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1. Introduction

One of the many instances where non-self-adjoint operator algebra techniques are
useful is in distinguishing representations of C*-algebras up to unitary equiva-
lence. By work of Glimm we know that classifying representations of non-type-I
C*-algebras up to unitary equivalence cannot be done with countable Borel struc-
tures [13]. Hence, in order to distinguish representations of Cuntz algebra On, one
either restricts to a tractable subclass or weakens the invariant. By restricting to
permutative or atomic representations, classification was achieved by Bratteli and
Jorgensen in [5] and by Davidson and Pitts in [9].

Since general representations of On are rather unruly, one can weaken unitary
equivalence by considering isomorphism classes of not-necessarily-self-adjoint free
semigroup algebras, which are WOT-closed operator algebras generated by the
Cuntz isometries of a given representation of On. The study of free semigroup
algebras originates from the work of Popescu on his non-commutative disc algebra
[22], and particularly from the work of Arias and Popescu [2], and of Davidson and
Pitts [8,9]. This work was subsequently used by Davidson, Katsoulis and Pitts to
establish a general non-self-adjoint structure theorem for any free semigroup algebra
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[11] which can be used to distinguish many representations of Cuntz algebra On

via non-self-adjoint techniques.
The works of Bratteli and Jorgensen on iterated function systems were eventu-

ally generalized, and the classification of Cuntz–Krieger representations of directed
graphs found use in the work of Marcolli and Paolucci [20] for producing wavelets on
Cantor sets, and in the work of Bezuglyi and Jorgensen [3] where they are associated
to one-sided measure-theoretic dynamical systems called ‘semi-branching function
systems’.

Towards establishing a non-self-adjoint theory for distinguishing representations
of directed graphs, and by building on the work of many authors [12,14–18,21],
the first author together with Davidson and Li extended the theory of free semi-
group algebras to classify the representations of directed graphs via non-self-adjoint
techniques [10].

Definition 1.1. Let G = (V,E, r, s) be a directed graph with range and source maps
r, s : E → V . A family S = (Sv, Se)v∈V,e∈E of operators on Hilbert space H is a
Toeplitz–Cuntz–Krieger (TCK) family if

1. {Sv}v∈V is a set of pairwise orthogonal projections;

2. S∗
eSe = Ss(e) for every e ∈ E;

3.
∑

e∈F SeS
∗
e � Sv for every finite subset F ⊆ r−1(v).

We say that S is a Cuntz–Krieger (CK) family if additionally

4.
∑

e∈r−1(v) SeS
∗
e = Sv for every v ∈ V with 0 < |r−1(v)| < ∞.

We say S is a fully-coisometric family if additionally

5. sot–
∑

e∈r−1(v) SeS
∗
e = Sv for every v ∈ V .

Given a TCK family S for a directed graph G, we say that S is fully supported
if Sv �= 0 for all v ∈ V . When S is not fully supported, we may induce a subgraph
GS on the support VS = {v ∈ V |Sv �= 0} of S so that S is really just a TCK family
for the smaller graph GS. Thus, if we wish to detect some property of G from a
TCK family S of G, we will have to assume that S is fully supported. When G is
transitive and Sw �= 0 for some w ∈ V it follows that S is fully supported.

Studying TCK or CK families amounts to studying the representations of
Toeplitz–Cuntz–Krieger and Cuntz–Krieger C*-algebras. More precisely, let T (G)
and O(G) be the universal C*-algebras generated by TCK and CK families respec-
tively. Then representations of TCK or CK C*-algebras are in bijection with TCK or
CK families respectively. The C*-algebra O(G) is the well-known graph C*-algebra
of G, which generalizes the Cuntz–Krieger algebra introduced in [6] for studying
subshifts of finite type. We recommend [23] for further preliminaries on TCK and
CK families, as well as C*-algebras associated to directed graphs.

When G = (V,E, r, s) is a directed graph, we denote by E• the collection of finite
paths λ = e1. . .en in G where s(ei) = r(ei+1) for i = 1, . . ., n − 1. In this case we
say that λ is of length n, and we regard vertices as paths of length 0. Given a
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TCK family S = (Sv, Se) and a path λ = e1. . .en we define Sλ = Se1 ◦ . . . ◦ Sen
. We

extend the range and source maps of paths λ = e1. . .en by setting r(λ) := r(e1) and
s(λ) := s(en), and for a vertex v ∈ V considered as a path we define r(v) = v = s(v).
A path λ of length |λ| > 0 is said to be a cycle if r(λ) = s(λ). We will often not
mention the range and source maps r and s in the definition of a directed graphs,
and understand them from context.

Hypothesis 1. Throughout the paper we will assume that whenever S = (Sv, Se)
is a TCK family, then sot–

∑
v∈V Sv = IH. In terms of representations of the C*-

algebras this is equivalent to requiring that all ∗-representations of our C*-algebras
T (G) and O(G) are non-degenerate.

