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Density functional theory (DFT) has been applied to modeling molecular interactions

in water for over three decades. The ubiquity of water in chemical and biological pro-

cesses demands a uni�ed understanding of its physics, from the single-molecule to the

thermodynamic limit and everything in between. Recent advances in the develop-

ment of data-driven and machine-learning potentials have accelerated simulation of

water and aqueous systems with DFT accuracy. However, the anomalous properties

of water in the condensed phase, where a rigorous treatment of both local and non-

local many-body interactions is in order, is often unsatisfactory or partially missing in

DFT models of water. In this review, we discuss the modeling of water and aqueous

systems based on DFT, and provide a comprehensive description of a general theo-

retical/computational framework for the development of data-driven many-body po-

tentials from DFT reference data. This framework, coined MB-DFT, readily enables

e�cient many-body molecular dynamics (MB-MD) simulations of small molecules,

in both gas and condensed phases, while preserving the accuracy of the underly-

ing DFT model. Theoretical considerations are emphasized, including the role that

the delocalization error plays in MB-DFT potentials of water, and the possibility to

elevate DFT and MB-DFT to near-chemical-accuracy through a density-corrected

formalism. The development of the MB-DFT framework is described in detail, along

with its application in MB-MD simulations and recent extension to the modeling

of reactive processes in solution within a quantum mechanics/many-body molecular

mechanics (QM/MB-MM) scheme, using water as a prototypical solvent. Finally, we

identify open challenges and discuss future directions for MB-DFT and QM/MB-MM

simulations in condensed phases.
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I. INTRODUCTION

Water, often referred to as \the matrix of life",1 is a substance with a simple molecular

structure that has been present on Earth for approximately four billion years.2 However,

it is only in this past half-century that progress has been made toward a fundamental

understanding of the physical properties of water, with microscopic detail.3–13 Theorists

worldwide have tackled \obtaining" water vapor, liquid water, and ice from computer models

founded on classical mechanics,14,15 quantum mechanics,16–18, or hybrid approaches that

combine the former to some extent.19 The �rst numerical simulations of water employed

Monte Carlo (MC)20 and molecular dynamics (MD)14 techniques, and represented water as

a system of point charges interacting through pairwise additive potentials.21 While these

simulations represent a cornerstone in the history of computer modeling of water, it became

apparent that pairwise additive potentials alone would not be able to fully capture the

complex physics of water in the condensed phase.4

In ice, hydrogen bonds arrange into low-entropy con�gurations that give rise to the for-

mation of a highly symmetrical tetrahedral network.22 However, in the liquid state, thermal


uctuations that occur within the picosecond to nanosecond timescale23,24 are the driving

force for the recurring formation and dissolution of hydrogen bonds that makes liquid wa-

ter topologically disordered.25 From a molecular standpoint, this implies that predicting the

properties of water through computer simulations requires the ability to rationalize the inter-

play between the energetic and entropic contributions that mold the free-energy landscape.3

This may be achieved provided there is a rigorous representation of many-body interactions

that shape the free-energy landscape and determine the local structure of liquid water, along
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with all thermodynamic and dynamical properties.4

Within density functional theory (DFT),26 the quantum-mechanical electronic ground

state of a water molecule is stored in a three-dimensional particle density, as opposed to a

thirty-dimensional function required by wavefunction theories (WFT).27 A � O(N3) scal-

ing in combination with reasonable accuracy has consolidated DFT as the most widely used

methodology in the computational physical sciences for the modeling of complex systems.28,29

Nevertheless the universal density functional is unknown, which has motivated a three-

decade long navigation in the vast sea of density functional approximations (DFAs), search-

ing for a DFT representation of water that can accurately predict the properties of water

from the single molecule to the thermodynamic limit. Since the 1980s, many have con-

tributed to our understanding of water within DFT and DFT-based ab initio molecular

dynamics (AIMD) simulations.16–18,30–52 Beginning on the �rst rung of John Perdew's \Ja-

cob's ladder",53 the local density approximation (LDA),26,54,55 systematically predicts too

strong and, consequently, too short hydrogen bonds that preclude a realistic description

of the structure of liquid water.16 Subsequently, it was found that DFAs de�ned within

the general gradient approximation (GGA), such as the Perdew-Burke-Erzerho� (PBE)

functional,56 yield more accurate energetics for water clusters but ultimately still predict

an over-structuring of liquid water.16–18 The systematic over-binding predicted by the LDA

and GGA functionals originates from their inability to exactly cancel self-Coulomb and self-

exchange-correlation e�ects, an error known as the self-interaction error (SIE).57 However,

GGA exchange-correlation functionals continue to have strong presence in water simula-

tions, with two popular DFAs being the empirical Becke-Lee-Yang-Parr (BLYP) functional

and the revised Perdew-Burke-Ernzerhof (revPBE) functional, in combination with correc-

tions for van der Waals forces.58–68 While dispersion corrections can improve the accuracy

of these functionals for water, it can often also amplify error cancellation69–71 and lead to

poor descriptions of water across di�erent phases.

Exchange-correlation functionals that include a dependence on both the gradient of the

electron density and the kinetic energy density, dubbed meta-GGA functionals,72 can pro-

vide an improved description of water clusters in terms of computed energies and geometries,

leading to qualitatively reasonable descriptions of the structure of liquid water at ambient

conditions, without the higher computational cost of orbital dependent DFAs.48 However,

not all is resolved by meta-GGA DFAs, as classical and path-integral AIMD simulations
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of water performed using the B97M-rV functional with non-local correlation73 systemat-

ically leads to an overly-repulsive local structure of liquid water, tethered by weaker hy-

drogen bonds as evidenced by a less-structured oxygen-oxygen radial distribution function

(RDF).50,52 Nonetheless, a recent assessment of over 200 functionals suggests that B97M-

rV is currently the most accurate meta-GGA functional on average for diversely bonded

systems,74 exhibiting an overall accuracy for water that is comparable to that of the more

expensive revPBE0-D3, a dispersion-corrected hybrid functional containing 25% Hartree-

Fock exchange.52

Hybrid DFAs that contain a fraction of Hartree-Fock exchange have become quite popu-

lar in ab initio calculations due to their improved accuracy relative to GGA functionals.75–78

Several popular hybrid functionals have been used in recent years to study molecular inter-

actions in water,48,52,79–86 focusing on the transferability of accuracy from static to dynamic

properties,80 as well the modulation of Hartree-Fock exchange and van der Waals corrections

to probe their e�ects on the predicted hydrogen-bonding network in liquid water.48 Hybrid

functionals belong to the 4th rung of Jacob's ladder, while double-hybrid functionals de�ne

the �fth rung, where a fraction of second-order perturbative correlation is included in addi-

tion to the fraction of Hartree-Fock exchange.87 While a few electronic properties of water

have been reported using double-hybrids,88–90 their � O(N5)-scaling deems them currently

intractable for AIMD simulations of condensed-phase systems.

The quest for a physically robust and e�cient description of water from DFT simulations

has resulted in the continuing rise in popularity of the meta-GGA Strongly Constrained

and Appropriately Normed (SCAN) functional51,91 along with its hybrid,92 regularized,93

regularized-and-restored relatives,94 and associated variants.95,96 SCAN is a non-empirical

density functional that was derived to satisfy the 17 exact constraints known for a meta-

GGA functional.91,97 Although it is semi-local in nature, SCAN is capable of capturing short-

to medium-range dispersion interactions.51,70,71,91 For this reason, SCAN has been found to

provide a reasonable description of both gas-phase water clusters and liquid water, albeit

still quantitatively overestimating hydrogen-bond strengths even when approximating the

inclusion of nuclear quantum e�ects.51 In an e�ort to complete the density functional theory

of water, several studies have been reported focusing on assessing the accuracy of SCAN, as

well as SCAN-based data-driven potentials (DDPs) and machine-learned potentials (MLPs)

for various properties of water,70,98–102 and ionic solutions.103,104
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In this review, we focus on discussing data-driven many-body (MB) potentials for ap-

plications in aqueous phase chemistry. While we note that several classes of DFT-based

DDPs have been proposed in recent years for water and various aqueous systems, we restrict

the main discussion to a class of DFT-based DDPs that are rigorously derived from the

many-body expansion of the energy (MBE), a theoretical/computational framework coined

MB-DFT.

II. DATA-DRIVEN MODELING OF WATER AND AQUEOUS SYSTEMS

Data-driven modeling plays an increasingly important role in theoretical and computa-

tional chemistry for its promise of accelerating the prediction of physical properties with a

quantum-mechanical accuracy,105–117 with one of the main applications being the develop-

ment of interatomic and intermolecular potentials.112,118–144 In the context of potentials for

condensed-phase simulations, DDPs and MLPs with complex analytical forms are 
exible

enough to e�ectively capture the intricate interactions between molecules at the accuracy

of the underlying ab initio reference data.145 Regarding water and aqueous systems, such

models are broadly divided into two distinct categories: A) models whose entire represen-

tation is machine learned,99,100,102,141,143,146–161 and B) data-driven physically-motivated that

integrate a machine-learned representation with an underlying physical model.144,162–172

A. Machine-learned potentials

Over the past �fteen years, high-dimensional machine-learned models have been de-

veloped representing molecular interactions in water through neural network potentials

(NNPs),99,118–121,141,143,145,155,173–176 gaussian approximation potentials (GAPs),105 permu-

tationally invariant polynomials (PIPs).147–150,163–166,177–179 In general, MLPs trained us-

ing various regression algorithms rely on using a set of descriptors which account for

the immediate environment around a molecule in order to describe the potential energy

surface.119,121,125,126,180–182 Because these models are strongly dependent on the dataset to

which they are trained on, they are typically limited in their transferability across di�erent

phases.141,151,152,154,159,183–187 On the one hand, MLPs trained purely on gas-phase data have

di�culties in properly describing condensed-phase systems where long-range and many-
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body e�ects play signi�cant roles.141,188 Recent studies have proposed avenues to overcome

the challenge of long-range physics in NNPs.151,152,154,183–185,187,189–192 For condensed-phase

systems, however, NNPs are usually trained on con�gurations of liquid water extracted

from AIMD simulations and, consequently, are able to provide an e�ective description of

long-range interactions within the bounds of the simulation box. In addition, such con-

densed phase MLPs currently account for many-body e�ects only in an implicit fashion and,

therefore, are not guaranteed to correctly reproduce each individual n-body contribution to

the energy of a system containing N water molecules.161 As the �eld of MLPs, and partic-

ularly NNPs continues to mature, a hierarchy has been de�ned to classify the NNPs into

\generations" based on the physical content of the models. In this regard, the development

of high-dimensional NNPs that take into account the intricate interplay between short-range

and long-range many-body interactions is still in its early stages.138,145

PIPs provide a di�erent type of ML representation that satis�es permutational, rota-

tional, and translational invariance,177 and has become popular in the development of MLPs

for various molecular systems.131 For example, PIP-based MLPs for water include the early

HBB0,147 HBB1,148 HBB2,148, and WHBB149,150 models, which �t 2-body and 3-body en-

ergies to high-level ab initio data, where the the 2-body PIP is \range-separated" as it

smoothly transitions into a long-range potential described by classical electrostatics. Going

beyond the 3-body term, the q-AQUA model was recently introduced, which includes PIP

representations for 2-body, 3-body, and 4-body energies, but neglects all n-body contribu-

tions with n > 4.160

Besides the applications mentioned above, PIPs have also been used in a variety of general

approaches such as PIP-NN models, which use permutationally invariant monomials to

guarantee proper symmetry relations in the NN representation of the target potential energy

surface,193–196 and �-ML approaches, which train an ML model on top of a lower-level (e.g.,

DFT) core potential to elevate the overall accuracy of the model.197–199 PIPs and PIP-

based ML approaches have also been used to develop high-dimensional potential energy

surfaces of polyatomic molecules (with up to 15 atoms) in the gas phase, a step toward

the \�rst principles" modeling of the physical properties of complex organic and biological

molecules.198,200–202
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B. Physics-based data-driven potentials

Physics-based DDPs are analytical expressions representing the multidimensional poten-

tial energy surface of an N -body system, where only a few contributions to the interaction

energy are predicted from ML. In essence, physics-based DDPs capture quantum-mechanical

short-range interactions using an ML framework which is integrated with a physics-based

representation of classical many-body interactions.166,203 In this context, CC-pol is a rela-

tively simpler water model developed from high-level ab initio data integrated with a clas-

sical representation of electrostatic interactions.162,204–211 CC-pol provided some of the �rst

accurate predictions of water properties in both gas and condensed phases.

In recent years, a class of explicit many-body DDPs, namely the MB-pol,163–165 MB-

nrg,167,168,171,172 and generalized MB-QM140,212 potential energy functions (PEFs), have

been shown to quantitatively reproduce the properties of water,213 including gas-phase

clusters,214–216 liquid water,217,218 the vapor/liquid interface,219–221 and ice,222–225 as well

as various aqueous molecular226,227 and ionic systems.228–234 These many-body PEFs use

PIPs177 integrated with a classical many-body polarizable model235 to represent short-

range quantum-mechanical e�ects that arise from density overlap between molecules (i.e.,

exchange-repulsion, charge transfer, and charge penetration), which cannot be represented

by classical expressions adopted by conventional force �elds. Recently, this class of data-

driven many-body potentials has been extended to covalently bonded molecules.236 This

class of DDPs, particularly the MB-DFT potentials, will be described in detail in the

remainder of this work.

III. MANY-BODY INTERACTIONS IN MOLECULAR SYSTEMS

A. Theory

Consider a system of N interacting atoms or molecules. At rest, the energy of this N -body

system is simply the potential energy, EN(r1 . . . rN). By de�nition, EN(r1 . . . rN) is a many-

body function that contains all information regarding n-body energies, with 1 � n � N .

Therefore, the energy of the system is rigorously de�ned by the many-body expansion (MBE)
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given by:

EN(r1, .., rN) =
NX
i=1

ε1B(ri)+
NX
i<j

NX
i=1

ε2B(ri, rj)+
NX

i<j<k

NX
i<j

NX
i=1

ε3B(ri, rj, rk)+. . .+εNB(r1 . . . rN)

(1)

where frig collectively de�nes the coordinates of the ith monomer and ε1B(ri) is the 1-body

energy of the ith monomer,

ε1B(ri) =

8<: 0 atomic monomer

E(ri)− E(req,i) molecular monomer
(2)

ε1B(ri) represents the distortion energy of the ith isolated monomer, with E(req,i) being the

energy of the ith monomer in its equilibrium con�guration (req,i). In an N -molecule system,

ε1B(ri) is related to the geometrical frustration237 of the ith monomer due to competing

many-body e�ects that determine the minima in the underlying multidimensional energy

landscape.

From Eq. 1, the 2-body and 3-body energies are obtained recursively as follows:

ε2B(ri, rj) = E2(ri, rj)− ε1B(ri)− ε1B(rj),

ε3B(ri, rj, rk) = E3(ri, rj, rk)− ε2B(ri, rj)− ε2B(ri, rk)− ε2B(rj, rk)

− ε1B(ri)− ε1B(rj)− ε1B(rk)

(3)

where En(r1, . . . , rn) is the energy of a subsystem containing n molecules. It follows that

any n-body contribution εnB can be written as:

εnB = En(1, ..., n)−
NX
i=1

ε1B(ri)−
NX
i=1

NX
i<j

ε2B(ri, rj) −
NX
i=1

NX
i<j

NX
i<j<k

ε3B(ri, rj, rk)−

. . .−
NX

i<j<k<...

ε(n−1)B(ri, rj, rk, . . . , rn−1).

(4)

The convergence of the MBE is dependent on the intrinsic electronic structure of the system

in question. Herein, we focus on aqueous systems that have localized electron densities,

which implies the presence of large electronic band gaps, a feature common to all insulating

systems.238–240 For these systems, the MBE converges rapidly. Water, for example, has a

band gap of � 9 eV, and the sum of 2-body and 3-body energies correspond to � 90− 95%

of the interaction energy.241–250

From a modeling standpoint, the fast convergence of the MBE makes developing data-

driven PEFs based on quantum mechanics for molecular systems a feasible task, enabling the

10



rigorous characterization of molecular systems while achieving numerical e�ciency. In recent

years, the synergy between high-performance computing, machine learning, and advances in

theoretical chemistry has led to the development of several data-driven many-body PEFs for

water149,150,162–165,251 and other molecular systems.167,168,171,172,232,234 We will limit this tech-

nical review to the discussion of the theoretical foundations, developments, and applications

of data-driven many-body PEFs derived from arbitrary density functional approximations

within DFT: MB-DFT PEFs.

B. Components and architecture of MB-DFT potential energy functions

The MB-DFT PEFs arise form the generalization of the MB-pol formalism for water163–165

to density functionals developed across Jacob's ladder of approximations, from local func-

tionals to semi-local, hybrid, and range-separated functionals.140,169

Within the MB-DFT formalism, the functional form of a data-driven many-body PEF is

given by

EMB
N (r1, .., rN) =

NX
i=1

V 1B(ri) +
NX
i>j

V 2B(ri, rj) +
NX

i>j>k

V 3B(ri, rj, rk) + Vpol(r1, .., rN) (5)

where the V 1B, V 2B, V 3B are analytical representations of 1-body, 2-body, and 3-body en-

ergies �tted to the corresponding reference quantum-mechanical data. In the case of the

MB-DFT PEFs, V 1B is represented by

V 1B(ri) =

8<: VPS(r1, r2, θ) water

VPIP(fξ1Bg) generic system
(6)

where V PS(r1, r2, θ) is the Partridge-Schwenke PEF for the water monomer,252 while

VPIP(fξ1Bg) is a PIP representing the 1-body energy of a generic molecule, with fξ1Bg

collectively de�ning exponential functions of the interatomic distances. The second term on

the left hand side of Eq. 5 is

V 2B(ri, rj) = V 2B
sr (ri, rj) + V 2B

elec(ri, rj) + V 2B
pol (ri, rj) + V 2B

disp(ri, rj) (7)

where V 2B
sr (ri, rj) describes short-range 2-body interactions and is represented by the prod-

uct of a 2-body PIP with a switching function that smoothly tends to zero as the distance

between a pair of monomers reaches a prede�ned cuto� limit. V 2B
elec(ri, rj) and V 2B

pol (ri, rj)
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represent permanent electrostatics between point charges that reproduce the ab initio dipole

moment of an isolated monomer, and 2-body polarization, respectively. In the actual imple-

mentation of the MB-DFT PEFs, V 2B
pol(ri,rj)

is implicitly included in the N -body polarization

term, Vpol(r1, .., rN), of Eq. 5. Following Refs. 71,140, the point charges are kept �xed

to the values that reproduce the dipole moment of a molecule in its equilibrium geometry

(ri = req,i). The last term in Eq 7, V 2B
disp(ri, rj), describes the 2-body dispersion energy which

is expressed as

V 2B
disp(ri, rj) = −

X
i,j

fk(rij)
C6,ij

r6
ij

(8)

where rij = jri − rjj and fk(rij) is the Tang-Toennies damping function253,

fk(rij) = 1−
� kX

i=0

(δrij)
k

k!

