
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Semi-Automatic Layout Adaptation for
Responsive Multiple-View Visualization Design

Wei Zeng, Member, IEEE, Xi Chen, Yihan Hou,
Lingdan Shao, Zhe Chu, and Remco Chang, Member, IEEE

Abstract—Multiple-view (MV) visualizations have become ubiquitous for visual communication and exploratory data visualization.
However, most existing MV visualizations are designed for the desktop, which can be unsuitable for the continuously evolving displays of
varying screen sizes. In this paper, we present a two-stage adaptation framework that supports the automated retargeting and
semi-automated tailoring of a desktop MV visualization for rendering on devices with displays of varying sizes. First, we cast layout
retargeting as an optimization problem and propose a simulated annealing technique that can automatically preserve the layout of
multiple views. Second, we enable fine-tuning for the visual appearance of each view, using a rule-based auto configuration method
complemented with an interactive interface for chart-oriented encoding adjustment. To demonstrate the feasibility and expressivity of our
proposed approach, we present a gallery of MV visualizations that have been adapted from the desktop to small displays. We also report
the result of a user study comparing visualizations generated using our approach with those by existing methods. The outcome indicates
that the participants generally prefer visualizations generated using our approach and find them to be easier to use.

Index Terms—Multiple-view visualization, responsive design, layout adaptation, mobile devices

F

1 INTRODUCTION

RECENT years have witnessed an increased demand for
visual data access using different displays beyond the tra-

ditional desktop environment [48]. However, with few exceptions
(e.g., [26], [38]), existing guidelines for visualization design remain
primarily tailored for the desktop, which do not transfer well to
small displays such as mobile phones and tablets. In response
to this knowledge gap, researchers have promoted the concept
of responsive visualization – designs that aim to maintain the
readability of a visualization when adapting its use across displays
of varying sizes [34].

However, existing systems for responsive visualization design
focus on adapting a single chart (e.g., [25], [35], [59], [61]) while
neglecting multiple-view (MV) visualizations that composite
multiple views in a cohesive manner [47]. There has been an
increasing demand for MV visualizations on mobile devices,
such as dashboards (e.g., [20], [31], [63]) that arrange multiple
visualizations together [50]. It is becoming increasingly common
to communicate information through MV visualizations on mobile
devices [25]. Unfortunately, although it is clear that researchers
and developers are cognizant of the importance of adapting MV
visualizations to different display devices [51], developers today
are still often required to manually design for both desktop
and mobile devices. This practice of having separate designs of
MV visualizations for various displays increases the burden for
development, updates, and maintenance.

To address this need, in this work, we advocate for responsive
MV visualization design across displays with different sizes, with

• W. Zeng and Y. Hou are with the Hong Kong University of Science and
Technology (Guangzhou) and the Hong Kong University of Science and
Technology. E-mail: {weizeng@, yhou073@connect}.hkust-gz.edu.cn.

• X. Chen, L. Shao, and Z. Chu are with Shenzhen Institute of Advanced Tech-
nology, Chinese Academy of Sciences, and also with University of Chinese
Academy of Sciences. E-mail: {xi.chen2, ld.shao, zhe.chu}@siat.ac.cn.

• R. Chang is with Tufts University. E-mail: remco@cs.tufts.edu

Manuscript received xx xx, 202x; revised xx xx, 202x.

a focus on layout design of MV visualizations. Our algorithm
aims to preserve view properties and topology of the input MV
visualization in order to minimize the adaptation effort for users
when switching from the source to the target display. This is a
non-trivial task: MV visualization design includes the consideration
of a number of factors, including view properties, coordination
types, and display viewport [52]. Existing approaches that do
not consider the problem holistically may result in generating
unsatisfactory layouts, such as having too much white space by
uniform scaling, or distorting aspect ratios of the views by scale-
and-stretch (Figure 2(a)). Other techniques such as vertical stacking
(Figure 2(b)) and horizontal scrolling (Figure 2(c)) may result in
visualizations requiring substantially more interactions that hinder
visual analysis since users need to recall and connect information
across viewports [16].

To improve upon previous techniques, we consider the chal-
lenge of responsive layout for MV visualizations, and distill a list
of design requirements and considerations (Sect. 3.2). Based on
the requirements, we present a two-stage framework that retargets
and tailors layouts of desktop MV visualizations for small displays.
In the first stage, we cast layout retargeting as an optimization
problem and develop an automated layout retargeting algorithm,
AdaMV, that includes a tree traversal method that first organizes
views into a hierarchical tree structure and traverses the tree to
form view groups into target viewports (Sect. 4.1). Next, using
a simulated annealing (SA) technique, the algorithm iteratively
adjusts the view layout, and finally produces an optimal solution
that matches the geometric and topological properties of the source
MV visualization (Sect. 4.2). In the second stage, we provide a semi-
automatic view tailoring approach (Sect. 4.3) that allows a designer
to fine-tune the views using a rule-based auto configuration method
and supports propagation of view layout tailoring with a visual
interface. We demonstrate the feasibility and expressivity of our
proposed approach using a gallery of desktop MV visualizations
adapted to small-size displays such as mobile phones and tablets

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

(Sect. 5.1). We conducted a user study showing that our method
can generate more user-preferable designs than existing methods
of scale-and-stretch, vertical stacking, and horizontal scrolling
(Sect. 5.2). We also present the results of a run-time analysis of our
approach and discuss possible solutions for improving the efficiency
of our algorithm (Sect. 5.3). Lastly, we discuss the participants’
feedback on the tailoring interface (Sect. 5.4).

In sum, our work makes the following contributions:
• We summarize the requirements and considerations for re-

sponsive MV visualization design and model them as an
optimization problem.

• We design AdaMV�an automated algorithm using simulated
annealing to iteratively adjust the view layout based on the
geometric and topological properties of the views. AdaMV is
complemented with a semi-automatic interactive interface that
consists of a rule-based auto configuration method and a visual
interface that allows for propagating view edits. The project
is available at https://hkust-cival.com/projects/adaMV/.

• We conducted a user study and demonstrate that the MV
visualizations generated using our approach are preferred by
the participants and rated to be more suitable for analytics
than those generated using previous methods.

2 RELATED WORK

Responsive Visualization. Various types of displays with different
screen sizes, including mobile phones and tablets, are becoming
commercially available. The trend gives rise to the demand for
visual data access beyond the desktop [48]. Recent years have
witnessed increasing efforts on improving visualization design for
these varied display sizes and modalities. On the one hand, some
studies aimed to curate design guidelines for different displays.
For example, Blascheck et al. [10] found a user preference for bar
charts and donut charts over radial bar charts for data comparison
on a smartwatch. Brehmer et al. [12] compared the performance
of animation and small multiples for trend visualization on
mobile phones. These studies enrich the nuanced understanding
of visualization design on small displays, yet most of them focus
on specific data types (e.g., range data [11]), chart types (e.g., bar,
donut, and radial bar charts [10]), or application contexts (e.g.,
public transit [32]).

On the other hand, some other studies aimed to scale up desktop
visualization design to different displays, so that the visualizations
remain informative and legible. The process of adapting the
visualization design across multiple display sizes is referred as
responsive visualization [24], [25], [34]. Naı̈ve techniques such as
uniform or proportionate rescaling may cause issues like overflow,
overlapping content, and tiny text, due to the limited display
space. Instead, with responsive visualization, the contents of the
visualizations are taken into consideration [62]. Content-aware
methods decompose a visualization into declarative formats, which
can be intelligently configured to fit small displays using automatic
algorithms [59] or interactive user interfaces [25]. Recently, Wu
et al. [61] applied deep learning models to learn optimal chart
parameters (including aspect ratio and orientation) that can automat-
ically recommend chart layout, while Kim et al. [35] developed an
automated design recommender for the responsive transformation
of a source visualization by approximating the loss of support
for identification, comparison, and trend tasks. Kim et al. [34]
further summarized key considerations when adapting visualization
designs across display sizes, especially from large screens to small

screens, and argued that trade-offs among competing goals, such
as graphical density, layout challenges, interaction complexity, and
loss of information, must be carefully considered.

Our work shares a similar motivation as these prior works.
However, instead of focusing on designing responsive visualization
for a single chart, our work emphasizes the adaptation of MV
visualizations. In particular, we contribute an automatic layout
adaptation technique (Sect. 4.2) based on the geometric and
topological properties of the source MV visualization, and an
authoring system (Sect. 4.3) that allows propagating design edits
of MV visualizations across different screen sizes.

Multiple-View Visualization. MV visualization is a specific
visual data exploration technique that combines multiple views
into a single cohesive representation [47]. A well-designed MV
visualization can support a user in exploring complex data from
different perspectives [47]. A series of systems (e.g., Snap-Together
Visualization [42], Improvis [56], and ComVis [41]) and commer-
cial software (e.g., Tableau [4], Spotfire [3], and PowerBI [2])
make use of MV designs. The wide use of MV has led to research
that can improve the understanding of the design space of MV
visualization. Javed and Elmqvist [29] classified view composi-
tion patterns into five categories: juxtaposition, superimposition,
overloading, nesting, and integration, based on which they defined
a unified design space for composite visualization. Sarikaya et
al. [51] analyzed the design space of dashboards that typically
arranges multiple views together, while Ma et al. [40] developed
LADV that can automatically recognize view types and layouts in
dashboard images and sketches. Recently, Chen et al. [14] identified
composition and configuration patterns in MV visualizations by
analyzing MV visualizations in practice. Shao et al. [52] analyzed
the impacts of various design factors on MV layouts, showing that
view and coordination types had a significant impact on layout
design. Chen et al. [13] reviewed the coordination patterns from
existing theories and applications and developed a coordination
framework that allows users to easily construct coordination among
multiple coordinated views.

