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Density functional theory (DFT) has been applied to modeling molecular interactions
in water for over three decades. The ubiquity of water in chemical and biological pro-
cesses demands a unified understanding of its physics, from the single-molecule to the
thermodynamic limit and everything in between. Recent advances in the develop-
ment of data-driven and machine-learning potentials have accelerated simulation of
water and aqueous systems with DF'T accuracy. However, the anomalous properties
of water in the condensed phase, where a rigorous treatment of both local and non-
local many-body interactions is in order, is often unsatisfactory or partially missing in
DFT models of water. In this review, we discuss the modeling of water and aqueous
systems based on DFT, and provide a comprehensive description of a general theo-
retical /computational framework for the development of data-driven many-body po-
tentials from DF'T reference data. This framework, coined MB-DFT, readily enables
efficient many-body molecular dynamics (MB-MD) simulations of small molecules,
in both gas and condensed phases, while preserving the accuracy of the underly-
ing DFT model. Theoretical considerations are emphasized, including the role that
the delocalization error plays in MB-DFT potentials of water, and the possibility to
elevate DFT and MB-DFT to near-chemical-accuracy through a density-corrected
formalism. The development of the MB-DFT framework is described in detail, along
with its application in MB-MD simulations and recent extension to the modeling
of reactive processes in solution within a quantum mechanics/many-body molecular
mechanics (QM/MB-MM) scheme, using water as a prototypical solvent. Finally, we
identify open challenges and discuss future directions for MB-DFT and QM /MB-MM

simulations in condensed phases.

2)Electronic mail: epalos@ucsd.edu

b)Electronic mail: fpaesani@ucsd.edu



CONTENTS

1I1.

III.

IV.

VL

VII.

VIII.

IX.

. Introduction

Data-driven modeling of water and aqueous systems
A. Machine-learned potentials

B. Physics-based data-driven potentials

Many-body interactions in molecular systems
A. Theory
B. Components and architecture of MB-DFT potential energy functions

C. Implementation

Density functional theory
A. Kohn-Sham DFT
B. Density-corrected DF'T

. Many-body PEFs for water from DFT

A. First-generation MB-DFT
B. Generalized MB-DFT framework

Many-body potentials from SCAN and related functionals
A. The effect of Hartree-Fock exchange: SCAN and SCAN« functionals

B. The density-corrected SCAN functional with chemical accuracy

Many-body potentials from DC-DFT functionals
A. Functional- and density-driven errors in water clusters: DC-DFT

B. Functional- and density-driven errors in liquid water: MB-DFT(DC)

Many-body potentials from machine-learned functionals
A. DM21 as a case-study: Neutral, protonated and deprotonated water clusters

B. The MB-DM21 potential

Many-body potentials in polarizable QM /MM
A. Quantum Mechanics/Many-Body Molecular Mechanics

3

11
13

14
14
15

17
17
22

25
25
27

31
31
33

34
36
37

38
39



X. Summary and Outlook 41

Acknowledgements 43
Author declarations 43

Conflict of Interest 43
Data availability statement 43
References 43

I. INTRODUCTION

Water, often referred to as “the matrix of life”,! is a substance with a simple molecular
structure that has been present on Earth for approximately four billion years.? However,
it is only in this past half-century that progress has been made toward a fundamental
understanding of the physical properties of water, with microscopic detail.>'® Theorists

worldwide have tackled “obtaining” water vapor, liquid water, and ice from computer models

14,15 16-18

founded on classical mechanics, quantum mechanics, , or hybrid approaches that
combine the former to some extent.'® The first numerical simulations of water employed
Monte Carlo (MC)? and molecular dynamics (MD)'" techniques, and represented water as
a system of point charges interacting through pairwise additive potentials.?! While these
simulations represent a cornerstone in the history of computer modeling of water, it became
apparent that pairwise additive potentials alone would not be able to fully capture the
complex physics of water in the condensed phase.?

In ice, hydrogen bonds arrange into low-entropy configurations that give rise to the for-
mation of a highly symmetrical tetrahedral network.?? However, in the liquid state, thermal

2324 are the driving

fluctuations that occur within the picosecond to nanosecond timescale
force for the recurring formation and dissolution of hydrogen bonds that makes liquid wa-
ter topologically disordered.?® From a molecular standpoint, this implies that predicting the
properties of water through computer simulations requires the ability to rationalize the inter-
play between the energetic and entropic contributions that mold the free-energy landscape.?

This may be achieved provided there is a rigorous representation of many-body interactions

that shape the free-energy landscape and determine the local structure of liquid water, along
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with all thermodynamic and dynamical properties.*

Within density functional theory (DFT),?® the quantum-mechanical electronic ground
state of a water molecule is stored in a three-dimensional particle density, as opposed to a
thirty-dimensional function required by wavefunction theories (WFT).2" A ~ &(N?) scal-
ing in combination with reasonable accuracy has consolidated DFT as the most widely used
methodology in the computational physical sciences for the modeling of complex systems.?®%
Nevertheless the universal density functional is unknown, which has motivated a three-
decade long navigation in the vast sea of density functional approximations (DFAs), search-
ing for a DF'T representation of water that can accurately predict the properties of water
from the single molecule to the thermodynamic limit. Since the 1980s, many have con-
tributed to our understanding of water within DFT and DFT-based ab initio molecular
dynamics (AIMD) simulations.!® 83052 Beginning on the first rung of John Perdew’s “Ja-

26,5455 gystematically predicts too

cob’s ladder”,*® the local density approximation (LDA),
strong and, consequently, too short hydrogen bonds that preclude a realistic description
of the structure of liquid water.'® Subsequently, it was found that DFAs defined within
the general gradient approximation (GGA), such as the Perdew-Burke-Erzerhoff (PBE)

functional,?®

yield more accurate energetics for water clusters but ultimately still predict
an over-structuring of liquid water.'%'8 The systematic over-binding predicted by the LDA
and GGA functionals originates from their inability to exactly cancel self-Coulomb and self-
exchange-correlation effects, an error known as the self-interaction error (SIE).*” However,
GGA exchange-correlation functionals continue to have strong presence in water simula-
tions, with two popular DFAs being the empirical Becke-Lee-Yang-Parr (BLYP) functional
and the revised Perdew-Burke-Ernzerhof (revPBE) functional, in combination with correc-
tions for van der Waals forces.’® % While dispersion corrections can improve the accuracy

of these functionals for water, it can often also amplify error cancellation® ™ and lead to

poor descriptions of water across different phases.

Exchange-correlation functionals that include a dependence on both the gradient of the
electron density and the kinetic energy density, dubbed meta-GGA functionals,” can pro-
vide an improved description of water clusters in terms of computed energies and geometries,
leading to qualitatively reasonable descriptions of the structure of liquid water at ambient
conditions, without the higher computational cost of orbital dependent DFAs.*® However,

not all is resolved by meta-GGA DFAs, as classical and path-integral AIMD simulations



of water performed using the B97M-rV functional with non-local correlation™ systemat-
ically leads to an overly-repulsive local structure of liquid water, tethered by weaker hy-
drogen bonds as evidenced by a less-structured oxygen-oxygen radial distribution function
(RDF).5%52 Nonetheless, a recent assessment of over 200 functionals suggests that BO7M-
rV is currently the most accurate meta-GGA functional on average for diversely bonded
systems,” exhibiting an overall accuracy for water that is comparable to that of the more
expensive revPBE(0-D3, a dispersion-corrected hybrid functional containing 25% Hartree-

Fock exchange.5?

Hybrid DFAs that contain a fraction of Hartree-Fock exchange have become quite popu-
lar in ab initio calculations due to their improved accuracy relative to GGA functionals.”™
Several popular hybrid functionals have been used in recent years to study molecular inter-
actions in water,*527 86 focusing on the transferability of accuracy from static to dynamic
properties,®® as well the modulation of Hartree-Fock exchange and van der Waals corrections
to probe their effects on the predicted hydrogen-bonding network in liquid water.*® Hybrid
functionals belong to the 4" rung of Jacob’s ladder, while double-hybrid functionals define
the fifth rung, where a fraction of second-order perturbative correlation is included in addi-
tion to the fraction of Hartree-Fock exchange.®” While a few electronic properties of water

have been reported using double-hybrids,3 " their ~ O(N®°)-scaling deems them currently

intractable for AIMD simulations of condensed-phase systems.

The quest for a physically robust and efficient description of water from DFT simulations
has resulted in the continuing rise in popularity of the meta-GGA Strongly Constrained
and Appropriately Normed (SCAN) functional®™®! along with its hybrid,”* regularized,”

9 and associated variants.?>% SCAN is a non-empirical

regularized-and-restored relatives,
density functional that was derived to satisfy the 17 exact constraints known for a meta-
GGA functional.®»%7 Although it is semi-local in nature, SCAN is capable of capturing short-
to medium-range dispersion interactions.?>"%7191 For this reason, SCAN has been found to
provide a reasonable description of both gas-phase water clusters and liquid water, albeit
still quantitatively overestimating hydrogen-bond strengths even when approximating the
inclusion of nuclear quantum effects.®! In an effort to complete the density functional theory

of water, several studies have been reported focusing on assessing the accuracy of SCAN, as

well as SCAN-based data-driven potentials (DDPs) and machine-learned potentials (MLPs)

70,98-102 103,104

for various properties of water, and ionic solutions.



In this review, we focus on discussing data-driven many-body (MB) potentials for ap-
plications in aqueous phase chemistry. While we note that several classes of DFT-based
DDPs have been proposed in recent years for water and various aqueous systems, we restrict
the main discussion to a class of DFT-based DDPs that are rigorously derived from the
many-body expansion of the energy (MBE), a theoretical /computational framework coined

MB-DFT.