Definition 1.2. Let G = (V,E) be a directed graph, and let S = (Sv, Se) be a TCK
family on a Hilbert space H. The WOT-closed algebra S generated by S is called a
free semigroupoid algebra of G.

The main purpose of this paper is to characterize which finite graphs admit
self-adjoint free semigroupoid algebras. For the n-cycle graph, we know from [10,
theorem 5.6] that Mn(L∞(μ)) is a free semigroupoid algebra when μ is a measure
on the unit circle T which is not absolutely continuous with respect to Lebesgue
measure m on T. Thus, an easy example for a self-adjoint free semigroupoid algebra
for the n-cycle graph is simply Mn(C), by taking some Dirac measure μ = δz for
z ∈ T.

On the other hand, for non-cycle graphs examples which are self-adjoint are rather
difficult to construct, and the first example showing this is possible was provided
by Read [24] for the graph with a single vertex and two loops. More precisely, Read
shows that there are two isometries Z1, Z2 on a Hilbert space H with pairwise
orthogonal ranges that sum up to H such that the WOT-closed algebra generated
by Z1, Z2 is B(H). Read’s proof was later streamlined and simplified by Davidson
in [7].

Definition 1.3. Let G = (V,E) be a directed graph. We say that G is

(i) transitive if there is a path between any one vertex and another.

(ii) aperiodic if for any two vertices v, w ∈ V there is a K0 such that any length
K � K0 can occur as the length of a path from v to w.

Notice that for finite (both finitely many vertices and edges) transitive graphs,
the notions of a CK family and fully-coisometric TCK family coincide. In [10,
theorem 4.3 and corollary 6.13] restrictions were found on graphs and TCK families
so as to allow for self-adjoint examples.

Theorem 1.4 (theorem 4.3 and corollary 6.13 in [10]). Let S be a free semigroupoid
algebra generated by a TCK family S of a directed graph G = (V,E) such that Sv �= 0
for all v ∈ V. If S is self-adjoint then

(i) S must be fully-coisometric, and

(ii) G must be a disjoint union of transitive components.

https://doi.org/10.1017/prm.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.20


394 A. Dor-On and C. Linden

Showing that non-cycle transitive graphs other than the single vertex with
two loops admit a self-adjoint free semigroupoid algebra required new ideas from
directed graph theory.

Definition 1.5. Let G = (V,E) be a transitive, finite and in-degree d-regular graph.
A strong edge colouring c : E → {1, . . ., d} is one where c(e) �= c(f) for any two
distinct edges e, f ∈ r−1(v) and v ∈ V .

Whenever G = (V,E) has a strong edge colouring c, it induces a labelling of finite
paths c : E• → F

+
d which is defined for λ = e1. . .en via c(λ) = c(e1). . .c(en). Since

c is a strong edge colouring, whenever w ∈ V is a vertex and γ = i1. . .in ∈ F
+
d with

ij ∈ {1, . . ., d} is a word in colours, we may inductively construct a path λ = e1. . .en

such that c(ej) = ij and r(e1) = w. In this way, every vertex w and a word in colours
uniquely define a back-tracked path whose range is w.

Definition 1.6. Let G = (V,E) be a transitive, finite and in-degree d-regular graph.
A strong edge colouring is called synchronizing if for some vertex v ∈ V there is a
word γv ∈ F

+
d in colours {1, . . ., d} such that for any other vertex w ∈ V , the unique

back-tracked path λ with range w and colour c(λ) = γv has source s(λ) = v.

It is easy to see that if a finite in-degree regular graph has a synchronizing strong
edge colouring then it is aperiodic. The converse of this statement is a famous con-
jecture made by Adler and Weiss in the late 60 s [1]. This conjecture was eventually
proven by Trahtman [25] and is now called the Road Colouring Theorem. The Road
Colouring Theorem was the key device that enabled the construction of self-adjoint
free semigroupoid algebras for in-degree regular aperiodic directed graphs in [10,
theorem 10.11].

Definition 1.7. Let G = (V,E) be a transitive directed graph. We say that G has
period p if p is the largest integer such that we can partition V = 	p

i=1Vi so that
when e ∈ E is an edge with s(e) ∈ Vi then r(e) ∈ Vi+1 (here we identify p + 1 ≡ 1).
This decomposition is called the cyclic decomposition of G, and the sets {Vi} are
called the cyclic components of G.

Remark 1.8. In a transitive graph G every vertex v ∈ V has a cycle of finite length
through it. Hence, if G does not have finite periodicity this would imply that any
cycle around v must have arbitrarily large length. Hence, transitive graphs have
finite periodicity.