However, while there have been extensive research and devel-
opment on MV visualizations, the design guidelines are mainly
curated for desktop displays (e.g., [9], [46]). Due to the emerging
ubiquity of mobile devices, there is also a growing interest in
developing MV visualizations on small screens. For instance,
Sadana and Stasko [50] identified multiple layout design goals for
MV visualization on tablets, such as maximizing the size of each
view and keeping all views on screen. However, they considered
only vertical stacking and grid-based view layouts, which under-
utilizes the richness of view layouts identified in practice [14].
Vistribute [27] further considers properties and relationships of
multiple views, devices, and user preferences. As a result, Vistribute
can automatically generate view distribution with compelling
quality as manual designs by experts.

Our work differs from these prior works in that we aim to
develop to develop a responsive MV visualization tool that adapts
the layout of a MV visualization designed for the desktop to
small displays, rather than designing MV visualizations for mobile
devices from scratch. Badam and Elmqvist [8] recently showed
that boundary layout is more preferable than overview layout when
adapting to MV visualizations to small screens. However, boundary
layout requires scalable and space-efficient visualizations, such
as horizon graphs [23] for filled line charts and space-filling bar
chart [15] for bar chart, which may not be always available for any

https://hkust-cival.com/projects/adaMV/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Interaction
Linking: { index: country, views: [1,2,4] }

Viewport
Dimension: { width: 375, height: 667}

Viewport
Dimension: { width: 1920, height: 1080 }

Display Property

View 2 View 3 View 4 View 5
Mark type: bar

View 1

Encodings

y: { field : Country, data-type : nominal,
 axis : { label-angle : -45}}

x: { field : Total Cases (M), data-type:
 quantitative}

Bounding box
cx: 170, cy: 540, width: 340, height: 1080

Visualization Space

Display Property

Target Devices

Input MV Visualization

1 2

3

4

5

Fig. 1. This work considers the design space of a MV visualization with
regards to visualization space, display property, and interaction.

chart type. Following Vistribute [27], we consider both properties
of the views in the source MV visualization, and those of the target
display. In this way, this work provides a more generic solution for
dealing with all types of visualizations.

Computational UI Retargeting. Beyond visualization layout,
there have been efforts in retargeting general user interfaces (UI)
across displays with different sizes. These techniques can be
categorized as model-based and data-driven approaches. Model-
based approaches typically adopt a two-stage process. First, the ap-
proaches propose formal abstractions of user interfaces to describe
the interface and its properties, operation logic, and relationships
to other parts of the system [18]. For example, Jacobs et al. [28]
proposed a set of grid-based document templates that know how
to adapt to a range of page sizes and other viewing conditions.
Park et al. [44] further considered device capabilities, user roles,
preferences, and access rights when adapting graphical UIs for
collaborative environments. Next, the approaches adopt certain
optimization methods to produce UIs that fulfill the constraints.
Agrawala and Stolte [5] used simulated annealing to search for
an optimal route map over a space of layouts, while Kieffer et
al. [33] utilized greedy heuristics to produce human-like orthogonal
network layout. Conversely, data-driven approaches automatically
transform desktop-optimized UIs to other devices by learning from
existing device-customized UIs as examples of good designs. The
effectiveness of data-driven approaches can be seen in past work
that successfully adapt webpages [36], graphic designs [43], and
accessibility interfaces [21] for different display sizes.

Despite the diversity of application domains, these compu-
tational UI retargeting approaches share a common design goal.
Specifically, these methods consider both the content of the input
UIs and the context of the target displays. We build on this
observation in this work, by formulating a series of retargeting
heuristics from design patterns of the input MV visualization and
output display, and adopting a simulated annealing method to
produce optimal MV layouts on the target display.

3 OVERVIEW

In this section we first present the research focus of this work
(Sect. 3.1). Next, we summarize the requirements and considera-
tions (Sect. 3.2). Finally, we present a formal problem statement
and an overview of our approach (Sect. 3.3).

3.1 Research Focus
This work focuses on layout adaptation for MV visualizations
across displays of varying sizes. A typical scenario is to adapt

(a) scale-and
-stretch (b) vertical stacking (c) horizontal scrolling

Fig. 2. Examples of common layout adaptations by existing methods. (a)
Scale-and-stretch heavily distorts aspect ratios of the views. (b) Stacking
views up vertically alters view topology in the input MV visualization. (c)
Horizontal scrolling requires substantial user interactions.

dashboards that are consisted of multiple visualization views to
tablets and mobile devices. Sarikaya et al. [51] observed that many
dashboards in use face the challenge of “adapting to multiple
platforms including mobile devices.” For example, the COVID-
19 dashboard [31] by the Johns Hopkins University presents
two versions for desktop and mobile devices. The same design
requirement of maintaining two dashboard designs is also reported
in a variety of applications such as business intelligence [63] and
citizen science [20]. Commercial software such as Tableau [4],
Spotfire [3], and ArcGIS Dashboards [1] offer user-friendly dash-
board adaptation to mobile devices. However, the tools mostly
adopt simple layouts such as vertical stacking (e.g., Tableau
and Spotfire) or tabs (e.g., ArcGIS Dashboards), when adapting
desktop MV visualizations to small displays; see examples in
Supplementary Table S3 and the video.

Responsive MV visualization needs to consider layout, vi-
sual mapping, underlying data, and interaction [8]. Sadana and
Stasko [49] found that the number of data items should be limited
to less than 1000 for a scatterplot on tablets. Andrews et al. [6], [7]
showed examples of responsive visualizations including line charts,
bar charts, parallel coordinates, and scatterplots, by adapting their
layouts, display densities, and interactions. However, there are
always trade-offs. As noted by Kim et al. [34], care must be taken
when maintaining the balance between the graphical density of
visualizations with intended takeaways for users. For example,
when adapting the MV visualization in Figure 1 to small displays,
one may consider using sampling to adapt underlying data or using
aggregated heatmap to adapt visual mapping. These strategies
however distort information for certain data samples, which may
mislead users when understanding their data.

Instead, this work considers the design space of a MV
visualization with regards to visualization space, display property,
and interaction, as illustrated in Figure 1. As a proof of concept, we
develop and demonstrate the expressivity of AdaMV on adapting
desktop MV visualizations to small displays of tablets and mobile
phones, which are common in modern sensing making processes
beyond the desktop [48].

3.2 Requirements and Considerations
Based on prior work in MV visualization design and our syn-
thesis of prior literature, we summarize the following aspects of
requirements for responsive MV visualization design.
R1. Keep all views. All views incorporated in a MV visualization

depict certain aspects of information and complement each
other to support a comprehensive understanding of the
data [14], [47]. As such, all views must be kept when adapting
to the target display. Ideally, the views can be packed together

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

(a) Input MV Visualization (b) Layout Transitioning (c) View Tailoring

View TopologyMark Type

Tree Travesal

extra
viewport

Simulated Annealing Auto Configuration User Interface

View SizeDisplay Property

enlarge
lable size

Fig. 3. Overview of our proposed approach for retargeting and tailoring a desktop MV visualization (a). We first design an automatic layout retargeting
method that traverses all possible view grouping options based on the geometric and topological properties of the multiples views and computes an
optimal layout for the target display using a simulated annealing algorithm (b). We further enable fine-tuning of the visual encodings of a view in its
allocated display estate, using a rule-based auto configuration method complemented with an interactive user interface (c).

in one viewport and allocated enough display estates. However,
a MV visualization may consist of too many views for a small
target viewport. In such scenarios, extra viewports may be
added to allow the user to switch between the viewports using
page flipping or tabs.

R2. Avoid overlap. Overlap can cause severe occlusions that affect
local navigation of a view coordinate space, and consequently,
affect the data interpretability [19], [57]. Thus, overlapping
views are strictly prohibited. Note that some views may
include multiple-layer graphics, such as glyphs on top of
maps. These graphics as considered as one superimposed
view [29], rather than several views occluding each other.

These two requirements are hard constraints that must be met
by a responsive MV visualization. However, satisfying these two
constraints is often not sufficient. Figure 2 shows examples of
common layout adaptations, including scale-and-stretch, vertical
stacking, and horizontal scrolling. The layouts fulfill the afore-
mentioned hard constraints, yet user studies show that they are
not preferred (see Sect. 5.2). Towards generating effective MV
adaptations, we distill the following considerations and include
them as additional soft constraints.
C1. Avoid unnecessary extra viewports. Extra viewports should

only be added if and only if necessary. Multiple view-
ports form a complex display ecology that coordinates,
transfers, and connects information across viewports for
visual analysis [16]. For example, users need more efforts
to compare COVID-19 cases when views 1, 2 & 4 in Figure 1
are distributed across different viewports, using layouts by
horizontal scrolling as shown in Figure 2(c).

C2. Minimize white space. White space should be minimized
in the target display. White space, or negative space, is a
fundamental consideration for readability and aesthetics in
visual design [58]. Visualization design shall achieve effective
space usage for the full range of functions since white space
occupy display estate that hinders visual exploration [59].

C3. Maintain aspect ratios and relative sizes in target layouts.

Aspect ratios and relative sizes of views in desktop MV
visualizations are often determined after thoughtful considera-
tion. Studies have shown that relative size may influence the
importance of views that the designer wants to emphasize [43].
Scale-and-stretch can generate layouts that heavily distort
aspect ratio of each view and consequently damage view
readability (see Figure 2(a)).

C4. Preserve view topology. The distribution and layout of views
in a visualization interface are not arbitrary [27], but often

indicate visual information flow [39] that reflects the under-
lying semantic structure linking the graphical data elements.
As an example, views near each other may be more related or
placed together for the purpose of comparison [22], [27]; see
the coordinated views 1, 2 & 4 in Figure 1. When adapting to
mobile phones, vertically stacking the views alters the view
topology in the desktop MV visualization (Figure 1). As an
example, in Figure 2(b), users will need to scroll up and
down to locate countries in the map (view 2) and identify
case-fatality ratios in the scatterplot (view 4). The substantial
interactions are not preferred by users, as we will demonstrate
in the user study described later in Sect. 5.2.

