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Abstract—This letter considers the model discrimination
problem for switched nonlinear systems, where the switch-
ing sequence is constrained by metric/signal temporal logic
specifications. Specifically, we propose an optimization-
based algorithm for analyzing the detectability of the mod-
els from noisy, finite data as well as a model discrimination
algorithm for nonlinear parameter-varying systems to rule
out models that are inconsistent with observations at run
time, by checking the feasibility of corresponding mixed-
integer linear programs. Moreover, we apply the algorithms
to nonlinear systems subject to (m,k )-firm data losses and
explicitly provide the integer constraints corresponding to
the (m,k )-firm constraints for lossy/missing data. Finally,
we demonstrate the effectiveness of our approaches using
several illustrative examples on fault detection, swarm con-
sensus and intent identification problems.

Index Terms—Switched systems, model validation, fault
detection.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPS), which combine
embedded computers and communication networks with

physical processes, are often complex and involve logi-
cal/discrete elements, e.g., changing or switching between
modes to satisfy some task and/or safety specifications, in
addition to continuous states and dynamics. Moreover, large-
scale deployments of sensors with shared communication
channels may be plagued by missing data, which can be
viewed as another type of switching constraints involving the
measurements. At the same time, anomaly/fault detection and
model identification are vital for safe and high-performance
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operation of these CPS so that potential faults and changes in
the system behaviors can be quickly detected and dealt with,
if needed.

Literature Review. The model discrimination problem is
to identify/separate models given a finite sequence of mea-
sured input-output data and knowledge of the system dynam-
ics [1], [2]. This can be considered using a modeling invali-
dation framework, which aims to check whether the observed
input-output data is compatible/consistent with one member in
the valid model set [3]. The model invalidation problem has
recently been explored for various types of systems, i.e., lin-
ear parameter varying systems [4], [5], nonlinear systems [6],
uncertain systems [7], switched auto-regressive models [8] and
switched affine systems [2], [9], [10].

Moreover, to analyze the detectability of the models, the
notion of T-distinguishability (or T-detectability) is introduced
in [2], [10] to find upper bounds on the required time hori-
zon T to distinguish one model from the other, if such a T
exists. The concept of T-distinguishability is closely related
to the notion of state/mode distinguishability of switched lin-
ear systems [11], [12], finite-state systems [13] and switched
nonlinear systems [14]. Furthermore, discrete-time system
properties are given as linear temporal logic (LTL) specifica-
tions and used for anomaly and fault detection in [15], while
a monitor finite state machine is constructed for LTL formu-
las and further encoded as mixed-integer constraints in the
T-distinguishability problem in [16].

Additionally, in the context of control and estimation
with lossy measurements, an (m,k)-firm policy/specification
requires that at least m out of any k sequential data or
measurements are successfully delivered/transmitted [17], and
the overall system behavior governed by the (m, k)-firmness
property can be represented as a constrained switched lin-
ear system [18]. The effect of the (m,k)-firm specification
on control performance and stability is analyzed in [19] and
strategies to determine the parameters k and m that conserve
the stability of the system is researched in [20]. To our knowl-
edge, the model discrimination problem with data losses that
satisfy (m,k)-firmness and more generally, for switched non-
linear systems with temporal logic-constrained switching has
not been studied in the literature.

Contribution: In this letter, we consider an extension of
the model discrimination problem for switched affine systems
in [16] to switched nonlinear systems, where the switch-
ing/mode sequence is constrained by metric/signal tempo-
ral logic (MTL/STL) specifications. We first propose an
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optimization-based algorithm for analyzing the detectability
of the models via finding a finite time T for which any pair of
models cannot be identical for any initial state, noise signals
and admissible switching sequences. Specifically, we show
that a sufficient detectability test for any pair of models, also
known as the T-distinguishability (or T-detectability) problem,
e.g., [2], [10], can be achieved for switched nonlinear dynam-
ics by leveraging piecewise affine abstraction tools in [7], [21],
[22], [23]. This test then reduces to a feasibility check of a
mixed-integer linear program (MILP), which is an alternative
to [16] for the special case of switched affine systems that
need not explicitly construct a monitor finite state machine
and is shown in simulations to result in shorter computation
times. Moreover, given noisy input-mode-output data at run
time, we present a model discrimination algorithm for non-
linear parameter-varying systems by similarly building upon
the abstraction tools in [7], [21], [22], [23], which also boils
down to an MILP.