II. DATA-DRIVEN MODELING OF WATER AND AQUEOUS SYSTEMS

Data-driven modeling plays an increasingly important role in theoretical and computa-
tional chemistry for its promise of accelerating the prediction of physical properties with a

105-17 with one of the main applications being the develop-

quantum-mechanical accuracy,
ment of interatomic and intermolecular potentials.'!'2!18144 ITn the context of potentials for
condensed-phase simulations, DDPs and MLPs with complex analytical forms are flexible
enough to effectively capture the intricate interactions between molecules at the accuracy
of the underlying ab initio reference data.!*® Regarding water and aqueous systems, such
models are broadly divided into two distinct categories: A) models whose entire represen-

,99:100,102,141,143,146-161 51 B)

tation is machine learne data-driven physically-motivated that

integrate a machine-learned representation with an underlying physical model.'44:162-172

A. Machine-learned potentials

Over the past fifteen years, high-dimensional machine-learned models have been de-
veloped representing molecular interactions in water through neural network potentials

gaussian approximation potentials (GAPs),'% permu-

(NNPs), 99118121, 141,143,145,155,173-176
tationally invariant polynomials (PIPs).t47150.163-166,1777179 Ty general, MLPs trained us-
ing various regression algorithms rely on using a set of descriptors which account for
the immediate environment around a molecule in order to describe the potential energy
surface,119:121,125,126,180-182 Bocayge these models are strongly dependent on the dataset to
which they are trained on, they are typically limited in their transferability across different

phases, 141,151,152, 154,159,183-187 () the one hand, MLPs trained purely on gas-phase data have

difficulties in properly describing condensed-phase systems where long-range and many-

7



body effects play significant roles.!4118 Recent studies have proposed avenues to overcome
the challenge of long-range physics in NNPs,151:152,154,183-185,187,189-192 oy condensed-phase
systems, however, NNPs are usually trained on configurations of liquid water extracted
from AIMD simulations and, consequently, are able to provide an effective description of
long-range interactions within the bounds of the simulation box. In addition, such con-
densed phase MLPs currently account for many-body effects only in an implicit fashion and,
therefore, are not guaranteed to correctly reproduce each individual n-body contribution to
the energy of a system containing N water molecules.!®? As the field of MLPs, and partic-
ularly NNPs continues to mature, a hierarchy has been defined to classify the NNPs into
“generations” based on the physical content of the models. In this regard, the development
of high-dimensional NNPs that take into account the intricate interplay between short-range

and long-range many-body interactions is still in its early stages.!3%145

PIPs provide a different type of ML representation that satisfies permutational, rota-
tional, and translational invariance,!”” and has become popular in the development of MLPs

131 For example, PIP-based MLPs for water include the early

for various molecular systems.
HBBO0,'*" HBB1,“® HBB2,®, and WHBB%150 models, which fit 2-body and 3-body en-
ergies to high-level ab initio data, where the the 2-body PIP is “range-separated” as it
smoothly transitions into a long-range potential described by classical electrostatics. Going
beyond the 3-body term, the q-AQUA model was recently introduced, which includes PIP
representations for 2-body, 3-body, and 4-body energies, but neglects all n-body contribu-

tions with n > 4.160

Besides the applications mentioned above, PIPs have also been used in a variety of general
approaches such as PIP-NN models, which use permutationally invariant monomials to
guarantee proper symmetry relations in the NN representation of the target potential energy

1937196 and A-ML approaches, which train an ML model on top of a lower-level (e.g.,

surface,
DFT) core potential to elevate the overall accuracy of the model.!" 1% PIPs and PIP-
based ML approaches have also been used to develop high-dimensional potential energy
surfaces of polyatomic molecules (with up to 15 atoms) in the gas phase, a step toward
the “first principles” modeling of the physical properties of complex organic and biological

molecules.198:200-202



B. Physics-based data-driven potentials

Physics-based DDPs are analytical expressions representing the multidimensional poten-
tial energy surface of an N-body system, where only a few contributions to the interaction
energy are predicted from ML. In essence, physics-based DDPs capture quantum-mechanical
short-range interactions using an ML framework which is integrated with a physics-based
representation of classical many-body interactions.'6%2% In this context, CC-pol is a rela-
tively simpler water model developed from high-level ab initio data integrated with a clas-
sical representation of electrostatic interactions.'2204211 CC-pol provided some of the first

accurate predictions of water properties in both gas and condensed phases.

In recent years, a class of explicit many-body DDPs, namely the MB-pol,'63165 MB-
nrg, 107168170172 and generalized MB-QM'0212 potential energy functions (PEFs), have

been shown to quantitatively reproduce the properties of water,?'® including gas-phase

219-221 222-225

clusters, 214216 liquid water,2172!8 the vapor/liquid interface, and ice, as well

226227 and ionic systems.??® 234 These many-body PEFs use

as various aqueous molecular
PIPs'™ integrated with a classical many-body polarizable model®®® to represent short-
range quantum-mechanical effects that arise from density overlap between molecules (i.e.,
exchange-repulsion, charge transfer, and charge penetration), which cannot be represented
by classical expressions adopted by conventional force fields. Recently, this class of data-
driven many-body potentials has been extended to covalently bonded molecules.?3¢ This

class of DDPs, particularly the MB-DFT potentials, will be described in detail in the

remainder of this work.

III. MANY-BODY INTERACTIONS IN MOLECULAR SYSTEMS

A. Theory

Consider a system of N interacting atoms or molecules. At rest, the energy of this N-body
system is simply the potential energy, Fn(r;...ry). By definition, En(r;...ry) is a many-
body function that contains all information regarding n-body energies, with 1 < n < N.

Therefore, the energy of the system is rigorously defined by the many-body expansion (MBE)

9



given by:

N N N
En(ry,..,r 2513 r; —1—22823 r;,r;)+ Z 2253B(ri,rj,rk)+. ..+enp(ry

i<j i=1 1<j<k 1<y =1
(1)
where {r;} collectively defines the coordinates of the ith monomer and e;5(r;) is the 1-body

energy of the ith monomer,

0 atomic monomer
€1B(I‘i) = (2)

E(r;) — E(req;) molecular monomer

e15(r;) represents the distortion energy of the ith isolated monomer, with E(rq,;) being the
energy of the ith monomer in its equilibrium configuration (req;). In an N-molecule system,
e1p(r;) is related to the geometrical frustration®®” of the ith monomer due to competing
many-body effects that determine the minima in the underlying multidimensional energy
landscape.

From Eq. 1, the 2-body and 3-body energies are obtained recursively as follows:
eap(ri; ;) = Ea(ri,r;) — e1p(ri) — e1s(r;),
ESB(I‘i, ry, I‘k) = E3(I“z‘7 r;, l“k) - €2B(I‘z', I“j) - 52B(ri7rk) - 52B(I'ja I“k;) (3)
—e1p(ri) — ep(ry) — e1n(ry)
where F,(ry,...,r,) is the energy of a subsystem containing n molecules. It follows that

any n-body contribution .5 can be written as:

N N N N N N
€nB = En(17 ;”) - Z&B(Tz') - 228213(1‘171‘]') —ZZ Z €3B I‘z,rj,rk)—
=1 i<j =1 1<j i<j<k

i=1
N (4)
. — Z Em-1)B(Ts, Tj, Tpy oo Tpq).

i<j<k<..

The convergence of the MBE is dependent on the intrinsic electronic structure of the system
in question. Herein, we focus on aqueous systems that have localized electron densities,
which implies the presence of large electronic band gaps, a feature common to all insulating
systems.?®® 240 For these systems, the MBE converges rapidly. Water, for example, has a
band gap of ~ 9 eV, and the sum of 2-body and 3-body energies correspond to ~ 90 — 95%
of the interaction energy.?4!-2%°

From a modeling standpoint, the fast convergence of the MBE makes developing data-

driven PEF's based on quantum mechanics for molecular systems a feasible task, enabling the

10



rigorous characterization of molecular systems while achieving numerical efficiency. In recent
years, the synergy between high-performance computing, machine learning, and advances in
theoretical chemistry has led to the development of several data-driven many-body PEFs for
water!49:150,162-165.251 a1 other molecular systems. 67168:171,172,232,234 \No wil] limit this tech-
nical review to the discussion of the theoretical foundations, developments, and applications
of data-driven many-body PEFs derived from arbitrary density functional approximations

within DFT: MB-DFT PEF's.

B. Components and architecture of MB-DFT potential energy functions

The MB-DFT PEFSs arise form the generalization of the MB-pol formalism for water!¢3-16°
to density functionals developed across Jacob’s ladder of approximations, from local func-
tionals to semi-local, hybrid, and range-separated functionals.40:169
Within the MB-DFT formalism, the functional form of a data-driven many-body PEF is

given by

N N N
EMB(ry,..,ry) = Z V1IB(r;) + Z V2B (r;,r;) + Z V3B(ry,r,11) + Voar(re, o Ty)  (5)
i=1 i>j i>j>k

where the VB V2B /3B are analytical representations of 1-body, 2-body, and 3-body en-
ergies fitted to the corresponding reference quantum-mechanical data. In the case of the

MB-DFT PEFs, V!B is represented by

Ves(r1, 79, 60) water
VIB(I'l') _ PS( 1,72 ) (6)
Verp({€18})  generic system
where VFPS(rq,ry,0) is the Partridge-Schwenke PEF for the water monomer,*? while
Verpr({&18}) is a PIP representing the 1-body energy of a generic molecule, with {15}

collectively defining exponential functions of the interatomic distances. The second term on

the left hand side of Eq. 5 is

V2(ri,x;) = V2P (ry, v;) + Ve (vi,xy) + Viay (vi, r;) + Vi (vi, ;) (7)

elec ol

where V2B(r;, r;) describes short-range 2-body interactions and is represented by the prod-
uct of a 2-body PIP with a switching function that smoothly tends to zero as the distance

between a pair of monomers reaches a predefined cutoff limit. V3% (r;,r;) and V2 (r;,r;)

11



represent permanent electrostatics between point charges that reproduce the ab initio dipole
moment of an isolated monomer, and 2-body polarization, respectively. In the actual imple-
mentation of the MB-DFT PEFs, VpQOI? (riry) is implicitly included in the N-body polarization
term, Vio(ry,..,ry), of Eq. 5. Following Refs. 71,140, the point charges are kept fixed
to the values that reproduce the dipole moment of a molecule in its equilibrium geometry

