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A B S T R A C T

We introduce a microstructurally informed machine learning model for predicting the
anisotropic yield surfaces of polycrystalline materials. A full-field, spatially resolved crystal
plasticity model is employed to generate a data set describing the yield response of an aluminum
alloy, enabling the training of a neural network yield function and the calibration of 3D yield
criteria of plastically anisotropic polycrystals. This novel formulation explores the flexibility of
neural networks to describe complex-shaped yield loci and avoids common problems associated
with conventional 3D yield functions, such as the non-trivial parameter identification and non-
uniqueness of the anisotropy coefficients. Here, Bayesian optimization is applied to obtain an
optimal neural network architecture and allows for an automated model design. The neural
network yield function is able to learn intrinsic properties such as the convexity of the yield
hull and tension–compression symmetry from a relatively small number of data points. The
fully data-driven yield criterion can accurately reproduce multiaxial flow response and planar
anisotropy despite of its material blind initial state. Stress gradients can also be computed from
the neural network through automatic differentiation as derived quantities with good fidelity.
This allows the calculation of r-values and provides a pathway for implementing the neural
network yield model into finite element codes.

1. Introduction

Polycrystalline alloys often inherit crystallographic texture from thermo-mechanical treatments during both processing and
anufacturing (Raabe et al., 2004). Such texture renders the plastic flow behavior of these materials intrinsically anisotropic. In

order to accurately describe the directional dependence of plastic flow, crystal plasticity (CP) models that track lattice rotation of
individual grains have been developed. While these models can predict both polycrystal anisotropy and texture evolution with high
fidelity, their feasibility for engineering scale simulations of metal forming processes is undermined by their high computational
cost (Roters et al., 2010). In fact, the plastic anisotropy of a wide range of metals and alloys at the continuum level is often described
by analytical yield functions due to their efficiency and accurate yield prediction (Shutov and Ihlemann, 2013).
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The first yield criterion was proposed by von Mises (1928). This quadratic model asserts that plastic flow starts when the 𝐽2
invariant of the Cauchy stress reaches a critical value and constitutes the basis on which more accurate and specialized criteria have
been developed. A likewise quadratic model, featuring pressure insensitivity and orthotropic symmetry was formulated by Hill
(1948) and is notably precise for the yield prediction of body-centered cubic (bcc) metals (Han et al., 2020). While ensuring
convexity, the quadratic model limits the predictive capacity for materials with higher equi-biaxial flow stress, which often leads to
complex-shaped yield loci. This quadratic requirement has been relaxed in generalized models such as the ones proposed by Hosford
(1979) and Hill (1979) furnishing additional fitting capacity to these functions.

Despite the certain level of flexibility provided by the newly introduced variable exponent and anisotropy coefficients in both
Hosford’s and Hill’s yield criteria, these functions are yet not able to fully capture the flow behavior of appreciably anisotropic
materials. In this context, models based on linear transformation of the stress tensor (Barlat et al., 2007) have demonstrated
accuracy in the description of the yield locus of materials featuring different types of symmetry. For plane stress and orthotropic
symmetry, Banabic et al. (2000) proposed a model with seven anisotropy coefficients which has shown considerable flexibility
and Barlat et al. (1991) used a linear transformation based yield function, Yld91, to describe orthotropic materials under general
stress conditions. In fact, Yld91 is part of a family of phenomenological yield surfaces which includes, but is not limited to,
Yld91 (Barlat et al., 1991), Yld2000-2D (Barlat et al., 2003), Yld2004-13p, Yld2004-18p (Barlat et al., 2005) and Yld2004-27p (Aretz
et al., 2010). These functions feature respectively 6, 8, 13, 18 and 27 anisotropy parameters that allow for a better description
of anisotropic properties. Van Houtte et al. (2009) presented a convex yield function able to describe the response of materials
displaying stress differential effects, in particular, hcp metals and pre-strained cubic metals. Lou et al. (2022) developed a general
anisotropic yield function also capable of modeling strength differential effects and differential hardening response under a variety
of stress states.

While the advanced 3D yield functions have proven accurate in modeling plastic anisotropy, a relevant difficulty in their usage
remains in the non-trivial parameter identification process. As an example, the initially proposed approach for calibrating Yld2004-
18p consists of nine mechanical and two virtual tests. The mechanical ones are comprised of seven uniaxial, balanced biaxial and the
disk compression tests. These tests are experimentally practical and provide meaningful in-plane data points. For an out-of-plane
probing, however, the lack of simple experiments for attaining the yz and zx stress components shifted the data retrieval from
experimental tests to polycrystal simulations. Although the chosen set of tests provides valuable description of the yield surface
shape, most of the stress space is left unexplored (Zhang et al., 2016), which motivated the investigation of further calibration
methods.

Experimental calibration approaches are based purely on data obtained via mechanical tests. Over the years, different calibration
methods have been analyzed. For instance, Malo et al. (1998) used tensile and bending tests to fit Hill’s yield criterion without
the use of r-values, introducing a purely stress-based calibration method. Abedini et al. (2018) employed a genetic algorithm to
obtain the optimal anisotropy coefficients of the Yld2000-2D yield function based on the mean-squared error between uniaxial
yield stresses and r-values at different orientations. Cazacu (2020) used experimental data at different directions to determine the
optimal parameters associated with the orthotropic yield criterion proposed by Karafillis and Boyce (1993). Du et al. (2022) used
19 cruciform biaxial tensile tests under different loading paths to describe the yield response of an fcc AA6016-T4 and a bcc DP490.
Despite various calibration techniques, experimental methods are usually bound to stress states that can be achieved via mechanical
tests, which can limit their capacity to describe complex yield loci.

Hybrid approaches that incorporate experimental and simulation data into the calibration have also been developed to overcome
experimental limitations. Grytten et al. (2008) studied different calibration methods for the Yld2004-18p yield function, employing
uniaxial tension tests at different directions from the RD, compression tests along the ND and stress data points obtained from 690
simulations adopting the full-constraint Taylor model (Taylor, 1938) at evenly distributed strain paths. Zhang et al. (2015) studied
the anisotropy of an AA1050 aluminum alloy with the Yld2004-18p yield function using three different methods: uniaxial tension
data at different loading directions, 201 virtual stress data points obtained by different CP models and a mixed approach combining
both the experimental tests and the CP data points. Iftikhar et al. (2021) experimentally probed the initial yield surface of an AA6061
aluminum alloy in the 𝜎11 −

√

3𝜎12 stress-space and used a Taylor-type CPFE model to simulate the yield surface evolution. While
xperimental data aid in the validation of hybrid methods, it is also worth noting the greater size of the simulation based datasets
entioned above and the general trend towards thorough virtual sampling of the stress space.
Finally, fully simulation-based calibration frameworks have gained notoriety due to their high accuracy and capacity to probe

tress states not easily reached experimentally. The FACET method developed by Van Houtte et al. (2009) proposed a calibration
cheme that used predictions from multilevel models, such as Taylor and Alamel (Van Houtte et al., 1999, 2005) homogeneously
istributed throughout the strain rate space. While this approach overcomes the probing limitations stemming from mechanical
ests, the high number of evaluations of the multilevel models imposes a high computational cost. Zhang et al. (2016) developed
an approach in which the planar anisotropic properties of an AA3104 aluminum alloy were gathered from randomly generated
virtual yield stress data points. The random sampling method they proposed aimed for a more comprehensive data retrieval and
consequently a more accurate yield description. Despite this success, an optimal stress probing and calibration framework has yet
to be developed.

