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IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
“If I get to be me, I belong. If I have to be like you, I fit in.”—Brené Brown, Braving the Wilderness.

Data science is rapidly changing the landscape of scientific research. Research leveraging

data science tools (hereafter, data science research) is increasingly widespread across disci-

plines, as software for large dataset analysis grows in power and reach [1–5]. With this expan-

sion in data science research, coding and data analysis skills are becoming more valuable to

early career researchers [6–8]. To ensure equitable participation in research and access to

high-mobility career opportunities as this field expands, it is critical that data science research

is welcoming and inclusive [9,10]. Beyond the moral imperative, improving inclusion will also

advance the field, given that data science research is highly collaborative and team members

bring diverse backgrounds and technical skills [5].

There are many cultural, economic, institutional, and social barriers to inclusion in aca-

demic research in general and data science in particular [11–13]. Science and data science

have historically been dominated by members of identity groups with power and privilege, as

marginalized identity groups were excluded from educational opportunities [12,14]. Systems

of oppression have informed data science research practice in both subtle and overt ways,

from a masculine workplace culture [15,16] to harmful terminology (e.g., “master/slave”;

[17,18]). The world of data science research can also be exclusive and inaccessible due to the

time, money, mentorship, or networks needed to learn data science skills [19]. These barriers

are larger for members of historically excluded groups, who may additionally experience hir-

ing and promotion discrimination, less access to quality education, and a lack of role models,

encouragement, and self-confidence [20–22]. Dismantling these barriers will require large-

scale structural change, both in research institutions and in society as a whole [10,23,24]. Here,

we describe one way to reduce barriers while leveraging the strengths of diverse team mem-

bers: cultivate a sense of belonging in collaborative data science research teams.

We define belonging as the feeling of deep connection to a community in which one is val-

ued, accepted, and secure (adapted from [25–27]). Belonging is closely tied to psychological
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safety, or the feeling that one can express ideas, seek and provide feedback, and take risks with-

out fear of rejection [28]. A sense of belonging among group members can promote collabora-

tive, welcoming, and innovative research environments that foster the happiness, recruitment,

and retention of diverse teams [29,30]. In turn, diverse research environments will further a

sense of belonging, in a positive feedback loop with the added benefit of improving research

outcomes [31,32]. With these 10 rules, our goal is to provide guidance to help activate this

cycle across institutions and teams.

Positionality and process statement

We are a team of researchers and data scientists across career stages based at the National Cen-

ter for Ecological Analysis and Synthesis (NCEAS), an independent research affiliate of the

University of California, Santa Barbara (UCSB). Our group includes Masters of Environmental

Data Science (MEDS) students, members of the NCEAS executive team, postdoctoral

researchers, science communicators, and staff scientists. To develop these rules, we drew on

our collective experiences conducting team-based data-intensive science. Individually and col-

lectively, we reflected on when we have and have not felt a sense of belonging, and what actions

have, and have not, fostered that feeling. Throughout the manuscript, we cite many actions

that we have found to be impactful at NCEAS, and while our examples draw heavily from our

own experiences, the general rules apply across research environments.

Our perspectives and senses of belonging are shaped, in large part, by our individual experi-

ences. We all have access to higher education and research opportunities and are based at

UCSB, a space that is exclusive and privileged. While we represent a diversity of backgrounds

and identities, including some that have been largely excluded from science, our authorship

team of course does not reflect the full diversity of human experiences.

Our NCEAS logo is a butterfly, inspired by Lorenz’s “butterfly effect”: the nonlinear equa-

tions describing how chaos is sensitive to initial conditions. As stated in Lorenz’s 1972 paper

[33], “If the flap of a butterfly’s wings can be instrumental in generating a tornado, it can

equally well be instrumental in preventing a tornado.” We use this theme as the inspiration for

this paper: that small actions initiated by an individual can have cascading and amplifying

effects across the world (Fig 1).