It is a standard fact that G is p-periodic exactly when for any two vertices
v, w ∈ V there exists 0 � r < p and K0 such that for any K � K0 the length pK + r
occurs as the length of a path from v to w, while pK + r′ does not occur for any K
and 0 � r′ < p with r �= r′. Hence, G is 1-periodic if and only if it is aperiodic. We
will henceforth say that G is periodic when G is p-periodic with period p � 2. For a
transitive directed graph, the period p is also equal to the greatest common divisor
of the lengths of its cycles. This equivalent definition of periodicity of a transitive
directed graph is the one most commonly used in the literature.

In [10, question 10.13] it was asked whether periodic in-degree d-regular finite
transitive graphs with d � 3 have a self-adjoint free semigroupoid algebra. In this
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paper we answer this question in the affirmative. In fact, we are able to characterize
exactly which finite graphs have a self-adjoint free semigroupoid algebra. A gener-
alization of the road colouring for periodic in-degree regular graphs proven by Béal
and Perrin [4] is then the replacement for Trahtman’s aperiodic Road Colouring
Theorem when the graph is periodic.

Theorem 1.9. Let G = (V,E) be a finite graph. There exists a fully supported CK
family S = (Sv, Se) which generates a self-adjoint free semigroupoid algebra S if
and only if G is the union of transitive components.

Furthermore, if G is transitive and not a cycle then B(H) is a free semigroupoid
algebra for G where H is a separable infinite dimensional Hilbert space.

This paper is divided into four sections including this introduction. In § 2 we
translate the periodic Road Colouring Theorem of Béal and Perrin to a more con-
crete statement that we end up using. In § 3 a reduction to graphs with in-degree
at least 2 at every vertex is made, and our new construction reduces that case to
the in-degree 2-regular case. Finally in § 4 we combine everything together for a
proof of theorem 1.9 and give some concluding remarks.

2. Periodic Road colouring

The following is the generalization of the notion of synchronization to p-periodic
finite graphs that we shall need.

Definition 2.1. Let G = (V,E) be a transitive, finite and in-degree d-regular
p-periodic directed graph with cyclic decomposition V = 	p

i=1Vi. A strong edge
colouring c of G with d colours is called p-synchronizing if there exist

(i) distinguished vertices vi ∈ Vi for each 1 � i � p, and;

(ii) a word γ such that for any 1 � i � p and v ∈ Vi, the unique backward path
λv with r(λv) = v and c(λv) = γ has source vi.

Such a γ is called a p-synchronizing word for the tuple (v1, . . ., vp).

In order to show that every in-degree d-regular p-periodic graph is p-synchronizing
we will translate a periodic version of the Road Colouring Theorem due to Béal and
Perrin [4]. We warn the reader that the graphs we consider here are in-degree regular
whereas in [4] the graphs are out-degree regular. Thus, so as to fit our choice of
graph orientation, we state their definitions and theorem with edges having reversed
ranges and sources.

Let G = (V,E) be a transitive, finite, in-degree d-regular graph. If c : E →
{1, . . ., d} is a strong edge colouring, each word γ ∈ F

+
d in colours gives rise to

a map γ : V → V defined as follows. For v ∈ V let λv be the unique path with
r(λv) = v whose colour is c(λ) = γ. Then we define v · γ := s(λv). In this way, we
can apply the function γ to each subset I ⊆ V to obtain another subset of vertices
I · γ = {v · γ | v ∈ I}.
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Definition 2.2. Let G = (V,E) be a transitive, finite and in-degree d-regular with
a strong edge colouring c : E → {1, . . ., d}.

(i) We say that a subset I is a c-image if there exists a word γ such that V · γ = I.

(ii) A c-image I ⊆ V is called minimal if there is no c-image with smaller
cardinality.

We define the rank of c to be the size of a minimal c-image.

Note that the rank of a transitive graph is always well-defined, since any two
minimal c-images have the same cardinality. Next, we explain some of the language
used in the statement of Béal and Perrin’s [4, theorem 6].

A (finite) automaton is a pair (G, c) where G = (V,E) is a finite directed graph
and c : E → {1, . . ., d} some labelling. We say that (G, c) be a complete deterministic
automaton if c|r−1(v) is bijective for each v ∈ V . This forces G to be in-degree d-
regular with a strong edge colouring c. We say that an automaton is irreducible if
its underlying graph is irreducible. Finally, we say that two automata (G, c) and
(H, d) are equivalent if they have isomorphic underlying graphs. The statement of
[4, theorem 6] then says that any irreducible, complete deterministic automaton
(G, c) is equivalent to a complete deterministic automaton whose rank is equal
to the period of G. This leads to the following restatement of the periodic Road
Colouring Theorem of Béal and Perrin [4, theorem 6] in the language of directed
graphs and their colourings.

Theorem 2.3 (theorem 6 of [4]). Let G = (V,E) be a transitive, finite and in-
degree d-regular graph. Then G is p-periodic if and only if there exists a strong edge
colouring c : E → {1, . . ., d} with rank p.

As a corollary, we have that every finite in-degree d-regular graph is p-
synchronizing (in the sense of definition 2.1) when its period is p. This will be
useful to us in the next section.