An additional difficulty associated with these advanced yield functions is the non-uniqueness of the anisotropy coeffi-
cients. van den Boogaard et al. (2016) observed, through a sensitivity analysis, dependencies between specific parameters of
Yld2004-18p and suggested a reduction to 14 coefficients instead. While analyzing the parameter identifiability of anisotropic
yield functions, Zhang et al. (2022) reiterated the correlation between different coefficients, outlined the role of the respective
optimization algorithms for parameter determination and further emphasized the importance of carefully chosen information-rich
2
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stress data points in the calibration process. Hence, while the sound mathematical formalism of the linear transformation based
yield functions, along with their accurate yield description for a wide range of metals and alloys should be restated, the complex
heuristics associated with their parameter determination cannot be overlooked.

Alternative avenues for plastic flow prediction have been studied, and machine learning (ML) based approaches have gained
otoriety. The fundamental concept of most ML frameworks consists of inferring from the training data, a surrogate model with
predictive capacity that satisfies the underlying physics of the described phenomenon. In this context, Vlassis and Sun (2020)
introduced a deep learning formulation to derive the stored elastic energy, yield surface and plastic flow. This modeling approach
explored customized loss functions that included first and second order derivatives to ensure that the final neural network (NN)
would achieve thermodynamical consistency and interpretability. Zhang and Mohr (2020) successfully described the stress–strain
esponse of a material featuring 𝐽2 plasticity with isotropic hardening using a deep NN, bypassing an explicit representation of the
ield surface, flow rule and hardening law. Bonatti et al. (2022) showed that Recurrent Neural Networks can describe the mechanical
esponse of an AA6016-T4 aluminum alloy, acting as CP surrogate models. Ibragimova et al. (2021) demonstrated that NNs trained
ith data obtained from CP simulations under unique monotonic loading conditions could predict the stress–strain curves and the
exture evolution of fcc metals. Ali et al. (2019) successfully predicted the stress–strain response and texture evolution of an AA6063-
6 aluminum alloy under uniaxial tension and simple shear. Bonatti and Mohr (2021) developed a NN model capable of predicting
he forming limits of a DP780 steel sheet from the previous loading history. Hartmaier (2020) used a Support Vector Classifier to
ormulate a decision rule defining whether a stress tensor input would be in the elastic or plastic regime, i.e., effectively acting as a
ield surface surrogate. Shoghi and Hartmaier (2022) extended this model with an optimal data generation approach and were able
o predict anisotropy in the principal stress space with high accuracy. Mianroodi et al. (2021) used a Deep NN to calculate local
tresses in complex microstructures based on the spacial distribution of the material properties achieving substantial computational
peed-up. Fuhg et al. (2022) presented a ML framework for predicting bulk yield response under plane stress conditions from CP
imulations of textured polycrystals. Their approach effectively incorporates texture parameters into the prediction of macroscopic
ield loci from convex NNs.
While the studies described above show the notable flexibility, accuracy and potential of NNs in the scope of yield prediction,

mportant simplifications have been made. Such assumptions include dimensional reduction to the principal stress space, 𝐽2
lasticity, or the prediction of very specific stress states. Additionally, often very large training datasets, on the scale of tens of
housands data points, are required when trying to predict more complex behavior such as entire stress–strain curves and texture
volution. Here, we develop a deep NN based surrogate model, with performance comparable to advanced phenomenological yield
unctions. We keep the training process similar to the simulation-based calibration of conventional 3D yield functions, providing
he pathway for a seamless integration into conventional FE codes. Further, due to optimal design of the NN we can remain on the
mall data regime and use only 220 yield data points in the training of the NN yield function. The problem is approached in its
ost general formulation, i.e., in the six dimensional stress space. Full-field CP modeling is employed in conjunction with a spectral
olver based on fast Fourier transform (FFT) (Lebensohn et al., 2012) to simulate the mechanical response of a highly resolved
icrostructure (Roters et al., 2019). The CP simulations probe the anisotropic properties of an aluminum alloy and provide the
equired flow stress data to be used in the calibration of analytical yield functions and training of the NN. The anisotropy parameters
f Yld2004-18p and Yld2004-13p are obtained and their respective yield loci are used for comparison and benchmarking against
he NN. Despite the reduced size of our training data set, the obtained NN model is able to capture fundamental properties such as
onvexity of the yield hull and tension–compression symmetry. It also shows a strong agreement with the advanced yield functions
n the prediction of multiaxial stress states as well as planar yield properties, such as uniaxial flow stresses and r-values.
The present work is structured as follows: Initially, an overview of the CP formulation is provided in Section 2, after which an

utline of the mathematical formulation of the phenomenological yield functions is given in Section 3. Further, Section 4 describes
he essential aspects of neural network regression, while their application into the yield prediction and relevant implementation
eatures is provided in Section 5. The results are presented in Section 6 and discussed in Section 7. Conclusions and suggestions for
uture work are given in Section 8.

. Crystal plasticity constitutive description

The mathematical formulation of the constitutive model is based on the multiplicative decomposition of the deformation gradient
in its elastic (𝐅e) and plastic (𝐅p) parts:

𝐅 = 𝐅e𝐅p (1)

ith 𝐅e accounting for the reversible elastic distortion and lattice rotation, while 𝐅p is associated with plastic slip. The elastic
eformation gradient is used to calculate the second Piola–Kirchhoff stress tensor 𝐒 by means of Hooke’s law, precisely:

𝐒 = C∶𝐄e (2)

here 𝐄e represents the elastic Green–Lagrange strain tensor, defined as:
( ⊺ )
3

𝐄e = 𝐅e𝐅e − 𝐈 ∕2 (3)
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and C denotes the fourth-rank elastic stiffness tensor, fully defined by three independent elastic parameters in the case of cubic
crystals. The plastic response, on the other hand, is driven by the plastic velocity gradient 𝐋p which is defined as a function of the
respective deformation gradient 𝐅p, i.e.:

𝐋p = 𝐅̇p𝐅−1
p =

𝑁
∑

𝛼
𝛾̇𝛼𝐒𝛼0 (4)

with 𝛾̇𝛼 indicating the slip rate on the slip system 𝛼 and 𝐒𝛼0 = 𝒎𝛼 ⊗ 𝒏𝛼 denoting the Schmid tensor obtained by the tensor product
between the unit vectors describing the slip direction and slip plane normal, respectively. The evolution of the slip rate is regarded
as a function of the resolved shear stress 𝜏𝛼 , and the slip resistance 𝑔𝛼 in each slip system (Hutchinson, 1976):

𝛾̇𝑎 = 𝛾̇0
|

|

|

|

𝜏𝛼

𝑔𝛼
|

|

|

|

𝑛
sgn (𝜏𝛼) (5)

with 𝛾̇0 describing the reference slip rate and 𝑛 the stress exponent. Finally, the interaction between an arbitrary slip system 𝛽 and
he hardening response of the slip system 𝛼 is modeled within the evolution of the slip resistance as:

𝑔̇𝛼 =
∑

𝛽
ℎ𝛼𝛽 |𝛾̇

𝛽
| (6)

here ℎ𝛼𝛽 is the strain hardening matrix, capturing the anisotropy of the hardening response.