C5. Improve view readability. An individual view may suffer
from unreadable labels, cluttered text, distorted layout, etc.
on small displays [59]. The issues negatively affect view
readability and should be fixed after the display estate is
assigned to each view.

We note that these considerations (soft constraints) may conflict
with each other. For example, to adapt the MV visualization in
Figure 1, one may choose to proportionately rescale the layout to
keep relative sizes and aspect ratios (C3), but it will leave much
white space (against C2). Since not all considerations can always
be satisfied, our approach is to strictly enforce the two requirements
(R1 and R2) as hard constraints, satisfy as many considerations
(C1 to C5) as possible, and minimize the number and the severity
of the violations and conflicts.

3.3 Method Formalization and Overview

To formalize our problem of MV adaptation, we assume the inputs
of: 1) a set of views in a desktop-optimized MV visualization
MV := {v1,v2, · · · ,vn}, where each view is specified by mark,
encodings, and bounding box attributes; and 2) a target display of
viewport vp specified by the dimension attributes. Our goal for
this work is to derive an optimal MV design V := {v̄1, v̄2, · · · , v̄n}
that meets the requirements R1 & R2, while striving to satisfy the
considerations C1 � C5.

Figure 2 presents some example results by existing methods
including scale-and-stretch (Figure 2(a)), vertical stacking (Fig-
ure 2(b)), and horizontal scrolling (Figure 2(c)), for adapting
the desktop MV visualization shown in Figure 1. The results
violate some of the considerations described above and can affect
user preference and understandability as found in our user study
(Sect. 5.2). To improve upon these existing techniques, we develop
a two-stage framework: layout retargeting and view tailoring to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

1 viewport:

2 viewports:

[]{ {} }

{ }][

[]{ {} }

3 viewports:

{

[]{ {} {} }

4 viewports:

(a) Input MV Visualization (b) Form topology graph

(c) Slice-and-dice (d) Hierarchical view structure

v2

v1

h1

h2
v1 v2

h1 h2

[]{ {} {}{ } }
[]{ {} }{ } }

Fig. 4. Left: From the input MV visualization (a), we create a topology graph (b) and slice-and-dice the MV (c), yielding a hierarchical view structure
(d). Right: We form possible view grouping options for different numbers of viewports based on view hierarchy. Note that the second grouping option
for 2 viewports is omitted because it breaks view hierarchy, and the same applies to other grouping options for 3 and 4 viewports.

semi-automatically retarget and tailor a desktop-optimized MV
visualization for small displays (see Figure 3).
• Layout Retargeting (Sects. 4.1&4.2). The goal of this process

is to derive an optimal layout that fulfills the requirements R1

& R2 and strive to satisfy considerations C1�C4 on the target
display. We first employ a tree traversal method that organizes
the views in a hierarchical tree layout based on their geometric
and topological properties and traverses the tree to form all
possible view grouping options (Sect. 4.1). Next, we cast the
layout retargeting requirements as energy terms, and design a
simulated annealing (SA) algorithm that achieves the optimal
view layout with the least global cost (Sect. 4.2).

• View Tailoring (Sect. 4.3). We further incorporate a view tailoring
process to optimize the readability of each view (C5). Here, we
first develop a fine-tuning method that can automatically adapt
the visual encodings of each view in the context of its allocated
display estate. The algorithm detects issues like out of viewport,
unreadable labels, and cluttered text, and adjusts the encodings
accordingly by adjusting the visualization specifications. We
further develop an interactive interface that enables users to
customize the visual appearance of each view, and to provide
visual feedback for users to evaluate their adjustments.

4 MV LAYOUT ADAPTATION
This section presents the two-stage framework for MV layout
adaptation. First, we describe the layout retargeting approach
that includes: a view grouping method that divides views into
groups and assigns view groups to viewports (View Grouping,
see Sect. 4.1), and a simulated annealing algorithm that derives
optimal view layout (Layout Retargeting, see Sect. 4.2). Second,
the retargeting is complemented with a layout and view tailoring
approach (View Tailoring, see Sect. 4.3) that allows the user to
customize the layout and improve readability.

4.1 View Grouping
Depending on the target display, a MV visualization sometimes
needs to be split into multiple viewports (e.g., accessed via tabs or
with page-flipping). To accommodate for these situations, we first
construct a hierarchical view structure based on view properties
and layout of an input MV visualization (Figure 4(a)), as follows:
1) Form topology graph (Figure 4(b)). We first construct an

undirected graph G = (V,E) to represent a view topology. Each
node v 2V represents a view in the input MV visualization. We
add an edge ei j to connect a pair of nodes vi & v j if the views

are adjacent in the original layout. Connected nodes reflect the
underlying semantic structure that links the views, and they may
form potential view groups.

2) Slice-and-dice (Figure 4(c)). We apply slice-and-dice operations
to separate the views recursively. We employ a specialized
binary space partition (BSP) algorithm, in which every cut is
either a horizontal or vertical line. Here, the algorithm will first
perform vertical cut v1 that breaks the edge connectting the bar
chart and the map, followed by v2 that further breaks the edges
connecting the map and the others. Horizontal cuts h1 and h2
can only be performed afterward since the cuts will divide the
bar chart and the map into two parts. Views cut by consecutive
horizontal cuts or vertical cuts will be put in the same level,
whilst views cut in different directions will be put in different
levels. The recursive partitioning splits the views until all edges
in G have been cut.

In this way, we construct a tree structure (Figure 4(d)) cor-
responding to the hierarchical view hierarchy. Our algorithm
takes into account the special case of ‘small multiples’, which
is described as a series of graphics, showing the same combination
of variables, indexed by changes in another variable [54]. We
consider neighboring views of the same size and view type as small
multiples, and they are treated as a whole and will not be split.

Next, we separate views into a list of view groups
[S1, · · · ,Sl],1 l  n, where each view group Si contains a subset
of views in V , i.e., Si ✓ V . We denote a view v j 2 Si as vSi

j .
Here l ranges from one to the number of views in the input
MV visualization n, indicating that every view will be put on an
individual viewport. Figure 4 (right) presents some examples of
possible grouping results based on the constructed view hierarchy.
In the case of one viewport (where l = 1), all views are in the
same group and put in the same viewport. When two viewports
are available (where l = 2), there is still only one option: bar chart
(orange circle) and map (light blue circle) in one group, and the
others in another group. Similarly, we can form grouping options
for three viewports, and so on. Some grouping options, such as
bar chart, map, and line chart (red circle) in one group, and the
remaining two views in another group, are not permitted. This
is because the option will break the hierarchical structure, and
puts views at the same level in different viewports whilst view at
different hierarchy levels in one viewport.

4.2 Layout Retargeting
We formulate the layout retargeting requirements and considera-
tions (Sect. 3.2) as a set of cost functions and employ a simulated

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

8

12

1

1,23

2,1345

3,124

4,235

5,24

1

2
2

3 3

4 4

5
5

1,2 2,1345

3,24

4,235

5,24

1,2 → 6
1,23 → 7
2,1345 → 8
3,24 → 9
3,124 → 10
4,235 → 11
5,24 → 12

G
Gcomp

G (a) label determination and sorting (b) label compression (c) relabeling
Gcomp

6 8

12

7 10

1111 8

12

9

Fig. 5. Computing change between two topology graphs using the Weisfeiler-Lehman test for the input and retargeted MV layouts (left). The algorithm
consists of three stages: label determination and sorting (a), label compression (b), and relabeling (c).

annealing technique to derive the optimal layout.

4.2.1 Cost Functions

The cost functions are defined based on: (1) the input MV
visualization V := {vi}n

i=1 and its topology G = (V,E), (2) a list
of view groups [S1, · · · ,Sl], (3) a list of viewports V P := {vpi}l

i=1,
where we assign a view group Si to a viewport vpi, and (4) the
retargeted MV visualizations V := {v̄i}n

i=1 and its topology graph
G. The following costs capture the retargeting considerations.

Space utility (fsu). To minimize the white space (C2), we
incorporate a metric of overall space utility fsu as:

fsu =
l

Â
i=1

(1�
Â|Si|

j=1 size(vSi
j)

size(vpi)
), (1)

where size(·) denotes the size of a view or a viewport. The value
of fsu ranges in [0, l): close to 0 values indicate the display space
is well utilized, whilst large values indicate the display space is
wasted. The metric also punishes unnecessary viewports (C1), since
fsu increases as l increases. Notice that fsu is computed based on
the premise that there is no overlap among views (R2), and no
view extends beyond its containing viewport.

Relative size (frs). Relative view size is an important factor for
preserving layout consistency (C3). We measure relative sizes of a
view in the input and retargeted MV visualizations and compute
their differences. The overall relative size change is computed as:

frs =
n

Â
i=1

| size(v̄i)

Ân
i=1 size(v̄i)

� size(vi)

Ân
i=1 size(vi)

|. (2)

The value of frs ranges in [0, 2): values close to 0 indicate
minimal changes to the relative sizes, whilst values close to 2
indicate that the relative view sizes are distorted heavily. Note here
the relative size metric is computed among the views, but not the
viewports. Together with the space utility metric, the algorithm
tends to derive maximized and consistent view sizes.
Aspect ratio (fas). To fulfill consideration C3, we strive to also
preserve the aspect ratio of a view, defined as as(vi) = w(vi)/h(vi).
Here we include two-aspect considerations. First, a readable view
should not be overly long and narrow, i.e., as(vi) shall fall in a
certain range, denoted as [asmin, asmax]. Views of different types
have distinct ranges of aspect ratio. We find empirical mark-oriented
ranges that cover over 95% views from the MV visualization
dataset [14] as follows: bar chart [1/7, 7], line chart [1/5, 5], area
chart [1/6, 6], and other types [1/2, 2]. We pay a large penalty y
to prevent the aspect ratio of a view from going beyond the range.
Second, certain view types are transposable, i.e., the views can be
displayed in either vertical or horizontal orientation, without effects
on view readability. For example, a bar chart and a scatterplot can
be displayed in either horizontal or vertical orientation.

