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Abstract: Hexagonal close-packed (HCP) magnesium alloys are widely used in automotive and
aerospace industries due to their low density and high specific-strength. Their applicability is
mainly restricted due to poor formability and pronounced plastic anisotropy. The formability is
usually improved by altering the chemistry (adding rare-earth elements like Y) or modulating the
microstructure (e.g., grain refinement). However, grain refinement alone cannot yield the desired
ductility, and the scarcity of rare-earth elements also limits the extent to which the alloying strategy
can be used. To overcome these issues, in this work, it is proposed that the formability of Mg alloys
can be improved by combining the grain refinement and alloying approaches. To quantitively explore
this possibility, a crystal-plasticity-based constitutive model, which is sensitive to both alloying
concentration and grain sizes, is developed. To demonstrate, the model is applied to study the
combined effect of Y content and grain size on the mechanical responses of Mg alloy. The calculations
are used to build maps of plastic anisotropy measures, such as tension-compression asymmetry
ratio and Lankford coefficients, for a wide range of Y content and grain sizes. From these maps,
the grain size that would yield the desired performance of Mg alloy for a fixed Y content can be
identified. This work provides an accelerated pathway to optimize both the microstructure and
chemistry simultaneously to achieve formability and to reduce the dependence on alloying.
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1. Introduction

Magnesium alloys are of great significance to automotive and aerospace industries
owing to their exceptionally low density and high specific strength [1-5]. However, the low
ductility and poor formability of Mg alloys at room temperature limit their widespread
applicability [6,7]. The poor formability is a consequence of intrinsic plastic anisotropy
of magnesium alloys, and it is mainly governed by the following: (1) the low symmetry
hexagonal close-packed (HCP) crystal structure enforces the activation of slip in the crys-
tallographic planes and directions with significantly different atomic (packing) densities.
In HCP Mg, basal (a), prismatic (a), and pyramidal (c + a) slip modes are commonly
activated [8,9]. The activation barrier or critical resolved shear stress (CRSS) for these slip
modes is significantly different [10-12]. For instance, the CRSS value for the activation
of basal (a), prismatic (a), and pyramidal (c 4 a) in pure Mg is 3.3 MPa, 35.7 MPa, and
86.2 MPa, respectively [13]. Thus, the plastic response of a crystal oriented for a particular
slip mode, say basal (a), will be significantly different compared to other crystal orienta-
tions, for example, a crystal oriented for pyramidal (c + a) slip activity. This disparity in
the CRSS values among the slip modes yields a noticeable anisotropy in the macroscopic
responses. (2) Due to low symmetry, the slip modes alone cannot accommodate any ar-
bitrary deformation and thus leads to the activation of deformation twinning [8,14-24].
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Unlike slip, deformation twins are direction-dependent, and thus their participation can en-
hance plastic anisotropy of the material [12]. (3) Commuonly, thermo-mechanical processes,
e.g., hot rolling and extrusion, are used to shape Mg alloys. These wrought processes
improve the strength compared to cast alloys. At the same time, the thermo-mechanical
processes develop strong basal texture, thus elevating plastic anisotropy [25-29]. Under-
standing and developing an approach to reduce plastic anisotropy is critical to advancing
the applicability of Mg alloys.

The above-mentioned underlying reasons (1-3) suggest that the formability of magne-
sium alloys can be improved by reducing the dissimilarities in the CRSS among slip modes
and suppressing twinning. Many efforts have been made over a few decades by material
scientists to reduce the plastic anisotropy of Mg alloys [27,30—44]. Grain refinement, texture
modification, and alloying are the most commonly used techniques to control the plastic
anisotropy.

Reducing the grain size has been found to suppress twinning activity and aid in
developing a homogeneous microstructure and improving formability [30-32,45,46]. For
example, Zeng et al. [32] showed that room temperature formability could be improved
significantly when the grain size is reduced from tens of microns to the sub-micron range.
Grain refinement of magnesium alloys has been studied for several decades [47-54]. For
the most part, grain refinement in Mg alloys has been achieved via controlling the cooling
rate in the casting process since it modulates the grain nucleation kinetics, adding grain
refiners like carbon inoculation, and alloying with elements such as strontium and calcium.
In addition, an appropriate combination of severe plastic deformation and heat treatments,
such as equal channel angular extrusion (ECAE) and subsequent annealing and aging, can
help modulate grain sizes and ultimately improve ductility [33-35]. However, achieving
polycrystalline magnesium alloys with sub-micron grain sizes can be challenging. Recently
it was shown that spark plasma sintering can successfully make pure nanocrystalline Mg
and the reported large strain to failure from compression testing (>120%) at least suggests
that greater formability is possible with very fine grain sizes [55].