. Phenomenological yield surfaces

The advanced phenomenological yield surfaces Yld2004-13p and Yld2004-18p (Barlat et al., 2005) provide a reliable benchmark
or comparison with the newly proposed NN yield criterion. The predictive accuracy of these functions, with regards to multiaxial
ield stress, uniaxial flow, r-values and earing profiles has been thoroughly studied in virtual, experimental and hybrid frameworks.
dditionally, they have been used in the analysis of different materials, including but not limited to the aluminum alloys AA7003-T6,
A6063-T6 (Achani et al., 2009), AA5083-H116 (Grytten et al., 2008), AA7075 (Rong et al., 2021), AA1050 (Zhang et al., 2015),
AA3014 (Zhang et al., 2016) and advanced high strength steel (Ma et al., 2022) with different calibration methods and distinct
degrees of anisotropy in each of these studies. Here, a concise description of the mathematical formulation of Yld2004-13p and
Yld2004-18p is presented.

3.1. Yld2004-13p yield criterion

The Yld2004-13p yield function introduced by Barlat et al. (2005) is defined in terms of the principal values of the linearly
transformed stress deviator. It includes 13 anisotropy coefficients and its equivalent stress 𝜙 has the following general form:

𝜙 = 𝜙(𝐒̃′, 𝐒̃′′)

= |

|

|

𝑆̃′
1 − 𝑆̃′

2
|

|

|

𝑚
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𝑚 (7)

where the components of 𝐒̃′ and 𝐒̃′′ are the principal values of the transformed stress deviator, 𝐬̃′ and 𝐬̃′′, via the following
contractions:

𝐬̃′ = 𝐂′𝐬 and 𝐬̃′′ = 𝐂′′𝐬 (8)

with 𝐬 representing the deviatoric stress while 𝐂′ and 𝐂′′ denote the fourth rank tensors describing the material anisotropy and
embedding the calibration coefficients. Such tensors are expressed in Voigt notation as the linear transformation matrices:

𝐂′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −1 −𝑐′13 0 0 0
−𝑐′21 0 −𝑐′23 0 0 0
−1 −1 0 0 0 0
0 0 0 𝑐′44 0 0
0 0 0 0 𝑐′55 0
0 0 0 0 0 𝑐′66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐂′′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −𝑐′′12 −𝑐′′13 0 0 0
−𝑐′′21 0 −𝑐′′23 0 0 0
−1 −1 0 0 0 0
0 0 0 𝑐′′44 0 0
0 0 0 0 𝑐′′55 0
0 0 0 0 0 𝑐′′66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

The number of coefficients of Yld2004-13p can be reduced from thirteen to nine if only plane stress states are considered. A further
reduction to the number of parameters, however, could lead to locking effects (Barlat et al., 2003).

3.2. Yld2004-18p yield criterion

The Yld2004-18p is a particularly flexible yield function, and due to its additional parameters it can better capture out-of-plane
anisotropy (Barlat et al., 2005). It is also based on the linear transformation of the deviatoric stress and is formulated as:

𝜙 = 𝜙(𝐒̃′, 𝐒̃′′)
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(10)
4

+ |

|

𝑆3 − 𝑆3 |
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Eq. (10) can also be succinctly represented by:

𝜙(𝐒̃′, 𝐒̃′′) =
3
∑

𝑖=1

3
∑

𝑗=1

|

|

|

𝑆̃′
𝑖 − 𝑆̃′′

𝑗
|

|

|

𝑚
(11)

here, similarly to Yld2004-13p, the components of 𝐒̃′ and 𝐒̃′′ are the principal values of the transformed stress deviator, 𝐬̃′ and 𝐬̃′′,
obtained respectively as 𝐬̃′ = 𝐂′𝐬 and 𝐬̃′′ = 𝐂′′𝐬, with 𝐂′ and 𝐂′′ as:

𝐂′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −𝑐′12 −𝑐′13 0 0 0
−𝑐′21 0 −𝑐′23 0 0 0
−𝑐′31 −𝑐′32 0 0 0 0
0 0 0 𝑐′44 0 0
0 0 0 0 𝑐′55 0
0 0 0 0 0 𝑐′66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐂′′ =
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⎣

0 −𝑐′′12 −𝑐′′13 0 0 0
−𝑐′′21 0 −𝑐′′23 0 0 0
−𝑐′′31 −𝑐′′32 0 0 0 0
0 0 0 𝑐′′44 0 0
0 0 0 0 𝑐′′55 0
0 0 0 0 0 𝑐′′66
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(12)

Given the pronounced relevance of in-plane anisotropic properties for sheet metal forming, 14 of the above coefficients describe
in-plane yield response, while the parameters 𝑐′55, 𝑐

′
66, 𝑐

′′
55 and 𝑐′′66 provide the description of out-of-plane anisotropic properties (Yoon

et al., 2006).

4. Neural network overview

Regression problems handle the prediction of continuous variables based on models constructed from a given pool of data. The
problem addressed in this work falls into that category since it consists, fundamentally, in predicting a continuous and smooth
function of the stress state at yield onset. In this context, NNs provide a robust tool in the study of yield anisotropy and will be
used herein due to their demonstrated accuracy in a variety of flow prediction problems, which include but are not limited to, 𝐽2
plasticity (Jang et al., 2021), flow stress variation during hot rolling (Aghasafari et al., 2014), flow behavior at elevated temperatures
of low alloy steel (Lin et al., 2008) and magnesium alloys (Sabokpa et al., 2012). A concise overview of the mathematical formulation
of NN regression is presented in what follows.