We define fas by summing up aspect ratio change q of all views
as fas = Ân

i=1 q(v̄i,vi), where

q(v̄i,vi)=

8
><

>:

y, for as(v̄i)> asmax or as(v̄i)< asmin(
|as(vi)�as(v̄i)|, for non-transposable views
min(|as(vi)�as(v̄i)|, |as(vi)� 1

as(v̄i)
|). otherwise

(3)

(A)
Fig. 6. A contrary exam-
ple of resulting layout with-
out penalizing aspect ra-
tios out of range.

We empirically set y to 7, which
corresponds to the largest range for
a bar chart. As such, the value of
fas ranges in [0, 7⇥ n], and small
values are preferred to keep the aspect
ratios of the views. The introduction
of y to penalize aspect ratios beyond
the range promotes views of proper
aspect ratios. The right figure shows
a contrary example of the resulting
layout without penalizing aspect ratios
out of range when adapting the input
MV visualization (Figure 1) to a mobile
phone. Here, the aspect ratio of the bar chart is close to that in the
input. However, the long and narrow bounding box leaves little
space for the bars. Instead, adding the penalty y will generate a
more readable layout (see Figure 10 (C1)).

Topology (ftopo). To reserve view topology (C4), we measure
the difference between the input G and the retargeted G topol-
ogy graphs using Weisfeiler-Lehman test of isomorphism on
graphs [53]. As illustrated in Figure 5, the algorithm first assigns
a label to each node by concatenating the node index and
its neighboring node indices in ascending order (Figure 5(a)).
Next, the algorithm compresses each node label to a new index
using a hashing function (Figure 5(b)), and relabels all nodes
to the hashing values, yielding compressed graphs Gcomp and
Gcomp (Figure 5(c)). If the node indices in Gcomp and Gcomp are
different, and algorithm halts. Otherwise, the processes (a-c) will
be repeated until different node indices in the compressed graphs
are identified. We can then represent the topology graphs as one
dimensional array, by counting the number of node labels in the
original (G & G) and the compressed (Gcomp & Gcomp) graphs.
For instance, the input topology graph G is represented as a
vector j(G) = (1,1,1,1,1,1,0,1,1,0,1,1), where the first five
ones denotes the occurrence of labels 1� 5 in G, while zeros at
the 7th and 10th positions indicate Gcomp does not contain labels
7 & 10. Similarly, we can represent G as j(G) = (1,1,1,1,1,
0,1,1,0,1,1,1). In this way, the graph isomorphism between G
and G is computed as kWL(G,G) =< j(G),j(G)>= 8.

We then measure the topology change ftopo as:

ftopo = 1� < j(G),j(G)>

size(j(G))
, (4)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Initial layout stretch
Move Strategy 1 Move Strategy 2

stack

shared
points

 stretchtranspose

Fig. 7. Illustration for the layout retargeting process. The initial layout
scales according to the viewport. Strategy 1 applies vertical stretch move
that fills up the viewport, whilst Strategy 2 applies stack, transpose, and
stretch moves sequentially. Red dots here indicate shared points. Layout
by Strategy 2 has a smaller cost than that by Strategy 1.

where size(j(G)) indicates the size of j(G). ftopo ranges in [0, 1),
and small values are preferred to reserve view topology.
Global cost function (F). We normalize all the costs described
above, and define the global cost function F as a simple combina-
tion of the different cost functions:

F(V) = wsu fsu +wrs frs +was fas +wtopo ftopo, (5)

where the weights wsu, wrs, was, and wtopo are all positive and can
be tuned to achieve a suitable tradeoff between the different costs.
All weights are set to 1 by default.

4.2.2 Retargeting Algorithm

Our goal is now to produce the optimal layout V by minimizing
the global cost function F . Here we model each view as a rectangle
represented by four points. The points can be positioned anywhere
in the viewport, but not inside rectangles of other views to ensure
non-overlap. Two neighboring views have two shared points if
the rectangles share an entire edge, or one shared point if the
rectangles partially share an edge and one side aligns. Operations
on the shared points will affect both views. The goal is then to find
optimal positions for the points. We can derive the optimal layout
by moving the points in the following ways:
• Stretch: randomly selects an edge of a view and shifts it to

identify optimal width/height in the range of zero to viewport
width/height. If one point is shared with another view, the other
view will also be stretched in the same direction.

• Stack/Unstack: stacks/unstacks the adjacency between two
views from horizontal to vertical or vice versa. Note that a
Stack/Unstack operation can break shared points.

• Transpose: switches the width and height of a view, and adjusts
the neighboring views accordingly. The move can only be applied
to views that can be displayed in both vertical and horizontal
orientations, e.g., a bar chart or a scatterplot.

We then employ a SA approach to reach the quasi-optimal
solution imitating the annealing process, which has been suc-
cessfully demonstrated in many applications, such as route map
generation [5], interior layout [64], and infographic design [45].
As illustrated in Figure 7, the SA algorithm works as follows:
1) Set the initial layout. The method first scales the views in

proportion to fit the viewport, yielding an initial layout V 0.
2) Propose a candidate layout. Next, the method proposes a

candidate layout V s+1 by applying one of the above mentioned
moves on the current layout V s. For example, the method can
either stretch an edge to fill up the viewport (Strategy 1), or flip
the rectangles that stack up the views vertically (Strategy 2).

“x”: { “field”: “Total cases (M)” }
“y”: { “field”: “Country” ,
 “axis”: {“label-angle”: 0 } }

“x” : { “field”: “Country” ,
 “axis”: {“label-angle”: 0 } }
“y”: { “field”: “ otal cases (M)” }

“x”: { “field”: “Country” ,
 “axis”: {“label-angle”: -45 } }
“y”: { “field”: “ otal cases (M)” }

(a)

(b)

(c)

T

T

Fig. 8. Rule-based auto configuration of encoding attributes to improve
view readability: inherit encodings from the input view (a); switch fields
of x and y channels based on transpose move in the layout retargeting
stage (b); rotate labels by 45� to address text cluttering issue (c).

3) Accept or reject a candidate layout. We adopt the metropolis
criterion to measure the probability of a candidate layout V s+1

being accepted, as exp(�F(V s+1)�F(V s)
Ts

) where Ts is the current
temperature. For example, the candidate layout by Strategy 1
increases spatial utilization, but heavily distorts aspect ratios.
The overall cost F(V 1) is higher than that of the initial layout
F(V 0), thus the layout by Strategy 1 has a small probability of
being accepted. In comparison, the first move by Strategy 2 has
a high probability of being accepted.

4) Update layout. The method updates the current layout upon
acceptance of the candidate, i.e., V s V s+1, and repeats steps
2-3 until no better layout is produced. As in Figure 7, the stack
move in Strategy 2 is accepted, and the method continues to
generate lower-cost layouts via transpose and stretch operations.
This process is applied to each of the view grouping options

from l = 1 to l = n (see Sect. 4.1). The lowest-cost option from all
view grouping options is selected as the final layout.

4.3 View Tailoring
The layout retargeting stage computes the optimal layout based on
geometric and topological properties of the input MV visualization.
However, default encoding configurations of a view may cause
issues like unreadable labels and cluttered text. To address these
issues and improve readability (C5), we develop a rule-based auto
configuration method and an interactive user interface to further
tailor and customize the layout and encodings of each view.

Rule-Based Configuration. The configuration follows these gen-
eral rules: 1) No changes to the data and mark type. Though some
pilot studies have been conducted (e.g., [7], [24], [25], [34], [35]),
there is still a lack of a general solution for adapting data density
and visual marks to fit a display’s DPI. 2) Avoid information
loss. The adapted views on the target display shall present the
same information as the original views. 3) Avoid overlapping
and cluttered texts. The purpose of view tailoring is to improve
readability (C5), while overlapping and cluttered texts are the main
reason for poor readability [59].

Based on these rules, we allow the configuration to transpose
axes for certain view types, and adapt orientations and font sizes of
title, ticks and legend only. We adjust visual appearances of each
individual view in its allocated display estate, as follows:
• The layout retargeting method identifies some views that can be

transposed to achieve better aspect ratios. Here, the configuration
algorithm first performs the transposition. For example, in
Figure 8(a), the fields are ‘Total cases (M)’ and ‘Country’ for
x and y respectively, corresponding to those in the input MV
visualization. Figure 8(b) shows the result after the view has

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

been transposed. Note that the labels are more readable in this
transposed view.

• Second, the algorithm adjusts font sizes in linear proportion
according to the display estates allocated in the input and the
retargeted viewports. To keep the multiple views consistent,
we use the same font size for labels across different views.
The consistency rule also applies to title and tick sizes. To
avoid unreadable labels, we specify a minimum font size that is
empirically set to 12 points.

• We further adjust the display of axis labels to address the most
common issue of cluttered text as in Figure 8(b). In the case of
overlapping labels, we consider two possible operations: 1) we
apply a line break to overlong labels composed of two or more
words, and 2) we try a label rotation of 45� if overlapping still
exists, and increase the rotation to 90� if necessary. Margins and
graphic sizes are automatically adjusted based on the changes
made to axis labels. Take Figure 8(c) for example, labels of the
x-axis are rotated in 45�, resulting in non-overlapping text.

• Last, we scale sizes of legend marks and labels in linear
proportion according to the display estates. We also overlay
legends on top of the graphics to save more space. The legend
position is set to the top-left corner by default, which can be
adjusted using the user interface as shown in Figure 9.

The process stops when no overlap is identified. Alternatively,
the method will select the configuration with the least overlap if all
configurations present overlaps.