In addition, we describe how the proposed algorithms
apply for solving the problems of detectability analysis and
model discrimination for constrained nonlinear systems with
(m,k)-firm data losses and explicitly provide the integer con-
straints corresponding to the (m,k)-firm property. Finally, we
demonstrate and compare the effectiveness of our proposed
approaches using several illustrative examples on fault detec-
tion, swarm consensus and intent identification, including the
comparison of various mixed-integer encodings of switched
dynamics in the model discrimination problems.

II. PRELIMINARIES

A. Notations
‖v‖i for i = {1,∞} denotes the i-norm of a vector v ∈ Rn.

The set of integers from a through b is denoted by Zb
a and

[m, m] = {m ∈ Rp : m ≤ m ≤ m} is an interval in Rp.

B. Metric/Signal Temporal Logic (MTL/STL)
Definition 1 (Atomic Proposition): An atomic proposition

is a statement on the system variables/signals that is either
True (1 or &) or False (0 or ⊥).

Let ! be a finite set of modes. The syntax of MTL/STL
formulas over ! is given by:

ϕ : := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U [t1,t2]ϕ2, (1)
where p ∈ !, while ¬, ∨, and U [t1,t2] are the negation, dis-
junction, and time-constrained until operators, respectively,
and [t1, t2] ⊂ [0,∞) is an interval of reals. Applying
the grammar given in (1), we can also define next (!;
for discrete-time systems), conjunction (∧), implication (⇒),
eventually in [t1, t2] (♦[t1,t2]), and always in [t1, t2] ("[t1,t2])
as !ϕ = &U[0,1]ϕ, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 ⇒
ϕ2 = ¬ϕ1 ∨ ϕ2, ♦[t1,t2]ϕ = &U[t1,t2]ϕ = ∨t2

τ=t1 !τ ϕ, and
"[t1,t2]ϕ = ¬♦[t1,t2]¬ϕ = ∧t2

τ=t1 !τ ϕ, respectively. Further,
we abbreviate U[0,∞), ♦[0,∞), "[0,∞) as U , ♦, ".

Definition 2 (MTL/STL Semantics): Let σ be an ω-word
over !, i.e., σ ∈ !ω, and let σt be tth element of σ . The
MTL/STL semantics is defined as follows:

1) (σ , t) |= p⇔ σt = p,
2) (σ , t) |= ¬ϕ ⇔ (σ , t) ! ϕ,
3) (σ , t) |= ϕ1 ∨ ϕ2 ⇔ (σ , t) |= ϕ1 or (σ , t) |= ϕ2,
4) (σ , t) |= ϕ1 ∧ ϕ2 ⇔ (σ , t) |= ϕ1 and (σ , t) |= ϕ2,
5) (σ , t) |= ϕ1U[t1,t2]ϕ2 ⇔ ∃t′ ∈ [t+t1, t+t2] : (σ , t′) |= ϕ2

and ∀t′′ ∈ [t, t′] : (σ , t′′) |= ϕ1,
6) (σ , t) |= ♦[t1,t2]ϕ ⇔ ∃t′ ∈ [t + t1, t + t2], (σ , t′) |= ϕ,

7) (σ , t) |= "[t1,t2]ϕ ⇔ ∀t′ ∈ [t + t1, t + t2], (σ , t′) |= ϕ.
We write σ |= ϕ if (σ , 0) |= ϕ.

Moreover, we introduce several definitions for (infinite-
length) MTL/STL specifications, which will be useful later.

Definition 3 (Valid Subtrace of an MTL/STL): A length-T
word q ∈ !T is called a valid subtrace from t0 of an MTL/STL
formula ϕ, if there exist a t0-length prefix p ∈ !t0 and a suffix
r ∈ !ω such that their ω-word concatenation pqr satisfies ϕ,
i.e., pqr |= ϕ. Further, the set of length-T valid subtraces from
t0 is denoted as VT

t0(ϕ).
Definition 4 ( MTL/STL Bound of an MTL/STL [24]):

The bound of an MTL/STL formula ϕ, denoted by bϕ , is
the time length required to evaluate the satisfaction of ϕ
and is recursively computed as follows: 1) b¬ϕ = bϕ ; 2)
bϕ1∧ϕ2 = max(bϕ1 , bϕ2); 3) b♦[t1,t2]ϕ = b![t1,t2]ϕ = t2 + bϕ ;
and 4) bϕ1U[t1,t2]ϕ2 = t2 + max(bϕ1 , bϕ2).