(r; = Teq). Thelast term in Eq 7, VED (r;,r;), describes the 2-body dispersion energy which

is expressed as

C i
V;ilsp ry, I'] Z fk Tl] : '] (8>

i

where r;; = |r; — r;| and fi(r;;) is the Tang—Toenmes damping function®,

~ (0ry)*
fi(rij) =1— (Z %) exp (—dri;), (9)
i=0
Here, k is the order of the function, 7;; is the separation between two atoms on two distinct
monomers, ¢ is the coefficient that determines the effective length of damping obtained dur-

ing the fitting procedure,!71:172

and Cg ;; is the corresponding dispersion coefficient derived
from calculations carried out within the exchange-hole dipole moment (XDM) model.60:254:255

The third term on the left hand side of Eq. 5, V3B, is defined as
V3B (riv ry, rk) - ‘@%’?(riv ry, rk) + %301?(”7 ry, rk) (10)

Analogous to VZ(r;, r;), V@P(ri, rj, ri) is represented by the product of a 3-body PIP with a
switching function that smoothly tends to zero as the distance between any pair of monomers
in a trimer reaches a predefined cutoff limit. Similarly, Vpo1 (r;,r;, 1)) represents 3-body
polarization that is implicitly included in the N-body polarization term, Vi (ry,..,ry), of
Eq. 5. The 2-body and 3-body PIPs effectively recover quantum-mechanical interactions
arising from the overlap of monomer’s electron densities (i.e., exchange-repulsion, charge
transfer, and charge penetration) which cannot be represented by classical expressions.?
For further details regarding the explicit form of Vo sr(ri,r;), Vs sr(ri,rj, %), including
the definition of the switching functions, the reader is referred to Ref. 144.

The final term of Eq. 5, Vya(ry, .., ry), implicitly represents N-body classical polariza-
tion. It is important to emphasize that the inclusion of Vi, (ry,..,ry) in addition to the
explicit 1-body, 2-body and 3-body terms guarantees that the MB-DFT PEFs are not trun-

cated, enabling them to rigorously account for both short-range and long-range many-body

interactions.
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C. Implementation

Data-driven many-body PEFs can be readily developed for generic molecules in an au-
tomated fashion using the MB-Fit software infrastructure introduced in Ref. 144. Briefly,
MB-Fit is an open-source package that is designed to streamline the development of data-
driven PEFs, such as the MB-nrg family of PEFs for aqueous ionic systems and molecular
fluids derived from CCSD(T)) data, and the focus of this technical review, MB-DFT PEFs.

MB-Fit readily enables the development of training and test sets, the generation of the
PIPs, the calculations of the reference ab initio n-body energies (currently supporting Q-
Chem?7 and PSI4?%®), the evaluation of the fits, as well as the generation of the codes
necessary to perform molecular dynamics simulations using the developed many-body PEF
in LAMMPS?* or i-PI?®® through the MBX?! interface. LAMMPS, i-PI, and MBX are
freely available to the public. A schematic overview of the MB-DFT framework is shown
in Figure 1. Figure 1 shows the two main pillars of MB-DFT: theory and implementation
(a-b) and applications (b-c). Panel (a) shows the Jacob’s ladder of DFAs, suggesting the
robustness of the MBE with respect to the different levels of DFAs (b). Panel (b) specifically
summarizes the MB-DF'T development workflow according to the general MB-nrg framework
introduced in Ref. 144. Briefly, the MB-DFT V"B terms, with n = 1-3, contain explicit PIP

terms given by

L
P(&1, 6,0 6n) = ) AS[EM, €72, €], (11)

1=0
Here, L is the total number of monomials in the PIP, A; is a linear fitting coefficient for

monomial [, and S[{{}] is an operator that symmetrizes each monomial [ to guarantee invari-
ance to permutations. In addition, &; is a variable defined as a function of distance between
sites, which include both physical atoms and fictitious sites of the monomers contributing
to the 1-body, 2-body, or 3-body PIPs. Four different functional forms are available for §;
in MB-Fit, including Coulomb and Morse variables.!4*

The fitting procedure, using Tikhonov regularization (also known as ridge regression),?6?
is discussed in detail in Ref. 144, and further details regarding the PIPs can be found in the
literature.17”

As shown in Figure 1, MB-DFT enables (b) non-reactive molecular dynamics simula-

tions as well as (d) fully polarizable quantum mechanics/many-body molecular mechanics

(QM/MB-MM) simulations with arbitrary levels of theory, enabling a seamless multiscale

13



a) Density Functional Theory b) Many-Body Framework
FEHFHE T2 nB Energies Ey=E;g+ Exp+Esg+ ...+ Epg

1B Permutation Invariant Polynomlals

+ EXHF & P(Ell 52/ EN)

A 2B
Vp } o-i Fitting Procedure

Vp 3B X2=Zka [V‘Vl] + I_ZZCZI
P [ % % MB-DFT Potential
g% Ews.orr = Vig+ Vag + Vig + Viyg
c) Molecular Dynamics d) Reactive QM/MM Dynamics

| — oo & o P 5
o P %o C‘Q:?Qd) Y

g(r)

FIG. 1. This schematically depicts the main features of MB-DFT, integrating (a) electronic struc-
ture theory (QM) with (b) the many-body framework!4*, enabling (c) non-reactive MB molecular
dynamics (MB-MD) and (d) reactive hybrid quantum mechanics/many-body molecular mechanics

(QM/MB-MM) simulations.

representation of the underlying multidimensional potential energy surface.?63264 These de-
velopments along with the corresponding applications are discussed in the following sections.
The latest versions of MB-Fit and MBX can be downloaded from the GitHub repositories
in Refs. 265 and 266, respectively.

IV. DENSITY FUNCTIONAL THEORY
A. Kohn-Sham DFT

The form of the exact density functional E[p(r)] that determines the ground-state elec-

tronic energy of an arbitrary N-electron system is unknown. To this end, the energy expres-

14



sion for a given DFA can be written as

Blp(w)] = Flot)] + [ plo)o(x)dr (12)
where F [p] is the approximate one-electron density functional, which is independent of the
external potential acting on the N-body system, veq(r). The approximate functional F'[p]
is defined as

Flp(r)] = T[p(r)] + J[p(r)] + Vxclp(r)] (13)
where Ti[p(r)] is the non-interacting Kohn-Sham kinetic energy, and J[p(r)] defines the
Coulomb interaction between the electrons. The last term of Eq. 13, Vxc[p(r)], is known
as the exchange-correlation (XC) potential and it is the only term in Eq. 13 that is be
approximated to describe the non-classical electron-electron interactions, as the development
of the exact functional for molecular systems currently is an unattainable objective. As a
consequence, the accuracy of any physical properties derived from F [p] is determined by the
accuracy of Vxc[p(r)]. The complexity of Vxc[p(r)] can be understood in terms of a sum of

semi-local (sl) and nonlocal (nl) XC terms,

Vxelp(r)] = Vielp(r)] + Vi p(r)] (14)

For some functionals, a fraction of Hartree-Fock exchange as well as an amount of correlation
energy from post-Hartree-Fock wavefunction theories are added to improve the accuracy.®”
Perhaps, the most intuitive way to understand the complexity of DFAs is through “Jacob’s
ladder”5? of DFAs which locates DFAs in rungs based on their complexity and accuracy.
Pure DFT is defined by all XC potentials strictly of the form given by Eq. 14 (rungs 1-
3), while the introduction of Hartree-Fock exchange defines hybrid DFT (rung 4), and the
incorporation of post Hartree-Fock correlation defines double-hybrid DFT (rung 5).

B. Density-corrected DFT

In the Kohn-Sham framework, the energy error of any DFT calculation can be decom-

posed as

AE = Flp] = Flp] + E[p] - Elp] (15)

Vv Vv
AErp AEpp

where AFErp is the error due to the density functional approximation (FD error), and AEpp

is the error due to the approximated density (DD error). The significance of these errors are

15



related to how well a DFA describes properties such as electron density and static correlation

energy, which hinders most DFAs from accurately describing systems with fractional charge

268

(FC)?07 as well as systems with fractional spin (FS),?%® giving rise to the delocalization error

(DE) and static correlation errors (SCE), respectively. The SCE originates entirely in the XC
potential and is known to be significant in local and semi-local DFAs that, while describing
dynamic correlation fairly well, are not able to correctly describe static correlation due to
its inherent mid- to long-range nature.?®® Therefore, understanding the SCE, a component
of AErp, is crucial for the study of strongly-correlated systems as well as for an accurate
description of molecular dissociation.26%:269

Although AEpp is the principal contributor to the total error in most cases,?”* 27 all XC

274,275

functionals deviate from the piecewise-linearity of the exact functional for fractional

charges, causing excess charge delocalization and resulting in incorrect densities. In these
cases where the DE is significant, AEpp becomes the dominant contributor to the total
error.2”2% The cause of AFEpp is the manifestation of the one-electron and many-electron

SIE,®” which is thought to be the biggest contributor to AEpp and thus responsible for the

observed over-delocalization of the electron density. 40277278

Consequently, most DFAs are unable to satisfy the following three conditions for the

one-electron system,?”