Interactive User Interface. The rule-based auto configuration
method may fail to produce a suitable design depending on the
user’s needs. For example, the legend placed at the top-left corner
may be undesirable because it occludes other graphical elements.
To overcome the deficiency of the automated method, we develop
an interactive user interface that allows a user to further fine-tune
the encodings of each view. As shown in Figure 9, the interface
consists of three components:
• Control Panel: The panel allows a user to specify the property

of the target display, and change weights for layout retargeting
costs. In the device control panel (Figure 9(a1)), users can
specify the viewport dimension by selecting one from a list of
options including iPhone 7/8 (375⇥667), iPhone X/XS/11/11Pro
(375⇥812), iPhone XR/XS Max/11Pro Max (414⇥896), iPad
Mini/Air (768⇥1024), and Samsung Galaxy Tab (800⇥1280), or
specifying the width and height. The display orientation can also
be set to landscape or portrait.
The layout weighting panel (Figure 9(a2)) allows users to control
the weights of space utility, relative size, aspect ratio, and
topology used in the SA algorithm (see Equation 5). All weights
are normalized to the range of [0, 1]: 1 indicates that the cost
is fully taken into consideration, while 0 indicates that the
cost is ignored. A special note is that the interface provides
individualized control for each of the views for controlling the
weights for relative size and aspect ratio. By controlling the
weights, the interface allows users to explore different layout
results, including reproducing results from existing methods. For
example, if a user specifies the weight for space utility to 0, the
output is the same as that by uniform scaling.

• Input Panel: The input panel presents a visual representation
of the input MV visualization, and design information of each
individual view. In the representation panel (Figure 9(b1)), a
MV visualization optimized is uniformly scaled to fit within the
panel. It is relevant to note that the MV visualization is not a

a1

a2

b1

b2

c1

c2

Fig. 9. The interactive user interface consists of a control panel (a)
for specifying target display and layout weights, an input panel (b)
for displaying the input MV visualization, and an output panel (c) for
displaying the adapted result.

static image, but a fully functioning visualization – interactions
like linking and coordination still function in the representation
panel. Bounding boxes of the views are encoded as rectangles
and highlighted in different colors. Detailed design information
of a view, in terms of mark type, bounding box, and encodings,
are arranged in tabs in the attribute panel (Figure 9(b2)). Users
can examine different views by clicking on the view in the
representation panel or selecting the corresponding view tab.
Users can choose to remove or modify the title, set tick count,
or change label sizes and orientations of the view, and select a
position for legend. Changes to the specification are shown in
the representation panel for direct visual feedback.

• Output Panel: The output panel provides the same functionality
as the input panel, except it shows the target display environment.
The user can manually adjust the resulting layout by selecting
a view and dragging its bounding box within the viewport.
Adjacent views of the adjusted view are automatically updated
as well. If the output includes two or more viewports, they are
arranged in a pagination fashion, and the attribute panel will only
show current views in the display; see Figure 9(c1 & c2) for
example. Alternatively, if a display is duplicated to provide extra
viewports, a navigation button is overlaid over the display icon
for switching viewports.

5 EVALUATION AND USER FEEDBACK

We demonstrate the effectiveness of the proposed layout retargeting
algorithm in four ways: 1) We demonstrate the feasibility and
expressivity of our approach in supporting a series of desktop
MV visualizations adapted to various displays (Sect. 5.1); 2) We
conduct a quantitative user study that compares results by our
approach with those generated by existing methods (Sect. 5.2); and
3) We present a runtime analysis of the layout retargeting method
(Sect. 5.3). 4) Last, we conduct a qualitative user study and present
the participants’ feedback on the tailoring interface (Sect. 5.4).

5.1 Feasibility and Expressivity
Figure 10 presents four real-world examples of top baby names
in the US (A), the global burden of disease (B), daily number
of COVID-19 cases and deaths by country (C), and ratings of
TV shows and Movies (D). The target mobile devices include
a smartphone (A1�D1) and a tablet (A2�D2). All results are
generated by the layout retargeting algorithm and refined using the
rule-based configuration, without user tailoring using the interface.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

(C)

(C1) Result 1 (C2) Result 2 (D1) Result 1 (D2) Result 2

(D)

(A1) Result 1 (A2) Result 2

(A)

(B1) Result 1 (B2) Result 2

(B)

Fig. 10. Examples of MV visualizations adapted for a smartphone (A1�D1) and a tablet (A2�D2). The input MV visualizations A-D consist of diverse
mark types. Extra viewports are added in B1, C1, D1, and D2.

• In Figure 10(A), the input contains only 4 views, which can be
fitted into one single viewport on both the smartphone (A1) and
the tablet (A2). The results slightly change the view topology to
ensure that the aspect ratio of the two map views (highlighted
with red boxes in the figures) remain consistent between the
original and the target visualizations.

• In Figure 10(B), our method alters view topology for both the
smartphone and tablet displays. On the smartphone (B1), two
extra viewports are added and arranged from left to right side-
by-side. Specifically, the three views below the map are put in
one viewport vertically, and the bar chart framed by the red box
changes from the vertical to the horizontal orientation to fit the
viewport. On the tablet (B2), the bar chart marked in the green
box is placed at the bottom, and its orientation is transposed to
fit the viewport.

• In Figure 10(C), our method identifies that the smartphone (C1)
does not have enough display space and adds an extra viewport,
while the tablet (C2) can pack all the views into a single viewport.
In both cases, the bar chart marked in the red box is stacked on
top of the map and the fields for x- and y-axis are swapped.

• Last, Figure 10(D) consists of a map and 2 sets of small multiples.
Additional viewports are added for both the smartphone (D1) and
the tablet (D2), and both sets of small multiples are always kept in
the same viewport. Specifically on the smartphone, orientations
of the bar charts in the red box are adjusted to fit the aspect ratio
of the display.

More examples can be found in Supplementary Table S4.

5.2 User Study on Retargeting Algorithm

We conducted a user study to compare the visualizations generated
using our approach (denoted as AdaMV) with three existing
techniques: scale-and-stretch (SS, see Figure 2(a)), vertical stacking
(VS, see Figure 2(b)), and horizontal scrolling (HS, see Figure 2(c)).
For fairness, view encodings including font size produced by
all methods were automatically refined using the rule-based
configuration described in Sect. 4.3.
Participants. We recruited 15 participants between the ages
of 23-25 from a data visualization course at a university. The
participants were graduate students majoring in diverse disciplines
including computer science, electronic engineering, and biology.
All participants had basic knowledge about design principles of
MV visualization and experience using MV visualizations. Further,
all participants reported that they had at least one mobile phone
that they use daily.

SS VS HS

Fig. 11. Results on iPhone 12 by existing techniques used in the user
study: SS for column 1, VS for column 2, and HS for column 3.

TABLE 1
The study asks participants to rate consistency of geometry (Q1�Q2)

and topology (Q3), and feasibility of completing analytic tasks (Q4).

Q1 The aspect ratios between views on the source and target displays are consistent
Q2 The relative sizes between views on the source and target displays are consistent
Q3 The topology between views on the source and target displays is consistent
Q4 Completing the analytic tasks on the target display is feasible

Apparatus and Implementation. We selected three exemplar
cases shown in Figure 10 (A, C & D). The MV visualizations were
adapted to and tested on an iPhone 12 of display 390⇥844 and an
iPad (7th gen.) of display 810⇥1080. Both devices were equipped
with touch interactions as input modality. The results on iPhone
12 by SS, VS, and HS are presented in Figure 11 columns 1–3,
respectively. All visualizations running on iPhone 12 and iPad can
be found in Supplementary Table S2.

Procedure. The studies were performed in the order of introduction,
training, experiment, and questionnaire. First, we gave a 5-min
introduction about the motivation of our work and described the
concepts of white space, aspect ratios, relative sizes, and view
topology. Then, we asked the participants to do one training round
using an exemplar 3-view visualization with the same questionnaire
used in the formal study (see below). We started the experiment
after the participants confirmed that they understood the tasks and
the concept of MV visualization retargetting.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

SSOur VS HS

Q1: Aspect Ratio Q2: Relative Size Q3: Topology Q4: Ease of Completing

7

6

5

4

3

2

1

Fig. 12. User ratings of the layouts by AdaMV , SS, VS and HS on
Q1�Q4.

For the main task, the participants were first presented a
MV visualization on a desktop, and asked to freely explore the
visualization until they felt familiar with it. Next, the participants
were asked to explore the results generated by AdaMV , SS, VS
and HS for each display smartphone and tablet. The orders of the
visualizations shown to the participants were randomized, and the
participants were not aware of which result is by our method. After
exploring each of the visualizations, the participants were asked to
complete a questionnaire that included five questions on the quality
of results, as listed in Table 1. The participants were asked to rate
their degree of agreement with each of the questions in a scale
of 1-7 where 1 represents completely disagree and 7 represents
completely agree. Here, Q1�Q2 reflects the consistency of the
geometrical properties of the layouts. Q3 concerns topological
differences between the source and target layouts. Q4 is about the
feasibility of completing analytic tasks that were different for each
tested MV visualization. For example, the exploration tasks for
Figure 10(C) were “Which country, Argentina or South Africa, has
more COVID-19 cases?” and “Identify the positions of Argentina
and South Africa on the map.” In the end, the participants were
asked to give an overall rating for each layout.

In total, each participant completed 24 trials in each experiment
(4 methods ⇥ 3 MV visualizations ⇥ 2 displays). On average,
each participant spent 1.5–2 hours for the study, and received a
compensation of CNY ¥100 (⇠$15.5) for their participation.
Result Analysis. We collected a total of 2160 answers (24 trials
⇥ 6 questions ⇥ 15 participants). Figure 12 presents the average
ratings of AdaMV , SS, VS and HS for questions Q1 � Q4. Below
we summarize our findings.
• Consistency of geometric properties (Q1 & Q2). The participants

rated HS to best preserve consistency of aspect ratio (Q1) and
relative size (Q2) between the source and target layouts, with
mean=6.30, SD=0.73 for Q1 and mean=6.36, SD=0.68 for Q2.
AdaMV receives the second highest scores, with mean=4.86,
SD=1.45 for Q1 and mean=4.86, SD=1.34 for Q2.