�
exp (−δrij), (9)

Here, k is the order of the function, rij is the separation between two atoms on two distinct

monomers, δ is the coe�cient that determines the e�ective length of damping obtained dur-

ing the �tting procedure,171,172 and C6,ij is the corresponding dispersion coe�cient derived

from calculations carried out within the exchange-hole dipole moment (XDM) model.60,254,255

The third term on the left hand side of Eq. 5, V 3B, is de�ned as

V 3B(ri, rj, rk) = V 3B
SR (ri, rj, rk) + V 3B

pol (ri, rj, rk) (10)

Analogous to V 2B
SR (ri, rj), V

3B
SR (ri, rj, rk) is represented by the product of a 3-body PIP with a

switching function that smoothly tends to zero as the distance between any pair of monomers

in a trimer reaches a prede�ned cuto� limit. Similarly, V 3B
pol (ri, rj, rk) represents 3-body

polarization that is implicitly included in the N -body polarization term, Vpol(r1, .., rN), of

Eq. 5. The 2-body and 3-body PIPs e�ectively recover quantum-mechanical interactions

arising from the overlap of monomer's electron densities (i.e., exchange-repulsion, charge

transfer, and charge penetration) which cannot be represented by classical expressions.256

For further details regarding the explicit form of V2B,SR(ri, rj), V3B,SR(ri, rj, rk), including

the de�nition of the switching functions, the reader is referred to Ref. 144.

The �nal term of Eq. 5, Vpol(r1, .., rN), implicitly represents N -body classical polariza-

tion. It is important to emphasize that the inclusion of Vpol(r1, .., rN) in addition to the

explicit 1-body, 2-body and 3-body terms guarantees that the MB-DFT PEFs are not trun-

cated, enabling them to rigorously account for both short-range and long-range many-body

interactions.
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C. Implementation

Data-driven many-body PEFs can be readily developed for generic molecules in an au-

tomated fashion using the MB-Fit software infrastructure introduced in Ref. 144. Brie
y,

MB-Fit is an open-source package that is designed to streamline the development of data-

driven PEFs, such as the MB-nrg family of PEFs for aqueous ionic systems and molecular


uids derived from CCSD(T)) data, and the focus of this technical review, MB-DFT PEFs.

MB-Fit readily enables the development of training and test sets, the generation of the

PIPs, the calculations of the reference ab initio n-body energies (currently supporting Q-

Chem257 and PSI4258), the evaluation of the �ts, as well as the generation of the codes

necessary to perform molecular dynamics simulations using the developed many-body PEF

in LAMMPS259 or i-PI260 through the MBX261 interface. LAMMPS, i-PI, and MBX are

freely available to the public. A schematic overview of the MB-DFT framework is shown

in Figure 1. Figure 1 shows the two main pillars of MB-DFT: theory and implementation

(a-b) and applications (b-c). Panel (a) shows the Jacob's ladder of DFAs, suggesting the

robustness of the MBE with respect to the di�erent levels of DFAs (b). Panel (b) speci�cally

summarizes the MB-DFT development work
ow according to the general MB-nrg framework

introduced in Ref. 144. Brie
y, the MB-DFT V nB terms, with n = 1-3, contain explicit PIP

terms given by

P (ξ1, ξ2, . . . , ξN) =
LX
l=0

AlS[ξal11 , ξal2 , . . . , ξalN ]. (11)

Here, L is the total number of monomials in the PIP, Al is a linear �tting coe�cient for

monomial l, and S[fξg] is an operator that symmetrizes each monomial l to guarantee invari-

ance to permutations. In addition, ξi is a variable de�ned as a function of distance between

sites, which include both physical atoms and �ctitious sites of the monomers contributing

to the 1-body, 2-body, or 3-body PIPs. Four di�erent functional forms are available for ξi

in MB-Fit, including Coulomb and Morse variables.144

The �tting procedure, using Tikhonov regularization (also known as ridge regression),262

is discussed in detail in Ref. 144, and further details regarding the PIPs can be found in the

literature.177

As shown in Figure 1, MB-DFT enables (b) non-reactive molecular dynamics simula-

tions as well as (d) fully polarizable quantum mechanics/many-body molecular mechanics

(QM/MB-MM) simulations with arbitrary levels of theory, enabling a seamless multiscale

13



FIG. 1. This schematically depicts the main features of MB-DFT, integrating (a) electronic struc-

ture theory (QM) with (b) the many-body framework144, enabling (c) non-reactive MB molecular

dynamics (MB-MD) and (d) reactive hybrid quantum mechanics/many-body molecular mechanics

(QM/MB-MM) simulations.

representation of the underlying multidimensional potential energy surface.263,264 These de-

velopments along with the corresponding applications are discussed in the following sections.

The latest versions of MB-Fit and MBX can be downloaded from the GitHub repositories

in Refs. 265 and 266, respectively.

IV. DENSITY FUNCTIONAL THEORY

A. Kohn-Sham DFT

The form of the exact density functional E[ρ(r)] that determines the ground-state elec-

tronic energy of an arbitrary N -electron system is unknown. To this end, the energy expres-
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sion for a given DFA can be written as

~E[ρ(r)] = ~F [ρ(r)] +

Z
ρ(r)vext(r)dr (12)

where ~F [ρ] is the approximate one-electron density functional, which is independent of the

external potential acting on the N -body system, vext(r). The approximate functional ~F [ρ]

is de�ned as

~F [ρ(r)] = Ts[ρ(r)] + J [ρ(r)] + ~VXC[ρ(r)] (13)

where Ts[ρ(r)] is the non-interacting Kohn-Sham kinetic energy, and J [ρ(r)] de�nes the

Coulomb interaction between the electrons. The last term of Eq. 13, ~VXC[ρ(r)], is known

as the exchange-correlation (XC) potential and it is the only term in Eq. 13 that is be

approximated to describe the non-classical electron-electron interactions, as the development

of the exact functional for molecular systems currently is an unattainable objective. As a

consequence, the accuracy of any physical properties derived from ~F [ρ] is determined by the

accuracy of ~VXC[ρ(r)]. The complexity of ~VXC[ρ(r)] can be understood in terms of a sum of

semi-local (sl) and nonlocal (nl) XC terms,

~VXC [ρ(r)] = V sl
xc [ρ(r)] + V nl

xc [ρ(r)] (14)

For some functionals, a fraction of Hartree-Fock exchange as well as an amount of correlation

energy from post-Hartree-Fock wavefunction theories are added to improve the accuracy.87

Perhaps, the most intuitive way to understand the complexity of DFAs is through \Jacob's

ladder"53 of DFAs which locates DFAs in rungs based on their complexity and accuracy.

Pure DFT is de�ned by all XC potentials strictly of the form given by Eq. 14 (rungs 1-

3), while the introduction of Hartree-Fock exchange de�nes hybrid DFT (rung 4), and the

incorporation of post Hartree-Fock correlation de�nes double-hybrid DFT (rung 5).

B. Density-corrected DFT

In the Kohn-Sham framework, the energy error of any DFT calculation can be decom-

posed as

�E = ~F [ρ]− F [ρ]| {z }
∆EFD

+ ~E[~ρ]− ~E[ρ]| {z }
∆EDD

(15)

where �EFD is the error due to the density functional approximation (FD error), and �EDD

is the error due to the approximated density (DD error). The signi�cance of these errors are
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related to how well a DFA describes properties such as electron density and static correlation

energy, which hinders most DFAs from accurately describing systems with fractional charge

(FC)267 as well as systems with fractional spin (FS),268 giving rise to the delocalization error

(DE) and static correlation errors (SCE), respectively. The SCE originates entirely in the XC

potential and is known to be signi�cant in local and semi-local DFAs that, while describing

dynamic correlation fairly well, are not able to correctly describe static correlation due to

its inherent mid- to long-range nature.268 Therefore, understanding the SCE, a component

of �EFD, is crucial for the study of strongly-correlated systems as well as for an accurate

description of molecular dissociation.268,269

Although �EFD is the principal contributor to the total error in most cases,270–273 all XC

functionals deviate from the piecewise-linearity274,275 of the exact functional for fractional

charges, causing excess charge delocalization and resulting in incorrect densities. In these

cases where the DE is signi�cant, �EDD becomes the dominant contributor to the total

error.273,276 The cause of �EDD is the manifestation of the one-electron and many-electron

SIE,57 which is thought to be the biggest contributor to �EDD and thus responsible for the

observed over-delocalization of the electron density.140,277,278

Consequently, most DFAs are unable to satisfy the following three conditions for the

one-electron system,279

Ts[ρ(r)] =

Z
dr
jrρ(r)j2

8ρ(r)
, J + EX = 0, EC = 0 (16)

where EX and EC are the exchange and correlation energies, respectively. The second con-

dition of Eq. 16 is the vanishing of self-interaction. The inability to satisfy this requirement

gives rise to the SIE, since J 6= 0 is clearly unphysical. Correcting for SIE (to whatever

extent) reduces the �EDD and thus raises the accuracy of DFAs in both predicting energies

as well as densities.280–282

Density-corrected DFT (DC-DFT) provides a practical manner of improving the accuracy

of DFT via the non-self-consistent evaluation of a DFA on an accurate electron density.283–286

Eq. 15 is equivalent to the energy di�erence between a DFA evaluated on its predicted

density and the exact functional evaluated on the exact density, ~E[~ρ] − E[ρ]. For systems

for which DFT notoriously overdelocalizes the density,278 the Hartree-Fock density is known

to be a reasonable choice for approximating the density-corrected energy, for which �E '

�EFD.283–286 In this scheme of DC-DFT, which is also referred to as HF-DFT, the density-
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corrected DFT energy EDC−DFT is approximated as279

EDC−DFT ' EHF +

�
~EXC[ρHF]− EHF

X

�
. (17)

This approximation has been shown to be accurate to the second order in density di�er-

ence, in line with the variational principle.279 For further details regarding the DC-DFT

framework, we refer the reader to a recent review.287

V. MANY-BODY PEFS FOR WATER FROM DFT

A. First-generation MB-DFT

The MB-DFT framework aims to exploit the strengths of DFT in treating quantum-

mechanical interactions, while simultaneously enabling e�cient simulations of condensed-

phase systems. The �rst generation of MB-DFT PEFs for water were derived analogously

to the MB-pol PEF, which predicts the properties of gas-phase clusters, bulk water, va-

por/liquid interface, and ice within sub-chemical accuracy.213 The �rst-generation MB-DFT

PEFs represent the 1-body energy through the Partridge-Schwenke PEF,252 while the second

and third terms of Eq. 5 were �tted to 2-body and 3-body energies calculated at a given DFT

level. A note on notation: an arbitrary MB-DFT potential labeled as (2B+3B)-DFA treats

the �rst and fourth terms of Eq. 5 as in MB-pol, and the 2-body and 3-body terms according

to the speci�ed DFA. Analogously, a MB-DFT potential labeled as 2B-DFA represents all

terms of the PEF as in MB-pol except the 2-body term, and in a similar fashion for 3B-DFA,

only the 3-body term is �tted to reproduce the underlying functional. By construction, the

MB-DFT PEFs thus enable a systematic assessment of the interplay between 2-body and

3-body interactions in determining the structural properties of water.

A schematic representation of the many-body decomposition (MBD) of the interaction

energy of a water hexamer cluster is shown in Figure 2(a), suggesting that the 2B+3B

energies make up � 95% of the interaction energy. The eight low-energy isomers of the

water hexamer are shown Figure 2(b). Figure 2(c) shows the correlations between 2-body

and 3-body energies calculated with four DFAs belonging to rung 2 (revPBE-D3),288 rung

3 (B97M-rV),52 and rung 4 (revPBE0-D3 and ωB97M-V)289 across Jacob's ladder of DFAs,

and the corresponding CCSD(T) reference energies calculated in the complete basis set

limit (CBS).169 Speci�cally, revPBE-D3 is a GGA dispersion-corrected functional, B97M-rV
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FIG. 2. Importance of 2B and 3B energies in water. (a) schematic of many-body decomposition

(MBD) of the interaction energy of the (H2O)6 prism isomer into individual nB contributions.

(b) the eight low-energy isomers of (H2O)6. (c) shows the correlation plots for 2B (top) and 3B

(bottom) PEFs evaluated against CCSD(T). Correlation plots are shown for revPBE-D3 (red),

B97M-rV (gold), MB-revPBE0-D3 (green), ωB97M-V (purple). Panel (d) shows the di�erence be-

tween MB-DFT models in predicting the interaction energy relative to CCSD(T). Figure adapted

with permission from Chem. Sci. 10, 8211{8218 (2019). Copyright 2019 Royal Society of Chem-

istry.
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is a meta-GGA functional with non-local correlation, rev-PBE0-D3 is a dispersion-corrected

hybrid functional, and ωB97M-V is a range-separated, meta-GGA, hybrid functional.

A common, but not systematic, \rule of thumb" in DFT is that, as one climbs up Jacob's

ladder, the accuracy increases. This is generally true, as seen in the 2-body and 3-body

correlation plots showing signi�cant improvement as one goes from revPBE-D3 towards

ωB97M-V where a lower RMSD relative to CCSD(T) is displayed. For instance, in the 2B

PES, revPBE-D3 has an RMSD of -0.5 kcal/mol (rung 2), B97M-rV -0.25 kcal/mol (rung 3),

and �nally 0.14 kcal/mol for ωB97M-V. These �ndings are in line with AIMD simulations

reported in Refs. 50,52. In general, the four DFAs analyzed in Figure 2(c) provide better

agreement with the CCSD(T) reference values for 2-body than 3-body energies. As suggested

by Figure 2(a), this directly a�ects how the corresponding four MB-DFT PEFs predict the

properties of larger water systems, from gas-phase clusters to liquid water.

The interaction energies (Eint) of the �rst eight low-energy isomers of the water hexamer

calculated with the revPBE-D3, B97M-rV, revPBE0-D3, and ωB97M-V functionals and

the corresponding MB-DFT PEFs are shown in Figure 2(d) along with the CCSD(T)/CBS

reference values. In this analysis, Eint is de�ned as the di�erence between the total energy of

the (H2O)n cluster (En−mer) and the sum of the energies of the individual n water molecules

in the same distorted geometries as in the cluster (EH2O),

Eint = En-mer −
nX

i=1

EH2O
i (18)

To emphasize the importance of a rigorous treatment of both 2-body and 3-body energies,

Eint is computed using: (i) DFAs, (ii) full (2B+3B)-DFA PEFs, (iii) 2B-DFA PEFs, and

(iv) 3B-DFA PEFs. Figure 2(d) shows that ωB97M-V predicts Eint in fair agreement with

the CCSD(T)/CBS reference values. The dominance of the 2-body energies over the 3-body

energies is evidenced by the fact that the 2B-DFA PEFs display the highest errors in the

case of all DFAs, while the 3B-DFA PEFs, which use the same 2-body term as MB-pol,

display the smallest errors. Morever, the three di�erent MB-DFT PEFs derived from each

of the four DFAs predict Eint within �1 kcal/mol of the bare DFA, attesting to the accuracy

of the MB-DFT PEFs in faithfully reproducing the corresponding DFA n-body energies.

The delicate interplay among many-body e�ects in gas-phase clusters transfers over to

the condensed phase, directly a�ecting the structural properties of liquid water. For all

MB-DFT PEFs, path-integral molecular dynamics (PIMD) simulations,290,291 which explic-
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FIG. 3. Structural properties of liquid water as predicted by �rst-generation MB-DFT models.

From left to right, (2B+3B)-, 2B- and 3B- MB-DFT potentials are shown. Panel (a) shows the

comparison between oxygen{oxygen radial distribution functions (RDFs), gOO(r), of liquid water

at ambient conditions derived from X-ray di�raction measurements (gray area) and calculated from

path-integral molecular dynamics (PIMD) simulations in the isothermal-isobaric (NPT) ensemble

at ambient conditions (T=298.15 K and P=1 atm). Panel (b) shows the corresponding normalized

probability distribution of the tetrahedral order parameter P (qtet) under the same thermodynamic

conditions. Here, MB-revPBE-D3 (red), B97M-rV (yellow), revPBE0-D3 (green), and ωB97M-V

(magenta) are shown with MB-pol (blue) for comparison. Figure adapted with permission from

Chem. Sci. 10, 8211{8218 (2019). Copyright 2019 Royal Society of Chemistry.

itly accounts for nuclear quantum e�ects, were carried out in the canonical (NVT) ensemble

at 298.15 K and experimental density as well as in the isothermal-isobaric (NPT) ensem-

ble at 298.15 K and 1 atm.169 The structural properties of liquid water predicted by the

(2B+3B)-DFA, (2B)-DFA, (3B)-DFA, and MB-pol PEFs are shown in Figure 3. Speci�-

cally, Figure 3(a) shows the oxygen-oxygen RDFs calculated from NPT PIMD simulations

carried out with the four (2B+3B)-DFA PEFs described above as well as MB-pol that is
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used as a reference. For those DFAs for which AIMD simulations were reported in the liter-

ature, the corresponding (2B+3B)-DFA PEFs closely reproduces the AIMD results.169 This

attests to the ability of the (2B+3B)-DFA PEFs to predict the properties of water with full

ab initio accuracy. This preservation of accuracy holds for all functionals with the exception

of revPBE-D3. The nature of this discrepancy will be ascertained in Section VII.

Unlike simulations performed in the NVT ensemble, the volume and, thus, the density

are allowed to 
uctuate in the NPT simulations, resulting in a local structure that is more

sensitive to the \realism" and predictive capabilities of a given PEF. To this end, Ref.169

demonstrated that all four MB-DFT PEFs described above provide RDFs in fair agreement

to experiment when calculated from NVT simulations. However, when the simulations were

carried out in the NPT ensemble, the same four MB-DFT PEFs predict RDFs that deviate

signi�cantly from the experimental results which correlates with the ability of a given MB-

DFT to reproduce low-order n-body energies. As it may be expected from the MBD analysis,

the GGA revPBE-D3 and hybrid revPBE0-D3 functionals predict an ice-like local hydrogen-

bonding environment, which manifests in over -structured oxygen-oxygen RDFs calculated

with the corresponding MB-revPBE-D3 and MB-revPBE0-D3 PEFs. This is in contrast

to the performance of the MB-B97M-rV and MB-ωB97M-V PEFs that predict a slightly

under -structured liquid, which can been traced back to the more repulsive nature of the

non-local rVV10 correlation functional.

Dissecting the full (2B+3B)-DFA PEFs into their underlying (2B)-DFA and (3B)-DFA

components highlights the cooperative nature of many-body interactions in determining

the local structure of water. This is manifested in the di�erences in the oxygen-oxygen

RDFs, which translate into di�erences in the local structure of liquid water as described by

the distribution of the tetrahedral order parameter, P (qtet), shown in Figure 3(b) for the

di�erent MB-DFT PEFs. The tetrahedral order parameter, qtet, is given by292

qtet = 1− 3

8
�

3X
j=1

4X
k=j+1

�
cos(ψjk) +

1

3

�2

(19)

where ψjk is the angle between the oxygen of the central water molecule and the oxygen

atoms of the two neighboring water molecules. The tetrahedral order parameter has values of

0 � qtet � 1, for which the limiting cases are the ideal gas (qtet = 0) and perfect tetrahedral

coordination (qtet = 1).

These analyses demonstrate that the ability of a given DFA to accurately describe in-
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dividual n-body energies e�ectively determines its ability to correctly predict the structure

of liquid water. In this context, comparing the (2B+3B)-DFA PEFs with the (2B)-DFA

and (3B)-DFA PEFs demonstrates that most of the DFAs rely on error compensation in the

representation of 2-body and 3-body energies. To summarize, the original MB-DFT frame-

work provides a platform for (i) the construction of many-body PEFs rigorously derived

from a given DFA, and (ii) the systematic assessment of the reliability of a given DFA in

representing water from the gas to the condensed phase.

B. Generalized MB-DFT framework

The generalized MB-DFT framework goes beyond the �rst-generation MB-DFT PEFs

described above by determining all parameters used in the classical components of the PEF

(i.e., atomic charges and polarizabilities entering Velec and Vpol, respectively, and dispersion

coe�cients entering Vdisp) from ab initio calculations carried out using the same DFA. In

the generalized MB-DFT framework, the 1-body, 2-body, and 3-body terms of Eq. 5 con-

tain short-range PIPs that represent the corresponding 1-body, 2-body, and 3-body energies

calculated with a given DFA. Hence, by construction, the generalized MB-DFT framework

expands the applicability of MB-DFT PEFs to generic molecular systems beyond water.