The crystallographic texture modification, specifically texture weakening, via alterna-
tive metal processing techniques, such as asymmetric rolling and equal channel angular
pressing, have been shown to improve the formability by reducing the twinning activ-
ity [26,56]. Lastly, the alloying, notably the addition of rare-earth elements (Y, Ce, Nd, La,
etc.), has been reported to lower plastic anisotropy significantly [12,27,36-38,57,58]. The ad-
dition of rare-earth elements weakens the crystallographic texture of the alloy [38—44] and
enhances the activation of non-basal dislocations [42,43,59-61]. Specifically, the addition
of Y facilitates the dissociation of (c + a) dislocations on the type-II pyramidal plane. It
increases the range of the potential energy surface and provides different gliding pathways
for dislocation motion [62]. Moreover, the addition of Y increases the CRSS for basal slip
more than that of non-basal slip modes. This reduces the dissimilarities in the CRSS among
slip modes [63-65]. Further, the addition of rare-earth elements suppresses twinning and
thus helps to control the plastic anisotropy [39,57,58,66—69].

Among these three strategies (i.e., grain refinement, texture control, and alloying), the
alloying addition is known to be a viable way to improve the formability. However, the rare-
earth elements are not abundant and thus limit the applicability of Mg alloys. To overcome
this issue, this work hypothesizes that the improved formability of Mg alloys can be realized
readily by combining the alloying method with the grain refinement strategy. That is, the
minimum alloying concentration needed to improve the formability of Mg alloys can be
reduced by properly tuning the grain size. To validate the proposed hypothesis, a crystal
plasticity based constitutive model is developed, which directly account for the effects of
grain size and alloying on the plastic deformation of crystals. The effect of grain sizes on slip
and twinning is modeled through directional-dependent micro-Hall-Petch equations [70].
Following the classical works of [71-73], the alloying concentration is directly related to
the strength terms for each slip and twinning mode. It allows us to directly capture the
role of alloying on dislocation slip motion and deformation twinning. This constitutive



Crystals 2023, 13, 115

30f18

model is implemented within the visco-plastic self-consistent (VPSC) crystal plasticity
framework [74]. Using this model, plastic response of Mg-Y binary alloy is calculated for
tension and compression for a wide range of Y content and grain sizes. From those model
calculations, maps of plastic anisotropy measures such as tension-compression asymmetry
and Lankford coefficients are built in Y-content and grain-size space. These maps enable
selection of the grain size for a fixed Y content that would provide the desired performance.

The article is structured as follows: In Section 2.1, the constitutive model that is
sensitive to the alloying concentration and grain size is presented. Experimental data
for model calibration and model setup are discussed in Sections 2.2 and 2.3. The model-
predicted stress—strain response and twin volume fraction of Mg-Y alloys are presented in
Section 3.1 along with the experimental values from the literature. The maps of tension—
compression asymmetry and Lankford coefficient are developed in Sections 3.2 and 3.3. The
effect of loading direction and initial texture on these maps are investigated in Sections 3.4
and 3.5. The implications of this work are discussed in Section 3.6. Finally, the key findings
are summarized in Section 4.

2. Crystal Plasticity Modeling

In this work, computationally efficient visco-plastic self-consistent (VPSC) modeling
framework is employed [74]. A comprehensive description of the VPSC model can be
found in [75]. The VPSC modeling framework describes the polycrystal as a collection of
orientations (grains) with associated volume fractions chosen to represent the initial texture
of the aggregate. Each grain is regarded as a visco-plastic inclusion embedded in, and
interacting with, a “homogeneous effective medium”, which has the average properties of
the polycrystalline aggregate. The macroscopic response of the polycrystal results from the
contribution of each grain, and the visco-plastic compliance of the homogeneous effective
medium are given by a self-consistent condition applied on the grain averages.