4.1. Artificial neural networks

The neuron represents the elementary unit of a NN, and performs a basic linear operation defined by:

𝑎(𝐰, 𝐱) =
𝑁
∑

𝑖=0
𝑤𝑖𝑥𝑖 (13)

where 𝐰 denotes the vector of weights (including the bias), which are learned in the training step, 𝐱 represents the 𝑁-dimensional
input vector and 𝑎 indicates the activation of each neuron. The assemblage of neurons establishes the next level in the NN hierarchical
architecture. Specifically, a layer is defined by a combination of multiple neurons and implements the above calculation on all its
units, precisely, the output of the neuron 𝑗 of the first layer is given by:

𝑧(1)𝑗 = 𝑓

( 𝑁
∑

𝑖=0
𝑤(1)

𝑗𝑖 𝑥𝑖

)

(14)

where 𝑓 defines a nonlinear differentiable activation function. Here, it should be noted that the NN’s ability to model non-linearity
stems from nonlinear character of the activation function. Commonly used activation functions include hyperbolic tangent, logistic
sigmoid and rectified linear unit (ReLU). The last will be used in this work due to its computational efficiency and better gradient
propagation in comparison with the other activation functions (Sharma et al., 2020). The better gradient propagation partially
mitigates vanishing gradients for deeper NNs. The expression for the ReLU activation function is given by:

𝑓 (𝑥) = max(0, 𝑥) (15)

The output of the first layer, activated by Eq. (15), is fed forward to the next layer, which will perform a similar operation. In
general, the neuron 𝑗 of the layer 𝑛, computes:

𝑧(𝑛)𝑗 = 𝑓

(𝑁𝑠
∑

𝑘=0
𝑤(𝑛)

𝑗𝑘 𝑧
(𝑛−1)
𝑘

)

, 𝑛 ≥ 2 (16)

where 𝑁𝑠 indicates the size of the preceding layer. It can be observed from Eq. (14) and Eq. (16), that only the first layer operates
irectly on the input data, whereas subsequent layers operate on activated output from the previous layer. The sequential stacking
f multiple layers completes the architecture of a deep feed-forward NN and the final output is calculated as a linear combination
ver the last layer as a function of the weights and input data, i.e.:

𝑦𝑗 (𝐰, 𝐱) =
𝑁𝑠
∑

𝑘=0
𝑤(𝑁𝑙+1)

𝑗𝑘 𝑧(𝑁𝑙 )
𝑘 (17)
5

here 𝑁𝑙 denotes the number of hidden layers.
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The training of a NN is done by adjusting the weights based on the error calculated with a chosen objective function. In fact,
he prediction accuracy of the output variable is strongly associated with the optimal weights obtained during the training process.
hile a probabilistic interpretation of the output provides a more general analysis of the training step, the classical approach will
e used here for simplicity (Bishop, 2006). According with the latter, the NN is regarded as a parametric nonlinear function of the
input vector, and the optimal set of weights is obtained by minimizing a predefined loss function. Precisely, the error associated
with the weights 𝐰, given a set of input vectors {𝐱𝑛} and target vectors {𝐭𝑛}, is commonly defined by:

𝐸(𝐰|𝐱𝑛, 𝐭𝑛) =
1
2

𝑁
∑

𝑛=1
‖𝐲𝑛(𝐰, 𝐱𝑛) − 𝐭𝑛‖2 (18)

where 𝑁 denotes the number of training data points. The minimization of the mean square error (MSE) of Eq. (18), is done with the
backpropagation algorithm (Rumelhart et al., 1988), which consists of an adapted gradient descent optimization scheme and makes
use of the partial derivatives of the loss function with respect to any arbitrary weight 𝑤 to find an approximate minimum. Such
an optimal set of weights in combination with the layered feed-forward architecture described above, fully define a deterministic
function of the inputs (Bishop, 2006) that can be deployed for prediction of the target variable.

5. The machine learning virtual laboratory (MLVL)

The framework adopted in this study defines a machine learning virtual laboratory (MLVL), integrating the design, training
and verification of NN for yield prediction into the virtual laboratory arrangement. The concept of virtual material testing was
emonstrated by Kraska et al. (2009) and further elaborated in the works of Zhang et al. (2016) and Ma et al. (2022) by using a
imulation based virtual lab for initial yield surface prediction, and Han et al. (2020) while studying the yield surface evolution
uring forming simulations. Here, we further expand the virtual lab framework by integrating microstructurally informed CP
odels (Zhang et al., 2015) with an optimally designed data-driven yield criterion.
The overarching configuration of theMLVL consists of a few major steps, as shown in Fig. 1. The initial stage provides the material

escription and enables the input of microstructural features into the MLVL. A representative volume element (RVE) incorporates
he chosen material into a discretized computational model and is further probed under a variety of periodic boundary conditions
ith DAMASK (Roters et al., 2019), deploying a FFT-based spectral solver in the solution of elastoplastic boundary value problems.
his allows the generation of a flow stress data set which will be later used in the training of the NN yield function surrogate.
he next step involves the automated design of an optimal architecture for the NN. Here, SigOpt (Clark and Hayes, 2019), an
xperimentation platform for hyperparameter tuning, is used to obtain the optimal number of layers and the size of each layer via
ayesian optimization. The final stage concerns the training and verification of the model and renders a calibrated NN yield criterion
ith high fidelity in the prediction of multiaxial flow response, strength and deformation anisotropy as well as plastic flow vectors.
hese steps are further described in the following sections.

.1. Material characterization & virtual testing

The framework outlined above is designed to be general and suitable for modeling different degrees of anisotropy. Aiming to
emonstrate the capabilities of our proposed NN yield function, we employ an aluminum alloy with the CP constitutive parameters
resented in Table 1, while the original grain orientations were obtained from an AA3104-H19 alloy (Sun et al., 2021; Wu et al.,
003). A statistically representative texture consisting of 1000 orientations is sampled from the experimental data obtained by X-ray
iffraction using the hybrid integer approximation (hybridIA) developed by Eisenlohr and Roters (2008). The orientation density
aps of the reconstructed microstructure are shown in Fig. 2. The model is discretized with 32 × 32 × 32 Fourier points providing
resolution of approximately 33 points per grain, which is suitable for macroscopic yield prediction at low computational cost. A
elatively high number of grains was adopted here to allow for a statistically meaningful microstructural representation as well as
o reduce statistical discrepancy between the mechanical response of single grains and that of the homogenized RVE, which has
een associated with local non-convexity of the yield hull (Hu et al., 2015; Zhang et al., 2016). A cubic RVE embedding the grain
istribution sampled from the reconstructed microstructure is used.
The yield data points are obtained by virtual experiments with DAMASK (Roters et al., 2019) under the application of arbitrary

eriodic boundary conditions (BCs). The application of BCs for virtual testing and the corresponding deformed shape of the RVEs
re exemplified in the second step of Fig. 1 with the model under uniaxial tension along RD, TD, and pure shear. The stress–strain
urves are presented in Fig. 3 with the corresponding yield stress identified. Finally, both Figs. 3 and 2 initially suggest an overall
ildly anisotropic response, which stems mostly from the weak textured used here and is incorporated into the CP model by means
f the individual grain orientations.

Table 1
Parameters for CP model of the aluminum alloy under analysis (Eisenlohr et al., 2013).
Property 𝐶11 𝐶12 𝐶44 𝛾̇0 𝑔0 𝑔∞ ℎ0 𝑛 𝑎

Value 106.75 60.41 28.34 0.001 31 63 75 20 2.25

Unit GPa GPa GPa s−1 MPa MPa MPa – –
6
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Fig. 1. Outline of the architecture of the machine learning virtual laboratory (MLVL). The workflow consists of material description, virtual testing with a
FFT-based spectral solver, optimizing the NN design, training the NN yield function and finally deploying the model for prediction of desired quantities.