Importantly, building upon the predictive power of prior families of data-driven many-body

PEFs,163–165,167–169,171,172 the generalized MB-DFT framework140 was developed for applica-

tion in fully polarizable QM/MB-MM simulations of chemical transformations in solution

which correctly account for many-body interactions in both QM and MB-MM regions. The

necessity of a QM/MB-MM scheme arises from the fact that a rigorous description of the

interactions between the reactive species and the solvent molecules is warranted as many

reaction mechanisms and associated rates are solvent-supported.293

Since the generalized MB-DFT PEFs are physics-based DDPs, they lend themselves

well to QM/MM simulations where pure ML models come short as they cannot provide

a physics-based description of many-body electrostatics and, consequently, the coupling

between the MM region and the QM density.294 In this section, we discuss the properties

and limitations of the generalized MB-DFT potentials for water, while the application of

MB-DFT in QM/MB-MM is discussed in Section VIII.

For the MB-DFT PEFs, the dipole polarizabilities of the free atoms are computed at
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FIG. 4. Panel (a) shows the errors (in kcal/mol) associated with the MBD of the interaction

energy of the prism isomer of the water hexamer, calculated with MB-QM models relative to their

ab-initio reference values, for density functionals belonging to rungs 2,3, and 4 of Jacob's ladder,

in addition to MP2. Panel (b) shows compares the nB-decomposition of PBE-D3 with its density-

corrected functional, DC-PBE-D3. Panel (c) displays the interaction energies for the eight water

isomers of the hexamer computed with PBE-D3, MB-PBE-D3, DC-PBE MB-PBE(DC), relative

to CCSD(T). Figure adapted with permission from J. Chem. Theory Comput. 17, 5635{5650

(2021). Copyright 2021 American Chemical Society.

the desired DFA level using the XDM model,60,254,255 and the atomic charges are computed

using the charge-model-5 (CM5) scheme.295 The �rst concern is how well the MB-DFT

PEF derived from a given DFA reproduces the corresponding 1-body, 2-body, and 3-body

energies. Generally speaking, the MB-DFT framework is robust enough so that a MB-
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DFT PEF accurately reproduces the corresponding 1-body, 2-body, and 3-body energies

calculated with the corresponding DFA, with RMSDs of �0.08, �0.12, and �0.03 kcal/mol,

respectively.140. This high correlation between the MB-DFT and DFA 2-body and 3-body

energies supports that the notion that the associated 2-body and 3-body PIPs e�ectively

account for genuinely short-range quantum-mechanical 2-body and 3-body contributions to

the interaction energy, such as exchange-repulsion, charge penetration, and charge transfer,

which, by de�nition, cannot be represented by classical expressions adopted by conventional

force �elds.140 This is an important point, as it directly relates to the ability of a MB-DFT

PEF to correctly represent individual n-body energies in both gas-phase and condensed-

phase systems.

In Figure 4(a), the MBD of the interaction energy of the prism isomer of the water

hexamer is shown for several MB-DFT PEFs with respect to their parent DFA, as well as

for MB-MP2 relative to MP2. The general trend is that the MBDs calculated with the

di�erent MB-DFT PEFs are in qualitative agreement with the corresponding DFA reference

values. This analysis shows that the 4-body energy is the principal contributor of the total

error in the MBD calculated with all the MB-DFT PEFs, albeit the 4-body energy only

accounts for � 5% of Eint, as shown in Figure 2. For example, Figure 4(a) shows that

MB-PBE-D3 exhibits an average error (over the eight isomers of the water hexamer) in

the 4-body energy, �E4B
avg, of 1.07 kcal/mol. The inclusion of 25% Hartree-Fock exchange

does not signi�cantly improve the 4-body energy, since �E4B
avg = 0.72 kcal/mol for MB-

PBE0-D3. Since the MB-DFT PEFs represent all n-body interactions with n � 4 using

a classical many-body polarization term, the relatively large 4-body errors associated with

PBE-D3, and PBE0-D3, as well as B97M-rV and M06-2X-D3, indicate that this classical

representation, which was shown to accurately represent 4-body CCSD(T) energies in MB-

pol,164 appears to be not su�cient to fully recover 4-body energies calculated with these

DFAs.

Figure 4(b) shows the MBD of the prism isomer calculated with PBE-D3 and its density-

corrected analog, DC-PBE-D3, relative to CCSD(T)/CBS. The errors in 4-body and 5-body

energies decrease by a factor of �2 when going from PBE-D3 to DC-PBE-D3, which implies

that PBE-D3 su�ers from signi�cant density-driven errors. Importantly, Figure 4(c) shows

that, beyond reducing the errors with respect to CCSD(T)/CBS, the discrepancy between

MB-PBE-D3(DC) and DC-PBE-D3 is also reduced signi�cantly compared to that found
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between MB-PBE-D3 and PBE-D3.

VI. MANY-BODY POTENTIALS FROM SCAN AND RELATED

FUNCTIONALS

The SCAN functional has been used in a variety of studies that examine various struc-

tural and thermodynamic properties of water across the phase diagram.99,102,157,158,296 In

the context of these studies, it is relevant to note that SCAN exhibits a notably high error

in the 2-body energies, while broadly predicting very accurate higher order terms of the

MBE.98 This can be traced back to over-delocalization errors arising from the approximate

description of the exchange-correlation term in the di�erent DFAs.98

A. The e�ect of Hartree-Fock exchange: SCAN and SCANα functionals

The adiabatic connection formula enables the e�ective formulation of hybrid function-

als that incorporate a certain fraction of Hartree-Fock exchange along with the approxi-

mated semi-local exchange.297–300 Here, SCAN0 represents a hybrid functional with 25%

of Hartree-Fock exchange, which formally cancels out the self interaction error introduced

in the Coulomb term, up to the percentage of Hartree-Fock exchange.60,278 Building from

the adiabatic connection formula, the MB-SCANα PEFs were developed to systematically

explore the e�ect of adding a fraction (α) of Hartree-Fock exchange on the structure and

dynamics of liquid water, and connect the smaller energy di�erences between SCAN and

SCAN0 in the gas phase to the more substantial structural and thermodynamic di�erences

between these two DFAs in the liquid phase.

The MBEs calculated for the water hexamers using the SCANα DFAs display larger

errors in the 2-body energies. Interestingly, the description of 2-body energies of the 3-

dimensional hexamer isomers, such as the prism and cage isomers, bene�ts from larger

amounts of Hartree-Fock exchange, whereas strictly planar isomers, such as the cyclic ring,

are better represented by the pure SCAN functional.101 It should be noted that isomers

with nearly planar geometries, such as the book isomers, minimize their 2-body errors when

a fraction of 15-20% Hartree-Fock exchange is added to SCAN. It was demonstrated that

the variation in the 2-body energies between SCAN and SCAN0 (which is on the order 1
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FIG. 5. Panel (a) shows the errors (in kcal/mol) associated with the MBD of the interaction energy

of the the �rst eight low-energy isomers of the water hexamer computed with SCANα functionals,

where α is the fraction of Hartree-Fock exchange, ranging from 0.00 � α � 0.25. Panel (b)

systematically relates the 2B energy error in the MBD with an over-structured gOO(r) caculated

from NPT MD simulatons using the MB-SCANα PEFs. Figure adapted with permission from J.

Chem. Theory Comput. 17, 3739{3749 (2021). Copyright 2021 American Chemical Society.

kcal/mol) is largely responsible for the qualitivative di�erences observed in the description

of liquid water as predicted by the MB-SCAN and MB-SCAN0 PEFs.101

Varying the fraction of Hartree-Fock exchange can shift the structure of liquid water from

an overly disordered liquid state at α = 0 to a more ice-like liquid state at α = 0.25. While

the e�ect of modulating α is consistent with AIMD simulations of liquid water described us-
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ing SCAN and SCAN0, MB-SCANα simulations caried out in the NPT ensemble were unable

to exactly reproduce the oxygen-oxygen RDF and the liquid density of the corresponding

AIMD simulations. DFAs that su�er from delocalization errors are particularly sensitive

to size-dependent density-driven artifacts between gas and condensed phases, wherein the

short-range physics is fundamentally di�erent between the two phases. As described in

Section III, the MB-DFT PEFs are trained on gas-phase data and rely on a description of

classical polarization to account for long-range many-body interactions. Therefore, within

the current MB-DFT framework, they cannot capture quantum-mechanical e�ects that ex-

tend into n-body terms with n � 4. While the current MB-DFT framework is consistent

with the MBE calculated at the CCSD(T)/CBS level of theory,213 the analyses reported in

Ref. 71 indicate that the MBEs calculated with DFAs that severely su�er from delocaliza-

tion errors display a di�erent convergence that cannot quantitatively be reproduced by the

current MB-DFT framework.

B. The density-corrected SCAN functional with chemical accuracy

As discussed in the previous section, the SCAN functional deviates signi�cantly from

chemical accuracy in predicting the energetics of various water systems. Figure 5 illustrates

that the delocalization error in SCAN is manifested primarily in the 2-body energies, which

is in line with other studies.70,98,99 By adding a fraction of Hartree-Fock exchange through

the adiabatic connection formula, the delocalization error is reduced to a minimum for of

0.10 � α � 0.15 Hartree-Fock exchange.99,101 Adding more than 15% Hartree-Fock exchange

leads to an increase in the functional-driven error that results in deteriorated accuracy.101

Despite providing better agreement with experimental data than SCAN for liquid water, MB-

SCANα (α=0.15) still produces a more compact water structure at ambient conditions.101

The density-corrected DFT formalism described in Section IVB yields remarkable agree-

ment for the SCAN functional, demonstrating that minimizing the density-driven error

e�ectively elevates the accuracy of SCAN towards CCSD(T) accuracy.70,277 This further

supports the overall robustness of SCAN which is associated with its ability to satisfy all

the 17 exact constraints known for a meta-GGA DFA.91 Figure 6(a) depicts the errors in

binding energies of the 38 low-energy isomers of the (H2O)n=2−10 clusters included in the

BEGDB dataset.301 Relative to the CCSD(T)/CBS reference values, the SCAN functional
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displays a mean unsigned error (MUE) of 5.69 kcal/mol compared to 0.54 kcal/mol asso-

ciated with DC-SCAN.277 Interestingly, adding a dispersion correction to both SCAN and

DC-SCAN deteriorates their accuracy. This can be explained by considering that the SCAN

functional form contains terms representing short- and mid-range components of the dis-

persion energy,51,91 which appears to be su�cient for accurately describing the interactions

between water molecules.70,277

It is well known that self-consistent densities of GGA functionals can result in signi�-

cant overbinding and lead to spurious fractional charges on separated fragments.274,303 Such

fractional charge errors, a byproduct of electron over-delocalization, are strongly reduced

by the Hartree-Fock density. Note that, even for overlapped and interacting fragments, the

Hartree-Fock density partitions the density among the fragments in a more correct manner

than the self-consistent density.277 In fact, beyond neutral water, DC-SCAN improves the

accuracy of the protonated and deprotonated water clusters contained in the WATER27

dataset, reducing the MUE from 9.89 kcal/mol displayed by SCAN to 1.43 kcal/mol dis-

played by DC-SCAN as shown in Figure 6(b).304 For reference, the WATER27 dataset

includes 14 neutral water clusters [(H2O)n, with n = 2 − 6, 8, 20], 5 protonated water clus-

ters [(H3O+(H2O)n, with n = 1 − 3, 6], 7 deprotonated water clusters [OH−(H2O)n, with

n = 1− 6], and 1 autoionized water cluster [H3O+(H2O)4OH−]. It should be noted that for

compact systems, such as the water monomer, the self-consistent SCAN density provides

better energetics compared to the Hartree-Fock density. This is illustrated in Figs. 6(c,d)

that depict the error in the water monomer's distortion energies for SCAN and DC-SCAN,

respectively. On the other hand, using the Hartree-Fock density in DC-SCAN e�ectively

removes the delocalization error from the 2-body energies of neutral and protonated water

clusters as shown in Figure 6(e,f), which brings both binding and interaction energies of

di�erent water clusters very close to CCSD(T) reference values. Due to large density-driven

errors, deprotonated water clusters display large 2-body and 3-body errors, which can only

be mitigated by DC-SCAN as shown in Figure 6(g).

Figure 7(a,b) shows that the MB-DFT PEF based on DC-SCAN, MB-SCAN(DC), is

able to accurately reproduce the experimental oxygen-oxygen RDF as well as the MB-

pol tetrahedral-order parameter of liquid water at 298 K. As shown in Figure7(c), MB-

SCAN(DC) also correctly predicts the temperature-dependence of the density of liquid wa-

ter, with a deviation of �0.1 g/cm3 across the entire tempreature range. Additionally, Fig-
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a)

b)

c)

d)

e) f) g)

FIG. 6. Panel (a) shows absolute errors binding energies calculated for the neutral water cluster

subset of the BEGDB dataset using SCAN, DC-SCAN, SCAN-D3, and DC-SCAN-D3 with respect

to the CCSD(T)/CBS reference value. Panel (b) shows absolute errors in binding energies calcu-

lated for the WATER27 dataset structures using SCAN, DC-SCAN, SCAN-D3, and DC-SCAN-D3,

with respect to the CCSD(T)/CBS benchmark.302. Panel (c) and (d) describe the errors in the

distortion energies of a free water monomer from a) SCAN and b) DC-SCAN for O � � �HA and

O � � �HB distortions, relative to CCSD(T). The color scale indicates the absolute error. Adapted

with permission from J. Chem. Theory Comput. 18, 4745{4761 (2022). Copyright 2021 American

Chemical Society. Errors relative to CCSD(T)-F12b reference values for each nB energy contri-

bution to the interaction energies calculated with SCAN and DC-SCAN for the (e) (H2O)
(D2d)
8

(f) H3O+(H2O)
(2d)
6 (g) OH−(H2O)6. Reprinted with permission from S. Dasgupta, et al., Nat.

Commun. 12, 1{12 (2021); licensed under a Creative Commons Attribution (CC BY) license.
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FIG. 7. (a) Oxygen-oxygen (gOO) radial distribution function (RDF) calculated from NPT sim-

ulations carried out with the MB-SCAN(DC) PEF at 298 K and 1 atm. (b) Distributions of the

tetrahedral order parameter, qtet, calculated from MD simulations in the NPT ensemble at 298 K

and 1 atm with with the MB-SCAN(DC) PEF (c) Temperature-dependence of the density of liquid

water at 1 atm calculated from classical NPT simulations carried out with MB-SCAN(DC) along

with the results from SCAN-AIMD,51 SCAN-NNP,102 and SCAN0-NNP (with 10% Hartree-Fock

exchange)99 simulations. The MB-pol results are from ref. 213, while the experimental data are

from the NIST Chemistry WebBook.305 (d) Temperature-dependence of the self-di�usion coe�-

cient of liquid water calculated from NVE simulations carried out with the MB-SCAN(DC) PEF.

Figure adapted from S. Dasgupta, et al, Nat. Commun. 12, 1{12 (2021); licensed under a Creative

Commons Attribution (CC BY) license.

ure 7(d) demonstrates that MB-SCAN(DC) predicts the self-di�usion coe�cient of liquid

water between 250 K and 340 K in excellent agreement with the corresponding experimental

values.
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FIG. 8. Mean absolute error per molecule, h�einti, for the interaction energy as a function of

cluster size for (H2O)n for n = 2 − 10 predicted by (a) DFT and (b) DC-DFT. h�einti is shown

relative relative to the CCSD(T)/CBS reference values. Figure reprinted with permission from J.

Chem. Theory Comput. 18, 3410{3426 (2022). Copyright 2022 American Chemical Society.

VII. MANY-BODY POTENTIALS FROM DC-DFT FUNCTIONALS

The interplay between functional-driven and density-driven errors e�ectively determines

the accuracy of a DFA.71,273,287 Understanding the roles played these errors in DFT models

of water is therefore important for: (1) rationalizing the predictive capabilities of DFT-based

simulations of water, (2) de�ning theoretical considerations for future development of DFT

and DFT-based models of water with improved accuracy, and (3) identifying DFAs suitable

for simulations of reactive processes in water within a hybrid DFT/MB-DFT scheme.

A. Functional- and density-driven errors in water clusters: DC-DFT

It is necessary to �rst understand the role of �EFD and �EDD in predicting molecular

interactions in gas-phase water clusters. In this section, we revisit some of the representa-

tive GGA DFAs discussed in Section VA, namely, BLYP-D3(op) and revPBE-D3(op), and

meta-GGA functionals, namely B97M-rV and SCAN. On a technical note, the optimized-

power D3(op)306 empirical dispersion correction is used for revPBE and BLYP, rather then

the original D3 (zero damping)307 parameters, as the latter was shown to be erroneous for
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revPBE, particularly in predicting the 2-body energies.71 Figure 8(a) shows the mean ab-

solute error (MAE) in the interaction energy per water molecule for all of the 38 clusters

included in the BEGDB dataset relative to the CCSD(T)/CBS reference values.301,308. The

MAE per molecule, h�einti, is given by71

h�einti =
1

N

NX
i=1

�eint,i (20)

where �eint =
��Emodel

int − Eref
int

��/n. Here n is the number of water molecules in the (H2O)n

cluster, and N is the number of isomers of a given (H2O)n cluster in the data set. Com-

paring panels (a) and (b) of Figure 8, it is apparent that many DFAs bene�t from error

compensation between �EFD and �EDD. This is clearly the case of BLYP-D3(op) and

revPBE-D3(op), for which h�einti increases with n when the energy functional is evaluated

on the Hartree-Fock density.

An alternative but useful interpretation of the DC-DFT energies is that not only are the

density-driven errors \minimized", but the physical robustness of an approximate functional

is exposed. Keeping in mind that the Hartree-Fock density is overlocalized compared to the

exact density, the magnitude of the density-driven errors introduced by the Hartree-Fock

density is still appreciably smaller than the delocalization error displayed by semi-local DFAs.

Therefore, an analysis of Eq. 15 suggests that a density-corrected energy can be thought of as

EDC � �EFD for DFAs prone to large delocalization error. By approximating the functional-

driven errors, Figure 8(b) reveals that the capability of certain DFAs (e.g. BLYP-D3(op),

revPBE-D3(op),and B97M-rV) in representing interactions in water may be sensitive to the

size of the system. The opposite trend is observed for SCAN. The MAE increases as n for

self-consistent SCAN, while this size-sensitivity is suppressed by DC-SCAN. This suggests

that SCAN is a special case for which j�EFDj � j�EDDj. As a result, h�einti is signi�cantly

smaller for DC-SCAN than SCAN calculations. Using the water hexamer as a benchmark

system, h�einti drops from 0.87 kcal/mol for SCAN to 0.03 kcal/mol for DC-SCAN, with

the latter e�ectively reproducing the CCSD(T)/CBS reference energies.

Generally speaking, when functional-driven errors dominate in a given DFA, �eint in-

creases with system's size. For revPBE-D3(op) it is clear that functional-driven errors

dominate, while �EFD and EDD are similar in magnitude for BLYP-D3(op) and B97M-rV,

leading to nearly complete error cancellation. Even within DC-DFT, it should be noted

that DC-B97M-rV is in fact still closer to the CCSD(T)/CBS reference values for all the
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clusters included in the analyses of Ref. 71, suggesting that (1) B97M-rV is not as sensitive

to density-driven errors as the other DFAs and (2) B97M-rV can serve as reliable DFA for

hybrid DFT/MB-DFT simulations of aqueous environments.

