therefore from the definitions of Cr and Str in 5.2 and 3.3, respec-
tively, the map

1Qa:Cr— S

is an isomorphism of dg S-modules. The equality of supports follows:

V(M) = Suppgs H(CF)
= Suppg H(StF)
= Suppg H(Swr)
= Suppg H(dtM)
= V4 (tM);

the second equality holds by the established isomorphism above and the others are clear
from the various definitions. O

Remark 5.4 Suppose f is an R-regular sequence and M a finitely generated R-module
such that fM = 0. The cohomological support of M over E agrees with support variety
of M introduced by Avramov in [1], and further developed in the work of Avramov and
Buchweitz [4].

More generally, without the assumption f is regular, VE(M) specializes to the support
sets of Jorgensen [22] and Avramov and Iyengar [8]; cf. [25, Sect. 6.2]. When M has finite
projective dimension over R, the cohomological support V(M) agrees with those above;
hence Lemma 5.3 reveals how, in this setting, all of these supports are cohomological
supports over an exterior algebra.

5.5 Let Dp(E/R) denote the full subcategory of D(E) consisting of objects M such that M
is perfect when regarded as an object of D(R) via restriction of scalars. That is, if n: R — E
is the structure map and 7,.: D(E) — D(R) denotes the restriction of scalars functor along
n, then M is in Dy (E/R) if and only if 1, (M) is isomorphic in D(R) to a bounded complex of
finite rank free R-modules. In particular, M has bounded and finitely generated homology
over R. When R is regular D, (E/R) is just the bounded derived category of dg E-modules.
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381 The result below is a particular case of a theorem of Gulliksen [21] and Avramov,
:2  Gashasrov, and Peeva [6].

13 Proposition 5.6 For a dg E-module M, the following conditions are equivalent:

s (1) TorR(k M) is finitely generated over k;
s (2) Exta(tM, k) is finitely generated over S;
s (3) Exta(k tM) isfinitely generated over S.

w7 Moreover, when H(M) is finite over R, the conditions above are equivalent to:

388 (4) Misin Db(E/R)

19 Proof The equivalence of (1), (2), and (3) is from a special case of [25, Theorem 4.3.2], and
10 the fact (1) and (4) are equivalent when H(M) is finite over R, is classical; see, for example,
s [12, Corollary 1.3.2]. O

;2 6 Support for tensor products, Il
33 The notation in this section is as in the previous one. The result below is the theorem

s« announced in the introduction.

w»s Theorem 6.1 Suppose E is a Koszul complex over a local ring (R, m, k) on a finite list of
ws elements in m. For M, N in Dp(E/R),

307 VE(M ®% N) = Join(VE(M), VE(N)).

1 Proof We need only pass to the exterior algebra:

VE(M ®% N) = V4 (t(M )k N))

w0 = V4 (M @K tN)

o = Join(VY (tM), V4 (tN))
402 = ]Oil’l(VE(M), VE(N)) .

403

w4 The first and fourth equalities hold by Lemma 5.3; the second one follows from the

a5  isomorphism
406 t(M ®]I§ N)>~tM ®];\ tN.

w7 By Proposition 5.6, the dg A-modules tA], tN are in DL(A) and so the third equality holds
ws by Proposition 4.4. O

w9 Remark 6.2 Thereisan alternative proof of Theorem 6.1, using the Hopf algebra structure
mo on Exty(k k). The key point is that for any dg E-modules the maps

Ext} (M, k) @ Exti(N, k) — Extp(M ®% N, k ®F k) — Ext;(M @ Nk)  (6.2.1)

sz are Exty(k k)-linear. The second map is induced by multiplication, k ®}]§ k — k. In (6.2.1),
sz the graded Ext-module on the left is given an Ext}(k k)-module structure through the
»s  diagonal

s Ext}(k k) — Exti(k k) Qi Exty(k k).
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This is a straightforward calculation. However, this approach requires a bit of background
on dg algebras with divided powers and suitably adapting classical material to this more
general setting; cf. [21]. The main point is that Ext}.(k, k) is generated, as a k-algebra, by
primitives induced by derivations that respect divided powers on the minimal semifree
resolution of k over E.