Corollary 2.4. Let G = (V,E) be a transitive, finite, in-degree d-regular and p-
periodic graph with cyclic decomposition V = 	p

i=1Vi. Then there is a strong edge
colouring c : E → {1, . . ., d} which is p-synchronizing.

Furthermore, if γ is a p-synchronizing word for (v1, . . ., vp) and wi ∈ Vi is
some vertex for some 1 � i � p, then there are vertices wj ∈ Vj for j �= i and a
p-synchronizing word μ for (w1, . . ., wp).

Proof. Let c be a strong edge colouring with a minimal c-image of size p. This
means that there is a word γ ∈ F

+
d such that |V · γ| = p. If γ is not of length

which is a multiple of p, we may concatenate γ′ to γ to ensure that |γγ′| = kp
for some 0 �= k ∈ N. Since V · γ is minimal we have that V · γγ′ is also of size p.
Hence, without loss of generality we have that |γ| = kp for some 0 �= k ∈ N. Since
|γ| = kp, we see that the function γ : V → V must send elements in Vi to elements
in Vi. Since each Vi is non-empty and |V · γ| = p, there is a unique vi ∈ V · γ such
that Vi · γ = {vi}. It is then clear that (v1, . . ., vp) together with γ show that c is
p-synchronizing.
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For the second part, without loss of generality assume that i = 1, and let λ
be a path with range v1 and source w1, whose length must be a multiple of p.
Then for μ := γ · c(λ), we still have |V · μ| = p from minimality of V · γ, and also
v1 · c(λ) = w1. Thus, we see that as in the above proof there are some wj ∈ Vj with
j �= 1 such that μ is p-synchronizing for (w1, . . ., wp). �

3. B(H) as a free semigroupoid algebra

In [7] Read isometries Z1, Z2 with additional useful properties are obtained on a
separable infinite dimensional Hilbert space H. More precisely, from the proof of [7,
lemma 1.6] we see that there are orthonormal bases {hj}j∈N and {gi}i∈N together
with a sequence

Si,j,k ∈ span{Zw|w ∈ F
+
2 with |w| = 2k}

such that Si,j,k converges WOT to the rank one operator gi ⊗ h∗
j . As a consequence

of this, in [7, theorem 1.7] it is shown that the WOT closed algebra generated by
{Zw|μ ∈ F

+
2 with|w| = 2k} is still B(H). That 2k above can be replaced with any

non-zero p ∈ N was claimed after [10, question 10.13], and we provide a proof for
it here.

Proposition 3.1. For any non-zero p ∈ N, we have that the WOT-closed algebra
Zp generated by {Zμ|μ ∈ F

+
2 with |μ| = p} is B(H).

Proof. As there are finitely many residue classes modulo p, there is some m such
that p divides 2k + m for infinitely many k. Pick a word w with length |w| = m, and
note that Si,j,kZw ∈ Alg{Zμ |μ ∈ F

+
2 with |μ| = p} for infinitely many k. Thus, the

rank one operator (gi ⊗ h∗
j )Zw is in Zp. Since any operator in B(H) is the WOT

limit of finite linear combinations of operators of the form gi ⊗ h∗
j , we see that

A = AZ∗
wZw ∈ Zp for any A ∈ B(H). Hence, Zp = B(H). �

Next we reduce the problem of showing that B(H) is a free semigroupoid algebra
for a transitive graph G to a problem about vertex corners.

Lemma 3.2. Let G be a transitive graph. Suppose S is a TCK family on H such that
for any v ∈ V there exists w ∈ V such that SvSSw = SvB(H)Sw. Then S = B(H).

Proof. Let v′, w′ ∈ V be arbitrary vertices. By assumption, there is w ∈ V such
that Sv′SSw = Sv′B(H)Sw. Let λ be a path from w′ to w, and let B ∈ B(H).
Then Sv′BSλ ∈ Sv′SSw′ for any B ∈ B(H). Let B = AS∗

λ for general A ∈ B(H) so
that Sv′BSλ = Sv′ASw′ ∈ Sv′SSw′ . Hence, we obtain that Sv′SSw′ = Sv′B(H)Sw′

for any v′, w′ ∈ V . Since sot–
∑

v∈V Sv = IH we get that S = B(H). �

Let G = (V,E) be a finite directed graph. For an edge e ∈ E we define the edge
contraction G/e of G by e to be the graph obtained by removing the edge e and
identifying the vertices s(e) and r(e). When r(e) �= s(e), our convention will be that
the identification of r(e) and s(e) is carried out by removing the vertex r(e), and
every edge with source/range r(e) is changed to have source/range s(e) respectively.
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Lemma 3.3. Let G = (V,E) be a transitive and finite directed graph which is not a
cycle. Let e0 ∈ E such that r(e0) has in-degree 1. Then:

(i) The edge e0 is not a loop.

(ii) The edge contraction G/e0 has one fewer vertex of in-degree 1 than G has.