At the single crystal level, the plastic strain rate is assumed to be accommodated by
individual shear contributions of all active slip and twinning systems in the grain, and thus,

it is written as:
S
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Here, m® is the symmetric Schmid tensor, and 7 is the shear rate on system s. The 7,
denotes a normalized shear rate, # is the inverse strain-rate sensitivity, and 77 is the critical
resolved shear stress (CRSS) required to activate system s. Following the works of [70,76,77],
the uncoupled twin-matrix version of the composite grain (CG) model is considered for
the simulation of deformation twinning. Unlike the predominant twin reorientation (PTR)
scheme, the CG model accounts for the parent matrix and twin domain volume fractions,
their interaction, and evolution with plastic deformation. Furthermore, the CG model will
help to capture the effect of directional dislocation/twin boundary interactions on strain
hardening responses.

2.1. Constitutive Model Sensitive to Microstructure and Alloying

The initial CRSS value and its evolution for an individual slip system is explicitly
expressed in terms of microstructure and alloying. Here, the microstructure refers to the
grain size and dislocation densities. Accordingly, the CRSS value for each slip system is
expressed as

T =1+ r;o, + T, + Thp + TS )
where 7§ is the initial intrinsic slip resistance (Peierls stress). The 7; . and T3, are the
strengthening terms due to the presence and interactions of forest dislocations and dislo-

cation substructures, respectively. (We refer the reader to [78] for a detailed description
of these two strengthening terms.) We only briefly summarized here the model here so
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this paper is self-contained. Following the classical Taylor law, the strength due to forest

dislocations is written as
Tror = XM, [ 05505y, 3)
s/

where b* and pj[ oy are the Burgers vector magnitude and forest dislocation density of
slip system s, respectively. The y is the effective isotropic shear modulus of the material.
The coefficient yx is a scalar dislocation-interaction parameter, and it commonly ranges
between 0.1 < x < 1.0 [79]. In this work, it is assumed to be 0.9. The term ag; is a latent
hardening matrix for the interactions between dislocations from different slip systems s
and s'. Following the work [80], the strength due to dislocation substructures is written as

1
Taep = 0.086 b°4 /05, log <%> 4)
e

Here, p%,, represents the dislocation density in the sub-grain structures. Both pj[ oy and
05 €volve through thermally activated generation and recovery processes, and debris
creation. Appendix A contains a comprehensive description of the dislocation density
evolution laws.

The term 7}, in Equation (2) quantifies the resistance to dislocation motion imposed by
internal boundaries and here, follows the Hall-Petch effect, which states that the resistance
is inversely related to the square root of the spacing between boundaries. In HCP Mg
polycrystals, the mean free path for dislocation motion defined between boundaries can be
constrained by not only grain boundaries but also twin boundaries. Average grain sizes
and twin thicknesses are related to the mean free path of dislocations. Based on this, the
resistance Tj;p is expressed as

ukEs /B untwinned grains
T =3 T [ . (5)
uKyp,/7—  twinned grains
mfp

In twin-free grains, the average grain size d, is used as a mean free path for dislocation
motion, whereas in the twinned grains, following the works of [70,76,77] for the employed
CG model, directional mean free path alfnfp is used. The distance dinfp is calculated based
on the specific twin variant and slip system s. Detailed description of the term dfnfp can be

found in [76]. Finally, the Kg%s and KIEIS, denote the Hall-Petch coefficients of slip system s,
for the grain and twin boundaries, respectively.