One can identify S as a Hopf subalgebra of Ext}(k, k) so the maps in (6.2.1) are also
S-linear. When M, N are in Dy, (E/R), the S-modules Ext}.(M, k), Ext}.(N, k) are finite over
S, see Proposition 5.6, so the assertion of Theorem 6.1 follows directly from Lemma 1.4
once noting the composition in (6.2.1) is an isomorphism.

Consider the equivalence
(—)": D(E/R)P — Dy(E/R),
where MT:=RHomg (M, E) for each M.
Lemma 6.3 If M is in Dp(E/R), then V(M) = Ve(M").
Proof. As M is perfect over R there is an isomorphism of dg A-modules
tMT) ~ RHom, (tM;, A).

By [23, Theorem 4.1], tM and RHom (tM, A) generate the same thick subcategory in
D(A). Thus the second equality below holds:

VEM) = V§ (tM) = V4 (RHom, (tM, A)) = V4 (tm") = V'), O
Corollary 6.4 IfR is Gorenstein and RHompg(M, N) belongs to Dy(E/R), then
Ve(RHomg(M, N)) = Join(Vg(M), VE(N)).

Proof As R is Gorenstein and the R-modules H(M), H(N) are finitely generated, there is
an isomorphism

RHomg (M, N)' ~ M @k NT.

Thus, the second equality below holds

VE(RHomg(M, N)) = Ve(RHomg (M, N)T)
= VeM @k NT)
= Join(VE(M), VE(NT))
= Join(VE(M), VE(N)) ;

the first and fourth equalities are by Lemma 6.3 and the third is by Theorem 6.1. O

Remark 6.5 In light of Theorem 6.1, it would be interesting to determine whether Corol-
lary 6.4 holds without the assumption that RHomg(M, N) is in Dy (E/R).

The result below relates the cohomological support of M ®}5 N to those of its homology
modules. Specializing to the case R is regular and f is an R-regular sequence, yields a
positive answer to [15, Question 2]. The containment in the statement of the theorem can
be strict; see [15, Example 5.3].
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sz Theorem 6.6 Let M,N be in Dy(E/R) and suppose the S-modules Exty(M, k) and
w3 Extp(N, k) are generated in cohomological degrees at most s and t, respectively. There
w4 is a containment of closed subsets

VEM @ N) S | ) Ve(Torf (M N)).

i<s+t
s Proof By Proposition 4.4 and Lemma 5.3, one may identify Ext}.(M ®IL5 N, k) with
457 Extz (M, k) Q¢ Extz (N, k)

»ss viewed as a graded S-module via restriction along the diagonal map (1.1.1). Let T denote
s its graded S-submodule of Exty (M ®}§ N, k) generated by

“ €D Exti(M, k) @k Ext, (N, k),
i+ <u

w1 where u = s + t. The (S ®; S)-module generated by T is Ext}.(M ®]L5 N, k), so arguing as
w2 in the proof of Lemma 1.4, one gets an equality

463 VE(M ®§ N) = Suppg T (6.6.1)

w  Fix a semifree resolution F — M ®E N over E, and let F’ be the soft truncation of F in
a5 lower degrees at most u. Thus there is morphism of dg E-modules 7: F — F’ with the
w6 property that

467 T<u: Fgu — F%u
w8 is the identity map. Hence,
Ext(t, k): Exti(F, k) — Exti(M ®F N, k)

w0 is an isomorphism in upper degrees at most u. In particular, under the identification
s discussed above

o T ClIm (Ext;(F’, k) B Everar @L N, k)> ,

a3 and hence, one has an inclusion
a7 Suppg T C Suppg Exti(F', k).

w5 Since F’ has bounded homology, it is in the thick subcategory of D(E) generated by H(F’)
ws  regarded as dg E-module via the augmentation E — Ho(E). Thus,

Supps T C Supps Extz (@,@ Torf (M, N), k) = | J Ve(Torf (M, N)),

i<u

ws  where for the first containment, we are also using the equality

. H(F') = P Torf (M, N).
i<u
s0  Combining this with (6.6.1) finishes the proof. O

w1 Remark 6.7 Theorem 6.6 implies that when R is regular and M ®]]§N has finitely generated
.2 homology over R, the complexity of M ®1]§ N, in the sense of [1, Sect. 3], is bounded above
43 by the maximum of the complexities of Torﬁ.g (M,N) for i < s+ t, where s and ¢ are from
s Theorem 6.6.
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