The important lesson in Figure 8 is that the size sensitivity of functional-driven and

density-driven errors has direct implications for DFT-based and AIMD simulations of ex-

tended systems (e.g., liquid water, ice). A few general rules can be extracted from the

analyses discussed in Ref. 71: (1) �EFD depends on the system's size for DFAs where

�EFD > EDD, (2) for DFAs where �EDD > EFD signi�cantly, DC-DFT elevates the ac-

curacy of said DFAs, and (3) the size-dependence of functional-driven and density-driven

errors in semi-local DFAs shines light onto the error compensation that allows certain DFAs

to be successful in representing some properties of liquid water while, at the same time,

failing to predict the properties of water clusters.4,309–313.

B. Functional- and density-driven errors in liquid water: MB-DFT(DC)

The MB-DFT framework enables the acceleration of DC-DFT simulations, for which an

e�cient \on the 
y" DC-DFT simulation scheme is currently unavailable. As seen in Section

VI, the chemical accuracy found in DC-SCAN for water clusters translates into a correct

description of various properties of liquid water calculated from MB-SCAN(DC) simulations.

Figure 9 shows the oxygen-oxygen RDFs for the MB-revPBE-D3(op) and MB-B97M-rV

PEFs, along with their DC-DFT analogs, MB-revPBE-D3(op)(DC) and MB-B97M-rV(DC).

In general, the systematic raising of Eint in the gas phase by the density correction translates

into a more \disordered" local structure of liquid water. This is apparent in the case of MB-

revPBE-D3(op)(DC), where the density correction breaks the solvation structure up to the

�rst solvation shell, as suggested by the 
attening of the oxygen-oxygen RDF beyond the �rst

peak. As revPBE-D3(op) includes semi-local correlation, the minimization of EDD allows

the D3(op) correction to improve the description of liquid water predicted by DC-revPBE-

D3(op), which was shown to predict correct electrostatics.71 Interestingly, the oxygen-oxygen

RDF predicted by MB-B97M-rV(DC) is slightly more structured than that of MB-B97M-

rV, an e�ect opposite to that seen for revPBE-D3(op), which results from the overlocalized

nature of the Hartree-Fock density. Overall, B97M-rV is found to be a robust density

functional, with low sensitivity to density-driven errors. Since DC-B97M-rV and MB-B97M-
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FIG. 9. Comparison between MB-DFT and density-corrected MB-DFT(DC) models in predicting

the structure of liquid water. The oxygen-oxygen RDF, gOO(r), calculated from MD simulations

carried out in the NPT ensemble (T=298 K ; P=1 atm) with (a) MB-BLYP-D3(op),(DC), (b)

MB-revPBE-D3(op)(DC), (c) MB-B97M-rV(DC), and (d) MB-SCAN(DC). Figure adapted with

permission from J. Chem. Theory Comput. 18, 3410 18, 3410{3426 (2022). Copyright 2022

American Chemical Society.

rV(DC) exhibit similar accuracy to B97M-rV and MB-B97M-rV, respectively, B97M-rV can

be considered as a balanced compromise between accuracy and e�ciency for MB-DFT and

DFT/MB-DFT simulations for aqueous phase chemistry.

VIII. MANY-BODY POTENTIALS FROM MACHINE-LEARNED

FUNCTIONALS

As machine learning approaches continue to solidify their place in DFT,117,314–317 the

DM21 functional represents a signi�cant milestone in the �eld, as it was trained on exact

constraints including fractional charge (FC) and fractional spin (FS) constraints, in combina-

tion with atomic and molecular data.115 Recent work highlights that machine-learning DFAs
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FIG. 10. Top: Errors (in kcal/mol) associated with individual n-body contributions to the inter-

action energies of the lowest-energy isomers of the (H2O)6 (a), H3O+(H2O)5 (b), and OH−(H2O)5

(c) clusters relative to the corresponding CCSD(T) reference values. Bottom: Oxygen-oxygen ra-

dial distribution function (d), and tetrahedral order parameter distribution (e) calculated from MD

simulations carried out with MB-DM21 at 298 K and 1 atm. Figure adapted from E. Palos, E. Lam-

bros, S. Dasgupta, and F. Paesani, \Density functional theory of water with the machine-learned

DM21 functional," J. Chem. Phys. 156, 161103 (2022), with the permission of AIP Publishing.

capable of quantitatively describing the properties of water can serve as an important step to-

ward a universal DFA with transferability across phases.114,318 The deep-learned local-hybrid

DM21 functional was shown to outperform conventional DFAs such as SCAN and ωB97X-V

in predicting the energetics of a large dataset of diversely-bonded compounds.115,319 While

DM21 succeeds in modeling some systems that typically represent a challenge to most DFAs,

it is signi�cantly expensive relative to any other DFA within the fourth rung of Jacob's lad-

der. For this reason, condensed-phase AIMD simulations using DM21 are not currently

feasible.
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A. DM21 as a case-study: Neutral, protonated and deprotonated water

clusters

The acceleration of simulations based on high-accuracy electronic structure methods is the

forte of the MB-DFT framework,70,71,101,104,169 readily enabling a description of water from

the gas to the liquid phase as predicted by DM21. In a recent study,212 the accuracy of DM21

was assessed for neutral, protonated and deprotonated water clusters, and the properties

of liquid water were investigated using the newly developed MB-DM21 PEF. As shown in

Figure 10(a), in the gas phase, DM21 predicts the MBD of the interaction energy of the

prism isomer of the water hexamer with similar accuracy to ωB97M-V. Interestingly, DM21

predicts the 2-body energy virtually at the level of CCSD(T)/CBS. However, the 3-body

energy displays an error of � 1 kcal/mol. This is an interesting result, as failure to accurately

represent n-body energies in DFT models is usually attributed to the delocalization error.278

As a result, DM21 predicts the MBD of the interaction energies of the water hexamer isomers

with lower accuracy than DC-SCAN. Since DM21 is, in principle, free of delocalization error,

this discrepancy in the 3-body energies is attributed to the size-dependence of functional-

driven errors arising potentially from the training-set of the ML potential115 that de�nes the

semi-local portion of the exchange-correlation functional, which accounts for the description

of static correlation.212,268,320 This is opposite to what was observed for DC-SCAN, where

the error decreases as n increases.

In the case of protonated water clusters, DM21 outperforms both ωB97M-V and DC-

SCAN in predicting the 2-body energies, quantitatively reproducing the CCSD(T) reference

energies, while all three DFAs predict 3-body energies with similar accuracy, with DM21

displaying a larger error than DC-SCAN by only� 0.3 kcal/mol. The notoriously challenging

deprotonated water clusters represent a di�erent story, where DM21 provides the smallest 2-

body error but relatively larger errors than ωB97M-V and DC-SCAN for the 3-body, 4-body,

and 5-body energies. Figure 10(c) shows that the n-body errors oscillate between positive

and negative values for all three functionals, with higher absolute errors in individual n-body

energies associated with DM21. Since DM21 is trained on both FC and FS constraints, the

better agreement between DM21 and the reference CCSD(T) 2-body energies may indicate

that DM21 is capable of providing a better description of the static correlation of the ionized

clusters, relative to DC-SCAN and ωB97M-V. In general, the three functionals are less
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accurate for the deprotonated water clusters than the corresponding neutral and protonated

clusters. As the density of deprotonated water is more di�use than in neutral water, this

suggests that all three functionals may systematically overestimate the energy of the highest

occupied molecular orbital (HOMO) of deprotonated water clusters, which is likely due to

incorrect features of the functionals in the asymptotic limit.321–323 As DM21 is a local-range-

separated hybrid functional, further investigation on its ability to describe static correlation

in processes involving proton transfer, as in the Grotthuss mechanism, is warranted.

B. The MB-DM21 potential

The structural properties of liquid water as predicted by NPT simulations carried out

at 298 K and 1 atm with the MB-DM21 PEF are shown in Figure 10(d-e). Unexpectedly,

MB-DM21 predicts a slightly overstructured and more tetrahedral liquid phase relative to

MB-SCAN(DC)70,71 and MB-pol163–165,213, which, on the other hand, are in good agreement

with experiment. This �nding supports the possibility of relatively large functional-driven

errors in the MLP term of DM21, as it is trained on atomic and molecular data, leading to

incomplete error cancellation in the condensed phase.71,320 From Figure 10(d-e), it appears

that DM21 has limited ability in predicting the thermodynamic properties of liquid water. In

this regard, recent work showed that DM21 systematically underestimates the liquid density,

overestimates the heat of vaporization, and provides a poor description of the isothermal

compressibility of liquid water in the supercooled regime.71

In summary, functional-driven errors in DM21 are non-negligible and, due to their sensi-

tivity to system size, a�ect the overall accuracy of DM21 when applied to aqueous systems.

These functional-driven errors have direct e�ects on the ability of DM21 to describe liquid

water. Furthermore, while DM21 represents only one ML-DFA, this case study suggests that

improving the functional form and physical content of machine-learned DFAs should allow

for further reducing functional-driven errors and, in turn, enable accurate representations of

aqueous systems from gas-phase clusters to the liquid phase.
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IX. MANY-BODY POTENTIALS IN POLARIZABLE QM/MM

The MB-DFT PEFs may be used to elevate the accuracy of multiscale modeling of diverse

chemical processes in solution.263,264,324 As chemical reactions in solution pose a challenge to

both purely quantum mechanical (QM) and classical molecular mechanics (MM) techniques,

a hybrid QM/MM approach may be used to represent the system of interest as partitioned

into a (QM) subsystem, S, that contains the reactive species and is commonly treated at the

DFT level, and the environment, E , that modulates the reaction which is usually described by

a (MM) force �eld.325–327 QM/MM has been successfully used in simulations of chemical sys-

tems of varying complexity, ranging in applications from modeling enzymatic reactions,328,329

to chemical reactions in solution,330,331 to spectroscopy of biomolecular complexes.330,332–338

The total QM/MM Hamiltonian of the molecular system of interest is given by

Ĥ = ĤQM + ĤMM + ĤQM/MM (21)

where ĤQM stores all information pertaining to the electronic density of S, ĤMM describes

the MM atoms that constitute E , and ĤQM/MM represents the interaction between S and

E . In the polarizable QM/MM formulation,263,324,338,339 ĤQM/MM couples the properties of

the QM electronic density with the MM induced point dipoles (IPDs). Within this scheme,

the AMOEBA force �eld has received recent attention,340,341 as QM/AMOEBA has been

shown to achieve higher accuracy compared to conventional electrostatic-embedding formu-

lations by achieving full mutual polarization between S and E .342 However, since AMOEBA

is a fully classical PEF, QM/AMOEBA cannot overcome the energy discontinuity at the

QM/MM boundary.264 Energy discontinuities at the QM/MM boundary emerge from the

inaccuracy of the force �eld used to represent the MM region relative to the ab initio method

used in the QM region.343,344 Since chemical reactions in solution typically occur within the

di�usion limit, the QM/MM system must be adaptively repartitioned at regular intervals

to prevent the di�usive breakup of the QM region. One possible way to minimize energy

discontinuities when molecules transition between QM and MM representations consists in

adding computationally expensive transition layers that smoothly average between the QM

and MM energies as molecules transition between layers.345–347
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FIG. 11. Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations using DFT

and MB-DFT potentials in fully-self-consistent (fsc) and partially-self-consistent (psc) QM/MM.

Comparison of the QM/MM interaction energy for PBE0-D3, MB-PBE0-D3 and MB-pol over a

reference (H2O)2 potential energy surface scan. Panel (a) displays QM/MB-pol results with the

QM water molecule as the hydrogen-bond donor. Analogously, panel (c) and QM/MB-DFT (PBE0-

D3/MB-PBE0-D3) results with the QM water molecule as the hydrogen-bond donor. Panels (b)

and (d) respectively show the distributions of QM/MM interaction energies of a water hexamer as

waters are successively added into the QM region for QM/MB-pol and QM/MB-PBE0.263 Figure

reprinted with permission from J. Chem. Theory Comput. 16, 7462{7472 (2020). Copyright 2020

American Chemical Society.

A. Quantum Mechanics/Many-Body Molecular Mechanics

Since, by construction, the MB-DFT PEFs are many-body in nature and polarizable,

they provide a robust physics-based representation of ĤQM/MM without unphysical discon-

tinuities at the quantum/classical boundary, e�ectively removing the need for transition

layers. Within DFT/MB-DFT, the accuracy of the DFT level of theory chosen to represent

the QM region is e�ectively extended to the MM region by coupling it to a corresponding

MB-DFT representation of the environment. Therefore, in the DFT/MB-DFT scheme the
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entire system (S + E) is e�ectively described by the general Hamiltonian:

Ĥ = ĤQM + ĤMB−QM + ĤQM/MB−QM| {z }
≈ĤQM

. (22)

As the MB-DFT polarization energy is variational with respect to the polarization degrees

of freedom, the coupled QM/MM equations and energy can be obtained self-consistently,

starting from a variational energy functional of the QM density and the MB-DFT IDPs.

From this, a fully self consistent (fsc) representation of the QM/MM polarization energy is

realized by equilibrating the IDPs at each SCF cycle348,349, though it is possible, for purposes

of e�ciency, to use a partially self-consistent scheme (psc) where the IDPs respond only the

QM density polarized by the permanent external �eld.350 For a detailed derivation of the

QM/MB-MM working equations, we refer the reader to Ref. 263

Understanding chemical reactions in solution requires a full characterization of the solvent

role.293 Within a QM/MM scheme, this requires a seamless and accurate representation of

the interactions between QM and MM molecules. As an example, a comparison among

QM, MB-MM, and QM/MB-MM interaction energies for a water dimer is shown over a

reference radial scan in Figure 11(a). It should be noted that since MB-pol was derived from

CCSD(T)/CBS data, the nature of MB-pol water di�ers substantially from that provided by

PBE0-D3, which is thus responsible for the energy di�erences shown in Figure 11(a). The

MB-DFT potentials serve as a solution to this problem. Figure 11(c) shows that DFT/MB-

DFT calculation carried out using the hybrid PBE0-D3 functional in the QM region and the

corresponding MB-PBE0-D3 PEF in the MM region, allows for nearly complete removal of

the energy di�erences between the QM and MM regions when the two water molecules are

swapped.

Figure 11(b,d) shows the interaction energies of the prism isomer of the water hexamer

calculated for di�erent DFT/MB-DFT partitions. Starting with the cluster containing 1

water molecule in the QM region and 5 in the MM region (labeled as the 1/5 con�gura-

tion), water molecules are successively included in the QM region until a total of �ve water

molecules are placed in the QM region (5/1). Analogous to panels (a) and (c), panels (b)

and (d) represent PBE0-D3/MB-pol and PBE0-D3/MB-PBE0-D3 energies, respectively, ex-

amining the e�ects of re-partitioning of the DFT region (adding/removing solvent molecules

to/from the DFT region) as it occurs during DFT/MB-DFT simulations in solution. No-

tably, the PBE0-D3/MB-PBE0-D3 interaction energies calculated using either a partially
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self-consistent or a fully self-consistent scheme remain fairly close to the PBE0-D3 reference

values, independently of how the water molecules are partitioned between the PBE0-D3 and

MB-PBE0-D3 regions.

In summary, the coupling between a DFT subsystem with a matching-accuracy MB-DFT

solvent gives rise to a physically robust formulation of DFT/MB-DFT simulations. Since

this approach is general, it holds for arbitrary levels of QM theory and MB-QM potentials.

In QM/MB-MM, the potential energy surface of the overall (reactive + non-reactive) system

is e�ectively free of unphysical discontinuities as it is described by one QM-level Hamiltonian

that is only represented in di�erent ways in the QM, MM, and QM/MM regions. From a

practical standpoint, the QM/MB-MM scheme enables QM representations of large systems

at the cost of a -reduced- QM/MM calculation.263,264. Since QM/MB-MM represents, in

principle, the reactive subsystem and its environment on equal footing, it is expected that

QM/MB-MM will �nd applications in the modeling of light-driven chemical processes and

spectroscopy where environmental e�ects have a signi�cant role334,337. As of today, the fully-

self-consistent (fsc) QM/MB-MM scheme has been implemented in a development version of

Gaussian351 and the partially self-consistent (psc) QM/MB-MM scheme is implemented in

the open-source Layered Interacting CHEmical Models (LICHEM) package.264,350,352 Further

developments of the QM/MB-MM formulation, and its implementation in di�erent software

are the subject of ongoing work.

X. SUMMARY AND OUTLOOK

Computational condensed-phase chemistry has advanced signi�cantly in recent years

in the context of data-driven modeling. Developments in pure and physically-motivated

machine-learning models of aqueous systems have found applications in accelerating molec-

ular simulations within both non-reactive and reactive computational frameworks with

quantum-mechanical accuracy. In this work, we presented a concise overview of repre-

sentative data-driven models of water and aqueous systems, followed by a comprehensive

description of the theory, development, and applications of a generalized class of data-

driven many-body potentials for aqueous-phase simulations. As density functional theory

is currently the most widely used method for quantum-chemical modeling of molecular and

extended systems, the general purpose of the MB-DFT class of PEFs is to accelerate non-
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reactive and reactive simulations with DFT accuracy.

The generalized MB-DFT framework enables the development and use of full-dimensional

data-driven PEFs that are derived from di�erent DFAs and explicitly account for one-, two-,

and three-body interactions through permutationally invariant polynomial representations

of short-range interactions in the density-overlap regime, while rigorously treating long-range

interactions through many-body classical polarization. Since the MB-DFT PEFs are phys-

ically motivated, they provide both a basis \grounded in reality" for gaining fundamental

insights into complex many-body molecular systems and a \theoretical playground" that

enables systematic analyses of the accuracy and predictive power as well as the limitations,

and challenges of di�erent density functional approximations.

The MB-DFT PEFs distinguish themselves from other classes of recently developed po-

larizable PEFs in that they are derived à la carte, meaning that all parameters are obtained

from the desired DFA. In general, the MB-DFT PEFs retain the accuracy of their underlying

DFA, with the exception of DFAs that are heavily subject to systematic errors. Importantly,

the MB-DFT framework provides an e�cient platform for the development of many-body

PEFs for more complex systems than those currently accessible to PEFs based on wave-

function theories, thus expanding the applicability of data-driven many-body PEFs. At the

same time, the MB-DFT framework accelerates (and in certain cases enables) simulations

based on high-level and unorthodox 
avors of DFT for which the corresponding ab initio

simulations are not feasible, such as computationally intensive levels of theory, e.g., the

DM21 machine-learned functional, and non-variational methods such as DC-DFT.

Beyond providing a framework for quantitative non-reactive molecular simulations of

aqueous systems, the MB-DFT framework also enables robust computational modeling of

chemical reactions in solution. Speci�cally, when a DFT subsystem is coupled to its anal-

ogous MB-DFT environment, the entire system is e�ectively characterized by a seamless

potential energy surface, achieved without introducing transition layers for repartitioning

the DFT and MB-DFT subsystems within a hybrid DFT/MB-DFT scheme. In general,

DFT/MB-DFT enables the modeling of chemical transformations in solution with DFT

accuracy at the cost of conventional polarizable embedding simulations.

We believe that the MB-DFT framework described in this review will enable predictive

molecular simulations of aqueous systems, both in the bulk and at interfaces. Although

this review focuses on aqueous systems, the MB-DFT framework is broader in scope and
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applicable to generic molecules. In this regard, the software infrastructure for the devel-

opment (MB-Fit)265 and application (MBX)261 of MB-DFT PEFs in molecular simulations

(MBX) is freely available to the community. We envision future applications of MB-DFT

and DFT/MB-DFT to the modeling of various molecular systems in complex environments,

such as molecular 
uid mixtures, electrolytes, and multi-phase interfaces where chemical

reactions can take place.