The term 75° in Equation (2) represents the solid solution strengthening term. Here,
this term specifically quantifies the increase in strength due to the addition of Y to the host
Mg matrix. Several seminal works have been reported in the literature on the topic of solid
solution strengthening, namely from Fleischer [81], Friedel [82], Mott and Nabarro [73,83],
and Labusch [71]. The most common observation is that, in a dilute limit, the increase in
strength is proportional to the solute concentration with a power exponent of n, which
depends on the representation of solute atoms and their interaction with dislocations.
Two theories, i.e., strong and weak pinning, are proposed to represent the solutes and their
interactions. The first strong-pinning theory is proposed by Friedel and Fleischer, in which
solute atoms are treated as independent point obstacles, and thus leads to a power of 1/2.
On the other hand, Mott and Labusch proposed a weak-pinning model that considers
the collective interaction of many solutes around the dislocation, which relates the solute
concentration to the strength with a power of 2/3. Several studies critically analyzed and
discussed the limits and suitability of both theories [84-89]. It has been well reported
that the weak-pinning model with an exponent of 2/3 describes better the solute effect on
strength in magnesium alloys with the additions of Al, Zr, Cd, and Y [87,89]. Further, the
solute strengthening is anisotropic, i.e., the effect of a particular solute atom is likely to
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be different for basal, prismatic, and pyramidal slip systems [89-94]. Thus, in this work,
the solid solution strengthening term is calculated for each slip mode separately. Based on
these observations, the T is expressed as

s = K f/? 6)

Here, cy is the atomic concentration of Y, and Kj is the pre-factor for solute strength-
ening of slip system s.

Similar to slip, the CRSS for the twinning process also accounts for the effect of grain
size and solute concentration along with intrinsic internal resistance. The CRSS for twin
system t is written as

T =T+ Thp + Tss (7)

Here, 7 is the intrinsic barrier for twin nucleation and growth. T}, and i
are the strength due to Hall-Petch effect and solid solution strengthening defined in
Equations (5) and (6), respectively.

2.2. Experimental Data for Model Calibration

The experimental measurements reported in [69] for Mg-Y binary alloys with four different
Y content are used to calibrate the model parameters. In [69], Mg alloys with 0.2, 0.6, 1.0,
and 3.0 wt.%Y are prepared from high-purity Mg. The equivalent Y content in the atomic
concentration percentage is 0.05%, 0.16%, 0.28%, and 0.84%. Hereafter, these alloys are
referred as Mg-0.05Y, Mg-0.16Y, Mg-0.28Y, and Mg-0.84Y. In [69], the prepared alloys are
homogenized and hot-rolled at 500 °C. To achieve a similar grain size in all four alloys, the
recrystallization heat treatment process was performed at different temperatures and dura-
tion. Specifically, Mg-0.05Y, Mg-0.16Y, Mg-0.28Y, and Mg-0.84Y alloys were recrystallized at
400 °C for 5 min, 400 °C for 10 min, 400 °C for 10 min, and 450 °C for 10 min, respectively. It
leads to an average grain size of 35, 21, 22, and 26 um in Mg-0.05Y, Mg-0.16Y, Mg-0.28Y, and
Mg-0.84Y alloys, respectively. A previous detailed microstructural analysis [69] confirms
that the second-phase precipitates are not present in these alloys, and thus the added Y is
only distributed in the form of solid solution. Accordingly, these Mg-Y alloys are suitable
for studies on the effect of Y through solid solution. As expected, the addition Y weakens
the rolling basal texture. The initial texture is presented in Figure 2 of [69] and is not
repeated here for the sake of compactness. The initial textures for each Mg-Y alloy are,
however, different and the initial basal texture weakens with an increase in Y content. In
their work, all four alloys are subjected to compression along the rolling (RDC) and normal
(NDC) directions, and tension along the rolling direction (RDT). Cuboidal compression
samples with the dimensions of ~ 3.3 x 3.3 x 5 mm, and dog-bone shaped tensile samples
with a gauge length of 20 mm and a rectangular cross-section of 4 x 2 mm were machined
from the hot rolled sheets using Electrical Discharge Machining (EDM) process. In the
compression sample, the long dimension aligns with the compression axis (RD or ND).
Using a servo-hydraulic universal testing machine, the uniaxial tensile and compressive
tests are performed at a constant strain rate of ~ 10% s~!. To measure the twin volume
fraction, mechanical tests were interrupted at 5% strain for microstructural analysis. The
macroscopic stress—strain response and twin volume fraction at 5% strain are measured
for all three loading conditions and are shown in Figure 3 and Table 4, respectively, of [69].
These experimental measurements are used here for the model calibration.