(iii) The edge contraction G/e0 is a finite transitive directed graph which is not a
cycle.

Proof. If e0 were a loop, then the assumptions that G is transitive and that r(e0)
has in-degree 1 would imply that G is a cycle with one vertex. This contradicts our
assumption that G is not a cycle, so (i) is proved.

Since now we must have r(e0) �= s(e0), we adopt our convention discussed above.
Since r(e0) has in-degree 1, there are no other edges whose range is r(e0), so con-
traction does not change the range of any of the surviving edges. In particular, the
in-degree of the remaining vertices is unchanged. Since we have removed a single
vertex of in-degree 1, (ii) is proved.

By construction G/e0 is a finite directed graph. It is straightforward to verify that
transitivity of G implies transitivity of G/e0. A finite, transitive, directed graph is
a cycle if and only if every vertex has in-degree 1. Since G is by assumption not a
cycle, it has a vertex of in-degree at least 2. Since the in-degree of the remaining
vertices is unchanged, G/e0 also has a vertex of in-degree at least 2. Hence G/e0 is
not a cycle and (iii) is proved. �

The following proposition shows that such edge contractions preserve the
property of having B(H) as a free semigroupoid algebra.

Proposition 3.4. Let G = (V,E) be a transitive and finite directed graph that is
not a cycle, and let e0 ∈ E such that r(e0) has in-degree 1. If G/e0 has B(H) as a
free semigroupoid algebra, then so does G.

Proof. Let v0 := r(e0) so that G/e0 = (Ṽ , Ẽ) = (V \ {v0}, E \ {e0}). Let S̃ =
(S̃v, S̃e) be a TCK family for G/e on H such that S̃ = B(H). By theorem 1.4
we get that S̃ is actually a CK family. Write H =

⊕
v∈Ṽ S̃vH and let Hv = S̃vH

for v ∈ Ṽ . Let Hv0 be a Hilbert space identified with S̃s(e0)H via a fixed unitary
identification J : Hv0 → S̃s(e0)H and form the space K =

⊕
v∈V Hv. We define a

CK family S for G on K as follows: Let Sv be the projection onto Hv for each
v ∈ V . For edges e ∈ Ẽ with s(e) �= v0 we extend linearly the rule

Seξ =

{
S̃eξ when ξ ∈ Hs(e),

0 when ξ ∈ H⊥
s(e),

for edges e ∈ Ẽ with s(e) = v0 we extend linearly the rule

Seξ =

{
S̃eJξ when ξ ∈ Hv0 ,

0 when ξ ∈ H⊥
v0

,
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and finally for e0 we extend linearly the rule

Se0ξ =

{
J∗ξ when ξ ∈ Hs(e0),

0 when ξ ∈ H⊥
s(e0)

.

Since J is a unitary, and since S̃ is a CK family for G̃, we see that S = (Sv, Se) is
a CK family for G.

We verify that for any vertex v ∈ V we have SvSSv = SvB(K)Sv. First note that
for any v ∈ V we have

SvSSv = spanwot{Sλ | r(λ) = v = s(λ), λ ∈ E•},

and similarly for every v ∈ Ṽ we have a description as above for S̃vS̃S̃v in terms
of cycles in G/e0.

Suppose now that v ∈ Ṽ and that λ is a cycle through v in G. If λ does not go
through v0, then SvSλSv = SvS̃λSv ∈ SvS̃Sv. Next, if λ = μν is a simple cycle such
that s(μ) = v0, since e0 is the unique edge with r(e0) = v0, we may write ν = e0ν

′.
We then get that

SvSλSv = SvSμJ∗Sν′Sv = SvS̃μS̃ν′Sv ∈ SvS̃Sv.

For a general cycle λ around v which goes through v0, we may decompose it as a
concatenation of simple cycles, and apply the above iteratively to eventually get
that SvSλSv ∈ SvS̃Sv. Hence, for v ∈ Ṽ we have

SvSSv = SvS̃Sv = SvB(H)Sv = SvB(K)Sv.

Finally, for v = v0 fix μ some cycle going through v0 in G, and write μ = e0μ
′. For

any λ which is a cycle in G going through s(e0), we have that

J∗SλJSμ = Se0SλSμ′ ∈ Sv0SSv0 .

Hence, from our previous argument applied to s(e0) �= v0, we get

J∗Ss(e0)B(H)Ss(e0)JSμ = J∗Ss(e0)SSs(e0)JSμ ⊆ Sv0SSv0 . (3.1)

Next, for B ∈ Sv0B(K)Sv0 we take A = Ss(e0)JBS∗
μJ∗Ss(e0) which is now in

Ss(e0)B(H)Ss(e0), so that

Ss(e0)JBSv0 = ASs(e0)JSμ ∈ Ss(e0)B(H)Ss(e0)JSμ.