Target audience

We hope that this guidance can be helpful for anyone leading a collaborative data science

research project or initiative, including principal investigators (PIs), lead authors, project man-

agers, and institutional leaders (henceforth, “leaders”). When we refer to “research teams,” we

are referencing collaborative research teams that may be research labs, institutes, working

groups, class project groups, or coauthors on a manuscript, within or outside of academia.

While our recommendations are aimed at those in positions of power, we also believe that

they can inspire advocacy for bottom-up change. We intend these rules to be a starting point

and prompt all readers to reflect on actions they can take as individuals and teams to promote

belonging within their research teams (and then take these actions!).

Rule 1: Lead from the front: Self-educate, discuss, and reduce

barriers to entry and retention in data science research

Open conversations about barriers to diversity and equity in data science can help to make

team members feel seen and heard, especially when those in leadership positions initiate these

conversations and then act upon them [9]. Leaders should educate themselves about how sys-

temic and cultural barriers exclude people of marginalized identities from data science
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research [34]. As a leader, you can “lead from the front” by openly committing to diversity,

equity, inclusion, and justice and normalizing team conversations about these topics to foster

a sense of belonging [35]. At NCEAS, for example, we created a reading group that brought

central leadership, research scientists, and staff together to collectively work through the pub-

licly available Unlearning Racism in Geosciences (URGE) curriculum [36], which assigns

readings and prompts for written deliverables in which we outlined anti-racist actions and pol-

icies for NCEAS, tailored to a data science context. NCEAS leadership then incorporated these

deliverables into a public strategic plan that is updated every year with new perspectives from

our evolving community. Similar action-oriented reading groups could guide meaningful, bot-

tom-up change in other research teams. People in positions of power should not only increase

awareness of barriers to entry and retention and their own positionality, but also use their own

Fig 1. Ten simple rules to cultivate belonging in collaborative data science research teams, visualized here as the “butterfly

effect”. Small actions taken by an individual or team, as outlined in our 10 rules, can generate a sense of belonging. This sense of

belonging can then cascade to shape other aspects of culture and practice in science and beyond, as illustrated on the outside ring of

words. Illustration by A.A.P.

https://doi.org/10.1371/journal.pcbi.1010567.g001
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agency to reduce these barriers on their team. For example, it is common for student workers

to be expected to purchase their own computing equipment, creating obstacles for students

who do not have the resources to buy them. Inadequate funds or poor-performing computers

create a sense of alienation and impede belonging. To mitigate these effects, leaders can allo-

cate or apply for funds to purchase equipment, or provide equitable access to analytical servers

with high computing power.

Rule 2: Seeing is believing: Highlight the diversity of people,

research, and accomplishments in data science

Individuals will experience a greater sense of belonging in data science research when they see

themselves represented in the field [37]. To that end, teams should center and cite the work of

people from diverse backgrounds in publications, presentations, training materials, and social

media [38]. It is important to consider multiple axes of diversity in personal and professional

identities, including career stage, disability, ethnicity, gender, institutional affiliation, immigra-

tion status, nationality, race, and sexual orientation (listed here alphabetically and nonexhaus-

tively). That said, never reduce people to a single aspect of their identity, in or outside of your

team (“tokenizing”; [39]), and steer clear of stereotypes and microaggressions [40]. At NCEAS,

we host an annual seminar series in which a diverse group of speakers share their research

approaches and findings as they relate to “Advancing Ecology and Environmental Data Sci-

ence for a More Just and Equitable Future.” Given the lack of diversity in academia and data

science, the visibility of role models from similar backgrounds can foster belonging [12]. You

might, for example, encourage your team to join communities like Women in Data Science

(WiDS) [41], Minorities in R [42], or PyLadies [43]. Within your research team, highlight and

acknowledge the diversity of team members and the strengths they bring to the group and cre-

ate a welcoming space for newcomers. For example, at NCEAS we have a #welcome Slack

channel for newcomers to share a bit about their background with their colleagues and have

established cultural norms around timely commenting and adding positive emojis [44].