• Consistency of view topology (Q3). Participants rated HS (mean
= 6.60, SD = 0.54) and Scale-and-Stretch (SS) (mean = 6.26,
SD = 0.66) as the top two performers in preserving consistency
of view topology. However, some participants reported that ‘the
layouts by SS are unreadable’ and ‘those by HS requires scrolling
to see all views’. Interestingly, for the tested visualizations
neither methods altered the view topology. The fact that these
visualizations still received ratings below 7 possibly reflected
the participants’ inability to read the visualizations effectively.
AdaMV method received an average rating, with mean = 3.78,
SD = 1.63, but still significantly (p < 0.01) better than Vertical
Stacking (VS) (mean=1.86, SD=0.71).

• Feasibility of completing analytic tasks (Q4). AdaMV was rated
highest in supporting the participants to complete their analytic
tasks, with mean=5.93, SD=1.16. The result is significantly
better than SS (t(14) = 8.58, p < 0.01), VS (t(14) = 9.24, p <

Our

SS

VS
HS

M=5.77 SD=1.06

M=3.21 SD=1.64

M=3.85 SD=1.37

M=4.10 SD=1.16

1 (Unsutiable Layout) 2 3 4 5 6 7 (Sutiable Layout)

Fig. 13. Overall preference of layouts generated by AdaMV , SS, VS

and HS. The rightmost column denotes Mean and SD.

0.01), and SS (t(14) = 16.46, p < 0.01). Specifically, participants
reported that layouts by SS were hardly usable because of aspect
ratio distortion, and those by VS and HS required the users to
continuously scroll the screen to find the answers.

Figure 13 further presents the preference of layouts by AdaMV
and the other baseline methods. The stacked bar charts show
detailed rating proportions, and the right side presents means and
standard deviations. Overall, AdaMV is the most preferred method,
followed by HS and VS, and SS.
Feedback. We collected feedback from the participants with open-
ended questions regarding the reasons for their ratings and solicited
their suggestions for future improvements. All participants agreed
that the layouts by SS were unsuitable because aspect ratios of
the views were heavily distorted, even though the method fully
preserved view topology. In contrast, VS could better preserve
the aspect ratio, but altered view topology. The participants were
familiar with vertically stacked layouts, since most webpages and
applications allow users to scroll up/down the screen to view
content. However, in terms of MV visualization, the layout can
separate neighboring views in the desktop MV visualization and
thus required frequent screen scrolling for analytic tasks that
required coordination between views. For example, the four bar
charts in Figure 10(D) were separated into two viewports by VS.
When answering the question ‘Compare the number of people
under the categories of Netflix and Prime Video’ (the third case as
shown in Figure 10(D)), the participants needed to scroll the screen
frequently in order to find the answer.

The HS method managed to preserve aspect ratios, relative sizes,
and view topology, which was the main reason for the relatively
high ratings for overall preference. However, the participants
complained that the layouts generated by HS ‘required too much
horizontal scrolling’, and ‘could not guarantee all content of a
single view in one viewport’, especially on mobile phones. Some
participants also noted that the scrolling interaction can be confused
with view navigation interactions such as panning in a map view.

The participants agreed that AdaMV achieved a good balance
between the preservation of geometric and topological consistency,
and best supported completing the analytic task. The participants
preferred the way AdamMV packed views in one viewport and
arranged multiple viewports in a pagination mechanism, rather
than requiring continuous scrolling such as the case with VS and
HS. The participants reported that the compact layouts generated
by AdaMV allowed them to focus on exploring the content of
the views. For future work, the participants suggested that some
content details could be removed, and to use tabs instead of page
flipping to switch between extra viewports.

5.3 Computation Efficiency
We conducted runtime experiments to measure the computation
efficiency of our approach, to analyze what factors affect the
computation efficiency, and identify possible solutions for future
improvements. The experiments were run on a desktop PC with

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

2.4GHz 8-Core Intel Xeon E5-4640 CPU. The tree traversal and
simulated annealing methods are implemented in Python, while
the view tailoring interface is implemented using HTML5 and
JavaScript. Communication between the frontend interface and
backend server is implemented using jQuery Ajax.

TABLE 2
Running time (in seconds) of our method on different conditions.

Num. View Grouping Layout Retargeting Total
Views SA GA SA GA SA GA

3 0.01 0.01 8.44 7.68 8.45 7.69
5 0.01 0.01 27.56 24.77 27.57 27.58
7 0.01 0.01 34.97 30.64 34.98 30.65
9 0.01 0.02 60.02 52.58 60.03 52.60

Table 2 presents the running times (in seconds) of the view
grouping, and layout retargeting methods using simulated annealing
(SA) and genetic algorithm (GA) for a different number of views.
Three running examples are used, and each example has been tested
for two trails, for each number of views. Overall, the total runtime
of our method increases as the number of views increases, and the
main cost is the layout retargeting stage. The results are within
our expectation since the layout retargeting problem is related to
bin-packing – a problem that is known to be NP-Complete. The
layout retargeting is currently realized using SA, which can be
feasibly changed to other methods like GA. Both methods share
the same running parameters, including the termination condition.
The experimental results show that SA and GA methods have
comparable running times, while the resulting layouts are the same.

Specific to our approach, the number of view grouping options
is a factor that affects the efficiency of layout retargeting. We have
implemented a number of heuristics to reduce the overall computa-
tional complexity. For example, we always keep ‘small multiples’
in one view group, and ignore infeasible grouping options such as
putting every view in an individual viewport. To further improve
the retargeting, one possible solution is to pre-compute the number
of extra viewports needed, by measuring display resolutions of the
desktop and target mobile devices. Another is to utilize multi-core
CPUs and parallelize the computation. We leave other retargeting
strategies for future work.

5.4 User Feedback on Tailoring Interface
We interviewed five graduate students specializing in data visu-
alization (denoted as E1�E5) regarding the tailoring interface.
All participants had experience in developing MV visualization
systems for visual analytics in practice. We started with a system
demonstration using a 3-view example and explained the four
design criteria we considered: space utility, relative size, aspect
ratio, and topology. We also described the SA algorithm and
the reason behind the stochasticity of the results. After the
demonstration, the participants were allowed to freely explore
the interface with 3-view, 5-view, and 9-view examples, and
freely adjust the weights of design criteria. The participants were
encouraged to share their thoughts and ask questions at any
time during the exploration, which were recorded for subsequent
analysis. Their feedback is summarized below.

Auto-generated results are inspiring. In general, the participants
expressed positive feedback on the system. The participants noted
that auto-generated layouts acted as recommendations and inspired

them to achieve the final layout. E5 commented “The adapted
layouts inspire me a lot. I can make improvements based on the
recommended layouts, especially for complex multi-view designs.”

Adjusting weights cause unpredictable results. The participants
agreed that layouts generated by the SA algorithm with default
weights were generally reasonable, while those generated with
different weights were less satisfying. Sometimes the participants
adjusted the weights and expected a different result from the
previous one, but the same result was generated. “There were
times when I looked at a large number of parameters and felt
overwhelmed,” E3 noted. Most of the participants suggested
keeping the weight adjustment controllers only for debugging.

Manually fine-tuning views is necessary. The participants
appreciated the functionalities of fine-tuning view configurations,
including dragging to adjust view sizes and changing font sizes
and orientations. Currently, the interface only allows resizing views
but not their positions. E2 suggested adding the flipping method
to the interface. E4 suggested adding functionality that fixes the
most important view, such as the map in Figure 10(D2), when
adjusting view position and size. “The other views are all some
abstraction of the data presented in the map, so I would expect to
always see the most important view (the map view)”, he mentioned.
The suggestion is similar to adjusting boundary layout considered
in [8], and we plan to realize it in future work.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK
We contribute a semi-automated approach to layout adaptation
for responsive MV visualization design. The work is motivated
by the increasing use of mobile devices with small displays to
render interactive MV visualizations for visual communication,
data exploration and analysis. The layout retargeting method is
fully automated. It is built on design rules crafted from prior work
and our own experience, such as to consider properties of MV
visualizations and those of the target displays [27]. We also adopt
heuristics from existing visualization designs, including the mark-
oriented aspect ratio range learned from the MV visualization
dataset by Chen et al. [14]. Once the automated algorithm has
identified a “good” MV layout, a user can manually fine-tune and
adjust the visualization to achieve the desired outcome.
Semi-Automated Approach. The reason for the hybrid automated
and manual approach is the design considerations are considered
“soft constraints” by the simulated annealing algorithm and can
therefore conflict with each other. For instance, satisfying the
two goals of maintaining aspect ratio (C3) and preserving view
topology (C4) may not always be possible (see Figure 10 (B1
& B2) for example). As such, providing a user an interface to
manually adjust the layout based on their preference and fine-
tune the choices of encoding for each view is necessary. Further,
following the key principle in responsive visualization design [25],
this interface should provide immediate visual feedback on user
input in a WYSISWG fashion (see Figure 9).
Evaluation Metrics. Our automated layout retargeting algorithm
optimizes on a number of metrics, including space utility, aspect
ratio, relative size, and view topology. In our user study, we find that
out AdaMV approach is not optimal on any single evaluation metric,
yet achieves the best readability, ease for completing analytic
tasks, and overall user preference. This finding suggests that the
metrics work in a unified manner and should not be considered
independently but holistically.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Generalization. We observe that our technique for generating MV
visualization layouts is flexible and generalizable. Manipulating the
weights to the cost function (see Equation 5) can produce a range of
layouts. Simple changes to the weights can result in replicating the
three existing layout algorithms used in our user study. Sometimes
the resulting layout can become unstable as the search process can
become stuck in local optima. Below we report of the effect of
removing each of the metrics from the cost function.