5.2. Neural network design

The design of the NN architecture is an important step in the MLVL workflow. However, in view of the black-box nature of NNs,
choosing an adequate configuration of hyperparameters is not a trivial task and often relies on experience and complex heuristics.
Additionally, training with sub-optimal parameters severely hinders the performance of the trained models and usually leads to
inferior predictive capabilities (Smith, 2018). In this context, different optimization schemes have been employed for hyperparameter
identification and viable techniques have emerged, which include genetic algorithms (Tsai et al., 2006), racing algorithms (Birattari
t al., 2010) and Bayesian optimization (Eggensperger et al., 2013). The last has gained attention due to its efficient functional
valuation (Claesen and De Moor, 2015) and computationally inexpensive implementation, and will therefore, be used in this work
7

o determine the optimal NN design.
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Fig. 2. Orientation density maps obtained form the ODF of the AA3104-H19 aluminum alloy reconstructed microstructure featuring 1000 grains sampled with
hybridIA (Eisenlohr and Roters, 2008).

Fig. 3. Virtual stress–strain curves obtained from the CP model with identified macroscopic yield stress at 0.2% offset of the linear-elastic regime.

Fig. 4 presents the framework used herein. For the sake of simplicity, only the fundamental architectural parameters are
optimized, namely the number of layers and the size of each layer. However, at the cost of having a high dimensional optimization
space, the approach described here can effortlessly be extended to include additional hyperparameters such as learning rate, type
of layer, class of activation function and number of epochs. The initial set of parameters used to initialize the NN model is defined
by two fully connected layers with 250 neurons each. As illustrated in Fig. 4, each combination of layers with a certain size leads
to a corresponding NN configuration, which in turn has its efficiency measured by the total loss on the test set. The architecture
associated with the minimal loss is regarded as the optimal arrangement and used henceforth. The Bayesian optimization consists
of three sub-steps: Initially a Gaussian Process surrogate of the loss function is built, following, an estimate of the best architecture
to be tried next is calculated through the Expected Improvement acquisition function (Močkus, 1975). This function measures the
potential improvement upon the incumbent optimum of every point in the domain. Finally, the hyperparameter space is sampled
once again at the point indicated by the acquisition function. It should be noted that this approach not only allows for an efficient
8
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Fig. 4. Schematic workflow used in the determination of the optimal NN design for yield surface prediction.

N design, but also substantially increases the level of automation of the MLVL. The final architecture is presented in Fig. 5 and
discussed in Section 6.

5.3. Model training

The training process was intended to be similar to simulation based yield surface calibration methods, facilitating the incorpora-
tion of current and future approaches into the MLVL. In this context, random stress states at 0.2% offset of the linear-elastic regime
obtained from the data set generated via virtual testing, as described in Section 5.1, were used to train the NN yield function and
determine the anisotropy parameters of Yld2004-13p and Yld2004-18p.

The set of optimal coefficients for the advanced yield functions is obtained by the minimization of a quadratic loss function.
Precisely, given a set of stress tensors 𝝈𝑛 at yield onset, the error associated with the anisotropy coefficients 𝑐′𝑖𝑗 and 𝑐′′𝑖𝑗 , as defined
in Eq. (8), Eq. (9) and Eq. (12), is expressed by:

𝐸(𝑐′𝑖𝑗 , 𝑐
′′
𝑖𝑗 ∣ 𝝈𝑛) =

1
𝑛

𝑛
∑

𝑘=1

(

𝜙(𝑐′𝑖𝑗 , 𝑐
′′
𝑖𝑗 , 𝝈𝑘)

𝜎̄
− 1

)2

(19)

where 𝜙(𝑐′𝑖𝑗 , 𝑐
′′
𝑖𝑗 , 𝝈𝑘) denotes the equivalent stress estimated by the yield criterion. The error definition above explores the property

hat all stress-states belonging to the same yield locus lead to equal equivalent stresses (Aretz and Barlat, 2013), and uses the flow
stress at uniaxial tension along RD (𝜎̄) as the reference value. The minimization of Eq. (19) is performed by the Nelder–Mead or
simplex search algorithm (Nelder and Mead, 1965), which has been widely used for parameter estimation and does not require
derivative information providing, therefore, an efficient optimization scheme.

A custom loss function analogous to Eq. (19) is defined for the training of the NN yield function, i.e., for the determination of
n optimal set of weights 𝐰. Specifically, the error associated with the weight matrix 𝐰, given the training set 𝝈𝑛, is denoted by:

𝐸(𝐰 ∣ 𝝈𝑛) =
1
𝑛

𝑛
∑

𝑘=1

(

𝜙(𝐰, 𝝈𝑘)
𝜎̄

− 1
)2

(20)

with 𝜙(𝐰, 𝝈𝑘) indicating the equivalent stress obtained from the NN defined by the feed-forward formulation outlined in Section 4.
The optimization of the weights applies the backpropagation algorithm (Rumelhart et al., 1988) over multiple epochs, or training
cycles sweeping through the entire data set, allowing each data point to update the model parameters. The minimization of both
Eq. (19) and Eq. (20) employed a total of 220 yield stress data points, which falls within the range of data set sizes employed in
9

virtual yield surface fitting (Zhang et al., 2015, 2016).
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Fig. 5. Optimal architecture of the NN yield function obtained via Bayesian optimization featuring the six dimensional stress input, scalar equivalent stress
output and four fully connected dense hidden layers.

6. Results

6.1. Design of the NN architecture

Following the approach described in Section 5, the architecture of the NN yield function was initially obtained via Bayesian
optimization. Precisely, the optimal configuration was defined by the number of layers and the size of each layer such that the test
loss was minimal. A total of 150 different configurations were used in the optimization process. The optimization was performed on a
machine powered by an 11th Gen Intel Core i9-11900H clocked at 2.50 GHz and 16 processors with computational overhead limited
as much as possible. Under these conditions the average computational time for each evaluation was 28.58s while the total wall-clock
time of the optimization step was 1 h 11 min 27 s. Each evaluation includes all the steps defined in Sections 5.2 and 5.3. This is a
marginal computational cost when compared to the cost required to obtain representative datasets from CP simulations (Eisenlohr
et al., 2013). Fully connected hidden dense layers were used in conjunction with ReLU activation functions in order to furnish
advanced fitting capability and computational efficiency, as highlighted in Section 4. The architecture is shown schematically in
Fig. 5, outlining that four hidden layers with a relatively large number of neurons provided the best NN arrangement.

6.2. Yield surface models

Equipped with a well defined NN architecture, the initial calibration of Yld2003-13p, Yld2004-18p and the training of the NN
model was performed with data obtained via random sampling of the stress space. Specifically, 220 yield data points were used, from
which 110 describe plane stress states and the remainder characterize out-of-plane stress states. Such emphasis on plane stresses
is justified due to their relevance for sheet metal forming (Barlat et al., 2003). An additional set of 220 random data points was
set apart as testing batch allowing the evaluation of the NN on unseen data. It should be emphasized that this last step is not a
prerequisite for accurate calibration, but rather provides an assessment framework for the current study.