Ti[p(r)] = /dr%, J+FEx=0, Ec=0 (16)

where Fx and E¢ are the exchange and correlation energies, respectively. The second con-
dition of Eq. 16 is the vanishing of self-interaction. The inability to satisfy this requirement
gives rise to the SIE, since J # 0 is clearly unphysical. Correcting for SIE (to whatever
extent) reduces the AFpp and thus raises the accuracy of DFAs in both predicting energies

as well as densities.?80-282

Density-corrected DFT (DC-DFT) provides a practical manner of improving the accuracy

of DFT via the non-self-consistent evaluation of a DFA on an accurate electron density.?83 286

Eq. 15 is equivalent to the energy difference between a DFA evaluated on its predicted

density and the exact functional evaluated on the exact density, E[p] — E[p]. For systems

278 the Hartree-Fock density is known

for which DFT notoriously overdelocalizes the density,
to be a reasonable choice for approximating the density-corrected energy, for which AF ~

AErp.?87286 In this scheme of DC-DFT, which is also referred to as HF-DFT, the density-
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corrected DFT energy Epc_ppr is approximated as?™
Epc_prr ~ EMF 4+ {EXC [P — E)%F} (17)

This approximation has been shown to be accurate to the second order in density differ-
ence, in line with the variational principle.?™ For further details regarding the DC-DFT

framework, we refer the reader to a recent review.28”

V. MANY-BODY PEFS FOR WATER FROM DFT
A. First-generation MB-DFT

The MB-DFT framework aims to exploit the strengths of DFT in treating quantum-
mechanical interactions, while simultaneously enabling efficient simulations of condensed-
phase systems. The first generation of MB-DFT PEFs for water were derived analogously
to the MB-pol PEF, which predicts the properties of gas-phase clusters, bulk water, va-
por/liquid interface, and ice within sub-chemical accuracy.?'® The first-generation MB-DFT
PEF's represent the 1-body energy through the Partridge-Schwenke PEF,?? while the second
and third terms of Eq. 5 were fitted to 2-body and 3-body energies calculated at a given DF'T
level. A note on notation: an arbitrary MB-DFT potential labeled as (2B+3B)-DFA treats
the first and fourth terms of Eq. 5 as in MB-pol, and the 2-body and 3-body terms according
to the specified DFA. Analogously, a MB-DFT potential labeled as 2B-DFA represents all
terms of the PEF as in MB-pol ezcept the 2-body term, and in a similar fashion for 3B-DFA,
only the 3-body term is fitted to reproduce the underlying functional. By construction, the
MB-DFT PEFs thus enable a systematic assessment of the interplay between 2-body and
3-body interactions in determining the structural properties of water.

A schematic representation of the many-body decomposition (MBD) of the interaction
energy of a water hexamer cluster is shown in Figure 2(a), suggesting that the 2B+3B
energies make up ~ 95% of the interaction energy. The eight low-energy isomers of the
water hexamer are shown Figure 2(b). Figure 2(c) shows the correlations between 2-body
and 3-body energies calculated with four DFAs belonging to rung 2 (revPBE-D3),%®® rung
3 (B97TM-1V),*? and rung 4 (revPBE0-D3 and wB97M-V)*? across Jacob’s ladder of DFAs,
and the corresponding CCSD(T) reference energies calculated in the complete basis set

limit (CBS).1% Specifically, revPBE-D3 is a GGA dispersion-corrected functional, B97M-rV
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FIG. 2. Importance of 2B and 3B energies in water. (a) schematic of many-body decomposition
(MBD) of the interaction energy of the (H20)g prism isomer into individual nB contributions.
(b) the eight low-energy isomers of (H20)g. (c) shows the correlation plots for 2B (top) and 3B
(bottom) PEFs evaluated against CCSD(T). Correlation plots are shown for revPBE-D3 (red),
BI7M-1rV (gold), MB-revPBE0-D3 (green), wB97M-V (purple). Panel (d) shows the difference be-
tween MB-DFT models in predicting the interaction energy relative to CCSD(T). Figure adapted
with permission from Chem. Sci. 10, 8211-8218 (2019). Copyright 2019 Royal Society of Chem-
istry.
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is a meta-GGA functional with non-local correlation, rev-PBEO0-D3 is a dispersion-corrected
hybrid functional, and wB97M-V is a range-separated, meta-GGA, hybrid functional.

A common, but not systematic, “rule of thumb” in DFT is that, as one climbs up Jacob’s
ladder, the accuracy increases. This is generally true, as seen in the 2-body and 3-body
correlation plots showing significant improvement as one goes from revPBE-D3 towards
wBITM-V where a lower RMSD relative to CCSD(T) is displayed. For instance, in the 2B
PES, revPBE-D3 has an RMSD of -0.5 kcal/mol (rung 2), B97TM-rV -0.25 kcal/mol (rung 3),
and finally 0.14 kcal/mol for wB97M-V. These findings are in line with AIMD simulations
reported in Refs. 50,52. In general, the four DFAs analyzed in Figure 2(c) provide better
agreement with the CCSD(T) reference values for 2-body than 3-body energies. As suggested
by Figure 2(a), this directly affects how the corresponding four MB-DFT PEFs predict the
properties of larger water systems, from gas-phase clusters to liquid water.

The interaction energies (Fiy) of the first eight low-energy isomers of the water hexamer
calculated with the revPBE-D3, B97M-rV, revPBE(0-D3, and wB97M-V functionals and
the corresponding MB-DFT PEFs are shown in Figure 2(d) along with the CCSD(T)/CBS
reference values. In this analysis, i, is defined as the difference between the total energy of
the (Hy0), cluster (E,_pne) and the sum of the energies of the individual n water molecules

in the same distorted geometries as in the cluster (E%29),

n

Eint - En—mer - Z EZH2O (18>

i=1
To emphasize the importance of a rigorous treatment of both 2-body and 3-body energies,
Eiy is computed using: (i) DFAs, (ii) full (2B+3B)-DFA PEFs, (iii) 2B-DFA PEFs, and
(iv) 3B-DFA PEFs. Figure 2(d) shows that wB97M-V predicts Ejy in fair agreement with
the CCSD(T)/CBS reference values. The dominance of the 2-body energies over the 3-body
energies is evidenced by the fact that the 2B-DFA PEFs display the highest errors in the
case of all DFAs, while the 3B-DFA PEFs, which use the same 2-body term as MB-pol,
display the smallest errors. Morever, the three different MB-DFT PEFs derived from each
of the four DFAs predict i, within £1 kcal/mol of the bare DFA | attesting to the accuracy
of the MB-DFT PEFs in faithfully reproducing the corresponding DFA n-body energies.
The delicate interplay among many-body effects in gas-phase clusters transfers over to
the condensed phase, directly affecting the structural properties of liquid water. For all

MB-DFT PEFSs, path-integral molecular dynamics (PIMD) simulations,??®?! which explic-
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FIG. 3. Structural properties of liquid water as predicted by first-generation MB-DFT models.
From left to right, (2B+3B)-, 2B- and 3B- MB-DFT potentials are shown. Panel (a) shows the
comparison between oxygen—oxygen radial distribution functions (RDFs), goo(r), of liquid water
at ambient conditions derived from X-ray diffraction measurements (gray area) and calculated from
path-integral molecular dynamics (PIMD) simulations in the isothermal-isobaric (NPT) ensemble
at ambient conditions (T=298.15 K and P=1 atm). Panel (b) shows the corresponding normalized
probability distribution of the tetrahedral order parameter P(g;c) under the same thermodynamic
conditions. Here, MB-revPBE-D3 (red), BI7TM-rV (yellow), revPBE(0-D3 (green), and wB97M-V
(magenta) are shown with MB-pol (blue) for comparison. Figure adapted with permission from

Chem. Sci. 10, 8211-8218 (2019). Copyright 2019 Royal Society of Chemistry.

itly accounts for nuclear quantum effects, were carried out in the canonical (NVT) ensemble
at 298.15 K and experimental density as well as in the isothermal-isobaric (NPT) ensem-
ble at 298.15 K and 1 atm.!®® The structural properties of liquid water predicted by the
(2B+3B)-DFA, (2B)-DFA, (3B)-DFA, and MB-pol PEFs are shown in Figure 3. Specifi-
cally, Figure 3(a) shows the oxygen-oxygen RDFs calculated from NPT PIMD simulations
carried out with the four (2B+3B)-DFA PEFs described above as well as MB-pol that is
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used as a reference. For those DFAs for which AIMD simulations were reported in the liter-
ature, the corresponding (2B+3B)-DFA PEFs closely reproduces the AIMD results.'® This
attests to the ability of the (2B+3B)-DFA PEFs to predict the properties of water with full
ab initio accuracy. This preservation of accuracy holds for all functionals with the exception
of revPBE-D3. The nature of this discrepancy will be ascertained in Section VII.

Unlike simulations performed in the NVT ensemble, the volume and, thus, the density
are allowed to fluctuate in the NPT simulations, resulting in a local structure that is more
sensitive to the “realism” and predictive capabilities of a given PEF. To this end, Ref.1%
demonstrated that all four MB-DFT PEFs described above provide RDF's in fair agreement
to experiment when calculated from NVT simulations. However, when the simulations were
carried out in the NPT ensemble, the same four MB-DFT PEFs predict RDFs that deviate
significantly from the experimental results which correlates with the ability of a given MB-
DFT to reproduce low-order n-body energies. As it may be expected from the MBD analysis,
the GGA revPBE-D3 and hybrid revPBEO-D3 functionals predict an ice-like local hydrogen-
bonding environment, which manifests in over-structured oxygen-oxygen RDF's calculated
with the corresponding MB-revPBE-D3 and MB-revPBEO-D3 PEFs. This is in contrast
to the performance of the MB-B97M-rV and MB-wB97M-V PEFs that predict a slightly
under-structured liquid, which can been traced back to the more repulsive nature of the
non-local rVV10 correlation functional.

Dissecting the full (2B+3B)-DFA PEFs into their underlying (2B)-DFA and (3B)-DFA
components highlights the cooperative nature of many-body interactions in determining
the local structure of water. This is manifested in the differences in the oxygen-oxygen
RDFs, which translate into differences in the local structure of liquid water as described by
the distribution of the tetrahedral order parameter, P(gct), shown in Figure 3(b) for the
different MB-DFT PEFs. The tetrahedral order parameter, g, is given by?%?

oot = 1—§~§ 3 <cos<wjk>+§)2 (19)

=1 k=j+1
where 1, is the angle between the oxygen of the central water molecule and the oxygen
atoms of the two neighboring water molecules. The tetrahedral order parameter has values of
0 < et < 1, for which the limiting cases are the ideal gas (g = 0) and perfect tetrahedral
coordination (g = 1).