ACKNOWLEDGEMENTS

We are grateful to Ethan Bull-Vulpe and Alessandro Caruso for useful discussions. We

thank Chris Mundy, Greg Schenter, John Perdew, and Kieron Burke for many stimulating

discussions about density functional theory and related applications to aqueous systems

throughout the years. This research was supported by the National Science Foundation

under Grant No. CHE-1453204. E.P. acknowledges support from the National Science

Foundation Graduate Research Fellowship Program under Grant No. DGE-2038238, as well

as the Alfred P. Sloan Foundation Ph.D. Fellowship Program under Grant No. G-2020-

14067.

AUTHOR DECLARATIONS

Con
ict of Interest

The authors have no con
icts to disclose.

DATA AVAILABILITY STATEMENT

Any data generated and analyzed for this study are available from the authors upon

request.

REFERENCES

1F. Franks, Water: A Matrix of Life, Vol. 21 (Royal Society of Chemistry, 2000).

43



2J. Dong, R. A. Fischer, L. P. Stixrude, and C. R. Lithgow-Bertelloni, \Constraining

the volume of earth's early oceans with a temperature-dependent mantle water storage

capacity model," AGU Adv. 2, e2020AV000323 (2021).

3P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty,

E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley,

H. Tanaka, C. Vega, L. Xu, and L. G. M. Pettersson, \Water: A tale of two liquids,"

Chem. Rev. 116, 7463{7500 (2016).

4G. A. Cisneros, K. T. Wikfeldt, L. Ojam�ae, J. Lu, Y. Xu, H. Torabifard, A. P. Bart�ok,

G. Cs�anyi, V. Molinero, and F. Paesani, \Modeling molecular interactions in water: From

pairwise to many-body potential energy functions," Chem. Rev. 116, 7501{7528 (2016).

5M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and

T. E. Markland, \Nuclear quantum e�ects in water and aqueous systems: Experiment

theory and current challenges," Chem. Rev. 116, 7529{7550 (2016).

6T. Fransson, Y. Harada, N. Kosugi, N. A. Besley, B. Winter, J. J. Rehr, L. G. Pettersson,

and A. Nilsson, \X-ray and electron spectroscopy of water," Chem. Rev. 116, 7551{7569

(2016).

7K. Amann-Winkel, M.-C. Bellissent-Funel, L. E. Bove, T. Loerting, A. Nilsson, A. Pa-

ciaroni, D. Schlesinger, and L. Skinner, \X-ray and neutron scattering of water," Chem.

Rev. 116, 7570{7589 (2016).

8F. Perakis, L. De Marco, A. Shalit, F. Tang, Z. R. Kann, T. D. K�uhne, R. Torre, M. Bonn,

and Y. Nagata, \Vibrational spectroscopy and dynamics of water," Chem. Rev. 116,

7590{7607 (2016).

9S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, and L. Xu, \Con�ned water as model

of supercooled water," Chem. Rev. 116, 7608{7625 (2016).

10N. F. Van Der Vegt, K. Haldrup, S. Roke, J. Zheng, M. Lund, and H. J. Bakker, \Water-

mediated ion pairing: Occurrence and relevance," Chem. Rev. 116, 7626{7641 (2016).

11N. Agmon, H. J. Bakker, R. K. Campen, R. H. Henchman, P. Pohl, S. Roke, M. Th�amer,

and A. Hassanali, \Protons and hydroxide ions in aqueous systems," Chem. Rev. 116,

7642{7672 (2016).

12M.-C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl, F. Sterpone,

D. Van Der Spoel, Y. Xu, and A. E. Garcia, \Water determines the structure and dynamics

of proteins," Chem. Rev. 116, 7673{7697 (2016).

44



13O. Bj�orneholm, M. H. Hansen, A. Hodgson, L.-M. Liu, D. T. Limmer, A. Michaelides,

P. Pedevilla, J. Rossmeisl, H. Shen, G. Tocci, E. Tyrode, M.-M. Walz, J. Werner, and

H. Bluhm, \Water at interfaces," Chem. Rev. 116, 7698{7726 (2016).

14A. Rahman and F. H. Stillinger, \Molecular dynamics study of liquid water," J. Chem.

Phys. 55, 3336{3359 (1971).

15F. H. Stillinger and A. Rahman, \Improved simulation of liquid water by molecular dy-

namics," J. Chem. Phys. 60, 1545{1557 (1974).

16K. Laasonen, F. Csajka, and M. Parrinello, \Water dimer properties in the gradient-

corrected density functional theory," Chem. Phys. Lett. 194, 172{174 (1992).

17K. Laasonen, M. Parrinello, R. Car, C. Lee, and D. Vanderbilt, \Structures of small water

clusters using gradient-corrected density functional theory," Chem. Phys. Lett. 207, 208{

213 (1993).

18K. Laasonen, M. Sprik, M. Parrinello, and R. Car, \\Ab initio" liquid water," J. Chem.

Phys. 99, 9080{9089 (1993).

19N. Bernstein, C. V�arnai, I. Solt, S. A. Win�eld, M. C. Payne, I. Simon, M. Fuxreiter,

and G. Cs�anyi, \QM/MM simulation of liquid water with an adaptive quantum region,"

Phys. Chem. Chem. Phys. 14, 646{656 (2012).

20J. A. Barker and R. Watts, \Structure of water; a Monte Carlo calculation," Chem. Phys.

Lett. 3, 144{145 (1969).

21C. Vega and J. L. Abascal, \Simulating water with rigid non-polarizable models: A general

perspective," Phys. Chem. Chem. Phys. 13, 19663{19688 (2011).

22V. F. Petrenko and R. W. Whitworth, Physics of Ice (OUP Oxford, 1999).

23A. Luzar and D. Chandler, \E�ect of environment on hydrogen bond dynamics in liquid

water," Phys. Rev. Lett. 76, 928 (1996).

24C. Fecko, J. Eaves, J. Loparo, A. Tokmako�, and P. Geissler, \Ultrafast hydrogen-bond

dynamics in the infrared spectroscopy of water," Science 301, 1698{1702 (2003).

25J. Eaves, J. Loparo, C. J. Fecko, S. Roberts, A. Tokmako�, and P. Geissler, \Hydrogen

bonds in liquid water are broken only 
eetingly," Proc. Natl. Acad. Sci. U.S.A. 102,

13019{13022 (2005).

26W. Kohn and L. J. Sham, \Self-consistent equations including exchange and correlation

e�ects," Phys. Rev. 140, A1133 (1965).

45



27A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory (Courier Corporation, 2012).

28K. Burke, \Perspective on density functional theory," J. Chem. Phys. 136, 150901 (2012).

29A. M. Teale, T. Helgaker, A. Savin, C. Adano, B. Aradi, A. V. Arbuznikov, P. Ayers,

E. J. Baerends, V. Barone, P. Calaminici, E. Cances, E. A. Carter, P. K. Chattaraj,

H. Chermette, I. Cio�ni, T. D. Crawford, F. D. Proft, J. Dobson, C. Draxl, T. Frauenheim,

E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos,

P. M. W. Gill, P. Gori-Giorgi, A. G�orling, T. Gould, S. Grimme, O. Gritsenko, H. J. A.

Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. Koster, L. Kronik, A. I. Krylov,

S. Kvaal, A. Laestadius, M. P. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese,

J. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello,

A. Ruzsinszky, D. Salahub, M. Sche�er, P. Schwerdtfeger, V. N. Staroverov, J. Sun,

E. Tellgren, D. J. Tozer, S. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski,

X. Xu, and W. Yang, \DFT exchange: Sharing perspectives on the workhorse of quantum

chemistry and materials science," Phys. Chem. Chem. Phys. (2022).

30E. Fois, M. Sprik, and M. Parrinello, \Properties of supercritical water: An ab initio

simulation," Chem. Phys. Lett. 223, 411{415 (1994).

31M. Sprik, J. Hutter, and M. Parrinello, \Ab initio molecular dynamics simulation of liquid

water: Comparison of three gradient-corrected density functionals," J. Chem. Phys. 105,

1142{1152 (1996).

32J. Ortega, J. P. Lewis, and O. F. Sankey, \First principles simulations of 
uid water: The

radial distribution functions," J. Chem. Phys. 106, 3696{3702 (1997).

33P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, \Ab initio infrared spectrum of liquid

water," Chem. Phys. Lett. 277, 478{482 (1997).

34P. L. Silvestrelli and M. Parrinello, \Water molecule dipole in the gas and in the liquid

phase," Phys. Rev. Lett. 82, 3308{3311 (1999).

35B. L. Trout and M. Parrinello, \The dissociation mechanism of H2O in water studied by

�rst-principles molecular dynamics," Chem. Phys. Lett. 288, 343{347 (1998).

36B. L. Trout and M. Parrinello, \Analysis of the dissociation of H2O in water using �rst-

principles molecular dynamics," J. Phys. Chem. B 103, 7340{7345 (1999).

37D. Marx, M. E. Tuckerman, and M. Parrinello, \Solvated excess protons in water: Quan-

tum e�ects on the hydration structure," J. Condens. Matter Phys. 12, A153{A159 (2000).

46



38M. Boero, K. Terakura, T. Ikeshoji, C. C. Liew, and M. Parrinello, \Hydrogen bond-

ing and dipole moment of water at supercritical conditions: A �rst-principles molecular

dynamics study," Phys. Rev. Lett. 85, 3245{3248 (2000).

39M. Boero, K. Terakura, T. Ikeshoji, C. C. Liew, and M. Parrinello, \Water at supercritical

conditions: A �rst principles study," J. Chem. Phys. 115, 2219{2227 (2001).

40S. Izvekov and G. A. Voth, \Car-Parrinello molecular dynamics simulation of liquid water:

New results," J. Chem. Phys. 116, 10372{10376 (2002).

41M. Boero, M. Parrinello, K. Terakura, T. Ikeshoji, and C. C. Liew, \First-principles

molecular-dynamics simulations of a hydrated electron in normal and supercritical water,"

Phys. Rev. Lett. 90, 226403 (2003).

42G. Hura, D. Russo, R. M. Glaeser, T. Head-Gordon, M. Krack, and M. Parrinello, \Wa-

ter structure as a function of temperature X-ray scattering experiments and ab initio

molecular dynamics," Phys. Chem. Chem. Phys. 5, 1981{1991 (2003).

43I.-F. W. Kuo, C. J. Mundy, M. J. McGrath, J. I. Siepmann, J. VandeVondele, M. Sprik,

J. Hutter, B. Chen, M. L. Klein, F. Mohamed, M. Krack, and M. Parrinello, \Liquid water

from �rst principles: Investigation of di�erent sampling approaches," J. Phys. Chem. B

108, 12990{12998 (2004).

44J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, \The

in
uence of temperature and density functional models in ab initio molecular dynamics

simulation of liquid water," J. Chem. Phys. 122, 014515 (2005).

45D. Prendergast and G. Galli, \X-ray absorption spectra of water from �rst principles

calculations," Phys. Rev. Lett. 96, 215502 (2006).

46J. A. Morrone and R. Car, \Nuclear quantum e�ects in water," Phys. Rev. Lett. 101,

017801 (2008).

47T. D. K�uhne, M. Krack, and M. Parrinello, \Static and dynamical properties of liquid

water from �rst principles by a novel Car-Parrinello-like approach," J. Chem. Theory

Comput. 5, 235{241 (2009).

48R. A. DiStasio Jr, B. Santra, Z. Li, X. Wu, and R. Car, \The individual and collective

e�ects of exact exchange and dispersion interactions on the ab initio structure of liquid

water," J. Chem. Phys. 141, 084502 (2014).

49I.-C. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, \Structure and dynamics of

liquid water from ab initio molecular dynamics|comparison of BLYP, PBE and revPBE

47



density functionals with and without van der Waals corrections," J. Chem. Theory Com-

put. 8, 3902{3910 (2012).

50L. Ruiz Pestana, N. Mardirossian, M. Head-Gordon, and T. Head-Gordon, \Ab initio

molecular dynamics simulations of liquid water using high quality meta-GGA function-

als," Chem. Sci. 8, 3554{3565 (2017).

51M. Chen, H.-Y. Ko, R. C. Remsing, M. F. Calegari Andrade, B. Santra, Z. Sun, A. Selloni,

R. Car, M. L. Klein, J. P. Perdew, and X. Wu, \Ab initio theory and modeling of water,"

Proc. Natl. Acad. Sci. U.S.A. 114, 10846{10851 (2017).

52L. Ruiz Pestana, O. Marsalek, T. E. Markland, and T. Head-Gordon, \The quest for

accurate liquid water properties from �rst principles," J. Phys. Chem. Lett. 9, 5009{5016

(2018).

53J. P. Perdew and K. Schmidt, \Jacob's ladder of density functional approximations for

the exchange-correlation energy," AIP Conf. Proc. 577, 1{20 (2001).

54D. M. Ceperley and B. J. Alder, \Ground state of the electron gas by a stochastic method,"

Phys. Rev. Lett. 45, 566{569 (1980).

55J. P. Perdew and Y. Wang, \Accurate and simple analytic representation of the electron-

gas correlation energy," Phys. Rev. B 45, 13244{13249 (1992).

56J. P. Perdew, K. Burke, and M. Ernzerhof, \Generalized gradient approximations made

simple," Phys. Rev. Lett. 77, 3865{3868 (1996), erratum: ibid. 78, 1396 (1997).

57J. P. Perdew and A. Zunger, \Self-interaction correction to density-functional approxi-

mations for many-electron systems," Phys. Rev. B 23, 5048 (1981).

58F. Gianturco, F. Paesani, M. Laranjeira, V. Vassilenko, and M. Cunha, \Intermolecular

forces from density functional theory. III. A multiproperty analysis for the Ar(1S)-CO(1�)

interaction," J. Chem. Phys. 110, 7832{7845 (1999).

59F. Gianturco and F. Paesani, \Van der Waals interactions from density functional theo-

ries," in Conceptual Perspectives in Quantum Chemistry (Springer, 1997) pp. 337{382.

60A. D. Becke and E. R. Johnson, \Exchange-hole dipole moment and the dispersion inter-

action," J. Chem. Phys. 122, 154104 (2005).

61S. Grimme, \Semiempirical GGA-type density functional constructed with a long-range

dispersion correction," J. Comput. Chem. 27, 1787{1799 (2006).

62A. Tkatchenko and M. Sche�er, \Accurate molecular van der Waals interactions from

ground-state electron density and free-atom reference data," Phys. Rev. Lett. 102, 073005

48



(2009).

63O. A. Vydrov and T. Van Voorhis, \Nonlocal van der Waals density functional made

simple," Phys. Rev. Lett. 103, 063004 (2009).

64O. A. Vydrov and T. Van Voorhis, \Nonlocal van der Waals density functional: The

simpler the better," J. Chem. Phys. 133, 244103 (2010).

65S. Grimme, \Density functional theory with london dispersion corrections," Wiley Inter-

discip. Rev. Comput. Mol. Sci. 1, 211{228 (2011).

66A. Tkatchenko, R. A. DiStasio Jr, R. Car, and M. Sche�er, \Accurate and e�cient

method for many-body van der Waals interactions," Phys. Rev. Lett. 108, 236402 (2012).

67R. Sabatini, T. Gorni, and S. De Gironcoli, \Nonlocal van der Waals density functional

made simple and e�cient," Phys. Rev. B 87, 041108 (2013).

68E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and

S. Grimme, \A generally applicable atomic-charge dependent london dispersion correc-

tion," J. Chem. Phys. 150, 154122 (2019).

69S. Song, S. Vuckovic, E. Sim, and K. Burke, \Density sensitivity of empirical functionals,"

J. Phys. Chem. Lett. 12, 800{807 (2021).

70S. Dasgupta, E. Lambros, J. Perdew, and F. Paesani, \Elevating density functional the-

ory to chemical accuracy for water simulations through a density-corrected many-body

formalism," Nat. Commun. 12, 1{12 (2021).

71E. Palos, E. Lambros, S. Swee, J. Hu, S. Dasgupta, and F. Paesani, \Assessing the

interplay between functional-driven and density-driven errors in DFT models of water,"

J. Chem. Theory Comput. 18, 3410 18, 3410{3426 (2022).

72J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, \Climbing the density

functional ladder: Nonempirical meta{generalized gradient approximation designed for

molecules and solids," Phys. Rev. Lett. 91, 146401 (2003).

73N. Mardirossian, L. Ruiz Pestana, J. C. Womack, C.-K. Skylaris, T. Head-Gordon, and

M. Head-Gordon, \Use of the rVV10 nonlocal correlation functional in the B97M-V den-

sity functional: De�ning B97M-rV and related functionals," J. Phys. Chem. Lett. 8, 35{40

(2017).

74N. Mardirossian and M. Head-Gordon, \Thirty years of density functional theory in com-

putational chemistry: An overview and extensive assessment of 200 density functionals,"

Mol. Phys. 115, 2315{2372 (2017).

49



75A. D. Becke, \Density-functional thermochemistry. I. The e�ect of the exchange-only

gradient correction," J. Chem. Phys. 96, 2155{2160 (1992).

76A. D. Becke, \A new mixing of Hartree{Fock and local density-functional theories," J.

Chem. Phys. 98, 1372{1377 (1993).

77S. F. Sousa, P. A. Fernandes, and M. J. Ramos, \General performance of density func-

tionals," J. Phys. Chem. A 111, 10439{10452 (2007).

78A. D. Becke, \Perspective: Fifty years of density-functional theory in chemical physics,"

J. Chem. Phys. 140, 18A301 (2014).

79E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, \Towards an assessment of the

accuracy of density functional theory for �rst principles simulations of water. II," J.

Chem. Phys. 121, 5400{5409 (2004).

80T. Todorova, A. P. Seitsonen, J. Hutter, I.-F. W. Kuo, and C. J. Mundy, \Molecular

dynamics simulation of liquid water: Hybrid density functionals," J. Phys. Chem. B 110,

3685{3691 (2006).

81J. A. Morrone and R. Car, \Nuclear quantum e�ects in water," Phys. Rev. Lett. 101,

017801 (2008).

82C. Zhang, J. Wu, G. Galli, and F. Gygi, \Structural and vibrational properties of liquid

water from van der Waals density functionals," J. Chem. Theory Comput. 7, 3054{3061

(2011).

83A. P. Gaiduk, C. Zhang, F. Gygi, and G. Galli, \Structural and electronic properties of

aqueous nacl solutions from ab initio molecular dynamics simulations with hybrid density

functionals," Chem. Phys. Lett. 604, 89{96 (2014).

84B. Santra, R. A. DiStasio Jr, F. Martelli, and R. Car, \Local structure analysis in ab

initio liquid water," Mol. Phys. 113, 2829{2841 (2015).

85A. P. Gaiduk, F. Gygi, and G. Galli, \Density and compressibility of liquid water and

ice from �rst-principles simulations with hybrid functionals," J. Phys. Chem. Lett. 6,

2902{2908 (2015).

86A. P. Gaiduk, J. Gustafson, F. Gygi, and G. Galli, \First-principles simulations of liquid

water using a dielectric-dependent hybrid functional," J. Phys. Chem. Lett. 9, 3068{3073

(2018).

87L. Goerigk and S. Grimme, \Double-hybrid density functionals," Wiley Interdiscip. Rev.

Comput. Mol. Sci. 4, 576{600 (2014).

50



88M. Alipour, \How well can parametrized and parameter-free double-hybrid approxima-

tions predict response properties of hydrogen-bonded systems? Dipole polarizabilities of

water nanoclusters as a working model," J. Phys. Chem. A 117, 4506{4513 (2013).

89J. C. Howard, J. D. Enyard, and G. S. Tschumper, \Assessing the accuracy of some

popular DFT methods for computing harmonic vibrational frequencies of water clusters,"

J. Chem. Phys. 143, 214103 (2015).

90J. Cheng and J. VandeVondele, \Calculation of electrochemical energy levels in water

using the random phase approximation and a double hybrid functional," Phys. Rev. Lett.

116, 086402 (2016).