2.3. Model Setup

Alloying addition has been shown to alter the elastic moduli and lattice parameters
of Mg alloys [95-99]. Since this work aims to capture the effect of Y content on the
deformation behavior of Mg alloys, one needs to use the appropriate material properties.
Accordingly, the following expressions are derived in terms of Y content from the work
of Peng et al. [99]: E = 0.67cy +44.8,a = 5 x 1073¢} — 4.2 x 1072¢3 + 0.0117cy + 3.2094,
and ¢ = 0.0049¢cy + 5.2093. Here, cy refers to the Y concentration in at.%. E is the Youngs
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modulus in GPa. g and ¢ are the lattice parameters of HCP crystal. By assuming the Poisson
ratio is 0.3, the p is calculated for every Y content, and will be used in Equations (3)—(5).

In the model calculations, plasticity is assumed to be accommodated by basal (a),
prismatic (), and pyramidal (c + a) slip modes along tensile twinning. The actual ini-
tial texture and the grain sizes reported in [69] is used in the model calculations. The
experimentally reported stress—strain response and twin volume fraction data of Mg-0.16Y
and Mg-0.84Y alloys are used to calibrate the dislocation-density-based strain hardening
model parameters and the coefficients for the Hall-Petch type strength equations and solute
strengthening. The experimental data for other two alloys, i.e., Mg-0.05Y and Mg-0.28Y, are
reserved for testing the ability of the model to extrapolate from and interpolate between
the regimes. The calibrated model parameters are listed in Table 1. Note that, since the
constitutive model is directly expressed in terms of Y content, a single parameter set is
obtained for all four alloy systems.

Table 1. Calibrated and validated parameters of the employed dislocation-density-based hard-
ening model with explicit grain size and Y-content dependence. Here, 7j is the initial resistance
(Equations (2) and (7)). k), D°, and g° are the dislocation generation rate (Equation (A3)), drag
stress (Equation (A2)), and normalized activation enthalpy (Equation (A2)). Kf{%s and K}T{f, are the
Hall-Petch coefficients for grain and twin boundaries, respectively (Equation (5)). Kj is the solute
strengthening coefficient (Equation (6)). C* is the pre-factor twin-induced reduction in dislocation

trapping rate (Equation (A3)).

T I D s KGo* Ky K cs

(MPa) (1/m) (MPa) © G G (MPa) ()
Basal 2 2.0 x 10° 1000 0.003 70 70 10 1000
Prismatic 85 2.0 x 10° 3000 0.002 216 216 5 1000
Pyramidal 170 45 % 10° 5000 0.003 170 450 10 1000

TTW 5 - - - 1235 1235 35 -

3. Results and Discussion
3.1. Model Parameter Calibration and Validation

Figure 1 shows the model-predicted stress—strain responses for all four alloy systems
along with the experimental data from [69]. Here, the solid lines are the model predictions,
and the lines with symbols the experiments. Figure 1 clearly shows that the model correctly
captures the experimental observations for all three loading conditions and, in particular,
the two cases Mg-0.05Y and Mg-0.28Y, not used in the calibration. More importantly, the
model captures the sudden increase in the strain hardening rate seen in the rolling direction
compression test, which is due to twinning. The model-calculated evolution of twin volume
fraction is shown in Figure 2. As expected, due to the initial basal texture, the twinning
is profound in the rolling direction compression test compared to other loading scenarios.
Also, the increase in Y content decreases the twinning activity, which is consistent with the
experimental literature [40,95,100-103]. For a quantitative comparison, the experimentally
measured twin volume fraction at 5% strain is also shown in Figure 2. The model predicted
the twin volume fraction agrees with the experimental values for all four Mg-Y alloys.