These analyses demonstrate that the ability of a given DFA to accurately describe in-
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dividual n-body energies effectively determines its ability to correctly predict the structure
of liquid water. In this context, comparing the (2B+3B)-DFA PEFs with the (2B)-DFA
and (3B)-DFA PEFs demonstrates that most of the DFAs rely on error compensation in the
representation of 2-body and 3-body energies. To summarize, the original MB-DFT frame-
work provides a platform for (i) the construction of many-body PEFs rigorously derived
from a given DFA, and (ii) the systematic assessment of the reliability of a given DFA in

representing water from the gas to the condensed phase.

B. Generalized MB-DFT framework

The generalized MB-DFT framework goes beyond the first-generation MB-DFT PEFs
described above by determining all parameters used in the classical components of the PEF
(i.e., atomic charges and polarizabilities entering Vi and V,1, respectively, and dispersion
coeflicients entering Viyisp) from ab initio calculations carried out using the same DFA. In
the generalized MB-DFT framework, the 1-body, 2-body, and 3-body terms of Eq. 5 con-
tain short-range PIPs that represent the corresponding 1-body, 2-body, and 3-body energies
calculated with a given DFA. Hence, by construction, the generalized MB-DFT framework
expands the applicability of MB-DFT PEFs to generic molecular systems beyond water.
Importantly, building upon the predictive power of prior families of data-driven many-body
PEFs,163°165,167-169,17L,172 the generalized MB-DFT framework'4? was developed for applica-
tion in fully polarizable QM/MB-MM simulations of chemical transformations in solution
which correctly account for many-body interactions in both QM and MB-MM regions. The
necessity of a QM/MB-MM scheme arises from the fact that a rigorous description of the
interactions between the reactive species and the solvent molecules is warranted as many
reaction mechanisms and associated rates are solvent-supported.??3

Since the generalized MB-DFT PEFs are physics-based DDPs, they lend themselves
well to QM /MM simulations where pure ML models come short as they cannot provide
a physics-based description of many-body electrostatics and, consequently, the coupling
between the MM region and the QM density.?** In this section, we discuss the properties
and limitations of the generalized MB-DFT potentials for water, while the application of
MB-DFT in QM/MB-MM is discussed in Section VIII.

For the MB-DFT PEFs, the dipole polarizabilities of the free atoms are computed at
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FIG. 4. Panel (a) shows the errors (in kcal/mol) associated with the MBD of the interaction
energy of the prism isomer of the water hexamer, calculated with MB-QM models relative to their
ab-initio reference values, for density functionals belonging to rungs 2,3, and 4 of Jacob’s ladder,
in addition to MP2. Panel (b) shows compares the nB-decomposition of PBE-D3 with its density-
corrected functional, DC-PBE-D3. Panel (c) displays the interaction energies for the eight water
isomers of the hexamer computed with PBE-D3, MB-PBE-D3, DC-PBE MB-PBE(DC), relative
to CCSD(T). Figure adapted with permission from J. Chem. Theory Comput. 17, 5635-5650
(2021). Copyright 2021 American Chemical Society.

the desired DFA level using the XDM model,%254255 and the atomic charges are computed
using the charge-model-5 (CM5) scheme.??> The first concern is how well the MB-DFT
PEF derived from a given DFA reproduces the corresponding 1-body, 2-body, and 3-body
energies. Generally speaking, the MB-DFT framework is robust enough so that a MB-
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DFT PEF accurately reproduces the corresponding 1-body, 2-body, and 3-body energies
calculated with the corresponding DFA| with RMSDs of ~0.08, ~0.12, and ~0.03 kcal /mol,
respectively.!4?. This high correlation between the MB-DFT and DFA 2-body and 3-body
energies supports that the notion that the associated 2-body and 3-body PIPs effectively
account for genuinely short-range quantum-mechanical 2-body and 3-body contributions to
the interaction energy, such as exchange-repulsion, charge penetration, and charge transfer,
which, by definition, cannot be represented by classical expressions adopted by conventional
force fields.!#” This is an important point, as it directly relates to the ability of a MB-DFT
PEF to correctly represent individual n-body energies in both gas-phase and condensed-

phase systems.

In Figure 4(a), the MBD of the interaction energy of the prism isomer of the water
hexamer is shown for several MB-DFT PEFs with respect to their parent DFA, as well as
for MB-MP2 relative to MP2. The general trend is that the MBDs calculated with the
different MB-DF'T PEFs are in qualitative agreement with the corresponding DFA reference
values. This analysis shows that the 4-body energy is the principal contributor of the total
error in the MBD calculated with all the MB-DFT PEFSs, albeit the 4-body energy only
accounts for ~ 5% of FEi, as shown in Figure 2. For example, Figure 4(a) shows that
MB-PBE-D3 exhibits an average error (over the eight isomers of the water hexamer) in
the 4-body energy, AE;%, of 1.07 kcal/mol. The inclusion of 25% Hartree-Fock exchange
does not significantly improve the 4-body energy, since AE;*fg = 0.72 kcal/mol for MB-
PBEO-D3. Since the MB-DFT PEFs represent all n-body interactions with n > 4 using
a classical many-body polarization term, the relatively large 4-body errors associated with
PBE-D3, and PBE0-D3, as well as B97M-rV and M06-2X-D3, indicate that this classical

representation, which was shown to accurately represent 4-body CCSD(T) energies in MB-

pol,'% appears to be not sufficient to fully recover 4-body energies calculated with these

DFAs.

Figure 4(b) shows the MBD of the prism isomer calculated with PBE-D3 and its density-
corrected analog, DC-PBE-D3, relative to CCSD(T)/CBS. The errors in 4-body and 5-body
energies decrease by a factor of ~2 when going from PBE-D3 to DC-PBE-D3, which implies
that PBE-D3 suffers from significant density-driven errors. Importantly, Figure 4(c) shows
that, beyond reducing the errors with respect to CCSD(T)/CBS, the discrepancy between
MB-PBE-D3(DC) and DC-PBE-D3 is also reduced significantly compared to that found
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between MB-PBE-D3 and PBE-D3.

VI. MANY-BODY POTENTIALS FROM SCAN AND RELATED
FUNCTIONALS

The SCAN functional has been used in a variety of studies that examine various struc-
tural and thermodynamic properties of water across the phase diagram.??:102157,158,296 Tp
the context of these studies, it is relevant to note that SCAN exhibits a notably high error
in the 2-body energies, while broadly predicting very accurate higher order terms of the
MBE.? This can be traced back to over-delocalization errors arising from the approximate

description of the exchange-correlation term in the different DFAs.%

A. The effect of Hartree-Fock exchange: SCAN and SCAN«a functionals

The adiabatic connection formula enables the effective formulation of hybrid function-
als that incorporate a certain fraction of Hartree-Fock exchange along with the approxi-
mated semi-local exchange.??" 3% Here, SCANO represents a hybrid functional with 25%
of Hartree-Fock exchange, which formally cancels out the self interaction error introduced

in the Coulomb term, up to the percentage of Hartree-Fock exchange.%0:278

Building from
the adiabatic connection formula, the MB-SCAN«a PEFs were developed to systematically
explore the effect of adding a fraction (a) of Hartree-Fock exchange on the structure and
dynamics of liquid water, and connect the smaller energy differences between SCAN and
SCANO in the gas phase to the more substantial structural and thermodynamic differences
between these two DFAs in the liquid phase.

The MBEs calculated for the water hexamers using the SCANa DFAs display larger
errors in the 2-body energies. Interestingly, the description of 2-body energies of the 3-
dimensional hexamer isomers, such as the prism and cage isomers, benefits from larger
amounts of Hartree-Fock exchange, whereas strictly planar isomers, such as the cyclic ring,
are better represented by the pure SCAN functional.!®* It should be noted that isomers
with nearly planar geometries, such as the book isomers, minimize their 2-body errors when

a fraction of 15-20% Hartree-Fock exchange is added to SCAN. It was demonstrated that
the variation in the 2-body energies between SCAN and SCANO (which is on the order 1
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FIG. 5. Panel (a) shows the errors (in kcal /mol) associated with the MBD of the interaction energy
of the the first eight low-energy isomers of the water hexamer computed with SCAN« functionals,
where « is the fraction of Hartree-Fock exchange, ranging from 0.00 < a < 0.25. Panel (b)
systematically relates the 2B energy error in the MBD with an over-structured goo(r) caculated
from NPT MD simulatons using the MB-SCAN«a PEFs. Figure adapted with permission from J.
Chem. Theory Comput. 17, 3739-3749 (2021). Copyright 2021 American Chemical Society.

kcal/mol) is largely responsible for the qualitivative differences observed in the description

of liquid water as predicted by the MB-SCAN and MB-SCANO PEFs.!%!

Varying the fraction of Hartree-Fock exchange can shift the structure of liquid water from
an overly disordered liquid state at a = 0 to a more ice-like liquid state at a = 0.25. While

the effect of modulating « is consistent with AIMD simulations of liquid water described us-
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ing SCAN and SCANO, MB-SCANa simulations caried out in the NPT ensemble were unable
to exactly reproduce the oxygen-oxygen RDF and the liquid density of the corresponding
AIMD simulations. DFAs that suffer from delocalization errors are particularly sensitive
to size-dependent density-driven artifacts between gas and condensed phases, wherein the
short-range physics is fundamentally different between the two phases. As described in
Section III, the MB-DFT PEFs are trained on gas-phase data and rely on a description of
classical polarization to account for long-range many-body interactions. Therefore, within
the current MB-DF'T framework, they cannot capture quantum-mechanical effects that ex-
tend into n-body terms with n > 4. While the current MB-DFT framework is consistent
with the MBE calculated at the CCSD(T)/CBS level of theory,?'® the analyses reported in
Ref. 71 indicate that the MBEs calculated with DFAs that severely suffer from delocaliza-
tion errors display a different convergence that cannot quantitatively be reproduced by the

current MB-DFT framework.

B. The density-corrected SCAN functional with chemical accuracy

As discussed in the previous section, the SCAN functional deviates significantly from
chemical accuracy in predicting the energetics of various water systems. Figure 5 illustrates
that the delocalization error in SCAN is manifested primarily in the 2-body energies, which
is in line with other studies.”®%% By adding a fraction of Hartree-Fock exchange through
the adiabatic connection formula, the delocalization error is reduced to a minimum for of
0.10 < o < 0.15 Hartree-Fock exchange.?”1%0 Adding more than 15% Hartree-Fock exchange
leads to an increase in the functional-driven error that results in deteriorated accuracy.!!
Despite providing better agreement with experimental data than SCAN for liquid water, MB-
SCANa (a=0.15) still produces a more compact water structure at ambient conditions.'%!