91J. Sun, A. Ruzsinszky, and J. P. Perdew, \Strongly constrained and appropriately normed

semilocal density functional," Phys. Rev. Lett. 115, 036402 (2015).

92K. Hui and J.-D. Chai, \SCAN-based hybrid and double-hybrid density functionals from

models without �tted parameters," J. Chem. Phys. 144, 044114 (2016).

93A. P. Bart�ok and J. R. Yates, \Regularized SCAN functional," J. Chem. Phys. 150,

161101 (2019).

94J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, \Accurate and numerically

e�cient r2SCAN meta-generalized gradient approximation," J. Phys. Chem. Lett. 11,

8208{8215 (2020).

95S. Ehlert, U. Huniar, J. Ning, J. W. Furness, J. Sun, A. D. Kaplan, J. P. Perdew, and J. G.

Brandenburg, \r2SCAN-D4: Dispersion corrected meta-generalized gradient approxima-

tion for general chemical applications," J. Chem. Phys. 154, 061101 (2021).

96M. Bursch, H. Neugebauer, S. Ehlert, and S. Grimme, \Dispersion corrected r2SCAN

based global hybrid functionals: r2SCANh, r2SCAN0, and r2SCAN50," J. Chem. Phys.

156, 134105 (2022).

97J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, \Construction of meta-

GGA functionals through restoration of exact constraint adherence to regularized SCAN

functionals," J. Chem. Phys. 156, 034109 (2022).

98K. Sharkas, K. Wagle, B. Santra, S. Akter, R. R. Zope, T. Baruah, K. A. Jackson, J. P.

Perdew, and J. E. Peralta, \Self-interaction error overbinds water clusters but cancels in

structural energy di�erences," Proc. Natl. Acad. Sci. U.S.A. 117, 11283{11288 (2020).

99C. Zhang, F. Tang, M. Chen, J. Xu, L. Zhang, D. Y. Qiu, J. P. Perdew, M. L. Klein, and

X. Wu, \Modeling liquid water by climbing up Jacob's ladder in density functional theory

51



facilitated by using deep neural network potentials," J. Phys. Chem. B 125, 11444{11456

(2021).

100L. Zhang, H. Wang, R. Car, and W. E, \Phase diagram of a deep potential water model,"

Phys. Rev. Lett. 126, 236001 (2021).

101E. Lambros, J. Hu, and F. Paesani, \Assessing the accuracy of the SCAN functional

for water through a many-body analysis of the adiabatic connection formula," J. Chem.

Theory Comput. 17, 3739{3749 (2021).

102P. M. Piaggi, A. Z. Panagiotopoulos, P. G. Debenedetti, and R. Car, \Phase equilibrium

of water with hexagonal and cubic ice using the SCAN functional," J. Chem. Theory

Comput. 17, 3065{3077 (2021).

103R. Wang, V. Carnevale, M. L. Klein, and E. Borguet, \First-principles calculation of

water pka using the newly developed SCAN functional," J. Phys. Chem. Lett. 11, 54{59

(2019).

104T. T. Duignan, S. M. Kathmann, G. K. Schenter, and C. J. Mundy, \Toward a �rst-

principles framework for predicting collective properties of electrolytes," Acc. Chem. Res.

54, 2833{2843 (2021).

105A. P. Bart�ok, M. C. Payne, R. Kondor, and G. Cs�anyi, \Gaussian approximation poten-

tials: The accuracy of quantum mechanics without the electrons," Phys. Rev. Lett. 104,

136403 (2010).

106A. P. Bart�ok and G. Cs�anyi, \Gaussian approximation potentials: A brief tutorial intro-

duction," Int. J. Quantum Chem. 115, 1051{1057 (2015).

107J. Behler, \Perspective: Machine learning potentials for atomistic simulations," J. Chem.

Phys. 145, 170901 (2016).

108A. P. Bart�ok, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Cs�anyi, and M. Ceriotti,

\Machine learning uni�es the modeling of materials and molecules," Sci. Adv. 3, e1701816

(2017).

109P. Rowe, G. Cs�anyi, D. Alf�e, and A. Michaelides, \Development of a machine learning

potential for graphene," Phys. Rev. B 97, 054303 (2018).

110K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, \Machine learning

for molecular and materials science," Nature 559, 547{555 (2018).

111G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and

L. Zdeborov�a, \Machine learning and the physical sciences," Rev. Mod. Phys. 91, 045002

52



(2019).

112F. No�e, A. Tkatchenko, K.-R. M�uller, and C. Clementi, \Machine learning for molecular

simulation," Annu. Rev. Phys. Chem. 71, 361{390 (2020).

113P. O. Dral, \Quantum chemistry in the age of machine learning," J. Phys. Chem. Lett.

11, 2336{2347 (2020).

114S. Dick and M. Fernandez-Serra, \Machine learning accurate exchange and correlation

functionals of the electronic density," Nat. Commun. 11, 1{10 (2020).

115J. Kirkpatrick, B. McMorrow, D. H. P. Turban, A. L. Gaunt, J. S. Spencer, A. G. D. G.

Matthews, A. Obika, L. Thiry, M. Fortunato, D. Pfau, L. R. Castellanos, S. Petersen,

A. W. R. Nelson, P. Kohli, P. Mori-S�anchez, D. Hassabis, and A. J. Cohen, \Pushing the

frontiers of density functionals by solving the fractional electron problem," Science 374,

1385{1389 (2021).

116J. T. Margraf and K. Reuter, \Pure non-local machine-learned density functional theory

for electron correlation," Nat. Commun. 12, 1{7 (2021).

117R. Pederson, B. Kalita, and K. Burke, \Machine learning and density functional theory,"

Nat. Rev. Phys. 4, 357{358 (2022).

118J. Behler and M. Parrinello, \Generalized neural-network representation of high-

dimensional potential-energy surfaces," Phys. Rev. Lett. 98, 146401 (2007).

119J. Behler, \Neural network potential-energy surfaces in chemistry: A tool for large-scale

simulations," Phys. Chem. Chem. Phys. 13, 17930{17955 (2011).

120A. P. Bart�ok, M. J. Gillan, F. R. Manby, and G. Cs�anyi, \Machine-learning approach

for one-and two-body corrections to density functional theory: Applications to molecular

and condensed water," Phys. Rev. B 88, 054104 (2013).

121J. Behler, \Representing potential energy surfaces by high-dimensional neural network

potentials," J. Condens. Matter Phys. 26, 183001 (2014).

122W. J. Szlachta, A. P. Bart�ok, and G. Cs�anyi, \Accuracy and transferability of Gaussian

approximation potential models for tungsten," Phys. Rev. B 90, 104108 (2014).

123K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. Von Lilienfeld, K.-R. M�uller,

and A. Tkatchenko, \Machine learning predictions of molecular properties: Accurate

many-body potentials and nonlocality in chemical space," J. Phys. Chem. Lett. 6, 2326{

2331 (2015).

53



124J. Behler, \First principles neural network potentials for reactive simulations of large

molecular and condensed systems," Angew. Chem. Int. Ed. 56, 12828{12840 (2017).

125S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Sch�utt, and K.-R. M�uller,

\Machine learning of accurate energy-conserving molecular force �elds," Sci. Adv. 3,

e1603015 (2017).

126J. S. Smith, O. Isayev, and A. E. Roitberg, \ANI-1: An extensible neural network po-

tential with DFT accuracy at force �eld computational cost," Chem. Sci. 8, 3192{3203

(2017).

127J. S. Smith, O. Isayev, and A. E. Roitberg, \ANI-1 a data set of 20 million calculated

o�-equilibrium conformations for organic molecules," Sci. Data 4, 1{8 (2017).

128L. Zhang, J. Han, H. Wang, R. Car, and E. Weinan, \Deep potential molecular dynamics:

A scalable model with the accuracy of quantum mechanics," Phys. Rev. Lett. 120, 143001

(2018).

129D. Dragoni, T. D. Da�, G. Cs�anyi, and N. Marzari, \Achieving DFT accuracy with a

machine-learning interatomic potential: Thermomechanics and defects in bcc ferromag-

netic iron," Phys. Rev. Materials 2, 013808 (2018).

130K. Yao, J. E. Herr, D. W. Toth, R. Mckintyre, and J. Parkhill, \The TensorMol-0.1

model chemistry: A neural network augmented with long-range physics," Chem. Sci. 9,

2261{2269 (2018).

131C. Qu, Q. Yu, and J. M. Bowman, \Permutationally invariant potential energy surfaces,"

Annu. Rev. Phys. Chem. 69, 151{175 (2018).

132M. Haghighatlari and J. Hachmann, \Advances of machine learning in molecular modeling

and simulation," Curr. Opin. Chem. Eng. 23, 51{57 (2019).

133S. Manzhos and T. Carrington Jr., \Neural network potential energy surfaces for small

molecules and reactions," Chem. Rev. 121, 10187{10217 (2020).

134P. Gkeka, G. Stoltz, A. Barati Farimani, Z. Belkacemi, M. Ceriotti, J. D. Chodera, A. R.

Dinner, A. L. Ferguson, J.-B. Maillet, H. Minoux, C. Peter, F. Pietrucci, A. Silveira,

A. Tkatchenko, Z. Trstanova, R. Wiewiora, and T. Leli�evre, \Machine learning force

�elds and coarse-grained variables in molecular dynamics: Application to materials and

biological systems," J. Chem. Theory Comput. 16, 4757{4775 (2020).

135Z. L. Glick, D. P. Metcalf, A. Koutsoukas, S. A. Spronk, D. L. Cheney, and C. D. Sherrill,

\Ap-net: An atomic-pairwise neural network for smooth and transferable interaction

54



potentials," J. Chem. Phys. 153, 044112 (2020).

136O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Sch�utt,

A. Tkatchenko, and K.-R. M�uller, \Machine learning force �elds," Chem. Rev. 121,

10142{10186 (2021).

137T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, \A fourth-generation high-

dimensional neural network potential with accurate electrostatics including non-local

charge transfer," Nat. Commun. 12, 1{11 (2021).

138J. Behler, \Four generations of high-dimensional neural network potentials," Chem. Rev.

121, 10037{10072 (2021).

139T. Zubatiuk and O. Isayev, \Development of multimodal machine learning potentials:

Toward a physics-aware arti�cial intelligence," Acc. Chem. Res. 54, 1575{1585 (2021).

140E. Lambros, S. Dasgupta, E. Palos, S. Swee, J. Hu, and F. Paesani, \General many-body

framework for data-driven potentials with arbitrary quantum mechanical accuracy: Water

as a case study," J. Chem. Theory Comput. 17, 5635{5650 (2021).

141V. Zaverkin, D. Holzm�uller, R. Schuldt, and J. K�astner, \Predicting properties of periodic

systems from cluster data: A case study of liquid water," J. Chem. Phys. 156, 114103

(2022).

142L. D. Jacobson, J. M. Stevenson, F. Ramezanghorbani, D. Ghoreishi, K. Leswing, E. D.

Harder, and R. Abel, \Transferable neural network potential energy surfaces for closed-

shell organic molecules: Extension to ions," J. Chem. Theory Comput. 18, 2354{2366

(2022).

143S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari,

T. E. Smidt, and B. Kozinsky, \E(3)-equivariant graph neural networks for data-e�cient

and accurate interatomic potentials," Nat. Commun. 13, 1{11 (2022).

144E. Bull-Vulpe, M. Riera, A. G�otz, and F. Paesani, \MB-Fit: Software infrastructure for

data-driven many-body potential energy functions," J. Chem. Phys. 155, 124801 (2021).

145E. Kocer, T. W. Ko, and J. Behler, \Neural network potentials: A concise overview of

methods," Annu. Rev. Phys. Chem. 73, 163{186 (2022).

146K. T. No, B. H. Chang, S. Y. Kim, M. S. Jhon, and H. A. Scheraga, \Description of

the potential energy surface of the water dimer with an arti�cial neural network," Chem.

Phys. Lett. 271, 152{156 (1997).

55



147X. Huang, B. J. Braams, and J. M. Bowman, \Ab initio potential energy and dipole

moment surfaces of (H2O)2," J. Phys. Chem. A 110, 445{451 (2006).

148A. Shank, Y. Wang, A. Kaledin, B. J. Braams, and J. M. Bowman, \Accurate ab initio

and \hybrid" potential energy surfaces intramolecular vibrational energies and classical

IR spectrum of the water dimer," J. Chem. Phys. 130, 144314 (2009).

149Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, \Flexible ab initio

potential and dipole moment surfaces for water. I. Tests and applications for clusters up

to the 22-mer," J. Chem. Phys. 134, 094509 (2011).

150Y. Wang and J. M. Bowman, \Ab initio potential and dipole moment surfaces for water.

II. local-monomer calculations of the infrared spectra of water clusters," J. Chem. Phys.

134, 154510 (2011).

151T. Morawietz, V. Sharma, and J. Behler, \A neural network potential-energy surface for

the water dimer based on environment-dependent atomic energies and charges," J. Chem.

Phys. 136, 064103 (2012).

152T. Morawietz and J. Behler, \A density-functional theory-based neural network potential

for water clusters including van der Waals corrections," J. Phys. Chem. A 117, 7356{7366

(2013).

153S. K. Natarajan, T. Morawietz, and J. Behler, \Representing the potential-energy surface

of protonated water clusters by high-dimensional neural network potentials," Phys. Chem.

Chem. Phys. 17, 8356{8371 (2015).

154T. Morawietz, A. Singraber, C. Dellago, and J. Behler, \How van der Waals interactions

determine the unique properties of water," Proc. Natl. Acad. Sci. USA 113, 8368{8373

(2016).

155B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, \Ab initio thermodynamics

of liquid and solid water," Proc. Natl. Acad. Sci. U.S.A. 116, 1110{1115 (2019).

156C. Schran, J. Behler, and D. Marx, \Automated �tting of neural network potentials at

coupled cluster accuracy: Protonated water clusters as testing ground," J. Chem. Theory

Comput. 16, 88{99 (2019).

157T. E. Gartner, L. Zhang, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and P. G.

Debenedetti, \Signatures of a liquid{liquid transition in an ab initio deep neural net-

work model for water," Proc. Natl. Acad. Sci. USA 117, 26040{26046 (2020).

56



158P. M. Piaggi and R. Car, \Enhancing the formation of ionic defects to study the ice Ih/XI

transition with molecular dynamics simulations," Mol. Phys. 119, e1916634 (2021).

159S. Yue, M. C. Muniz, M. F. Calegari Andrade, L. Zhang, R. Car, and A. Z. Panagiotopou-

los, \When do short-range atomistic machine-learning models fall short?" J. Chem. Phys.

154, 034111 (2021).

160Q. Yu, C. Qu, P. L. Houston, R. Conte, A. Nandi, and J. M. Bowman, \q-AQUA: A

many-body CCSD(T) water potential including four-body interactions demonstrates the

quantum nature of water from clusters to the liquid phase," J. Phys. Chem. Lett. 13,

5068{5074 (2022).

161Y. Zhai, A. Caruso, S. L. Bore, and F. Paesani, \A \short blanket" dilemma for a state-

of-the-art neural network potential for water: Reproducing properties or learning the un-

derlying physics?" ChemRxiv, https://doi.org/10.26434/chemrxiv-2022-t92nd-v2 (2022).

162R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. Van der Avoird, \Predictions of

the properties of water from �rst principles," Science 315, 1249{1252 (2007).

163V. Babin, C. Leforestier, and F. Paesani, \Development of a \�rst principles" water

potential with 
exible monomers: Dimer potential energy surface vrt spectrum and second

virial coe�cient," J. Chem. Theory Comput. 9, 5395{5403 (2013).

164V. Babin, G. R. Medders, and F. Paesani, \Development of a \�rst principles" water

potential with 
exible monomers. II: Trimer potential energy surface third virial coe�cient

and small clusters," J. Chem. Theory Comput. 10, 1599{1607 (2014).

165G. R. Medders, V. Babin, and F. Paesani, \Development of a \�rst principles" water

potential with 
exible monomers. III. Liquid phase properties," J. Chem. Theory Comput.

10, 2906{2910 (2014).

166T. T. Nguyen, E. Sz�ekely, G. Imbalzano, J. Behler, G. Cs�anyi, M. Ceriotti, A. W. G�otz,

and F. Paesani, \Comparison of permutationally invariant polynomials neural networks

and gaussian approximation potentials in representing water interactions through many-

body expansions," J. Chem. Phys. 148, 241725 (2018).

167P. Bajaj, A. W. G�otz, and F. Paesani, \Toward chemical accuracy in the description of

ion{water interactions through many-body representations. I. Halide{water dimer poten-

tial energy surfaces," J. Chem. Theory Comput. 12, 2698{2705 (2016).

168M. Riera, N. Mardirossian, P. Bajaj, A. W. G�otz, and F. Paesani, \Toward chemical

accuracy in the description of ion{water interactions through many-body representations.

57



alkali{water dimer potential energy surfaces," J. Chem. Phys. 147, 161715 (2017).

169M. Riera, E. Lambros, T. T. Nguyen, A. W. G�otz, and F. Paesani, \Low-order many-

body interactions determine the local structure of liquid water," Chem. Sci. 10, 8211{8218

(2019).

170F. Paesani, P. Bajaj, and M. Riera, \Chemical accuracy in modeling halide ion hydration

from many-body representations," Adv. Phys. X 4, 1631212 (2019).

171M. Riera, E. P. Yeh, and F. Paesani, \Data-driven many-body models for molecular 
uids:

CO2/H2O mixtures as a case study," J. Chem. Theory Comput. 16, 2246{2257 (2020).

172M. Riera, A. Hirales, R. Ghosh, and F. Paesani, \Data-driven many-body models with

chemical accuracy for CH4/H2O mixtures," J. Phys. Chem. B 124, 11207{11221 (2020).

173L. Zhang, J. Han, H. Wang, R. Car, and W. E, \Deep potential molecular dynamics: A

scalable model with the accuracy of quantum mechanics," Phys. Rev. Lett. 120, 143001

(2018).

174O. Wohlfahrt, C. Dellago, and M. Sega, \Ab initio structure and thermodynamics of the

RPBE-D3 water/vapor interface by neural-network molecular dynamics," J. Chem. Phys.

153, 144710 (2020).

175C. Schran, F. L. Thiemann, P. Rowe, E. A. M�uller, O. Marsalek, and A. Michaelides,

\Machine learning potentials for complex aqueous systems made simple," Proc. Natl.

Acad. Sci. U.S.A. 118, e2110077118 (2021).

176A. Torres, L. S. Pedroza, M. Fernandez-Serra, and A. R. Rocha, \Using neural network

force �elds to ascertain the quality of ab initio simulations of liquid water," J. Phys.

Chem. B 125, 10772{10778 (2021).

177B. J. Braams and J. M. Bowman, \Permutationally invariant potential energy surfaces in

high dimensionality," Int. Rev. Phys. Chem. 28, 577{606 (2009).

178Y. Wang and J. M. Bowman, \Towards an ab initio 
exible potential for water and post-

harmonic quantum vibrational analysis of water clusters," Chem. Phys. Lett. 491, 1{10

(2010).

179G. R. Medders, V. Babin, and F. Paesani, \A critical assessment of two-body and three-

body interactions in water," J. Chem. Theory Comput. 9, 1103{1114 (2013).

180K. T. Sch�utt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. M�uller,

\Schnet{a deep learning architecture for molecules and materials," J. Chem. Phys. 148,

241722 (2018).

58



181O. T. Unke and M. Meuwly, \A reactive scalable and transferable model for molecular

energies from a neural network approach based on local information," J. Chem. Phys.

148, 241708 (2018).

182O. T. Unke and M. Meuwly, \Physnet: A neural network for predicting energies forces

dipole moments and partial charges," J. Chem. Phys. 15, 3678{3693 (2019).