• Space utility. Omitting space utility from the cost function (by
setting its weight to zero in Equation 5) will generate layouts
as the same with those by uniform scaling (see Figure 2(a)).
These layouts fully maintain aspect ratio, relative size, and view
topology but result in much wasted space and poor readability.

• Aspect ratio. Omitting aspect ratio can lead to the same layouts
generated by SS which maximizes space utility, relative size,
and view topology while sacrificing consistency in aspect ratio.
However, in some cases the resulting layout becomes unstable
because the stretch may generate heavily distorted aspect ratios
beyond the valid ranges for different view types.

• View topology & relative size. Lastly, omitting the view topology
and relative size terms will most likely result in unstable layouts.
At times the result would be the same as that by VS that breaks
view topology and changes relative size, and arrange the views
from top to bottom.

View topology also plays an important role in view group
assignment and layout adjustment. If no topology is considered, the
views can be randomly organized together, causing an increasing
number of grouping options. As discussed in Sect. 5.3, more
view groups will dramatically reduce the computational efficiency.
Moreover, the steps for moving bounding boxes of the views (see
Figure 7) are not arbitrary but dependent on view topology. In this
sense, considering view topology actually reduces the search space.

Limitations. There are several limitations in our work. First, the
automated layout adaptation method focuses on the layout of
MV visualizations by analyzing their geometric and topological
properties while neglecting user interaction that is regarded as a key
consideration for visualization design on small displays [17], [30].
In fact, the layout by horizontal scrolling is the best option
for persevering the layout as it proportionately rescales the MV
visualization, which is demonstrated by users ratings on the ability
to preserve aspect ratios (Q1), relative sizes (Q2), and view
topology (Q3). However, the option is not suitable for visual
analytics (Q4), as users need to continuously scroll the display
to explore the views. The situation becomes worse when similar
interactions are enabled for individual views, for example, panning
operation on the map view in the COVID-19 dashboard. There
is a necessity for a new conceptual framework that incorporates
interactions, similar to that in VisTiles [37], for responsive MV
visualization design.

Second, the view tailoring approach allows a user to fine-tune
formatting configurations such as label and title sizes to improve
view readability. Some recent studies have suggested that data
and mark type also need adjustments for effective visualization.
For example, Kim et al. [35] proposed an automatic approach to
approximate the loss of support for task-oriented visualization
insights, based on which one can optimize a series of encoding
channels for various chart types. The aim is to preserve a user’s
ability to arrive at certain insights, by balancing the graphical
density that is affected by the display’s DPI, data density, and
visual marks [34]. The current framework treats view tailoring as

a subsequent task after layout retargeting. A superior solution is
to optimize both the layout and view configurations (including
data density and visual marks) simultaneously. Nevertheless, it is
challenging to determine what are the possible adaptions for single
views when retargeting view layout. We leave it as a future work
to integrate the method with our approach.
Future Work. Our work opens several directions for future
research. First, the work currently considers only six popular mark
types, while neglecting many other charts such as table, text, and
trees & networks. Design considerations for these charts can be very
different. For example, trees & networks have many layout options
including linear and radial layouts and can be robust to rotation and
orientation (e.g., using a force-directed layout for graphs). Second,
we have designed several computational metrics for assessing the
similarity between MV visualization layouts. Though the metrics
are used for layout adaptation in this work, they can be feasibly
converted to cost functions and employed to guide the learning
process for automatic layout design. Given the recent advances
on this topic (e.g., [14], [55], [60], [61]), we are excited to explore
how other learning techniques, such as deep-learning, can be used
to automate layout design for MV visualizations.

7 CONCLUSION

We present a new approach to adapt the layout of a desktop MV
visualization design for small displays. This two-staged approach
consists of an automatic layout retargeting algorithm and a semi-
automatic view tailoring method. The layout retargeting algorithm
requires minimum guidance from the developer, as we cast the
requirements and considerations as energy terms that can be solved
using a tree traversal method and a simulated annealing algorithm.
Once a layout is found, the user can adjust layout weights and
fine-tune visual encodings of each view using our interactive visual
editing tool. A gallery of MV visualizations adapted for diverse
mobile devices demonstrates the feasibility and expressivity of our
approach. User feedback collected from a qualitative user study
confirms the effectiveness of our approach over existing methods.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
valuable comments. This work was supported by the National
Natural Science Foundation of China (No. 62172398) and the
National Science Foundation (OAC-1940175, OAC-1939945, OAC-
2118201, IIS-1452977).

REFERENCES

[1] ArcGIS Dashboards. https://www.esri.com/en-us/arcgis/products/
arcgis-dashboards, last accessed on 31/01/2022.

[2] Power BI. https://powerbi.microsoft.com, last accessed on 02/09/2021.
[3] Spotfire. https://www.tibco.com/products/tibco-spotfire/, last accessed on

02/09/2021.
[4] Tableau. https://www.tableau.com/, last accessed on 02/09/2021.
[5] M. Agrawala and C. Stolte. Rendering effective route maps: Improving

usability through generalization. In Proceedings of the Annual Conference
on Computer Graphics and Interactive Techniques, pages 241–249, 2001.

[6] K. Andrews. Responsive Visualisation. In Proceedings of MobileVis
Workshop at CHI, 2018.

[7] K. Andrews and A. Smrdel. Responsive Data Visualisation. In Proceedings
of EuroVis (Posters). The Eurographics Association, 2017.

https://www.esri.com/en-us/arcgis/products/arcgis-dashboards
https://www.esri.com/en-us/arcgis/products/arcgis-dashboards
https://powerbi.microsoft.com
https://www.tibco.com/products/tibco-spotfire/
https://www.tableau.com/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[8] S. K. Badam and N. Elmqvist. Effects of screen-responsive visualization
on data comprehension. Information Visualization, 20(4):229–244, 2021.

[9] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for
using multiple views in information visualization. In Proceedings of the
Working Conference on Advanced Visual Interfaces, pages 110–119, 2000.

[10] T. Blascheck, L. Besanon, A. Bezerianos, B. Lee, and P. Isenberg.
Glanceable visualization: Studies of data comparison performance on
smartwatches. IEEE Transactions on Visualization and Computer
Graphics, 25(1):630–640, 2019.

[11] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. Visualizing ranges over
time on mobile phones: A task-based crowdsourced evaluation. IEEE
Transactions on Visualization and Computer Graphics, 25(1):619–629,
2019.

[12] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. A comparative
evaluation of animation and small multiples for trend visualization on
mobile phones. IEEE Transactions on Visualization and Computer
Graphics, 26(1):364–374, 2020.

[13] R. Chen, X. Shu, J. Chen, D. Weng, J. Tang, S. Fu, and Y. Wu. Nebula: A
coordinating grammar of graphics. IEEE Transactions on Visualization
and Computer Graphics, pages 1–1, 2021.

[14] X. Chen, W. Zeng, Y. Lin, H. M. Al-maneea, J. Roberts, and R. Chang.
Composition and configuration patterns in multiple-view visualizations.
IEEE Transactions on Visualization and Computer Graphics, 27(2):1514–
1524, 2021.

[15] Y. Chen. Visualizing Large Time-series Data on Very Small Screens. In
B. Kozlikova, T. Schreck, and T. Wischgoll, editors, Proceedings of the
IEEE VGTC/Eurographics Conference on Visualization (Short Papers).
The Eurographics Association, 2017.

[16] H. Chung, C. North, S. Joshi, and C. Jian. Four considerations for
supporting visual analysis in display ecologies. In Proceedings of IEEE
Conference on Visual Analytics Science and Technology, pages 33–40,
2015.

[17] S. Drucker, D. Fisher, R. Sadana, J. Herron, and M. C. Schraefel.
TouchViz: A case study comparing two interfaces for data analytics
on tablets. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2301–2310, 2013.

[18] J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying model-based
techniques to the development of UIs for mobile computers. In
Proceedings of the International Conference on Intelligent User Interfaces,
pages 69–76, 2001.

[19] N. Elmqvist and P. Tsigas. A taxonomy of 3d occlusion management
for visualization. IEEE Transactions on Visualization and Computer
Graphics, 14(5):1095–1109, 2008.

[20] D. Filonik, R. Medland, M. Foth, and M. Rittenbruch. A customisable
dashboard display for environmental performance visualisations. pages
51–62, 2013.

[21] K. Gajos and D. S. Weld. SUPPLE: automatically generating user
interfaces. In Proceedings of the International Conference on Intelligent
User Interfaces, pages 93–100, 2004.

[22] M. Gleicher. Considerations for visualizing comparison. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):413–423, 2018.

[23] J. Heer, N. Kong, and M. Agrawala. Sizing the horizon: The effects
of chart size and layering on the graphical perception of time series
visualizations. In Proceedings of SIGCHI Conference on Human Factors
in Computing Systems, pages 1303–1312, Boston, MA, 2009.

[24] B. Hinderman. Building Responsive Data Visualization for the Web. Wiley,
2015.

[25] J. Hoffswell, W. Li, and Z. Liu. Techniques for flexible responsive
visualization design. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2020.

[26] T. Horak, S. K. Badam, N. Elmqvist, and R. Dachselt. When David
meets Goliath: Combining smartwatches with a large vertical display for
visual data exploration. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2018.

[27] T. Horak, A. Mathisen, C. N. Klokmose, R. Dachselt, and N. Elmqvist.
Vistribute: Distributing interactive visualizations in dynamic multi-device
setups. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, pages 1–13, 2019.

[28] C. Jacobs, W. Li, E. Schrier, D. Bargeron, and D. Salesin. Adaptive grid-
based document layout. ACM Transactions on Graphics, 22(3):838–847,
2003.