The density-corrected DFT formalism described in Section IVB yields remarkable agree-
ment for the SCAN functional, demonstrating that minimizing the density-driven error
effectively elevates the accuracy of SCAN towards CCSD(T) accuracy.”®?" This further
supports the overall robustness of SCAN which is associated with its ability to satisfy all
the 17 exact constraints known for a meta-GGA DFA.! Figure 6(a) depicts the errors in
binding energies of the 38 low-energy isomers of the (Hy0),—2_10 clusters included in the

BEGDB dataset.?*! Relative to the CCSD(T)/CBS reference values, the SCAN functional
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displays a mean unsigned error (MUE) of 5.69 kcal/mol compared to 0.54 kcal/mol asso-
ciated with DC-SCAN.?"" Interestingly, adding a dispersion correction to both SCAN and
DC-SCAN deteriorates their accuracy. This can be explained by considering that the SCAN
functional form contains terms representing short- and mid-range components of the dis-

51,91

persion energy, which appears to be sufficient for accurately describing the interactions

between water molecules.”%-277

It is well known that self-consistent densities of GGA functionals can result in signifi-
cant overbinding and lead to spurious fractional charges on separated fragments.?"3% Such
fractional charge errors, a byproduct of electron over-delocalization, are strongly reduced
by the Hartree-Fock density. Note that, even for overlapped and interacting fragments, the
Hartree-Fock density partitions the density among the fragments in a more correct manner
than the self-consistent density.?”” In fact, beyond neutral water, DC-SCAN improves the
accuracy of the protonated and deprotonated water clusters contained in the WATER27
dataset, reducing the MUE from 9.89 kcal/mol displayed by SCAN to 1.43 kcal/mol dis-
played by DC-SCAN as shown in Figure 6(b).3** For reference, the WATER27 dataset
includes 14 neutral water clusters [(HyO),, with n = 2 — 6,8, 20], 5 protonated water clus-
ters [(H3O%(H20),,, with n = 1 — 3,6], 7 deprotonated water clusters [OH™ (H0),,, with
n =1— 6], and 1 autoionized water cluster [H3O0"(H,0),OH™]. It should be noted that for
compact systems, such as the water monomer, the self-consistent SCAN density provides
better energetics compared to the Hartree-Fock density. This is illustrated in Figs. 6(c,d)
that depict the error in the water monomer’s distortion energies for SCAN and DC-SCAN,
respectively. On the other hand, using the Hartree-Fock density in DC-SCAN effectively
removes the delocalization error from the 2-body energies of neutral and protonated water
clusters as shown in Figure 6(e,f), which brings both binding and interaction energies of
different water clusters very close to CCSD(T) reference values. Due to large density-driven
errors, deprotonated water clusters display large 2-body and 3-body errors, which can only
be mitigated by DC-SCAN as shown in Figure 6(g).

Figure 7(a,b) shows that the MB-DFT PEF based on DC-SCAN, MB-SCAN(DC), is
able to accurately reproduce the experimental oxygen-oxygen RDF as well as the MB-
pol tetrahedral-order parameter of liquid water at 298 K. As shown in Figure7(c), MB-
SCAN(DC) also correctly predicts the temperature-dependence of the density of liquid wa-

ter, with a deviation of ~0.1 g/cm? across the entire tempreature range. Additionally, Fig-
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FIG. 6. Panel (a) shows absolute errors binding energies calculated for the neutral water cluster
subset of the BEGDB dataset using SCAN, DC-SCAN, SCAN-D3, and DC-SCAN-D3 with respect
to the CCSD(T)/CBS reference value. Panel (b) shows absolute errors in binding energies calcu-
lated for the WATER27 dataset structures using SCAN, DC-SCAN, SCAN-D3, and DC-SCAN-D3,
with respect to the CCSD(T)/CBS benchmark.32. Panel (c) and (d) describe the errors in the
distortion energies of a free water monomer from a) SCAN and b) DC-SCAN for O---Hp and
O---Hp distortions, relative to CCSD(T). The color scale indicates the absolute error. Adapted
with permission from J. Chem. Theory Comput. 18, 4745-4761 (2022). Copyright 2021 American
Chemical Society. Errors relative to CCSD(T)-F12b reference values for each nB energy contri-
bution to the interaction energies calculated with SCAN and DC-SCAN for the (e) (HgO)éDQd)
() H30+(H20)é2d) (g) OH™ (H20)s. Reprinted with permission from S. Dasgupta, et al., Nat.

Commun. 12, 1-12 (2021); licensed under a Creative Commons Attribution (CC BY) license.
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FIG. 7. (a) Oxygen-oxygen (goo) radial distribution function (RDF) calculated from NPT sim-
ulations carried out with the MB-SCAN(DC) PEF at 298 K and 1 atm. (b) Distributions of the
tetrahedral order parameter, g, calculated from MD simulations in the NPT ensemble at 298 K
and 1 atm with with the MB-SCAN(DC) PEF (c) Temperature-dependence of the density of liquid
water at 1 atm calculated from classical NPT simulations carried out with MB-SCAN(DC) along
with the results from SCAN-AIMD,*! SCAN-NNP,!%2 and SCANO-NNP (with 10% Hartree-Fock
exchange)?? simulations. The MB-pol results are from ref. 213, while the experimental data are
from the NIST Chemistry WebBook.3% (d) Temperature-dependence of the self-diffusion coeffi-
cient of liquid water calculated from NVE simulations carried out with the MB-SCAN(DC) PEF.
Figure adapted from S. Dasgupta, et al, Nat. Commun. 12, 1-12 (2021); licensed under a Creative

Commons Attribution (CC BY) license.

ure 7(d) demonstrates that MB-SCAN(DC) predicts the self-diffusion coefficient of liquid
water between 250 K and 340 K in excellent agreement with the corresponding experimental

values.
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FIG. 8. Mean absolute error per molecule, (Aeiy), for the interaction energy as a function of
cluster size for (H20), for n = 2 — 10 predicted by (a) DFT and (b) DC-DFT. (Aeint) is shown
relative relative to the CCSD(T)/CBS reference values. Figure reprinted with permission from J.

Chem. Theory Comput. 18, 3410-3426 (2022). Copyright 2022 American Chemical Society.
VII. MANY-BODY POTENTIALS FROM DC-DFT FUNCTIONALS

The interplay between functional-driven and density-driven errors effectively determines
the accuracy of a DFA.™273:287 Understanding the roles played these errors in DFT models
of water is therefore important for: (1) rationalizing the predictive capabilities of DFT-based
simulations of water, (2) defining theoretical considerations for future development of DFT
and DFT-based models of water with improved accuracy, and (3) identifying DFAs suitable

for simulations of reactive processes in water within a hybrid DF'T/MB-DFT scheme.

A. Functional- and density-driven errors in water clusters: DC-DFT

It is necessary to first understand the role of AFpp and AEpp in predicting molecular
interactions in gas-phase water clusters. In this section, we revisit some of the representa-
tive GGA DFAs discussed in Section VA, namely, BLYP-D3(op) and revPBE-D3(op), and
meta-GGA functionals, namely BO7M-rV and SCAN. On a technical note, the optimized-
power D3(op)3"® empirical dispersion correction is used for revPBE and BLYP, rather then

)307

the original D3 (zero damping parameters, as the latter was shown to be erroneous for
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revPBE, particularly in predicting the 2-body energies.” Figure 8(a) shows the mean ab-
solute error (MAE) in the interaction energy per water molecule for all of the 38 clusters

included in the BEGDB dataset relative to the CCSD(T)/CBS reference values.**'3%. The
MAE per molecule, (Aeyy), is given by ™

N
1
(Aeing) = N ; Aéing.i (20)
where Aey = B0 — Er<| /n. Here n is the number of water molecules in the (H,0),

cluster, and N is the number of isomers of a given (Hy0),, cluster in the data set. Com-
paring panels (a) and (b) of Figure 8, it is apparent that many DFAs benefit from error
compensation between AFpp and AFEpp. This is clearly the case of BLYP-D3(op) and
revPBE-D3(op), for which (Aeiy) increases with n when the energy functional is evaluated
on the Hartree-Fock density.

An alternative but useful interpretation of the DC-DFT energies is that not only are the
density-driven errors “minimized”, but the physical robustness of an approximate functional
is exposed. Keeping in mind that the Hartree-Fock density is overlocalized compared to the
exact density, the magnitude of the density-driven errors introduced by the Hartree-Fock
density is still appreciably smaller than the delocalization error displayed by semi-local DFAs.
Therefore, an analysis of Eq. 15 suggests that a density-corrected energy can be thought of as
EPC ~ AFEypp for DFAs prone to large delocalization error. By approximating the functional-
driven errors, Figure 8(b) reveals that the capability of certain DFAs (e.g. BLYP-D3(op),
revPBE-D3(op),and B97TM-rV) in representing interactions in water may be sensitive to the
size of the system. The opposite trend is observed for SCAN. The MAE increases as n for
self-consistent SCAN, while this size-sensitivity is suppressed by DC-SCAN. This suggests
that SCAN is a special case for which |[AFEpp| < |AEpp|. As a result, (Aejy) is significantly
smaller for DC-SCAN than SCAN calculations. Using the water hexamer as a benchmark
system, (Aeiy) drops from 0.87 kcal/mol for SCAN to 0.03 kcal/mol for DC-SCAN, with
the latter effectively reproducing the CCSD(T)/CBS reference energies.