183S. Houlding, S. Liem, and P. Popelier, \A polarizable high-rank quantum topological

electrostatic potential developed using neural networks: Molecular dynamics simulations

on the hydrogen 
uoride dimer," Int. J. Quantum Chem. 107, 2817{2827 (2007).

184C. M. Handley and P. L. Popelier, \Dynamically polarizable water potential based on

multipole moments trained by machine learning," J. Chem. Theory Comput. 5, 1474{

1489 (2009).

185N. Artrith, T. Morawietz, and J. Behler, \High-dimensional neural-network potentials for

multicomponent systems: Applications to zinc oxide," Phys. Rev. B 83, 153101 (2011).

186D. P. Metcalf, A. Jiang, S. A. Spronk, D. L. Cheney, and C. D. Sherrill, \Electron-passing

neural networks for atomic charge prediction in systems with arbitrary molecular charge,"

J. Chem. Inf. Model 61, 115{122 (2020).

187R. Zubatyuk, J. S. Smith, B. T. Nebgen, S. Tretiak, and O. Isayev, \Teaching a neural

network to attach and detach electrons from molecules," Nat. Commun. 12, 1{11 (2021).

188D. Rosenberger, J. S. Smith, and A. E. Garcia, \Modeling of peptides with classical and

novel machine learning force �elds: A comparison," J. Phys. Chem. B 125, 3598{3612

(2021).

189S. P. Niblett, M. Galib, and D. T. Limmer, \Learning intermolecular forces at liquid{vapor

interfaces," J. Chem. Phys. 155, 164101 (2021).

190A. Gao and R. C. Remsing, \Self-consistent determination of long-range electrostatics in

neural network potentials," Nat. Commun. 13, 1{11 (2022).

191N. Rezajooei, T. N. T. Phuc, E. Johnson, and C. Rowley, \A neural net-

work potential with rigorous treatment of long-range dispersion," ChemRxiv,

https://doi.org/10.26434/chemrxiv-2022-mdz85 (2022).

192J. Zhang, J. Pagotto, and T. T. Duignan, \Towards predictive design of electrolyte solu-

tions by accelerating ab initio simulation with neural networks," J. Mater. Chem. A 10,

19560{19571 (2022).

59



193B. Jiang and H. Guo, \Permutation invariant polynomial neural network approach to

�tting potential energy surfaces," J. Chem. Phys. 139, 054112 (2013).

194J. Li, B. Jiang, and H. Guo, \Permutation invariant polynomial neural network approach

to �tting potential energy surfaces. II. Four-atom systems," J. Chem. Phys. 139, 204103

(2013).

195B. Jiang and H. Guo, \Permutation invariant polynomial neural network approach to

�tting potential energy surfaces. III. Molecule-surface interactions," J. Chem. Phys. 141,

034109 (2014).

196B. Jiang, J. Li, and H. Guo, \Potential energy surfaces from high �delity �tting of ab

initio points: The permutation invariant polynomial-neural network approach," Int. Rev.

Phys. Chem. 35, 479{506 (2016).

197C. Qu, P. L. Houston, R. Conte, A. Nandi, and J. M. Bowman, \Breaking the coupled

cluster barrier for machine-learned potentials of large molecules: The case of 15-atom

acetylacetone," J. Phys. Chem. Lett. 12, 4902{4909 (2021).

198A. Nandi, C. Qu, P. L. Houston, R. Conte, and J. M. Bowman, \δ-machine learning for

potential energy surfaces: A PIP approach to bring a DFT-based pes to CCSD(T) level

of theory," J. Chem. Phys. 154, 051102 (2021).

199C. Qu, Q. Yu, R. Conte, P. L. Houston, A. Nandi, and J. M. Bomwan, \A δ-machine

learning approach for force �elds illustrated by a CCSD(T) 4-body correction to the

MB-pol water potential," Digital Discovery 1, 658{664 (2022).

200C. Qu and J. M. Bowman, \A fragmented permutationally invariant polynomial approach

for potential energy surfaces of large molecules: Application to N-methyl acetamide," J.

Chem. Phys. 150, 141101 (2019).

201A. Nandi, C. Qu, and J. M. Bowman, \Full and fragmented permutationally invariant

polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomer-

ization saddle points," J. Chem. Phys. 151, 084306 (2019).

202R. Conte, C. Qu, P. L. Houston, and J. M. Bowman, \E�cient generation of permutation-

ally invariant potential energy surfaces for large molecules," J. Chem. Theory Comput.

16, 3264{3272 (2020).

203F. Paesani, \Getting the right answers for the right reasons: Toward predictive molecular

simulations of water with many-body potential energy functions," Acc. Chem. Res. 49,

1844{1851 (2016).

60



204W. Cencek, K. Szalewicz, C. Leforestier, R. van Harrevelt, and A. van der Avoird, \An

accurate analytic representation of the water pair potential," Phys. Chem. Chem. Phys.

10, 4716{4731 (2008).

205A. van der Avoird and K. Szalewicz, \Water trimer torsional spectrum from accurate ab

initio and semiempirical potentials," J. Chem. Phys. 128, 014302 (2008).

206R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, \Polarizable

interaction potential for water from coupled cluster calculations. I. Analysis of dimer

potential energy surface," J. Chem. Phys. 128, 094313 (2008).

207R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, \Polarizable

interaction potential for water from coupled cluster calculations. II. Applications to dimer

spectra virial coe�cients and simulations of liquid water," J. Chem. Phys. 128, 094314

(2008).

208R. Hellmann, E. Bich, E. Vogel, A. S. Dickinson, and V. Vesovic, \Calculation of the

transport and relaxation properties of dilute water vapor," J. Chem. Phys. 131, 014303

(2009).

209K. Szalewicz, C. Leforestier, and A. van der Avoird, \Towards the complete understanding

of water by a �rst-principles computational approach," Chem. Phys. Lett. 482, 1{14

(2009).

210C. Leforestier, K. Szalewicz, and A. van der Avoird, \Spectra of water dimer from a new

ab initio potential with 
exible monomers," J. Chem. Phys. 137, 014305 (2012).

211U. G�ora, W. Cencek, R. Podeszwa, A. van der Avoird, and K. Szalewicz, \Predictions

for water clusters from a �rst-principles two-and three-body force �eld," J. Chem. Phys.

140, 194101 (2014).

212E. Palos, E. Lambros, S. Dasgupta, and F. Paesani, \Density functional theory of water

with the machine-learned DM21 functional," J. Chem. Phys. 156, 161103 (2022).

213S. K. Reddy, S. C. Straight, P. Bajaj, C. Huy Pham, M. Riera, D. R. Moberg, M. A.

Morales, C. Knight, A. W. G�otz, and F. Paesani, \On the accuracy of the MB-pol many-

body potential for water: Interaction energies vibrational frequencies and classical ther-

modynamic and dynamical properties from clusters to liquid water and ice," J. Chem.

Phys. 145, 194504 (2016).

214J. O. Richardson, C. P�erez, S. Lobsiger, A. A. Reid, B. Temelso, G. C. Shields, Z. Kisiel,

D. J. Wales, B. H. Pate, and S. C. Althorpe, \Concerted hydrogen-bond breaking by

61



quantum tunneling in the water hexamer prism," Science 351, 1310{1313 (2016).

215W. T. Cole, J. D. Farrell, D. J. Wales, and R. J. Saykally, \Structure and torsional

dynamics of the water octamer from THz laser spectroscopy near 215 µm," Science 352,

1194{1197 (2016).

216S. E. Brown, A. W. G�otz, X. Cheng, R. P. Steele, V. A. Mandelshtam, and F. Paesani,

\Monitoring water clusters \melt" through vibrational spectroscopy," J. Am. Chem. Soc.

139, 7082{7088 (2017).

217S. K. Reddy, D. R. Moberg, S. C. Straight, and F. Paesani, \Temperature-dependent

vibrational spectra and structure of liquid water from classical and quantum simulations

with the MB-pol potential energy function," J. Chem. Phys. 147, 244504 (2017).

218T. E. Gartner III, K. M. Hunter, E. Lambros, A. Caruso, M. Riera, G. R. Medders, A. Z.

Panagiotopoulos, P. G. Debenedetti, and F. Paesani, \Anomalies and local structure of

liquid water from boiling to the supercooled regime as predicted by the many-body MB-

pol model," J. Phys. Chem. Lett. 13, 3652{3658 (2022).

219G. R. Medders and F. Paesani, \Dissecting the molecular structure of the air/water

interface from quantum simulations of the sum-frequency generation spectrum," J. Am.

Chem. Soc. 138, 3912{3919 (2016).

220D. R. Moberg, S. C. Straight, and F. Paesani, \Temperature dependence of the air/water

interface revealed by polarization sensitive sum-frequency generation spectroscopy," J.

Phys. Chem. B 122, 4356{4365 (2018).

221M. C. Muniz, T. E. Gartner, M. Riera, C. Knight, S. Yue, F. Paesani, and A. Z. Pana-

giotopoulos, \Vapor{liquid equilibrium of water with the mb-pol many-body potential,"

J. Chem. Phys. 154, 211103 (2021).

222C. H. Pham, S. K. Reddy, K. Chen, C. Knight, and F. Paesani, \Many-body interactions

in ice," J. Chem. Theory Comput. 13, 1778{1784 (2017).

223D. R. Moberg, S. C. Straight, C. Knight, and F. Paesani, \Molecular origin of the vibra-

tional structure of ice Ih," J. Phys. Chem. Lett. 8, 2579{2583 (2017).

224D. R. Moberg, P. J. Sharp, and F. Paesani, \Molecular-level interpretation of vibrational

spectra of ordered ice phases," J. Phys. Chem. B 122, 10572{10581 (2018).

225D. R. Moberg, D. Becker, C. W. Dierking, F. Zurheide, B. Bandow, U. Buck, A. Hudait,

V. Molinero, F. Paesani, and T. Zeuch, \The end of ice I," Proc. Natl. Acad. Sci. U.S.A.

116, 24413{24419 (2019).

62



226V. N. Robinson, R. Ghosh, C. K. Egan, M. Riera, C. Knight, F. Paesani, and A. Hassanali,

\The behavior of methane{water mixtures under elevated pressures from simulations using

many-body potentials," J. Chem. Phys. 156, 194504 (2022).

227S. Yue, M. Riera, R. Ghosh, A. Z. Panagiotopoulos, and F. Paesani, \Transferability of

data-driven, many-body models for CO2 simulations in the vapor and liquid phases," J.

Chem. Phys. 156, 104503 (2022).

228P. Bajaj, X.-G. Wang, T. CarringtonJr, and F. Paesani, \Vibrational spectra of halide-

water dimers: Insights on ion hydration from full-dimensional quantum calculations on

many-body potential energy surfaces," J. Chem. Phys. 148, 102321 (2017).

229P. Bajaj, J. O. Richardson, and F. Paesani, \Ion-mediated hydrogen-bond rearrangement

through tunnelling in the iodide{dihydrate complex," Nat. Chem. 11, 367{374 (2019).

230P. Bajaj, D. Zhuang, and F. Paesani, \Speci�c ion e�ects on hydrogen-bond rearrange-

ments in the halide{dihydrate complexes," J. Phys. Chem. Lett. 10, 2823{2828 (2019).

231P. Bajaj, M. Riera, J. K. Lin, Y. E. Mendoza Montijo, J. Gazca, and F. Paesani, \Halide

ion microhydration: Structure energetics and spectroscopy of small halide{water clusters,"

J. Phys. Chem. Lett. 123, 2843{2852 (2019).

232D. Zhuang, M. Riera, G. K. Schenter, J. L. Fulton, and F. Paesani, \Many-body e�ects

determine the local hydration structure of Cs+ in solution," J. Phys. Chem. Lett. 10,

406{412 (2019).

233M. Riera, J. J. Talbot, R. P. Steele, and F. Paesani, \Infrared signatures of isomer se-

lectivity and symmetry breaking in the Cs+(H2O)3 complex using many-body potential

energy functions," J. Chem. Phys. 153, 044306 (2020).

234A. Caruso and F. Paesani, \Data-driven many-body models enable a quantitative descrip-

tion of chloride hydration from clusters to bulk," J. Chem. Phys. 155, 064502 (2021).

235B. T. Thole, \Molecular polarizabilities calculated with a modi�ed dipole interaction,"

Chem. Phys. 59, 341{350 (1981).

236E. F. Bull-Vulpe, M. Riera, S. L. Bore, and F. Paesani, \Data-driven many-body potential

energy functions for generic molecules: Linear alkanes as a proof-of-concept application,"

J. Chem. Theory Comput. , https://doi.org/10.1021/acs.jctc.2c00645 (2022).

237J.-F. Sadoc and R. Mosseri, Geometrical Frustration (Cambridge University Press, 1999).

238W. Kohn, \Theory of the insulating state," Phys. Rev. 133, A171 (1964).

63



239N. Marzari and D. Vanderbilt, \Maximally localized generalized wannier functions for

composite energy bands," Phys. Rev. B 56, 12847 (1997).

240A. Marrazzo and R. Resta, \Local theory of the insulating state," Phys. Rev. Lett. 122,

166602 (2019).

241D. Hankins, J. Moskowitz, and F. Stillinger, \Water molecule interactions," J. Chem.

Phys. 53, 4544{4554 (1970).

242J. Del Bene and J. Pople, \Intermolecular energies of small water polymers," Chem. Phys.

Lett. 4, 426{428 (1969).

243E. Clementi, W. Ko los, G. Lie, and G. Ranghino, \Nonadditivity of interaction in water

trimers," Int. J. Quantum Chem. 17, 377{398 (1980).

244K. Kim, M. Dupuis, G. Lie, and E. Clementi, \Revisiting small clusters of water

molecules," Chem. Phys. Lett. 131, 451{456 (1986).

245S. S. Xantheas and T. H. Dunning Jr., \The structure of the water trimer from ab initio

calculations," J. Chem. Phys. 98, 8037{8040 (1993).

246S. S. Xantheas and T. H. Dunning Jr., \Ab initio studies of cyclic water clusters (H2O)n,

n = 1− 6. I. Optimal structures and vibrational spectra," J. Chem. Phys. 99, 8774{8792

(1993).

247S. S. Xantheas, \Ab initio studies of cyclic water clusters (H2O)n, n = 1− 6. II. Analysis

of many-body interactions," J. Chem. Phys. 100, 7523{7534 (1994).

248S. S. Xantheas, \Ab initio studies of cyclic water clusters (H2O)n, n = 1 − 6. III. Com-

parison of density functional with MP2 results," J. Chem. Phys. 102, 4505{4517 (1995).

249L. Ojam�ae and K. Hermansson, \Ab initio study of cooperativity in water chains: Binding

energies and anharmonic frequencies," J. Phys. Chem. 98, 4271{4282 (1994).

250U. G�ora, R. Podeszwa, W. Cencek, and K. Szalewicz, \Interaction energies of large clusters

from many-body expansion," J. Chem. Phys. 135, 224102 (2011).

251V. Babin, G. R. Medders, and F. Paesani, \Toward a universal water model: First princi-

ples simulations from the dimer to the liquid phase," J. Phys. Chem. Lett. 3, 3765{3769

(2012).

252H. Partridge and D. W. Schwenke, \The determination of an accurate isotope dependent

potential energy surface for water from extensive ab initio calculations and experimental

data," J. Chem. Phys. 106, 4618{4639 (1997).

64



253K. Tang and J. P. Toennies, \An improved simple model for the van der Waals potential

based on universal damping functions for the dispersion coe�cients," J. Chem. Phys. 80,

3726{3741 (1984).

254E. R. Johnson and A. D. Becke, \A post-Hartree{Fock model of intermolecular interac-

tions," J. Chem. Phys. 123, 024101 (2005).

255E. R. Johnson and A. D. Becke, \A post-Hartree-Fock model of intermolecular interac-

tions: Inclusion of higher-order corrections," J. Chem. Phys. 124, 174104 (2006).

256F. Paesani, \Water: Many-body potential from �rst principles (from the gas to the liquid

phase)," Handbook of Materials Modeling: Methods: Theory and Modeling , 635{660

(2020).

257E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko,

A. F. White, M. P. Coons, A. L. Dempwol�, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson,

I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie,

A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu,

B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Bar-

ton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton,

A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-

Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert,

P.-T. Fang, S. Fatehi, Q. Feng, T. Friedho�, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey,

J. Gomes, C. E. Gonz�alez-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine,

P. H. P. Harbach, A. Hauser, M. F. Herbst, M. Hern�andez Vera, M. Hodecker, Z. C.

Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, �A. J�asz, H. Ji, H. Jiang,

B. Kaduk, S. K�ahler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda,

J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa,

T. Kus, I. Ladj�anszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li,

Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipers-

berger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S.-P. Mao,

A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J.

Menger, J.-M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan,

G. Paran, A. C. Paul, S. K. Paul, F. Pavo�sevi�c, Z. Pei, S. Prager, E. I. Proynov, �A. R�ak,

E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme,

T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski,

65



D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tor-

nai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte,

A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang,

D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks,

D. Casanova, J.-D. Chai, S. Coriani, C. J. Cramer, G. Cserey, A. E. DePrince, R. A.

DiStasio, A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A. Goddard, S. Hammes-Schi�er,

T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S.

Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A.

Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele,

J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A.

Wesolowski, K. B. Whaley, H. L. Woodcock, P. M. Zimmerman, S. Faraji, P. M. W. Gill,

M. Head-Gordon, J. M. Herbert, and A. I. Krylov, \Software for the frontiers of quantum

chemistry: An overview of developments in the Q-Chem 5 package," J. Chem. Phys. 155,

084801 (2021).

258D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis,

P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz,

M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O'Brien,

J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer,

A. Y. Sokolov, K. Patkowski, A. E. DePrince, U. Bozkaya, R. A. King, F. A. Evangelista,

J. M. Turney, T. D. Crawford, and C. D. Sherrill, \PSI4 1.4: Open-source software for

high-throughput quantum chemistry," J. Chem. Phys. 152, 184108 (2020).

259A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S.

Crozier, P. J. in't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J.

Stevens, J. Tranchida, C. Trott, and S. J. Plimpton", \LAMMPS - A 
exible simulation

tool for particle-based materials modeling at the atomic, meso, and continuum scales,"

Comput. Phys. Commun. 271, 108171 (2022).

260V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng, A. Cuz-

zocrea, R. H. Mei�ner, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenue, W. Fang,

J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Corminboeuf, T. D. K�uhne, D. E.

Manolopoulos, T. E. Markland, J. O. Richardson, A. Tkatchenko, G. A. Tribello, V. Van

Speybroeck, and M. Ceriotti, \i-PI 2.0: A universal force engine for advanced molecular

simulations," Comput. Phys. Commun. 236, 214{223 (2019).

66



261\MBX v0.7," http://paesanigroup.ucsd.edu/software/mbx.html (2021).

262T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data

Mining Inference and Prediction (Springer Science & Business Media, 2009).

263E. Lambros, F. Lipparini, G. A. Cisneros, and F. Paesani, \A many-body fully polarizable

approach to QM/MM simulations," J. Chem. Theory Comput. 16, 7462{7472 (2020).

264J. Nochebuena, S. Naseem-Khan, and G. A. Cisneros, \Development and application of

quantum mechanics/molecular mechanics methods with advanced polarizable potentials,"

Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1515 (2021).

265\MB-Fit: Software infrastructure for data-driven many-body potential energy functions,"

https://github.com/paesanilab/MB-Fit (2021).

266\MBX: A many-body energy and force calculator, version 0.7," https://github.com/

paesanilab/MBX (2021).

267P. Mori-S�anchez, A. J. Cohen, and W. Yang, \Localization and delocalization errors in

density functional theory and implications for band-gap prediction," Phys. Rev. Lett.

100, 146401 (2008).