Next, we present the integer encoding of MTL/STL formu-
las, as an extension of the LTL encoding found in [25], which
we will use later for directly encoding MTL/STL formulas in
the model discrimination problems, without first constructing
a monitor automaton as in [16]. For brevity, we will now only
present constraints for the satisfaction of each operator of the
MTL/STL semantics, i.e., (σ , t) |= ϕ for the following opera-
tors, where p, q and pi are atomic propositions, and Pt

ϕ is the
truth value of formula ϕ at time t, as defined in [25]:

Negation: The formula ϕ = ¬p can be modeled as:
Pt

ϕ = (1− Pt
p). (2)

Disjunction: The formula ϕ = ∨k
i=1 pi can be modeled as:

Pt
ϕ ≤ !k

i=1Pt
pi
; Pt

ϕ ≥ Pt
pi
, i ∈ Zk

1. (3)

Conjunction: The formula ϕ = ∧k
i=1 pi can be modeled as:

Pt
ϕ ≥ !k

i=1Pt
pi
− (k − 1); Pt

ϕ ≤ Pt
pi
, i ∈ Zk

1. (4)
Next: The formula ϕ = !p can be modeled as:

Pt
ϕ = Pt+1

p . (5)
Until: The formula ϕ = pU[t1,t2]q can be modeled as:

αtj ≥ Pj
q + !

j−1
τ=tP

τ
p − (j− t), j ∈ Zt+t2

t+t1;
αtj ≤ Pj

q, αtj ≤ Pτ
p, j ∈ Zt+t2

t+t1 , τ ∈ Zj−1
t ;

Pt
ϕ ≤ !

t+t2
j=t+t1αtj, Pt

ϕ ≥ αtj, j ∈ Zt+t2
t+t1 . (6)

Eventually: The formula ϕ = ♦[t1,t2]p can be modeled as:

Pt
ϕ ≤ !

t+t2
τ=t+t1 Pτ

p; Pt
ϕ ≥ Pτ

p, τ ∈ Zt+t2
t+t1 . (7)

Always: The formula ϕ = "[t1,t2]p can be modeled as:

Pt
ϕ ≥ !

t+t2
τ=t+t1 Pτ

p − (t2 − t1); Pt
ϕ ≤ Pτ

p, τ ∈ Zt+t2
t+t1 . (8)

III. PROBLEM FORMULATION

A. Modeling Framework
Consider a set of Nm discrete-time switched nonlinear

system models {Gl}Nm
l=1, with each model Gl given by:

xt+1 = f l
σt

(xt, ut, wt), yt = gl
σt

(xt, ut, vt), (9)
where xt ∈ X denotes the system state at time instant t with
a closed interval domain X = [x, x] ⊂ Rn, ut ∈ U is the con-
trol input with a closed interval domain U = [u, u] ⊂ Rm,
wt ∈ W and vt ∈ V are process noise and measurement
noise with a closed interval domain W = [w, w] ⊂ Rnw

and V = [v, v] ⊂ Rnv , respectively, σt is the (controlled or
uncontrollable) discrete switching signal/mode, from a finite
set ! with cardinality |!| = K, and yt is the system out-
put at time instant t, while fσ : X × U × W → Rn and
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gσ : X ×U×V → Rny are vector fields describing the nonlin-
ear dynamics of each mode σ ∈ ! of the system. Each model
Gl also includes an MTL/STL formula ϕl that constrains the
set of admissible switching signals σ " {σt}∞0 ∈ !ω, i.e.,
σ |= ϕl must hold. Moreover, to obtain algorithms with a
finite number of variables, we assume that formulas ϕl are of
the (unbounded global/safety) form:

ϕl = φl
b ∧"φl

g, (10)

where φl
b and φl

g are bounded negation-free MTL/STL formu-

las with bounds bφl
b and bφl

g (see Definition 4).
Further, we will also consider the special case of nonlinear

models with lossy/missing data, where the models Gl in (9)
reduce to ones where each f l is independent of σt and

gl
σt

(xt, ut, vt) =
{

gl(xt, ut, vt), if σt = 1,
∅, if σt = 0,

(11)

and consider a lossy data model where the switching signal
σt satisfies the (m,k)-firm property [17], [18], defined as:

Definition 5 ((m,k)-Firm Specification): Given two integers
m and k, m ≤ k, at least m steps system outputs are measured
or observed for any k sequential steps.

1) Abstraction of Nonlinear Functions: To deal with non-
linearities in Gl, i.e., the functions f l

σ and gl
σ for each

σ ∈ !, we propose to leverage a result in [21], [23]
to over-approximate the nonlinearities with piecewise affine
inclusions. The precision of the abstraction can be improved
with more and better chosen partitions, as defined below,
but may result in longer computation times due to more
integer variables in our solutions in Section IV (see [23]
for details).