Generally speaking, when functional-driven errors dominate in a given DFA, Aey, in-
creases with system’s size. For revPBE-D3(op) it is clear that functional-driven errors
dominate, while AFgp and Epp are similar in magnitude for BLYP-D3(op) and B97TM-rV,
leading to nearly complete error cancellation. Even within DC-DFT, it should be noted

that DC-B97M-1V is in fact still closer to the CCSD(T)/CBS reference values for all the
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clusters included in the analyses of Ref. 71, suggesting that (1) B97M-rV is not as sensitive
to density-driven errors as the other DFAs and (2) B97M-rV can serve as reliable DFA for
hybrid DFT/MB-DFT simulations of aqueous environments.

The important lesson in Figure 8 is that the size sensitivity of functional-driven and
density-driven errors has direct implications for DFT-based and AIMD simulations of ex-
tended systems (e.g., liquid water, ice). A few general rules can be extracted from the
analyses discussed in Ref. 71: (1) AEpp depends on the system’s size for DFAs where
AFEgp > Epp, (2) for DFAs where AEpp > Epp significantly, DC-DFT elevates the ac-
curacy of said DFAs, and (3) the size-dependence of functional-driven and density-driven
errors in semi-local DFAs shines light onto the error compensation that allows certain DFAs
to be successful in representing some properties of liquid water while, at the same time,

failing to predict the properties of water clusters.309313,

B. Functional- and density-driven errors in liquid water: MB-DFT(DC)

The MB-DFT framework enables the acceleration of DC-DF'T simulations, for which an
efficient “on the fly” DC-DFT simulation scheme is currently unavailable. As seen in Section
VI, the chemical accuracy found in DC-SCAN for water clusters translates into a correct
description of various properties of liquid water calculated from MB-SCAN(DC) simulations.
Figure 9 shows the oxygen-oxygen RDFs for the MB-revPBE-D3(op) and MB-B97M-rV
PEFs, along with their DC-DFT analogs, MB-revPBE-D3(op)(DC) and MB-B97TM-rV(DC).
In general, the systematic raising of Fy, in the gas phase by the density correction translates
into a more “disordered” local structure of liquid water. This is apparent in the case of MB-
revPBE-D3(op)(DC), where the density correction breaks the solvation structure up to the
first solvation shell, as suggested by the flattening of the oxygen-oxygen RDF beyond the first
peak. As revPBE-D3(op) includes semi-local correlation, the minimization of Epp allows
the D3(op) correction to improve the description of liquid water predicted by DC-revPBE-
D3(op), which was shown to predict correct electrostatics.” Interestingly, the oxygen-oxygen
RDF predicted by MB-B97M-rV(DC) is slightly more structured than that of MB-B97M-
rV, an effect opposite to that seen for revPBE-D3(op), which results from the overlocalized
nature of the Hartree-Fock density. Overall, BO7TM-rV is found to be a robust density
functional, with low sensitivity to density-driven errors. Since DC-B97M-rV and MB-B97M-
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FIG. 9. Comparison between MB-DFT and density-corrected MB-DFT(DC) models in predicting
the structure of liquid water. The oxygen-oxygen RDF, goo(r), calculated from MD simulations
carried out in the NPT ensemble (T=298 K ; P=1 atm) with (a) MB-BLYP-D3(op),(DC), (b)
MB-revPBE-D3(op)(DC), (c¢) MB-B97M-rV(DC), and (d) MB-SCAN(DC). Figure adapted with
permission from J. Chem. Theory Comput. 18, 3410 18, 3410-3426 (2022). Copyright 2022

American Chemical Society.

rV(DC) exhibit similar accuracy to B97M-rV and MB-B97M-rV, respectively, BOTM-rV can
be considered as a balanced compromise between accuracy and efficiency for MB-DFT and

DFT/MB-DFT simulations for aqueous phase chemistry.

VIII. MANY-BODY POTENTIALS FROM MACHINE-LEARNED
FUNCTIONALS

As machine learning approaches continue to solidify their place in DFT,173147317 the
DM21 functional represents a significant milestone in the field, as it was trained on exact
constraints including fractional charge (FC) and fractional spin (F'S) constraints, in combina-

tion with atomic and molecular data.''> Recent work highlights that machine-learning DFAs
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FIG. 10. Top: Errors (in kcal/mol) associated with individual n-body contributions to the inter-
action energies of the lowest-energy isomers of the (H20)g (a), H30™ (H20)5 (b), and OH™ (H20)5
(c) clusters relative to the corresponding CCSD(T) reference values. Bottom: Oxygen-oxygen ra-
dial distribution function (d), and tetrahedral order parameter distribution (e) calculated from MD
simulations carried out with MB-DM21 at 298 K and 1 atm. Figure adapted from E. Palos, E. Lam-
bros, S. Dasgupta, and F. Paesani, “Density functional theory of water with the machine-learned

DM21 functional,” J. Chem. Phys. 156, 161103 (2022), with the permission of AIP Publishing.

capable of quantitatively describing the properties of water can serve as an important step to-
ward a universal DFA with transferability across phases.!'*3!® The deep-learned local-hybrid
DM21 functional was shown to outperform conventional DFAs such as SCAN and wB97X-V
in predicting the energetics of a large dataset of diversely-bonded compounds.!®31¥ While
DM21 succeeds in modeling some systems that typically represent a challenge to most DFAs,
it is significantly expensive relative to any other DFA within the fourth rung of Jacob’s lad-
der.

For this reason, condensed-phase AIMD simulations using DM21 are not currently

feasible.
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A. DMZ21 as a case-study: Neutral, protonated and deprotonated water

clusters

The acceleration of simulations based on high-accuracy electronic structure methods is the
forte of the MB-DFT framework, 7071101104169 yeqdily enabling a description of water from
the gas to the liquid phase as predicted by DM21. In a recent study,?'? the accuracy of DM21
was assessed for neutral, protonated and deprotonated water clusters, and the properties
of liquid water were investigated using the newly developed MB-DM21 PEF. As shown in
Figure 10(a), in the gas phase, DM21 predicts the MBD of the interaction energy of the
prism isomer of the water hexamer with similar accuracy to wB97M-V. Interestingly, DM21
predicts the 2-body energy virtually at the level of CCSD(T)/CBS. However, the 3-body
energy displays an error of ~ 1 kcal/mol. This is an interesting result, as failure to accurately
represent n-body energies in DFT models is usually attributed to the delocalization error.?™
As aresult, DM21 predicts the MBD of the interaction energies of the water hexamer isomers
with lower accuracy than DC-SCAN. Since DM21 is, in principle, free of delocalization error,
this discrepancy in the 3-body energies is attributed to the size-dependence of functional-
driven errors arising potentially from the training-set of the ML potential'!® that defines the
semi-local portion of the exchange-correlation functional, which accounts for the description
of static correlation.?1?2%%:320 This is opposite to what was observed for DC-SCAN, where

the error decreases as n increases.

In the case of protonated water clusters, DM21 outperforms both wB97M-V and DC-
SCAN in predicting the 2-body energies, quantitatively reproducing the CCSD(T) reference
energies, while all three DFAs predict 3-body energies with similar accuracy, with DM21
displaying a larger error than DC-SCAN by only ~ 0.3 kcal/mol. The notoriously challenging
deprotonated water clusters represent a different story, where DM21 provides the smallest 2-
body error but relatively larger errors than wB97M-V and DC-SCAN for the 3-body, 4-body,
and 5-body energies. Figure 10(c) shows that the n-body errors oscillate between positive
and negative values for all three functionals, with higher absolute errors in individual n-body
energies associated with DM21. Since DM21 is trained on both FC and FS constraints, the
better agreement between DM21 and the reference CCSD(T) 2-body energies may indicate
that DM21 is capable of providing a better description of the static correlation of the ionized
clusters, relative to DC-SCAN and wB97M-V. In general, the three functionals are less
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accurate for the deprotonated water clusters than the corresponding neutral and protonated
clusters. As the density of deprotonated water is more diffuse than in neutral water, this
suggests that all three functionals may systematically overestimate the energy of the highest
occupied molecular orbital (HOMO) of deprotonated water clusters, which is likely due to
incorrect features of the functionals in the asymptotic limit.?21323 As DM21 is a local-range-
separated hybrid functional, further investigation on its ability to describe static correlation

in processes involving proton transfer, as in the Grotthuss mechanism, is warranted.

B. The MB-DM21 potential

The structural properties of liquid water as predicted by NPT simulations carried out
at 298 K and 1 atm with the MB-DM21 PEF are shown in Figure 10(d-e). Unexpectedly,
MB-DM21 predicts a slightly overstructured and more tetrahedral liquid phase relative to
MB-SCAN(DC)™™ and MB-pol!63165:213 which, on the other hand, are in good agreement
with experiment. This finding supports the possibility of relatively large functional-driven
errors in the MLP term of DM21, as it is trained on atomic and molecular data, leading to
incomplete error cancellation in the condensed phase.”2° From Figure 10(d-e), it appears
that DM21 has limited ability in predicting the thermodynamic properties of liquid water. In
this regard, recent work showed that DM21 systematically underestimates the liquid density,
overestimates the heat of vaporization, and provides a poor description of the isothermal

compressibility of liquid water in the supercooled regime.”