By varying over all B ∈ Sv0B(K)Sv0 and multiplying by J∗ on the left, we get that

Sv0B(K)Sv0 ⊆ J∗Ss(e0)B(H)Ss(e0)JSμ.

Thus, with equation (3.1) we get that Sv0B(K)Sv0 = Sv0SSv0 . Now, since for any
v ∈ V we have that SvSSv = SvB(K)Sv, by lemma 3.2 we are done. �

Hence, edge contraction together with lemma 3.3 can be repeatedly applied to any
finite transitive directed graph G which is not a cycle in order to obtain another such
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Figure 1. The lag of G applied at v.

graph G̃ which has in-degree at least 2 for every vertex. By applying proposition 3.4
to this procedure, we obtain the following corollary.

Corollary 3.5. Let G be a transitive and finite directed graph which is not a cycle,
and let G̃ be a graph resulting from repeatedly applying edge contractions to edges
e ∈ E with r(e) of in-degree 1. Then G̃ has in-degree at least 2 for every vertex, and
if G̃ has B(H) as a free semigroupoid algebra, then so does G.

Let G = (V,E) is finite directed graph which is transitive and has in-degree at
least 2 at every vertex. For a vertex v ∈ V with in-degree dv � 3 we define the
v-lag of G to be the graph Ĝv = (V̂v, Êv) obtained as follows: all vertices beside
v and edges ranging in such vertices remain the same. We list (u0, . . . , udv−1) the
tuple of vertices in G which are the source of an edge with range v, counted with
repetition so that there is a unique edge ej from each uj to v. We add dv − 2 vertices
v1, . . . , vdv−2 and set an edge fi from vi to vi−1 when 2 � i � dv − 2 and an edge f1
from v1 to v. We then replace each edge ej from uj to v in G with an edge êj from uj

to vj when 1 � j � dv − 2, replace an edge e0 from u0 to v in G by an edge ê0 from
u0 to v, and replace an edge edv−1 from udv−1 to v in G with an edge êdv−1 from
udv−1 to vdv−2. The resulting graph is over the vertex set V̂v = V 	 {v1, . . . , vdv−2}
and we denote it by Ĝv. The construction will replace only those edges going into
v with those shown in figure 1 (the sources u0, . . . , udv−1 of such edges may have
repetitions), and everything else will remain the same.

Lemma 3.6. Let G = (V,E) be a transitive and finite directed graph with in-degree
at least 2 at every vertex. Let v ∈ V be a vertex with in-degree dv � 3. Then Ĝv is
a finite transitive directed graph with in-degree at least 2 at every vertex, and has
one fewer vertex of in-degree at least 3.

Proof. We see from the construction that v1, . . . , vdv−2, as well as v, all have in-
degree 2. So we have reduced by one the number of vertices of in-degree at least 3,
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and all other vertices except for v1, . . . , vdv−2 and v still have the same in-degree.
Hence, Ĝv has one fewer vertex with in-degree at least 3.

We next show that Ĝv is transitive. Indeed, every one of the vertices
{v1, . . . , vdv−2} leads to v, and the set of vertices {u1, . . . , udv−1} lead to
v1, . . . , vdv−2 so it would suffice to show that for any two vertices w, u ∈ V we
have a path in Ĝv from w to u. Since G is transitive, we have a path λ = g1 . . . gn

in G from w to u. Next, define ĝk to be gk if gk �= ej for all j and whenever gk = ej

for some edge ej with range in v we set gk := f1 . . . fj êj which is a path in Ĝv from
uj to v. This way the new path ĝ = ĝ1 . . . .ĝn is a path in Ĝv from w to u. �

Our construction depends on the choice of orderings for the {uj}, so when we
write Ĝv we mean a fixed ordering for sources of incoming edges of the vertex v in
the above construction.

Next, let G = (V,E) be a finite directed graph with in-degree at least 2 at every
vertex. For a vertex of in-degree at least 3, let Ĝv be the v-lag of G. We define a map
θ on paths E• of G as follows: If e ∈ E is any edge with r(e) �= v, we define θ(e) = e.
Next, if ej is the unique edge from uj to v in G we define θ(ej) = f1f2 . . . fj êj which
is a path from uj to v in Ĝv. The map θ then extends to a map (denoted still by) θ
on finite paths E• of G by concatenation, whose restriction to V is the embedding
of V ⊆ V̂v.

Lemma 3.7. Let G = (V,E) be a transitive and finite directed graph with in-degree
at least 2 at every vertex. For a vertex v ∈ V of in-degree at least 3, let Ĝv be the
v-lag of G. Then θ is a bijection between E• and paths in Ê•

v whose range and
source are both in V .

Proof. Since θ is injective on edges and vertices, it must be injective on paths as it
is defined on paths by extension.