Beyond Slack, we also welcome new hires by sharing a Google calendar page on which mem-

bers of the community sign up for one-on-one coffee and lunches to build personal connec-

tions within and across teams. All team members can foster a sense of belonging by learning,

recognizing, and respecting the identities of their members. For example, the display of names

and pronouns can be accommodated in digital profiles and signatures.

Rule 3: Skin in the game: Design research questions that are

relevant to your research team members

Collaborative data science research benefits from focusing on questions that are aligned with

the identity groups and communities to which team members belong. Consider how your data

science team can adopt an intersectional lens [45], accounting for power structures among

identity groups as you formulate research questions, compile and analyze data, and interpret

findings. Where possible, the development of research questions should promote connections

between data science and the lives, interests, and values of team members [46]. As a leader,

you can make an active effort to consider how team members find meaning and purpose in

their work, beyond the technical aspects of their roles. This relationship-building effort may

involve conversations about an individual’s motivations, how their interests might contribute

to the group’s overarching goals, and how day-to-day operations fit within larger actions and

shared objectives [47]. You can also support individuals to explore questions of interest by

stepping outside of their technical roles at times (e.g., inviting a data analyst to run a planning

meeting, while providing guidance) and by giving them the opportunity to provide input on
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project decisions regardless of role or career stage [48]. Team members’ day-to-day operations,

for example, may consist of meticulous coding, but linking these operations to larger collective

goals that they helped to cocreate can cultivate belonging by positioning team members to

have meaningful agency in their research.

Rule 4: Comfort through clarity: Set clear expectations around

coding practices and workplace conduct

With clearly defined expectations, team members can feel more secure in their roles and safe

as members of a team. Your research team may create a manual and code of conduct for col-

laboration, coding, and ownership and credit practices, for example, as a README within a

GitHub organization or an onboarding document for new members [49–51]. Clear guidance

around research expectations and methods builds confidence in early career researchers who

may be new to certain aspects of data science. This manual may also include a team culture

and philosophy that centers inclusion [52]. Steps for reporting and conflict resolution should

be accessible and transparent, shared with new hires, and be public on an institutional website,

and codes of conduct should be used to hold people accountable. Transparent processes for

handling reports and anonymous feedback can empower team members, should their sense of

belonging or safety be threatened. At NCEAS, we have a code of conduct and reporting policy

publicly posted on our website and share this document with all residents and visitors [53]. By

engaging everybody in the creation of expectations and policies, you can foster a sense of

belonging through participation and empower team members to hold each other accountable

in a positive light, grounded in shared principles [23].

Rule 5: All codes lead to Rome: Embrace different modes of coding

and communicating

Team members will feel a greater sense of belonging when their individual work styles and contri-

butions are recognized and valued. There are many different ways in which people best collabo-

rate and communicate, and differences in individual and cultural backgrounds can shape these

styles. By using multimodal communication methods that cater to this diversity (e.g., verbal,

visual, written), your research team can best engage and support every individual, reduce obstacles

like language barriers, and foster inclusion and belonging. For example, technology can be lever-

aged to create opportunities for participation across a range of modalities, including both verbal

communication and written chats on conference software (e.g., Zoom), asynchronous comments

on platforms (e.g., GitHub, Google Docs), messaging applications (e.g., Slack, Microsoft Teams, e-

mail), or visual brainstorming tools (e.g., Mural, Google Jamboard). At NCEAS, we incorporate

alternative mediums such as art to illustrate technical concepts (and beautify our physical spaces!;

[54]). Teams should also celebrate a diversity of programming approaches and problem-solving

strategies, recognizing that there is no single way to solve a particular computing challenge. Your

team should also create avenues for horizontal communication among group members in differ-

ent roles, and not just vertically between members and leaders [55]. For example, the Ocean

Health Index team at NCEAS conducts weekly Seaside Chats where peer team members carve out

time to meet separately from their PI to discuss coding challenges and share experiences [56].