The employed crystal plasticity model provides the relative contribution of each slip
and twin mode to the macroscopic response of the material. For the sake of compactness, the
evolution of relative activities of basal (a), prismatic (a), and pyramidal (c + a) slip modes
and tensile twinning are shown only for the Mg-0.05Y case in Figure 3. The subfigures (a)
and (b) correspond to the matrix grain and twin domains, respectively. Here, different colors
represent different loading conditions (black: RDC; red: RDT; blue: NDC), and the different
line/symbol types refer to different deformation modes. For all three loading conditions
(RDC, RDT, and NDC), basal (a) slip dominates in the early stages of deformation. At the
same time, in RDC, tensile twin activity is also significant along with basal (a) slip. This
leads to a gradual increase in the fraction twin domains in the polycrystal. At higher strain,
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the pyramidal (c + a) starts to contribute to the deformation along with basal (a) slip. In
the newly formed twin domains also, basal (a) slip dominates. In the case of RDT, the
contribution of prismatic (a) gradually increases with strain. For instance, at 12% strain,
the prismatic (a) accommodates around 60% of the imposed deformation. The formation of
tensile twin in this case is not significant. Finally, in the case of NDC, the pyramidal (¢ + a)
slip contribution increases with strain. At 12% strain, around 50% of the imposed strain is
accommodated by pyramidal (c + a) slip along with basal (). Similar observations were
found for the other Mg-Y alloy systems. Furthermore, the observed effect of Y content
on the mechanical responses is primarily due to the solid solution strengthening term
(Equation (6)). These Y-content-induced changes in the lattice constants (c and a) and
elastic moduli do not play a significant role on the overall mechanical responses and

twinning activity.
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along with the experimental data (symbols) for (a) Mg-0.05%Y, (b) Mg-0.16%Y, (c)
(d) Mg-0.84%Y alloy. Here, RDC, RDT, and NDC refer to the rolling direction com
direction tension, and normal direction compression, respectively. Experimental
from [69]. Only Mg-0.16Y and Mg-0.84Y alloys are used for model calibration and

are used tor model validation.
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3.3. Formalnlity: Planar Anisotropy

In addition to the TC asymmetry, the Lankford coefficient is also widely used to
quantify the plastic anisotropy and the formability of rolled plates or sheet metals. For
uniaxial tensile loading, the Lankford coefficient is defined as the ratio of the in-plane
strain (i.e., strain in the width direction) to through-thickness strain at a particular longi-
tudinal strain. Here, the Lankford coefficient for tensile loading along the rolling direction
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3.3. Formability: Planar Anisotropy

In addition to the TC asymmetry, the Lankford coefficient is also widely used to
quantify the plastic anisotropy and the formability of rolled plates or sheet metals. For
uniaxial tensile loading, the Lankford coefficient is defined as the ratio of the in-plane strain
(i.e., strain in the width direction) to through-thickness strain at a particular longitudinal
strain. Here, the Lankford coefficient for tensile loading along the rolling direction is
considered and determined using the strain in the transverse direction and plate normal
direction. In practice, the Lankford coefficient is commonly calculated at a macroscopic
strain of 10 to 20%. Here, it is calculated at 10% macroscopic-imposed strain in the rolling
direction. Figure 7 shows the Lankford coefficient map in Y-content and grain size space.
The Lankford coefficient ranges from ~1.0 to ~1.45, and its distribution across the space
is similar to that in TC asymmetry. The Lankford coefficient decreases with increasing
Y content and decreasmg gram sizes. Here agam we find that plastic anisotropy and

ntent and grain size.
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3.4. Effect of Loading Direction on Plastic Anisotropy
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Figure 8. Effect of grain size and Y content on (a) tension—compression asymmetry and (b) Lankford
coefficient for transverse direction (TD) loading in Mg-Y alloys.
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tent and grain size space for macroscopic loading along the TD for the initial rolled basal
texture given in Figure 4. Qualitatively, the distributions of plastic anisotropic measures
for TD loading exhibit a similar trend as observed for RD loading. However, the magni-
tude of the plastic anisotropy is less for the transverse direction loading compared to the
rolling direction loading. TC asymmetry in TD ranges from ~1.0 to ~1.35, wherelsTt8
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asymmetry in RD ranges from ~1.0 to ~1.52.
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similar to that of the ro]]mg textu_re given in Flgure 5. The TC asymmetry similarly ranges
trom ~1.0 to ~1.55 and the trends are nearly the same with the TC asymmetry decreasing
with increasing Y content and decreasing grain size. Second, the effect of grain size is rel-
atively stronger for the extrusion texture compared to the rolling texture. This slight dif-
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texture. First, the TC asymmetry distribution for the extrusion texture is very similar to
that of the rolling texture given in Figure 5. The TC asymmetry similarly ranges from
~1.0 to ~1.55 and the trends are nearly the same with the TC asymmetry decreasing with
increasing Y content and decreasing grain size. Second, the effect of grain size is relatively
stronger for the extrusion texture compared to the rolling texture. This slight difference is
also due to the differences in the twinning. For instance, at 10% macroscopic strain, the
twin volume fraction for pure Mg with a 10 micron grain size is 59.0% for the extrusion
texture, whereas it is 49.6% for the rolling texture. Thus, the effect of grain sizeen plastic