Suppose now that u ∈ V and λ̂ = ĝ1 . . . ĝj is a path in Ĝv from u to v such
that s(ĝk) /∈ V for k = 1, . . . , j − 1. Then it must be that λ̂ = f1f2 . . . fj êj with
s(êj) = uj = u, so that λ̂ = θ(ej). A general path in Ĝv between two vertices in V
is then the concatenation of edges in E and paths of the form f1f2 . . . fj êj as above,
so that θ is surjective. �

Applying a v-lag at each vertex of in-degree 3 repeatedly until there are no more
such vertices, we obtain a directed graph Ĝ = (V̂ , Ê). Since the construction at
each vertex of in-degree at least 3 changes only edges going into the vertex v, the
order in which we apply the lags does not matter, and we will get the same directed
graph Ĝ = (V̂ , Ê). The following is a result of applying lemma 3.6 and lemma 3.7
at each step of this process.

Corollary 3.8. Let G = (V,E) be a transitive and finite directed graph with
in-degree at least 2 at every vertex. Let Ĝ = (V̂ , Ê) be the graph resulting from
repeatedly applying a v-lag at every vertex v of in-degree at least 3. Then Ĝ is in-
degree 2-regular and there is an embedding V ⊆ V̂ which extends to a bijection θ
from paths E• to paths in Ê• whose range and source in V.
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Now let G = (V,E) be a finite directed graph with in-degree at least 2 at every
vertex, and Ĝ = (V̂ , Ê) be the graph in corollary 3.8. Given a strong edge colouring
c of Ĝ with two colours {1, 2}, each edge g ∈ E inherits a labelling � given by �(g) :=
c(θ(g)) with labels {c(θ(g))}. We then extend this labelling to paths in G by setting
for any path λ = g1 . . . gn ∈ E• in G the label �(λ) = c(θ(λ)) = c(θ(g1)) . . . c(θ(gn))
where θ(λ) ∈ Ê• is the path in Ĝ corresponding to λ whose range and source are
always in V .

Using the labelling � we construct a Cuntz–Krieger family S� = (S�
v, S�

e) for our
original graph G as follows: let H be a separable infinite dimensional Hilbert space.
Let K =

⊕
v∈V Hv where Hv is a copy of H identified via a unitary Jv : Hv → H.

First we define S�
v to be the projection onto Hv for v ∈ V . Then, for e ∈ E we define

S�
e by linearly extending the rule

S�
eξ =

{
J∗

r(e)Z�(e)Js(e)ξ for ξ ∈ Hs(e)

0 for ξ ∈ H⊥
s(e).

where Z�(e) is the composition of Read isometries Z1 and Z2 given as follows: for
each e ∈ E there are f1, . . . , fj ∈ Ê (or non at all when r(e) has in-degree 2 in G)
such that θ(e) = f1f2 . . . fj ê as in the iterated construction of Ĝ. Thus, we get that
Z�(e) = Zc(θ(e)) = Zc(f1) ◦ . . . ◦ Zc(fj) ◦ Zc(ê).

Proposition 3.9. Let G be a transitive and finite directed graph such that all ver-
tices have in-degree at least 2, and let Ĝ be the in-degree 2 regular graph constructed
in corollary 3.8. Let p be the period of Ĝ. Then for any strong edge colouring
c : Ê → {1, 2} for Ĝ we have that S� is a CK family for G. Furthermore, if c is
p-synchronizing for Ĝ, then the free semigroupoid algebra S� generated by S� as
above is B(K).

Proof. We first show that S� is a CK family, given a strong edge colouring c for Ĝ.
It is easy to show by definition that S� is a TCK family, so we show the condition
that makes it into a CK family. Indeed, for v ∈ V we have that

∑
e∈r−1(v)

S�
e(S

�
e)

∗ = S�
vJ∗

v

⎛⎝ ∑
e∈r−1(v)

Z�(e)Z
∗
�(e)

⎞⎠ JvS�
v. (3.2)

Now, let the in-degree of v be d = dv, and let (u0, . . . , ud−1) be the sources of edges
incoming to v in G. Then in Ĝ the path θ(ej) (associated to the edge ej from uj to
v in G) is given by θ(ej) = f1f2 . . . fj êj . Hence, since c is a strong edge colouring
with two colours we see that

Zc(f1...fd−2)Z
∗
c(f1...fd−2)

= Zc(θ(ed−1))Z
∗
c(θ(ed−1))

+ Zc(θ(ed−2))Z
∗
c(θ(ed−2))

as well as

Zc(f1...fj)Z
∗
c(f1...fj)

= Zc(θ(ej))Z
∗
c(θ(ej))

+ Zc(f1...fjfj+1)Z
∗
c(f1...fjfj+1)

.
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By applying these identities repeatedly we obtain that∑
e∈r−1(v)

Z�(e)Z
∗
�(e) = IH.