268A. J. Cohen, P. Mori-S�anchez, and W. Yang, \Fractional spins and static correlation error

in density functional theory," J. Chem. Phys. 129, 121104 (2008).

269N. Q. Su, C. Li, and W. Yang, \Describing strong correlation with fractional-spin correc-

tion in density functional theory," Proc. Natl. Acad. Sci. U.S.A. 115, 9678{9683 (2018).

270P. M. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, \An investigation of the per-

formance of a hybrid of Hartree-Fock and density functional theory," Int. J. Quantum

Chem. 44, 319{331 (1992).

271G. E. Scuseria, \Comparison of coupled-cluster results with a hybrid of Hartree{Fock and

density functional theory," J. Chem. Phys. 97, 7528{7530 (1992).

272N. Oliphant and R. J. Bartlett, \A systematic comparison of molecular properties obtained

using Hartree{Fock a hybrid Hartree{Fock density-functional-theory and coupled-cluster

methods," J. Chem. Phys. 100, 6550{6561 (1994).

273M.-C. Kim, E. Sim, and K. Burke, \Understanding and reducing errors in density func-

tional calculations," Phys. Rev. Lett. 111, 073003 (2013).

274J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr., \Density-functional theory for

fractional particle number: Derivative discontinuities of the energy," Phys. Rev. Lett. 49,

1691 (1982).

67



275Y. Zhang and W. Yang, \A challenge for density functionals: Self-interaction error in-

creases for systems with a noninteger number of electrons," J. Chem. Phys. 109, 2604{

2608 (1998).

276J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller III, \Density functional

theory embedding for correlated wavefunctions: Improved methods for open-shell systems

and transition metal complexes," J. Chem. Phys. 137, 224113 (2012).

277S. Dasgupta, C. Shahi, P. Bhetwal, J. P. Perdew, and F. Paesani, \How good is the

density-corrected SCAN functional for neutral and ionic aqueous systems and what is so

right about the Hartree-Fock density?" J. Chem. Theory Comput. 18, 4745{4761 (2022).

278K. R. Bryenton, A. A. Adeleke, S. G. Dale, and E. R. Johnson, \Delocalization error:

The greatest outstanding challenge in density-functional theory," Wiley Interdiscip. Rev.

Comput. Mol. Sci. , e1631 (2022).

279A. Wasserman, J. Nafziger, K. Jiang, M.-C. Kim, E. Sim, and K. Burke, \The importance

of being inconsistent," Annu. Rev. Phys. Chem. 68, 555{581 (2017).

280F. Liu, E. Proynov, J.-G. Yu, T. R. Furlani, and J. Kong, \Comparison of the performance

of exact-exchange-based density functional methods," J. Chem. Phys. 137, 114104 (2012).

281T. Tsuneda and K. Hirao, \Self-interaction corrections in density functional theory,"

J. Chem. Phys. 140, 18A513 (2014).

282J. L. Bao, L. Gagliardi, and D. G. Truhlar, \Self-interaction error in density functional

theory: An appraisal," J. Phys. Chem. Lett. 9, 2353{2358 (2018).

283M.-C. Kim, E. Sim, and K. Burke, \Communication: Avoiding unbound anions in density

functional calculations," J. Chem. Phys. 134, 171103 (2011).

284M.-C. Kim, E. Sim, and K. Burke, \Understanding and reducing errors in density func-

tional calculations," Phys. Rev. Lett. 111, 073003 (2013).

285M.-C. Kim, E. Sim, and K. Burke, \Ions in solution: Density corrected density functional

theory (DC-DFT)," J. Chem. Phys. 140, 18A528 (2014).

286S. Song, M.-C. Kim, E. Sim, A. Benali, O. Heinonen, and K. Burke, \Benchmarks and

reliable DFT results for spin gaps of small ligand Fe(II) complexes," J. Chem. Theory

Comput. 14, 2304{2311 (2018).

287E. Sim, S. Song, S. Vuckovic, and K. Burke, \Improving results by improving densities:

Density-corrected density functional theory," J. Am. Chem. Soc. 144, 6625{6639 (2022).

68



288Y. Zhang and W. Yang, \Comment on \Generalized gradient approximation made sim-

ple"," Phys. Rev. Lett. 80, 890{890 (1998).

289N. Mardirossian and M. Head-Gordon, \ωB97M-V: A combinatorially optimized range-

separated hybrid meta-GGA density functional with VV10 nonlocal correlation," J. Chem.

Phys. 144, 214110:1{23 (2016).

290D. Chandler and P. G. Wolynes, \Exploiting the isomorphism between quantum theory

and classical statistical mechanics of polyatomic 
uids," J. Chem. Phys. 74, 4078{4095

(1981).

291B. J. Berne and D. Thirumalai, \On the simulation of quantum systems: Path integral

methods," Annu. Rev. Phys. Chem. 37, 401{424 (1986).

292J. R. Errington and P. G. Debenedetti, \Relationship between structural order and the

anomalies of liquid water," Nature 409, 318{321 (2001).

293A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation Transfer and Reactions

in Condensed Molecular Systems (Oxford university press, 2006).

294Y.-J. Zhang, A. Khorshidi, G. Kastlunger, and A. A. Peterson, \The potential for machine

learning in hybrid QM/MM calculations," J. Chem. Phys. 148, 241740 (2018).

295A. V. Marenich, S. V. Jerome, C. J. Cramer, and D. G. Truhlar, \Charge model 5:

An extension of hirshfeld population analysis for the accurate description of molecular

interactions in gaseous and condensed phases," J. Chem. Theory Comput. 8, 527{541

(2012).

296Y. Yao and Y. Kanai, \Temperature dependence of nuclear quantum e�ects on liquid

water via arti�cial neural network model based on SCAN meta-GGA functional," J. Chem.

Phys. 153, 044114 (2020).

297J. Harris and R. Jones, \The surface energy of a bounded electron gas," J. Phys. F 4,

1170 (1974).

298D. C. Langreth and J. P. Perdew, \The exchange-correlation energy of a metallic surface,"

Solid State Commun. 17, 1425{1429 (1975).

299O. Gunnarsson and B. I. Lundqvist, \Exchange and correlation in atoms molecules and

solids by the spin-density-functional formalism," Phys. Rev. B 13, 4274 (1976).

300J. Harris, \Adiabatic-connection approach to kohn-sham theory," Phys. Rev. A 29, 1648

(1984).

69



301J. �Rez�a�c, P. Jure�cka, K. E. Riley, J. �Cern�y, H. Valdes, K. Pluh�a�ckov�a, K. Berka, T. �Rez�a�c,

M. Pito�n�ak, J. Vondr�a�sek, and P. Hobza, \Quantum chemical benchmark energy and ge-

ometry database for molecular clusters and complex molecular systems (www.begdb.com):

A users manual and examples," Collect. Czechoslov. Chem. Commun. 73, 1261{1270

(2008).

302D. Manna, M. K. Kesharwani, N. Sylvetsky, and J. M. Martin, \Conventional and explic-

itly correlated ab initio benchmark study on water clusters: Revision of the begdb and

water27 data sets," J. Chem. Theory Comput. 13, 3136{3152 (2017).

303A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria, \Spurious

fractional charge on dissociated atoms: Pervasive and resilient self-interaction error of

common density functionals," J. Chem. Phys. 125, 194112 (2006).

304V. S. Bryantsev, M. S. Diallo, A. C. Van Duin, and W. A. Goddard III, \Evaluation of

B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies

of neutral protonated and deprotonated water clusters," J. Chem. Theory Comput. 5,

1016{1026 (2009).

305E. W. Lemmon, M. O. McLinden, and D. G. Friend, \Thermophysical properties of 
uid

systems," in NIST Chemistry WebBook, edited by P. Linstrom and W. Mallard (National

Institute of Standards and Technology, Gaithersburg (MD), 2022).

306J. Witte, N. Mardirossian, J. B. Neaton, and M. Head-Gordon, \Assessing DFT-d3 damp-

ing functions across widely used density functionals: Can we do better?" J. Chem. Theory

Comput. 13, 2043{2052 (2017).

307S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, \A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements

H-Pu," J. Chem. Phys. 132, 154104 (2010).

308B. Temelso, K. A. Archer, and G. C. Shields, \Benchmark structures and binding energies

of small water clusters with anharmonicity corrections," J. Phys. Chem. A 115, 12034{

12046 (2011).

309I.-C. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, \Structure and dynamics of

liquid water from ab initio molecular dynamics|comparison of BLYP, PBE and revPBE

density functionals with and without van der Waals corrections," J. Chem. Theory Com-

put. 8, 3902{3910 (2012).

70



310A. Bankura, A. Karmakar, V. Carnevale, A. Chandra, and M. L. Klein, \Structure dy-

namics and spectral di�usion of water from �rst-principles molecular dynamics," J. Phys.

Chem. C 118, 29401{29411 (2014).

311M. Galib, T. T. Duignan, Y. Misteli, M. D. Baer, G. K. Schenter, J. Hutter, and C. J.

Mundy, \Mass density 
uctuations in quantum and classical descriptions of liquid water,"

J. Chem. Phys. 146, 244501 (2017).

312T. Ohto, M. Dodia, S. Imoto, and Y. Nagata, \Structure and dynamics of water at the wa-

ter{air interface using �rst-principles molecular dynamics simulations within generalized

gradient approximation," J. Chem. Theory Comput. 15, 595{602 (2019).

313M. Dodia, T. Ohto, S. Imoto, and Y. Nagata, \Structure and dynamics of water at the

water{air interface using �rst-principles molecular dynamics simulations. ii. nonlocal vs

empirical van der Waals corrections," J. Chem. Theory Comput. 15, 3836{3843 (2019).

314J. C. Snyder, M. Rupp, K. Hansen, K.-R. M�uller, and K. Burke, \Finding density func-

tionals with machine learning," Phys. Rev. Lett. 108, 253002 (2012).

315L. Li, T. E. Baker, S. R. White, and K. Burke, \Pure density functional for strong

correlation and the thermodynamic limit from machine learning," Phys. Rev. B 94, 245129

(2016).

316O. A. von Lilienfeld and K. Burke, \Retrospective on a decade of machine learning for

chemical discovery," Nat. Commun. 11, 1{4 (2020).

317H. J. Kulik, T. Hammerschmidt, J. Schmidt, S. Botti, M. A. L. Marques, M. Bo-

ley, M. Sche�er, M. Todorovi�c, P. Rinke, C. Oses, A. Smolyanyuk, S. Curtarolo,

A. Tkatchenko, A. P. Bart�ok, S. Manzhos, M. Ihara, T. Carrington, J. Behler, O. Isayev,

M. Veit, A. Grisa�, J. Nigam, M. Ceriotti, K. T. Sch�utt, J. Westermayr, M. Gastegger,

R. J. Maurer, B. Kalita, K. Burke, R. Nagai, R. Akashi, O. Sugino, J. Hermann, F. No�e,

S. Pilati, C. Draxl, M. Kuban, S. Rigamonti, M. Scheidgen, M. Esters, D. Hicks, C. To-

her, P. V. Balachandran, I. Tamblyn, S. Whitelam, C. Bellinger, and L. M. Ghiringhelli,

\Roadmap on machine learning in electronic structure," Electronic Structure 4, 023004

(2022).

318S. Dick and M. Fernandez-Serra, \Highly accurate and constrained density functional

obtained with di�erentiable programming," Phys. Rev. B 104, L161109 (2021).

319T. Gould and S. Dale, \Poisoning density functional theory with benchmark sets of di�-

cult systems," Phys. Chem. Chem. Phys. 24, 6398{6403 (2022).

71



320I. S. Gerasimov, T. V. Losev, E. Y. Epifanov, I. Rudenko, I. S. Bushmarinov, A. A.

Ryabov, P. A. Zhilyaev, and M. G. Medvedev, \Comment on \Pushing the frontiers of

density functionals by solving the fractional electron problem"," Science 377, eabq3385

(2022).

321D. J. Tozer and N. C. Handy, \The importance of the asymptotic exchange-correlation

potential in density functional theory," Mol. Phys. 101, 2669{2675 (2003).

322C. K. Egan and F. Paesani, \Assessing many-body e�ects of water self-ions. I: OH−(H2O)n

clusters," J. Chem. Theory Comput. 14, 1982{1997 (2018).

323C. K. Egan and F. Paesani, \Assessing many-body e�ects of water self-ions. II:

H3O+(H2O)n clusters," J. Chem. Theory Comput. 15, 4816{4833 (2019).

324F. Lipparini and B. Mennucci, \Hybrid QM/classical models: Methodological advances

and new applications," Chem. Phys. Rev. 2, 041303 (2021).

325A. Warshel and M. Karplus, \Calculation of ground and excited state potential surfaces

of conjugated molecules. I. Formulation and parametrization," J. Am. Chem. Soc. 94,

5612{5625 (1972).

326A. Warshel and M. Levitt, \Theoretical studies of enzymic reactions: Dielectric electro-

static and steric stabilization of the carbonium ion in the reaction of lysozyme," J. Mol.

Biol. 103, 227{249 (1976).

327A. Warshel, M. Kato, and A. V. Pisliakov, \Polarizable force �elds: History test cases

and prospects," J. Chem. Theory Comput. 3, 2034{2045 (2007).

328R. B. Murphy, D. M. Philipp, and R. A. Friesner, \A mixed quantum mechanics/molecular

mechanics (QM/MM) method for large-scale modeling of chemistry in protein environ-

ments," J. Comp. Chem. 21, 1442{1457 (2000).

329H. Hu and W. Yang, \Free energies of chemical reactions in solution and in enzymes with

ab initio quantum mechanics/molecular mechanics methods," Annu. Rev. Phys. Chem.

59, 573{601 (2008).

330O. Acevedo and W. L. Jorgensen, \Understanding rate accelerations for Diels{Alder re-

actions in solution using enhanced QM/MM methodology," J. Chem. Theory Comput. 3,

1412{1419 (2007).

331O. Acevedo and W. L. Jorgensen, \Advances in quantum and molecular mechanical

(QM/MM) simulations for organic and enzymatic reactions," Acc. Chem. Res. 43, 142{

151 (2010).

72



332M. A. Marques, X. L�opez, D. Varsano, A. Castro, and A. Rubio, \Time-dependent

density-functional approach for biological chromophores: The case of the green 
uorescent

protein," Phys. Rev. Lett. 90, 258101 (2003).

333J. M. Olsen, K. Aidas, and J. Kongsted, \Excited states in solution through polarizable

embedding," J. Chem. Theory Comput. 6, 3721{3734 (2010).

334C. M. Isborn, A. W. G�otz, M. A. Clark, R. C. Walker, and T. J. Mart��nez, \Electronic

absorption spectra from mm and ab initio QM/MM molecular dynamics: Environmen-

tal e�ects on the absorption spectrum of photoactive yellow protein," J. Chem. Theory

Comput. 8, 5092{5106 (2012).

335U. N. Morzan, D. J. Alonso de Armino, N. O. Foglia, F. Ramirez, M. C. Gonzalez Lebrero,

D. A. Scherlis, and D. A. Estrin, \Spectroscopy in complex environments from QM{MM

simulations," Chem. Rev. 118, 4071{4113 (2018).

336M. Bondanza, L. Cupellini, F. Lipparini, and B. Mennucci, \The multiple roles of the

protein in the photoactivation of orange carotenoid protein," Chem 6, 187{203 (2020).

337M. Nottoli, B. Mennucci, and F. Lipparini, \Excited state born{oppenheimer molecular

dynamics through coupling between time dependent DFT and AMOEBA," Phys. Chem.

Chem. Phys. 22, 19532{19541 (2020).

338M. Nottoli, L. Cupellini, F. Lipparini, G. Granucci, and B. Mennucci, \Multiscale models

for light-driven processes," Annu. Rev. Phys. Chem. 72, 489{513 (2021).

339D. Loco, L. Lagard�ere, G. A. Cisneros, G. Scalmani, M. Frisch, F. Lipparini, B. Mennucci,

and J.-P. Piquemal, \Towards large scale hybrid QM/MM dynamics of complex systems

with advanced point dipole polarizable embeddings," Chem. Sci. 10, 7200{7211 (2019).

340J. Dziedzic, Y. Mao, Y. Shao, J. Ponder, T. Head-Gordon, M. Head-Gordon, and C.-

K. Skylaris, \TINKTEP: A fully self-consistent mutually polarizable QM/MM approach

based on the AMOEBA force �eld," J. Chem. Phys. 145, 124106 (2016).

341J. Dziedzic, T. Head-Gordon, M. Head-Gordon, and C.-K. Skylaris, \Mutually polarizable

QM/MM model with in situ optimized localized basis functions," J. Chem. Phys. 150,

074103 (2019).

342A. Albaugh, H. A. Boateng, R. T. Bradshaw, O. N. Demerdash, J. Dziedzic, Y. Mao, D. T.

Margul, J. Swails, Q. Zeng, D. A. Case, P. Eastman, L.-P. Wang, J. W. Essex, M. Head-

Gordon, V. S. Pande, J. W. Ponder, Y. Shao, C.-K. Skylaris, I. T. Todorov, M. E.

Tuckerman, and T. Head-Gordon, \Advanced potential energy surfaces for molecular

73



simulation," J. Phys. Chem. B 120, 9811{9832 (2016).

343A. Heyden, H. Lin, and D. G. Truhlar, \Adaptive partitioning in combined quantum me-

chanical and molecular mechanical calculations of potential energy functions for multiscale

simulations," J. Phys. Chem. B. 111, 2231{2241 (2007).

344S. Pezeshki and H. Lin, \Adaptive-partitioning redistributed charge and dipole schemes

for QM/MM dynamics simulations: On-the-
y relocation of boundaries that pass through

covalent bonds," J. Chem. Theory Comput. 7, 3625{3634 (2011).

345R. E. Bulo, B. Ensing, J. Sikkema, and L. Visscher, \Toward a practical method for

adaptive QM/MM simulations," J. Chem. Theory Comput. 5, 2212{2221 (2009).

346J. M. Boereboom, R. Potestio, D. Donadio, and R. E. Bulo, \Toward hamiltonian adaptive

QM/MM: Accurate solvent structures using many-body potentials," J. Chem. Theory

Comput. 12, 3441{3448 (2016).

347J. M. Boereboom, P. Fleurat-Lessard, and R. E. Bulo, \Explicit solvation matters: Perfor-

mance of QM/MM solvation models in nucleophilic addition," J. Chem. Theory Comput.

14, 1841{1852 (2018).

348D. Loco, E. Polack, S. Caprasecca, L. Lagard�ere, F. Lipparini, J.-P. Piquemal, and

B. Mennucci, \A QM/MM approach using the AMOEBA polarizable embedding: From

ground state energies to electronic excitations," J. Chem. Theory Comput. 12, 3654{3661

(2016).

349D. Loco, L. Lagard�ere, S. Caprasecca, F. Lipparini, B. Mennucci, and J.-P. Piquemal,

\Hybrid QM/MM molecular dynamics with AMOEBA polarizable embedding," J. Chem.

Theory Comput. 13, 4025{4033 (2017).

350E. G. Kratz, A. R. Walker, L. Lagard�ere, F. Lipparini, J.-P. Piquemal, and G. Andr�es Cis-

neros, \LICHEM: A QM/MM program for simulations with multipolar and polarizable

force �elds," J. Comput. Chem. 37, 1019{1029 (2016).

351M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-

man, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V.

Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Or-

tiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi,

J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao,

N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,

M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A.

74



Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers,

K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari,

A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,

C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.

Foresman, and D. J. Fox, \Gaussian~16 revision c.01," (2016), gaussian Inc. Wallingford

CT.

352H. G�okcan, E. A. V�azquez-Montelongo, and G. A. Cisneros, \Lichem 1.1: Recent im-

provements and new capabilities," J. Chem. Theory Comput. 15, 3056{3065 (2019).

75