Rule 6: People first: Prioritize needs of team members in project

scheduling and planning

The recognition and accommodation of team members as people with diverse physical, emo-

tional, and mental needs can increase belonging [35]. When scheduling and planning data
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science research projects, it is best to have private conversations with team members about

their needs and preferences [57]. For example, some people may prefer to manage their work-

load according to specific deliverables, while others prefer to know how much time they are

expected to work. Some people work best with dedicated solitary time for deep work and

focus, while others prefer varied tasks and regular team engagement. Leaders should speak to

team members about their needs and set expectations accordingly [58]. When scheduling proj-

ects, recognize needs outside of the workplace, for example, by providing adequate leave for

health and caregiving and ensuring that the culture allows for it to be taken [59]. At NCEAS,

we do not assume that everybody works the same hours, and we schedule meetings through

shared calendars where individuals are able to mark themselves as “busy” for personal reasons.

Tools that support asynchronous work (e.g., Slack, GitHub) can also allow for greater schedul-

ing flexibility on a daily basis. Teams should also ensure the accessibility of physical spaces,

meeting platforms, and research materials to cater to all people (e.g., captioning of presenta-

tions, color-blind friendly palettes, gender-neutral bathrooms). At NCEAS, for example, we

have a dedicated private room that can be used for personal or family-related needs, like ther-

apy sessions or breastfeeding.

Rule 7: Empowerment through ownership: Create opportunities for

ownership, leadership, and development among all team members

By being empowered to take ownership of a particular task or initiative, team members will

feel a greater sense of investment and belonging to the team. Leaders should take time to

understand the unique professional goals and obstacles of each team member at their respec-

tive career stages [60,61]. This understanding is especially important given that the rewards

systems for career growth will vary based on an individual’s professional goals (e.g., ownership

of data and code may be important for data scientists, while authorship on peer-reviewed pub-

lications may be important for academics). Leaders should then structure work plans so that

there are opportunities for individually tailored professional growth and development, for

example, through delegated leadership of particular tasks or subprojects within the larger proj-

ect. Team members can also rotate responsibilities and types of work tasks, for example, by

taking turns leading meetings or designing code templates. In the MEDS capstone group proj-

ects at NCEAS, for example, every student had a designated leadership position while having

the opportunity to rotate through tasks and roles related to client communication, meeting

organization, and coding. Organizing coding-related tasks using GitHub Issues [62] and

assigning or allowing team members to self-assign themselves to issues is another way to

encourage and support ownership over project deliverables. These practices increase belong-

ing on the team (and have added benefits for collaboration efficiency and skills development).

Overall, a positive and inclusive team culture is one that creates opportunities for all members

to succeed and celebrates their accomplishments.

Rule 8: Open science: Practice transparent and reproducible

research within and outside of your research group

Open science practices can improve communication and trust among a team and enable all

team members to understand how they belong and how they can contribute [63,64]. “Open

science” is conducted through transparent and accessible processes at all stages, including idea

development, data collection, programming and analysis, and writing [65]. The use of GitHub

“Issues” or “Discussions” features allows all members of a team to make coding decisions

quickly and collaboratively [66]. In addition to well-documented project management, embed-

ding ample comments, annotations, and explanations to the code and its documentation
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allows others to easily follow along. These practices also solidify institutional memory and can

assist in onboarding new team members so that they are quickly brought up to speed on why

decisions were made and can easily engage in future decision-making. It is worthwhile to

invest time in training team members on these open science practices and software, both to

improve open communication and to enable comfort with the tools and team. For example,

the Openscapes initiative, based at NCEAS, provides structure to research teams implementing

open science practices through the Openscapes Champions Program [67]. While open science

has many merits for inclusion and for the scientific enterprise as a whole, one risk of open sci-

ence is the failure to properly acknowledge the contributions of all who contribute to open

scripts and datasets. To combat this risk and ensure a sense of belonging, your team should

carefully consider citations and authorship to recognize contributions of all team members

(aligning this recognition with individual career goals, as noted in Rule 7), as well as external

contributors on whose work you build [68].