Thus from equation (3.2) we get that S� is a CK family.
Next, suppose that the strong edge colouring c of Ĝ is p-synchronizing. We show

that the free semigroupoid algebra S� of S� for the graph G is B(K). Let v ∈ V
be a vertex. By the second part of corollary 2.4 we have a p-synchronizing word γv

for v ∈ V̂ in the sense that whenever u ∈ V̂ is in the same cyclic component of v in
Ĝ, then u · γv = v. Let γ be a word in two colours of length divisible by p. There
is a unique path λ̂ in Ĝ with r(λ̂) = v such that c(λ̂) = γ. Since the length of λ̂ is
divisible by p, we have that s(λ̂) must also be in the same cyclic component as v,
so by the p-synchronizing property of γv there is a unique path λ̂v with c(λ̂v) = γv

and r(λ̂v) = s(λ̂) and s(λ̂v) = v. This defines a cycle λ̂λ̂v around v whose colour is
c(λ̂λ̂v) = γγv.

By corollary 3.8, there is a unique cycle μ around v in G such that θ(μ) = λ̂λ̂v.
Then �(μ) = c(λ̂λ̂v) = γγv, and we get that

S�
μ = S�

vJ∗
v ZγZγv

JvS�
v ∈ S�

vSS�
v.

Since λ̂ is a general path with range in v whose length is divisible by p, we see
that c(λ̂) = γ is an arbitrary word of length divisible by p. Thus, by proposition 3.1
we obtain SvJ∗

v BZγv
JvSv ∈ SvSSv for any B ∈ B(H). By taking B = AZ∗

γv
we see

that SvJ∗
v AJvSv ∈ SvSSv for any A ∈ B(H). Finally, we have shown that SvSSv =

SvB(K)Sv for arbitrary v ∈ V so that by lemma 3.2 we conclude that S = B(K).
�

Example 3.10. In the case where the graph G is a single vertex with d � 3 edges,
the construction of Ĝ yields the graph shown in figure 2.

A strong 2-colouring of the graph in figure 2 lifts to a colouring of G by words in
{1, 2}. This determines a monomial embedding Od ↪→ O2, where each generator for
Od is sent to the appropriate composition of the generators of O2. Such monomial
embeddings arise and are studied in [19]. If we represent the canonical generators
of O2 by a pair of Read isometries Z1, Z2, we obtain a representation of Od. If the
colouring is synchronizing, the generating isometries of Od will generate B(H) as
a free semigroup algebra. In fact, any strong 2-colouring of the graph in figure 2 is
synchronizing: if the edge labelled e has colour i ∈ {1, 2}, then it is easy to see that
id is a synchronizing word for the vertex v.

4. Self-adjoint free semigroupoid algebras

In this section we tie everything together to obtain our main theorem, and make a
few concluding remarks.

Theorem 4.1 Self-adjoint free semigroupoid algebras. Let G = (V,E) be a finite
graph. There exists a fully supported CK family S = (Sv, Se) which generates a
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Figure 2. Splitting a vertex with d � 3 loops.

self-adjoint free semigroupoid algebra S if and only if G is the union of transitive
components.

Furthermore, if G is transitive and not a cycle then B(H) is a free semigroupoid
algebra for G where H is a separable infinite dimensional Hilbert space.

Proof. If S is self-adjoint, theorem 1.4 tells us that G must be the disjoint union
of transitive components.

Conversely, if G is the union of transitive components, we will form a CK family
whose free semigroupoid algebra is self-adjoint for each transitive component sepa-
rately, and then define the one for G by taking their direct sum. Hence, we need to
only show that every finite transitive graph G has a self-adjoint free semigroupoid
algebra. Then there are two cases:

(i) If G is a cycle of length n: By item (3.1) of [10, theorem 5.6] we have that
Mn(L∞(μ)) is a free semigroupoid algebra when μ is a measure on the unit
circle T which is not absolutely continuous with respect to Lebesgue measure
m on T.

(ii) If G is not a cycle: By corollary 3.5 we may assume without loss of generality
that G has no vertices with in-degree 1. By the first part of corollary 2.4
there exists a p-synchronizing strong edge colouring c for Ĝ, so we may apply
proposition 3.9 to deduce that B(H) is a free semigroupoid algebra for G.

�

Remark 4.2. Note that in the proof of theorem 3.9, since Ĝ is always in-degree 2-
regular, we only needed the in-degree 2-regular case of the periodic Road Colouring
Theorem in corollary 2.4. On the other hand, we could only prove proposition 3.1
for the free semigroup on two generators, so it was also necessary to reduce the
problem to the in-degree 2-regular case. The latter explains why an iterated version
of proposition 3.9 akin to the one for the first construction in proposition 3.4 is not
so readily available.

To construct a suitable Cuntz–Krieger family as in the discussion preceding
proposition 3.9, for each vertex in G with in-degree at least 3 we must choose
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a monomial embedding of Od into O2. Example 3.10 shows that choosing a mono-
mial embedding is equivalent to choosing a strong edge colouring of a certain binary
tree with d leaves. Constructing such a tree for each vertex gives the construction
of Ĝ, and this is where the intuition for our proof originated from.
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