anisotropy is stronger for theextrusion texture compared to the rolling texture—
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constitutive model, and the solute concentration used in Equation (6) needs to be corrected

dppeophisions

In this work, to capture the effect of grain size and Y content on mechanical re-
sponses, a constitutive model that is sensitive to the Y content and microstructure is de-
veloped within the visco-plastic self-consistent (VPSC) crystal plasticity framework. The
stress—strain responses and twin volume fraction values reported in [69] for different Y
content are used to calibrate and validate the model. The new model is shown to correctly
capture the experimental measurements for four different Mg-Y alloys deformed under
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4. Conclusions

In this work, to capture the effect of grain size and Y content on mechanical responses,
a constitutive model that is sensitive to the Y content and microstructure is developed
within the visco-plastic self-consistent (VPSC) crystal plasticity framework. The stress—
strain responses and twin volume fraction values reported in [69] for different Y content are
used to calibrate and validate the model. The new model is shown to correctly capture the
experimental measurements for four different Mg-Y alloys deformed under rolling direction
tension (RDT) and compression (RDC), and normal direction compression (NDC). Notably,
the model correctly captures the twinning signature and the complex dependence of Y
content on slip and twinning activity. Using the model, the maps of tension-compression
asymmetry and Lankford coefficient are developed as a function of Y content and grain
sizes. These maps suggest that plastic anisotropy decreases with an increase in Y content
and a reduction in grain sizes. Furthermore, the distributions indicate that the Y content
can be reduced significantly with a slight-to-moderate decrease in grain sizes to achieve
similar mechanical performance. Overall, this work establishes a plausible framework
for optimizing the microstructure (grain size) and Y content to achieve desired structural
properties such as strength and asymmetry.
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Appendix A. Evolution of Dislocation Densities
Following the work of [78], the density of forest dislocations, pj(, »- used in Equation (3),

and debris, pj:w, used in Equation (4), are evolved. For the sake of completeness, here it
is briefly summarized. The stored forest dislocation densities evolve via a competition
between a dislocation generation term, k3, that describes the storage of dislocations by
statistical trapping of gliding dislocations by forest dislocations and a thermally controlled
annihilation term, k5, for dynamic recovery of stored dislocations:

0P
for .
e = kS /050 — k5 (¢, T) OFor (A1)
The annihilation term, k3, in the above equation is given as:
ks xv* kT €
= =="=1- In — A2
koog < Db’ néo> (42

wherek, ¢, ¢y, D°, and g° is the Boltzmann'’s constant, plastic strain rate, reference strain rate
(taken as 107 1/s), drag stress, and normalized activation energy of slip system s. In HCP
magnesium, deformation twin boundaries act as a dislocation sink. That is, interacting
matrix slip dislocations are absorbed by the migrating twin boundary. To account for
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this process, i.e., reduction in the dislocation generation rate by twin growth, recently,
Wang et al. [69] proposed a twin affected dislocation generation rate and it is given as

T
1 = kpexp (—CS ) aaft> (A3)

T

Here, kj is the initial dislocation generation rate in the twin free grain. C = %2 is the
pre-factor, which depends on the reference shear 7 and twin characteristic shear, S. The

T
term % is the twin growth rate in the employed CG model. The generation of pg,y, is
assumed to equal the sum of debris contributed by each slip system and is written as:

a S
Pdeb = q ) A°D*\/Pge g ;‘Zn dv* (A4)
S

where g is set equal to 4 and defines the rate coefficient for how debris grows from point
defects. The density p;,,, is the population of dislocations from each slip system that
contribute to the formation of debris and A® is a term that relates to the temperature
dependency of dislocation interactions.
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