[29] W. Javed and N. Elmqvist. Exploring the design space of composite
visualization. In Proceedings of the IEEE Pacific Visualization Symposium,
pages 1–8, 2012.

[30] J. Jo, S. L’Yi, B. Lee, and J. Seo. TouchPivot: Blending wimp & post-
wimp interfaces for data exploration on tablet devices. In Proceedings
of the CHI Conference on Human Factors in Computing Systems, pages
2660–2671, 2017.

[31] Johns Hopkins Coronavirus Resource Center. COVID-19 dashboard.
https://coronavirus.jhu.edu/map, last accessed on 02/09/2021.

[32] M. Kay, T. Kola, J. R. Hullman, and S. A. Munson. When (ish) is my bus?
user-centered visualizations of uncertainty in everyday, mobile predictive
systems. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, pages 5092–5103, 2016.

[33] S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: Human-like
orthogonal network layout. IEEE Transactions on Visualization and
Computer Graphics, 22(1):349 – 358, 2016.

[34] H. Kim, D. Moritz, and J. Hullman. Design patterns and trade-offs in
responsive visualization for communication. Computer Graphics Forum,
40(3):459–470, 2021.

[35] H. Kim, R. Rossi, A. Sarma, D. Moritz, and J. Hullman. An automated
approach to reasoning about task-oriented insights in responsive visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics, pages
1–1, 2021.

[36] C. E. Kulkarni and S. R. Klemmer. Automatically adapting web pages to
heterogeneous devices. In Proceedings of Extended Abstracts of the CHI
Conference on Human Factors in Computing System, pages 1573–1578,
2011.

[37] R. Langner, T. Horak, and R. Dachselt. VisTiles: Coordinating and
combining co-located mobile devices for visual data exploration. IEEE
Transactions on Visualization and Computer Graphics, 24(1):626–636,
2018.

[38] R. Langner, U. Kister, and R. Dachselt. Multiple coordinated views at
large displays for multiple users: Empirical findings on user behavior,
movements, and distances. IEEE Transactions on Visualization and
Computer Graphics, 25(1):608–618, 2019.

[39] M. Lu, C. Wang, J. Lanir, N. Zhao, H. Pfister, D. Cohen-Or, and H. Huang.
Exploring visual information flows in infographics. In Proceedings of the
CHI Conference on Human Factors in Computing Systems, pages 1–12,
2020.

[40] R. Ma, H. Mei, H. Guan, W. Huang, F. Zhang, C. Xin, W. Dai,
X. Wen, and W. Chen. LADV: Deep learning assisted authoring of
dashboard visualizations from images and sketches. IEEE Transactions
on Visualization and Computer Graphics, 27(9):3717 – 3732, 2021.

[41] K. Matkovic, W. Freiler, D. Gracanin, and H. Hauser. ComVis: A
coordinated multiple views system for prototyping new visualization
technology. In Proceedings of the International Conference Information
Visualisation, pages 215–220, 2008.

[42] C. North and B. Shneiderman. Snap-together visualization: a user interface
for coordinating visualizations via relational schemata. In Proceedings of
the Working Conference on Advanced Visual Interfaces, pages 128–135,
2000.

[43] P. ODonovan, A. Agarwala, and A. Hertzmann. Learning layouts for
single-page graphic designs. IEEE Transactions on Visualization and
Computer Graphics, 20(8):1200 – 1213, 2014.

[44] S. Park, C. Gebhardt, R. Rdle, A. M. Feit, H. Vrzakova, N. R. Dayama,
H.-S. Yeo, C. N. Klokmose, A. Quigley, A. Oulasvirta, and O. Hilliges.
Adam: Adapting multi-user interfaces for collaborative environments in

https://coronavirus.jhu.edu/map

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

real-time. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, pages 1–14, 2018.

[45] C. Qian, S. Sun, W. Cui, J. G. Lou, H. Zhang, and D. Zhang. Retrieve-
Then-Adapt: Example-based automatic generation for proportion-related
infographics. IEEE Transactions on Visualization and Computer Graphics,
27(2):443–452, 2021.

[46] Z. Qu and J. Hullman. Keeping multiple views consistent: Constraints,
validations, and exceptions in visualization authoring. IEEE Transactions
on Visualization and Computer Graphics, 24(1):468–477, 2018.

[47] J. C. Roberts. State of the art: Coordinated & multiple views in
exploratory visualization. In Proceedings of the International Conference
on Coordinated and Multiple Views in Exploratory Visualization, pages
61–71, 2007.

[48] J. C. Roberts, P. D. Ritsos, S. K. Badam, D. Brodbeck, J. Kennedy, and
N. Elmqvist. Visualization beyond the desktop–the next big thing. IEEE
Computer Graphics and Applications, 34(6):26–34, 2014.

[49] R. Sadana and J. Stasko. Designing and implementing an interactive
scatterplot visualization for a tablet computer. In Proceedings of the
International Working Conference on Advanced Visual Interfaces, pages
265–272, 2014.

[50] R. Sadana and J. Stasko. Designing multiple coordinated visualizations
for tablets. Computer Graphics Forum, 35(3):261–270, 2016.

[51] A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher. What do
we talk about when we talk about dashboards? IEEE Transactions on
Visualization and Computer Graphics, 25(1):682–692, 2019.

[52] L. Shao, Z. Chu, X. Chen, Y. Lin, and W. Zeng. Modeling layout
design for multiple-view visualization via bayesian inference. Journal of
Visualization, pages 1–16, 2021.

[53] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(77):2539–2561, 2011.

[54] E. R. Tufte. The Visual Display of Quantitative Information. 2001.
[55] S. Wang, W. Zeng, X. Chen, Y. Ye, Y. Qiao, and C. W. Fu. ActFloor-GAN:

Activity-guided adversarial networks for human-centric floorplan design.
IEEE Transactions on Visualization and Computer Graphics, pages 1–1,
2021.

[56] C. Weaver. Building highly-coordinated visualizations in improvise. In
Proceedings of the IEEE Symposium on Information Visualization, pages
159–166, 2004.

[57] C. Weaver. Cross-filtered views for multidimensional visual analysis.
IEEE Transactions on Visualization and Computer Graphics, 16(2):192–
204, 2010.

[58] B. Wong. Negative space. Nature Methods, 8(1):5–5, 2011.
[59] A. Wu, W. Tong, T. Dwyer, B. Lee, P. Isenberg, and H. Qu. Mobile-

VisFixer: Tailoring web visualizations for mobile phones leveraging an
explainable reinforcement learning framework. IEEE Transactions on
Visualization and Computer Graphics, 27(2):464–474, 2021.

[60] A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang,
and H. Qu. AI4VIS: Survey on artificial intelligence approaches for
data visualization. IEEE Transactions on Visualization and Computer
Graphics, pages 1–1, 2021.

[61] A. Wu, L. Xie, B. Lee, Y. Wang, W. Cui, and H. Qu. Learning to automate
chart layout configurations using crowdsourced paired comparison. In
Proceedings of the CHI Conference on Human Factors in Computing
Systems, pages 14:1–13, 2021.

[62] Y. Wu, X. Liu, S. Liu, and K. Ma. ViSizer: A visualization resizing
framework. IEEE Transactions on Visualization and Computer Graphics,
19(2):278–290, 2013.

[63] O. M. Yigitbasioglu and O. Velcu. A review of dashboards in performance
management: Implications for design and research. International Journal
of Accounting Information Systems, 13(1):41–59, 2012.

[64] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and S. J.
Osher. Make it home: Automatic optimization of furniture arrangement.
ACM Transactions on Graphics, 30(4):1–12, 2011.

Wei Zeng is an assistant professor in the Hong
Kong University of Science and Technology
(Guangzhou). He received the PhD degree in
computer science from Nanyang Technological
University, in 2015. He received ICIV’15 and
VINCI’19 Best Paper Award, and ChinaVis’21
Best Paper Honorable Mention Award. He serves
as Program Chair for VINCI’23, program com-
mittee for venues including IEEE VIS, EuroVis

STARs, and ChinaVis. His recent research interests include visualization
and visual analytics, computer graphics, AR/VR, and HCI.

Xi Chen got the master degree from Shen-
zhen Institute of Advanced Technology, Chinese
Academy of Sciences, and also with University
of Chinese Academy of Sciences. Her research
interests include data visualization and human
computer interaction.

Yihan Hou is currently a PhD student at the
Hong Kong University of Science and Technol-
ogy (Guangzhou). She received her bachelor
degree in information computer and science from
Xi’an Jiaotong-liverpool University. Her research
interests include visual analytics and information
visualization.

Lingdan Shao is currently a master student
at Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, and also with
University of Chinese Academy of Sciences. Her
research interests include data visualization and
human computer interaction.

Zhe Chu is currently a master student at Shen-
zhen Institute of Advanced Technology, Chinese
Academy of Sciences, and also with University of
Chinese Academy of Sciences. He received his
bachelor degree in computer science and technol-
ogy from Northwestern Polytechnical University.
His research interests include data visualization
and human computer interaction.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

Remco Chang is currently is an associate pro-
fessor in Computer Science at Tufts University.
He received his PhD in Computer Science from
the University of North Carolina Charlotte. His
research interests include visual analytics, infor-
mation visualization, human computer interaction,
and databases.

	Introduction
	Related Work
	Overview
	Research Focus
	Requirements and Considerations
	Method Formalization and Overview

	MV Layout Adaptation
	View Grouping
	Layout Retargeting
	Cost Functions
	Retargeting Algorithm

	blackView Tailoring

	Evaluation and User Feedback
	Feasibility and Expressivity
	User Study on Retargeting Algorithm
	Computation Efficiency
	User Feedback on Tailoring Interface

	Discussion, Limitations, and Future Work
	Conclusion
	References
	Biographies
	Wei Zeng
	Xi Chen
	Yihan Hou
	Lingdan Shao
	Zhe Chu
	Remco Chang