The accuracy of the trained yield models has been associated with the representativeness of the training data (Zhang et al.,
2022); thus, in order to estimate the average performance of the proposed NN yield function, multiple calibration rounds were
observed. Specifically, 100 training cycles, each employing 1000 epochs with different randomized training and testing data. The
history of the NN loss at each cycle along with the average loss curve, is presented in Fig. 6, where it can be seen that both the
train and test loss indicate an accurate NN yield function with high representational capacity. Additionally, it should be noted that
despite the lower training loss, there are no signs of overfitting, which is often expressed by a clear uptick on the test loss over the
number of epochs. Further evidence of learning and generalization is provided by the adequate description of the yield locus, under
multiaxial and uniaxial stress states, as will be highlighted in Section 6.3 and Section 6.5, respectively. Finally, it is also noteworthy
the onset of a plateau on the test error approximately at 600 epochs, which indicates a margin for reducing the number of epochs
and consequently increase the computational efficiency of the NN model training step.

The final test loss of the NN model in each cycle is compared against the corresponding test error of Yld2004-13p and Yld2004-
18p. The results are presented in Fig. 7, where it can be observed that in average the NN yield function has higher accuracy,
albeit by a small margin, when contrasted with both Yld2004-13p and Yld2004-18p. The NN, however, shows a wider scatter
10
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Fig. 6. History of the NN yield function training and testing losses on each calibration cycle and average loss history over 100 cycles.

Fig. 7. Comparison between the test loss of the 3D yield functions Yld2004-18p and Yld2004-13p (Barlat et al., 2005) against the NN yield model over different
andomized calibration cycles.

rror range which could potentially be associated with a stronger dependency on the representativeness of the training data.
angentially, it is worth noting the narrow difference between the precision of Yld2004-13p and Yld2004-18p, despite the latter
aving five additional anisotropy parameters initially meant to provide more flexibility and precision. This could be associated with
he observed correlation between different parameters (van den Boogaard et al., 2016), outlining that adding further coefficients
oes not necessarily lead to substantial accuracy improvement. The most notable observation from Fig. 7, however, is the comparable
erformance of the NN flow criterion to 3D yield functions, despite the former being trained with the same number of data points
nd its material blind initial state.
In order to further analyze the predictive capacity of the NN yield function, an arbitrary training cycle was chosen as reference

nd compared against the calibrated Yld2004-13p and Yld2004-18p. The identified parameters for the phenomenological yield
unctions are presented in Tables 2 and 3. Here, the initial guess for the parameters was set to their respective isotropic values,
.e., 𝑐′ = 𝑐′′ = 1 and 𝑚 = 2 (or 4) (Zhang et al., 2015), reducing both Yld2004-13p and Yld2004-18p to Hershey’s isotropic yield
11
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Table 2
Yld2004-13p (Barlat et al., 2005) anisotropy parameters identified for the reference aluminum alloy.

Yld2014-13p

𝑐′12 𝑐′13 𝑐′21 𝑐′23 𝑐′44 𝑐′55 𝑐′66
– 1.0077 0.9614 0.9853 1.0095 0.6098 1.1894

𝑐′′12 𝑐′′13 𝑐′′21 𝑐′′23 𝑐′′44 𝑐′′55 𝑐′′66 𝑚

0.9344 1.0874 1.2967 1.0700 1.2917 0.4643 1.0219 5.8630

Table 3
Yld2004-18p (Barlat et al., 2005) anisotropy parameters identified for the reference aluminum alloy.

Yld2014-18p

𝑐′12 𝑐′13 𝑐′21 𝑐′23 𝑐′31 𝑐′32 𝑐′44 𝑐′55 𝑐′66
1.1687 1.0202 0.9501 1.0697 0.8373 0.7931 0.6482 1.1994 0.8183

𝑐′′12 𝑐′′13 𝑐′′21 𝑐′′23 𝑐′′31 𝑐′′32 𝑐′′44 𝑐′′55 𝑐′′66 𝑚

0.9102 1.1648 0.8921 1.1305 0.9878 0.9531 0.5625 0.5625 1.2065 5.9255

function (Hershey, 1954). Additionally, in order to allow for greater flexibility, the exponent 𝑚 is regarded as an unknown parameter
instead of set to its usual values, namely 𝑚 = 8 and 𝑚 = 6 for fcc and bcc metals respectively (Logan and Hosford, 1980). The results
and discussion that follows are based on these set of parameters and the corresponding NN function obtained in the same calibration
cycle.

6.3. Multiaxial yield surfaces

Figs. 8 and 9 show the multiaxial yield contours of Yld2004-18p and Yld2004-13p contrasted with the respective yield contours
of the NN yield function in isolines of normalized shear in increments of approximately 0.08 from 0 in the RD-TD plane. The yield
onset is assumed at 0.2% of strain offset from the linear-elastic regime and 𝜎̄ denotes the uniaxial tensile flow stress along RD.
The good agreement between the NN yield function and both benchmark yield criterion can be observed. For the material under
consideration, exhibiting mild anisotropy, as suggested by Fig. 2, the radius around the equibiaxial tension axis is relatively large,
leading to a smooth curvature, which was accurately predicted by the three yield functions. This is consistent with the relatively
low values for the exponent 𝑚 obtained in Tables 2 and 3, usually associated with random or weak textures. In contrast, higher 𝑚
values often describe pronounced anisotropy and lead to angular shaped yield loci, commonly observed for strong cube textures
with narrow scatter (Wu et al., 2004; Zhang et al., 2019).

An additional observation from Figs. 8 and 9, is the slight decrease of agreement between the compared yield functions as the
normalized shear 𝜎12∕𝜎̄ increases. A larger error at higher shear contours was also reported by Zhang et al. (2022), while analyzing

Fig. 8. Multiaxial yield surface of Yld2004-18p vs NN (left) and Yld2004-13p vs NN (right) in the tension tricomponent stress subspace {𝜎11 − 𝜎22 − 𝜎12} at
isolines of normalized 𝜎12 in increments of approximately 0.08 from 0 for the aluminum alloy described in Section 5.1.
12
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Fig. 9. Multiaxial yield surface of Yld2004-18p vs NN (left) and Yld2004-13p vs NN (right) in the tricomponent stress subspace {𝜎11 − 𝜎22 − 𝜎12} at isolines of
normalized 𝜎12 in increments of approximately 0.08 from 0 for the aluminum alloy described in Section 5.1.

the Yld2000-2D tricomponent plane stress yield function (Barlat et al., 2003). In this context, the sharper radius of curvature and
therefore stronger gradients at elevated shear when compared to the biaxial plane, makes this region particularly difficult to be
accurately represented since a greater flexibility is required from the yield function and might lead to higher error. This phenomenon
could be partially mitigated by increasing the number of data points with a more pronounced shear component, effectively providing
a more thorough sampling of this region of the stress-space, or alternatively assigning higher weight to these data points.