In summary, functional-driven errors in DM21 are non-negligible and, due to their sensi-
tivity to system size, affect the overall accuracy of DM21 when applied to aqueous systems.
These functional-driven errors have direct effects on the ability of DM21 to describe liquid
water. Furthermore, while DM21 represents only one ML-DFA, this case study suggests that
improving the functional form and physical content of machine-learned DFAs should allow
for further reducing functional-driven errors and, in turn, enable accurate representations of

aqueous systems from gas-phase clusters to the liquid phase.
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IX. MANY-BODY POTENTIALS IN POLARIZABLE QM /MM

The MB-DFT PEFs may be used to elevate the accuracy of multiscale modeling of diverse
chemical processes in solution.?63264324 Ag chemical reactions in solution pose a challenge to
both purely quantum mechanical (QM) and classical molecular mechanics (MM) techniques,
a hybrid QM /MM approach may be used to represent the system of interest as partitioned
into a (QM) subsystem, S, that contains the reactive species and is commonly treated at the
DFT level, and the environment, £, that modulates the reaction which is usually described by
a (MM) force field.3?5327 QM /MM has been successfully used in simulations of chemical sys-

tems of varying complexity, ranging in applications from modeling enzymatic reactions,328:32%

to chemical reactions in solution,3%33! to spectroscopy of biomolecular complexes,330:332-338

The total QM /MM Hamiltonian of the molecular system of interest is given by

H= HQM + Hya + I:—,QM/MM (21)

where ﬁQM stores all information pertaining to the electronic density of S, Hyn describes
the MM atoms that constitute &£, and ﬁQM/MM represents the interaction between & and
£. In the polarizable QM/MM formulation,?03324338339 Ffo\ i couples the properties of
the QM electronic density with the MM induced point dipoles (IPDs). Within this scheme,
the AMOEBA force field has received recent attention,34%34! as QM/AMOEBA has been
shown to achieve higher accuracy compared to conventional electrostatic-embedding formu-
lations by achieving full mutual polarization between S and £.3*2 However, since AMOEBA
is a fully classical PEF, QM/AMOEBA cannot overcome the energy discontinuity at the
QM /MM boundary.?* Energy discontinuities at the QM /MM boundary emerge from the
inaccuracy of the force field used to represent the MM region relative to the ab initio method
used in the QM region.34334* Since chemical reactions in solution typically occur within the
diffusion limit, the QM/MM system must be adaptively repartitioned at regular intervals
to prevent the diffusive breakup of the QM region. One possible way to minimize energy
discontinuities when molecules transition between QM and MM representations consists in
adding computationally expensive transition layers that smoothly average between the QM

and MM energies as molecules transition between layers.345347
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FIG. 11. Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations using DFT
and MB-DFT potentials in fully-self-consistent (fsc) and partially-self-consistent (psc) QM/MM.
Comparison of the QM /MM interaction energy for PBE0-D3, MB-PBE(0-D3 and MB-pol over a
reference (H20)2 potential energy surface scan. Panel (a) displays QM/MB-pol results with the
QM water molecule as the hydrogen-bond donor. Analogously, panel (c) and QM/MB-DFT (PBEO-
D3/MB-PBE(-D3) results with the QM water molecule as the hydrogen-bond donor. Panels (b)
and (d) respectively show the distributions of QM/MM interaction energies of a water hexamer as
waters are successively added into the QM region for QM/MB-pol and QM/MB-PBE0.263 Figure
reprinted with permission from J. Chem. Theory Comput. 16, 7462-7472 (2020). Copyright 2020

American Chemical Society.

A. Quantum Mechanics/Many-Body Molecular Mechanics

Since, by construction, the MB-DFT PEFs are many-body in nature and polarizable,
they provide a robust physics-based representation of I;TQM M without unphysical discon-
tinuities at the quantum/classical boundary, effectively removing the need for transition
layers. Within DFT/MB-DFT, the accuracy of the DFT level of theory chosen to represent
the QM region is effectively extended to the MM region by coupling it to a corresponding
MB-DFT representation of the environment. Therefore, in the DFT/MB-DFT scheme the
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entire system (S + &) is effectively described by the general Hamiltonian:

= ﬁQM + Hyp_qum + [:IQM/MB—QM : (22)

~Honr

As the MB-DFT polarization energy is variational with respect to the polarization degrees
of freedom, the coupled QM/MM equations and energy can be obtained self-consistently,
starting from a variational energy functional of the QM density and the MB-DFT IDPs.
From this, a fully self consistent (fsc) representation of the QM/MM polarization energy is
realized by equilibrating the IDPs at each SCF cycle?*®34% though it is possible, for purposes
of efficiency, to use a partially self-consistent scheme (psc) where the IDPs respond only the
QM density polarized by the permanent external field.**® For a detailed derivation of the
QM/MB-MM working equations, we refer the reader to Ref. 263

Understanding chemical reactions in solution requires a full characterization of the solvent
role.??3 Within a QM /MM scheme, this requires a seamless and accurate representation of
the interactions between QM and MM molecules. As an example, a comparison among
QM, MB-MM, and QM/MB-MM interaction energies for a water dimer is shown over a
reference radial scan in Figure 11(a). It should be noted that since MB-pol was derived from
CCSD(T)/CBS data, the nature of MB-pol water differs substantially from that provided by
PBEO0-D3, which is thus responsible for the energy differences shown in Figure 11(a). The
MB-DFT potentials serve as a solution to this problem. Figure 11(c) shows that DF'T/MB-
DFT calculation carried out using the hybrid PBEO-D3 functional in the QM region and the
corresponding MB-PBE(O-D3 PEF in the MM region, allows for nearly complete removal of
the energy differences between the QM and MM regions when the two water molecules are
swapped.

Figure 11(b,d) shows the interaction energies of the prism isomer of the water hexamer
calculated for different DFT/MB-DFT partitions. Starting with the cluster containing 1
water molecule in the QM region and 5 in the MM region (labeled as the 1/5 configura-
tion), water molecules are successively included in the QM region until a total of five water
molecules are placed in the QM region (5/1). Analogous to panels (a) and (c), panels (b)
and (d) represent PBE0-D3/MB-pol and PBE0-D3/MB-PBE0-D3 energies, respectively, ex-
amining the effects of re-partitioning of the DFT region (adding/removing solvent molecules
to/from the DFT region) as it occurs during DFT/MB-DFT simulations in solution. No-
tably, the PBE0-D3/MB-PBE0-D3 interaction energies calculated using either a partially
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self-consistent or a fully self-consistent scheme remain fairly close to the PBE0-D3 reference
values, independently of how the water molecules are partitioned between the PBE0-D3 and
MB-PBEO-D3 regions.

In summary, the coupling between a DF'T subsystem with a matching-accuracy MB-DF'T
solvent gives rise to a physically robust formulation of DFT/MB-DFT simulations. Since
this approach is general, it holds for arbitrary levels of QM theory and MB-QM potentials.
In QM/MB-MM, the potential energy surface of the overall (reactive + non-reactive) system
is effectively free of unphysical discontinuities as it is described by one QM-level Hamiltonian
that is only represented in different ways in the QM, MM, and QM/MM regions. From a
practical standpoint, the QM /MB-MM scheme enables QM representations of large systems
at the cost of a -reduced- QM /MM calculation.?63264 " Since QM/MB-MM represents, in
principle, the reactive subsystem and its environment on equal footing, it is expected that
QM/MB-MM will find applications in the modeling of light-driven chemical processes and
spectroscopy where environmental effects have a significant role3*337. As of today, the fully-
self-consistent (fsc) QM/MB-MM scheme has been implemented in a development version of
Gaussian®! and the partially self-consistent (psc) QM/MB-MM scheme is implemented in
the open-source Layered Interacting CHEmical Models (LICHEM) package.?64:359:352 Further
developments of the QM /MB-MM formulation, and its implementation in different software

are the subject of ongoing work.

X. SUMMARY AND OUTLOOK

Computational condensed-phase chemistry has advanced significantly in recent years
in the context of data-driven modeling. Developments in pure and physically-motivated
machine-learning models of aqueous systems have found applications in accelerating molec-
ular simulations within both non-reactive and reactive computational frameworks with
quantum-mechanical accuracy. In this work, we presented a concise overview of repre-
sentative data-driven models of water and aqueous systems, followed by a comprehensive
description of the theory, development, and applications of a generalized class of data-
driven many-body potentials for aqueous-phase simulations. As density functional theory
is currently the most widely used method for quantum-chemical modeling of molecular and

extended systems, the general purpose of the MB-DF'T class of PEFs is to accelerate non-
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reactive and reactive simulations with DF'T accuracy.

The generalized MB-DFT framework enables the development and use of full-dimensional
data-driven PEF's that are derived from different DFAs and explicitly account for one-, two-,
and three-body interactions through permutationally invariant polynomial representations
of short-range interactions in the density-overlap regime, while rigorously treating long-range
interactions through many-body classical polarization. Since the MB-DFT PEF's are phys-
ically motivated, they provide both a basis “grounded in reality” for gaining fundamental
insights into complex many-body molecular systems and a “theoretical playground” that
enables systematic analyses of the accuracy and predictive power as well as the limitations,
and challenges of different density functional approximations.

The MB-DFT PEFs distinguish themselves from other classes of recently developed po-
larizable PEF's in that they are derived a la carte, meaning that all parameters are obtained
from the desired DFA. In general, the MB-DFT PEFSs retain the accuracy of their underlying
DFA, with the exception of DFAs that are heavily subject to systematic errors. Importantly,
the MB-DFT framework provides an efficient platform for the development of many-body
PEFs for more complex systems than those currently accessible to PEFs based on wave-
function theories, thus expanding the applicability of data-driven many-body PEFs. At the
same time, the MB-DFT framework accelerates (and in certain cases enables) simulations
based on high-level and unorthodox flavors of DFT for which the corresponding ab initio
simulations are not feasible, such as computationally intensive levels of theory, e.g., the
DM21 machine-learned functional, and non-variational methods such as DC-DFT.

Beyond providing a framework for quantitative non-reactive molecular simulations of
aqueous systems, the MB-DFT framework also enables robust computational modeling of
chemical reactions in solution. Specifically, when a DFT subsystem is coupled to its anal-
ogous MB-DFT environment, the entire system is effectively characterized by a seamless
potential energy surface, achieved without introducing transition layers for repartitioning
the DFT and MB-DFT subsystems within a hybrid DFT/MB-DFT scheme. In general,
DFT/MB-DFT enables the modeling of chemical transformations in solution with DFT
accuracy at the cost of conventional polarizable embedding simulations.

We believe that the MB-DFT framework described in this review will enable predictive
molecular simulations of aqueous systems, both in the bulk and at interfaces. Although

this review focuses on aqueous systems, the MB-DFT framework is broader in scope and
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applicable to generic molecules. In this regard, the software infrastructure for the devel-
opment (MB-Fit)2%5 and application (MBX)?6! of MB-DFT PEFs in molecular simulations
(MBX) is freely available to the community. We envision future applications of MB-DFT
and DFT/MB-DFT to the modeling of various molecular systems in complex environments,
such as molecular fluid mixtures, electrolytes, and multi-phase interfaces where chemical

reactions can take place.
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