Rule 9: Safe learning spaces: Create low-stakes environments to

promote data science skills growth

Normalizing the vulnerability of not knowing or understanding something is vital for fostering

psychological safety and an inclusive research environment [69]. To that end, judgment-free

spaces should be created for asking questions about research and coding [56,70] and where

team members can work toward developing and growing their abilities [71]. At NCEAS, we

hold casual coworking “hacky hours” where individuals share a coding issue that they are

working through and get support and feedback from the group as they tackle it. In group meet-

ings, asking questions can be encouraged by, for example, giving others the chance to “+1”

questions so that people realize they are not alone in needing clarity and reinforcing the benefit

of question-asking for the entire team. Regular and informal peer-led skills training can also

provide a low-stakes venue for learning [70]. For example, our NCEAS early career research

staff leads local R-Ladies [72] and Python meetup events, workshops through the EcoDa-

taScience group [73], and coding book clubs. By sharing in the learning process with peers and

colleagues across career stages, scientists can feel a greater sense of belonging as they fill knowl-

edge gaps [74]. Leaders should also give feedback on work in a kind and constructive manner

and emphasize mutual learning regardless of seniority [75]. Also, openly demonstrating strug-

gles and failures (like talking through programming errors while live coding, or discussing

unsuccessful submissions of publications and grants) along with sharing successes normalizes

vulnerability [76]. By sharing small and large setbacks in informal and formal settings (e.g.,

presentations, group meetings), those in more senior positions can help to reduce doubts and

insecurities among career team members [77].

Rule 10: Have fun!

The implementation of the rules above requires thought and consideration, but that doesn’t

mean your team cannot have fun at the same time. Many of the actions above can be really

enjoyable for everybody involved, and creating fun spaces where people can bring their full

selves can further contribute to a sense of community and belonging. Data science can be chal-

lenging and frustrating, especially for people just learning to code and people who feel margin-

alized, and having fun is critical to overcoming frustration [78]. Further, the seriousness and

rigor of data science, often a characteristic of academia, can involve implicit norms about who

gets to be a researcher and create barriers to belonging [79]. Having fun can build community

and trust and provide a supportive environment for breaking down coding blocks. Through

both targeted “fun” initiatives and informal workplace practices, your data science team can
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foster silly traditions, make use of humor, “gamify” coding, and create space for personal inter-

action. Make space for the diversity of ways that people have fun, and reduce barriers to partic-

ipation in the fun—for example, provide context for idioms and pop culture references [80].

At NCEAS, we have regular social hours with and without alcohol, collect “hex stickers” as R
packages are learned [81], engage in coding challenges, and make ample use of emojis and

memes on our Slack channels to build skills and relationships while having fun. Overall, fun

has been linked to benefits for learning, health, innovation, and creativity—so, have fun!

Conclusions

Creating more inclusive data science research spaces and experiences is an ongoing process

that is best cocreated and regularly reassessed by teams. We present these 10 “simple” rules

with the understanding that these recommendations may not resonate with everybody and

that there are far more than 10 ways to foster a sense of belonging. These recommendations

are neither simple nor exhaustive. This is not a checklist on the path to inclusivity. We intend

for these rules, based on our own experiences, to spark reflection and conversation rather than

provide a universal roadmap to belonging. We look forward to continued conversations about

ways to advance inclusion and belonging in collaborative data science research and beyond.

To that end, we are excited to hear others share their advice and experience on Twitter, using

the hashtag #BelongingInDataSci.
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