Fig. 10 displays the biaxial yield contour and the contour at a normalized shear height of 0.3 of the calibrated NN with
marked deformation states and their respective symmetry lines. The clear alignment between the tension–compression pairs with
the independently drawn symmetry lines in both cases indicates the NN’s capacity to learn symmetry properties. Minor violations
of the tension–compression symmetry, however, can be observed in Fig. 9 at the highest shear contour. This is consistent with the
lower accuracy on the yield prediction at high shear levels, and further underscores the need of representative data in this region
of the stress space.

6.4. Yield surface convexity

Convexity is an additional requirement for a stable yield function. In this context, an initial visual inspection on the yield contours
of Figs. 8, 9 and 10 indicates that the convexity was captured by the NN yield function. Additionally, a further sign of a convex NN
ield locus is provided by the flow vector, obtained as the derivative of the equivalent stress with respect to the Cauchy stress, 𝜕𝜙∕𝜕𝝈.
ig. 11 shows the flow vector of the three functions calculated at the biaxial yield contour, where its outwards normal character can
e observed, and reiterates the convexity of the yield hull. Incidentally, it should be noted that despite of the black-box character of
he NN, the stress gradient can be easily calculated via automatic differentiation at any given stress state lying on the yield locus.
A more disciplined assessment of the convexity of the NN yield locus, however, can be done applying Drucker’s postu-

ate (Drucker, 1950). This principle ensures the convexity of the yield surface and the local normality of the plastic strain
ncrement (Lubarda et al., 1996). In its most simple form, the principle of maximum plastic work is mathematically stated as
𝝈 − 𝝈0) ∶ d𝜺P ≥ 0. If an associated flow rule is assumed and the arbitrary stress state 𝝈0 set to 𝟎, this criterion can be expressed
s 𝝈 ∶ 𝒏 ≥ 0, where 𝒏 denotes the flow vector obtained from the yield surface gradient. In fact, this postulate provides a necessary
nd sufficient condition for positive plastic dissipation and a unique relationship between stress and strain increments (Barlat et al.,
005) with the latter being an important aspect for stable integration of the elastoplastic boundary value problems (Stoughton
nd Yoon, 2006). Here, Drucker’s postulate will be used as an indicator of the convexity of the yield locus determined by the NN,
ollowing the approach presented by Vlassis and Sun (2020).
Fig. 12 shows the results obtained by applying the principle of maximum plastic work over 2000 stress data points lying on

he yield locus. It demonstrates that all contractions lead to positive values, with the minimum of approximately 0.56. Therefore,
rucker’s criterion was not violated in any of the instances observed. While this approach provides a sound indicator of convexity,
t should be noted that it does not constitute a formal proof.
It can be observed from Fig. 11 not only the normal character of the flow vector, but also the misalignment between the
13

orresponding flow directions predicted by the NN yield function and the benchmark yield criteria. Here, the 𝐿2 norm of the
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Fig. 10. Yield contours at the biaxial plane (left) and at 0.3 normalized 𝜎12 (right) of the NN yield function with connecting symmetry lines highlighting the
tension–compression symmetry captured by the NN.

Fig. 11. Biaxial yield contour of the NN vs Yld2004-18p (left) and NN vs Yld2004-13p (right) with their respective flow vectors obtained through automatic
differentiation.

difference between the normalized stress gradients calculated by the NN, Yld2004-13p and Yld2004-18p is used to estimate the
discrepancy between the determined plastic strain rates. Fig. 13 shows the results obtained for over 2000 flow vectors calculated at
arbitrary points on the yield surface. The mean of the difference norm lies around 0.2, which is equivalent to an misalignment angle
of approximately 11◦ in the 6 dimensional symmetric stress space. This result is commensurate, albeit marginally higher, than the
results reported by Vlassis and Sun (2020) while studying the plastic flow difference between distinct NNs estimates in the principal
stress space. Additionally, the similar histograms in Fig. 13 indicate that while there is a meaningful contrast between the flow
vector obtained by the NN and the advanced yield functions, the plastic flow predicted by both Yld2004-13p and Yld2004-18p is
nearly identical. It is important to highlight that the stress gradient is a derived field, for which the NN’s weights have not been
optimized and yet a reasonably good prediction is achieved.
14
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Fig. 12. Verification of Drucker’s condition over 2000 stress data points lying on the yield surface obtained the NN flow criterion.

Fig. 13. 𝐿2 norm of the difference between the normalized flow vectors predicted by the NN vs Yld2004-18p (left) and NN vs Yld2004-13p for 2000 stress
data points.

6.5. Planar yield response

The strength variation is presented in Fig. 14. Here, the normalized yield stress is defined as the ratio between the directional
flow stress and the tensile uniaxial yield stress along RD. The former was calculated at every 15◦ from RD to TD. The limited
strength variation shown in Fig. 14 outlines a virtually planar isotropic yield response. This is consistent with the weak texture
displayed in Fig. 2 and the results obtained from the CP simulations. Despite an offset of about 1% from the simulation data, the
three yield criteria captured the overall trend, characterized by a diminishing strength up to 45◦ from RD, followed by an increase
until 90◦. It should be emphasized that in view of the narrow variation range observed in Fig. 14, the three yield functions show a
good agreement when predicting uniaxial yield behavior. We can also notice from Fig. 14 that the NN accuracy is better or worse
when compared to Yld2004-18p depending on the loading direction; however, its performance is overall better as indicated by
Fig. 7. A precise estimate of elementary uniaxial flow properties is often regarded as a required feature if reasonable prediction of
complex stress states is to be expected (Barlat et al., 2005). In this context, the capacity of the NN yield function to reproduce the
strength variation described by advanced yield surfaces should be underscored. This particularly applies since the random sample
technique adopted here does not allocate higher weight to uniaxial stress states, as it is commonly done in conventional calibration
methods (Zhang et al., 2015).

The plastic anisotropy, measured by means of the r-values, is presented in Fig. 15. Here, the Lankford coefficients are determined
at every 15◦ from RD following the formulation presented by Stewart and Cazacu (2011). The r-values vary in the approximate range
15
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Fig. 14. Normalized yield stress versus 𝜃 from RD at 0.2% of strain offset of the linear-elastic regime predicted by the 3D yield surfaces Yld2004-13p,
ld2004-18p (Barlat et al., 2005), the NN yield function and CP simulations.

Fig. 15. R-value versus 𝜃 from RD at 0.2% of strain offset of the linear-elastic regime predicted by the 3D yield surfaces Yld2004-13p, Yld2004-18p (Barlat
et al., 2005), the NN yield function and CP simulations.

f 0.8−1.2, i.e., about 20% deviation from unity. Such broader variation indicates a more pronounced planar deformation anisotropy
hen compared with the planar strength response. While the initial rising trend on the r-values, up to 45◦, was well captured by
he three yield functions, a modest difference from the CP data can be observed. It should be highlighted that these results are
espite the fact that r-values were neither used in the training of the NN nor in the calibration of Yld2004-18p and Yld2004-13p.
e emphasize that a greater discrepancy between the calculated r-values can also be observed among the benchmark yield functions
hemselves, in particular when compared with the strength anisotropy shown in Fig. 14. Indeed, a relatively high sensitivity of the
-values with respect to the stress gradient was detected, which is aligned with a similar observation reported by Zhang et al. (2016).
Finally, while this sensitivity could introduce spurious variations and partially reduce the prediction quality, the overall accuracy of
the r-value calculations by the NN yield function are commensurate with the precision of advanced yield functions and is expected
16

to improve once r-values are incorporated in the training in future studies.
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7. Discussion

The machine learning virtual laboratory framework proposed here aims to be resilient and accommodate different degrees
nisotropy and material properties, mostly due to the optimal design or the NN yield function, which is sensitive to the
microstructural information provided. In order to showcase its application, however, an aluminum alloy, as described in Section 5.1
was used, and the corresponding results were presented in Section 6.

An immediate observation from Fig. 5 is the relatively high number of neurons and the depth of the NN model. As outlined
in Section 6, the optimal hyperparameters are automatically obtained via Bayesian optimization. Such large architecture could be
associated with the greater complexity of the problem delegated to the NN when compared with the one assigned to Yld2004-18p
and Yld2004-13p. In fact, the last two, albeit phenomenological, incorporate into their analytical model pronounced features of the
class of material under analysis, such as convexity of the yield hull and tension–compression symmetry (Barlat et al., 2005). The
NN, however, does not possess these inbuilt attributes at the outset and must learn such underlying physical properties in addition
to provide an accurate fitting. Furthermore, in favor of practical usage of the model, the number of data points necessary in the
training has been kept near the size of data sets used in simulation based calibration of the reference yield criteria. This is a specially
demanding requirement given the above-mentioned material blind initial state of the NN, and additionally underscores the need
of a robust architecture with high representational capacity, which in turn has been directly linked to the number and size of the
layers comprising a NN model (Goodfellow et al., 2016).

The NN yield function obtained through the optimized architecture provides an accurate yield description as evidenced by
Fig. 7. Here, the accuracy of the NN is not measured by a hard threshold, but rather, by comparison with the corresponding loss
of the Yld2004-18p and Yld2004-13p yield functions calculated over the test data. Given the accuracy of the benchmark yield
functions (Yoon et al., 2006) and considering that the mean loss of the NN on the test data was lower than the mean loss of both
benchmark functions, we believe that MLVL framework and the NN model have been proven accurate. Additionally, the shape of
the initial yield surface is adequately captured by the NN model, as indicated by Figs. 8 and 9, where we can observe a strong
agreement between the contours at different shear levels. The capacity to learn the shape of the yield surface is directly linked
to the accurate description of the initial anisotropy. Furthermore, while the evolution of the yield surface is not analyzed here, it
should be emphasized that the same framework applies to subsequent yield surfaces with the only difference being the level of
plastic strain at which the stress data points are obtained.

One relevant underlying property of the flow behavior under consideration concerns tension–compression symmetry of the yield
locus. Specific classes of material symmetry can be incorporated into the yield functions of the Yld family by means of the linear
transformation matrices presented in Eq. (8) (Barlat et al., 2003). Meanwhile, the NN was able to learn the symmetry of the yield
surface directly from the training data. In fact, the ability to learn tension–compression symmetry, to an adequate degree and
without any prior knowledge of the material under analysis further underscores the robustness of the optimally designed NN. It also
suggests the potential to learn different symmetry properties, or the lack thereof. This could be particularly useful in the description
of macroscopic plasticity models for hcp polycrystals, which are currently less developed than their fcc and bcc counterparts (Stewart
and Cazacu, 2011; Li et al., 2016) due to the difficulty in modeling the pronounced strength differential effects as a result of the
directionality of twinning (Tomé et al., 2001), leading to highly non-symmetrical yield loci.

The convexity of the NN yield function was tested here, but not by a strict method. Precisely, as presented in Section 6.4, the
visual inspection of the yield contours, the normality of the stress gradients and the application of Drucker’s postulate, furnish a
strong indication that the obtained yield hull is convex. A recently proposed and more sophisticated algorithm for evaluating the
convexity of black-box functions was outlined by Tamura and Gallagher (2019) and could be employed in case a formal proof is
required. The convexity of Yld2004-13p and Yld2004-18p, on the other hand, is ensured by the anisotropy exponent 𝑚, in particular,
both functions will provide a convex yield hull if 𝑚 is greater than approximately 1.7 (Barlat et al., 2005). Furthermore, it is
noteworthy that automatic differentiation (Bartholomew-Biggs et al., 2000) was used to calculate the derivative of the black-box
NN yield function as well as the derivatives of the benchmark yield criteria (Güneş Baydin et al., 2015). Here, the capacity to
compute the flow vector as a tensorial gradient of a NN should be emphasized, since in addition to assist in the convexity analysis,
it also provides a viable pathway to integrate the current model into incremental associated flow rules with substantially reduced
effort.

As presented in Section 6.5, the prediction of planar properties such as strength and deformation anisotropy with overall good
accuracy despite uniaxial stress states and r-values not being explicitly used in the training is a further indication of the representative
capacity of the NN yield function. In fact, incorporating r-values into the training could be a possible avenue to augment the accuracy
of calculated flow vectors, since they are intrinsically associated with plastic strain rates. Indeed, multiple yield function calibration
methods include uniaxial r-values in addition to stress data (Han et al., 2020). It is noteworthy that increasing the dataset size could
also improve the NN accuracy. However, one of the goals and highlights of this work is to achieve an accurate yield description
with minimum data set sizes. Finally, the NN architecture optimization presented here focused on two hyperparameters, namely the
number of layers and the size for each layer to keep the optimization space small. There are, however, additional hyperparameters
that could be included in the optimization framework, such as number of epochs, learning rate, and layer type, that could potentially
17

improve the accuracy of the NN yield function.
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8. Conclusions

We presented an approach to obtain a fully data driven yield model suited for sheet metal forming. This model was incorporated
nto a fully simulation based framework and integrates microstructurally informed crystal plasticity (CP) constitutive models into
he testing procedure. The optimal architecture of the neural network (NN) yield function is determined via Bayesian optimization
nd both the NN model and the Yld2004-18p and Yld2004-13p yield criteria are trained with randomly sampled stress data points.
he resulting yield functions are used in the study of the multiaxial yield response, planar strength and deformation anisotropy of a
eference aluminum alloy, and the capacity of the NN flow criterion to assimilate fundamental material features such as convexity
nd tension–compression symmetry was also considered.
The performance of the proposed model is commensurate with that of advanced phenomenological yield functions in the

rediction of complex multiaxial stress states and planar anisotropic properties, such as normalized yield stresses and r-values.
dditionally, the NN yield function was able to reproduce, to an adequate degree, the convexity of the yield hull as well as the
ension–compression symmetry of the material under consideration. Furthermore, despite of the black-box nature of the NN, stress
radients can be conveniently calculated through automatic differentiation, providing a pathway for seamless incorporation into
ssociated flow rules and conventional finite element codes. Combined, these observations render a promising outlook in the model
roposed herein. Possible extensions of the model include the analysis of the yield surface evolution as well as the study of materials
xhibiting a more involved constitutive response, such as pronounced anisotropy and strength differential behavior.
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