Definition 6 (Partition): For each function f l
σ , a partition

I f ,l
σ of the closed bounded region X × U ×W ⊆ Rn+m+nw

is a collection of qf ,l
σ subregions I f ,l

σ = {If ,l
σ,i|i ∈ Zqf ,l

σ

1 } such

that X × U ×W ⊆ ⋃qf ,l
σ

i=1 If ,l
σ,i and If ,l

σ,i ∩ If ,l
σ,j = ∂If ,l

σ,i ∩ ∂If ,l
σ,j,

∀i 7= j ∈ Zq
1, where ∂If ,l

σ,) is the boundary of set If ,l
σ,). Similarly,

a partition I l
g,σ of the closed bounded region X × U × V ⊆

Rn+m+nv for each function gl
σ can be defined.

We assume the partitions to be polytopic. Then, for each
polytopic subregion If ,l

σ,i ∈ I f ,l
σ (or Ig,l

σ,j ∈ Ig,l
σ ) that parti-

tions the domain of interest, the nonlinear function f l
σ (or

gl
σ ) can be over-approximated/abstracted by a pair of affine

functions f l
σ,i

, f
l
σ,i (or gl

σ,j
, gl

σ,j) by solving a linear pro-
gramming (LP) problem [21], [23]. As a result, for all
(x, u, w) ∈ If ,l

σ,i (or (x, u, v) ∈ Ig,l
σ,j), the function f l

σ (x, u, w)

(or gl
σ (x, u, v)) is sandwiched/framed by a pair of affine

functions, i.e., f l
σ,i

(x, u, w) ≤ f l
σ (x, u, w) ≤ f

l
σ,i(x, u, w) (or

gl
σ,j

(x, u, v) ≤ gl
σ (x, u, v) ≤ gl

σ,j(x, u, v)) with

f l
σ,i

(x, u, w) = Al
σ,ix + Bl

σ,iu + Wl
σ,iw + hf ,l

σ,i,

f
l
σ,i(x, u, w) = A

l
σ,ix + Bl

σ,iu + Wl
σ,iw + h

f ,l
σ,i,

gl
σ,j

(x, u, v) = Cl
σ,jx + Dl

σ,ju + Vl
σ,jv + hg,l

σ,j,

gl
σ,j(x, u, v) = C

l
σ,jx + Dl

σ,ju + Vl
σ,jv + h

g,l
σ,j,

where Al
σ,i, A

l
σ,i, Bl

σ,i, Bl
σ,i, Cl

σt,j, C
l
σ,j, Dl

σ,j, Dl
σ,j, Wl

σ,i, Wl
σ,i,

Vl
σ,j, Vl

σ,j, hf ,l
σ,i, h

f ,l
σ,i, hg,l

σ,j and h
g,l
σ,j are of appropriate dimensions

and are constants that are determined by the abstraction algo-
rithm in [21], [23]. The abstracted piecewise affine interval

models Hl is then given by:(
Al

σt,ixt + Bl
σt,iut

+hf ,l
σt,i + Wl

σt,iwt

)

≤ xt+1 ≤
(

A
l
σt,ixt + Bl

σt,iut

+h
f ,l
σt,i + Wl

σt,iwt

)

,

(
Cl

σt,jxt + Dl
σt,jut

+hg,l
σt,j + Vl

σt,jvt

)

≤ yt ≤
(

C
l
σt,jxt + Dl

σt,jut

+h
g,l
σt,j + Vl

σt,jvt

)

, (12)

where their corresponding polytopic subregions If ,l
σt,i and Ig,l

σt,j
are given by the following linear constraints:

Sx,l
σt,ixt + Su,l

σt,iut + Sw,l
σt,iwt ≤ β l

σt,i,

Mx,l
σt,jxt + Mu,l

σt,jut + Mv,l
σt,jvt ≤ αl

σt,j, (13)

respectively, with Sx,l
σt,i, Su,l

σt,i, Sw,l
σt,i, Mx,l

σt,j, Mu,l
σt,j, Mv,l

σt,j, β l
σt,i

and αl
σt,j of appropriate dimensions. Moreover, the MTL/STL

formula ϕl for each model remains unchanged.
Next, to solve the model discrimination problem via model

invalidation, we extend the definition in [2] of the length-
T behavior of original constrained switched nonlinear and
abstracted piecewise affine inclusion models, Gl and Hl:

Definition 7 ( Length-T Behavior of Original Model Gl):
The length-T behavior of the constrained switched nonlinear
model Gl at time t0 is the set of all length-T input-mode-output
trajectories compatible with Gl, given by:

BT
t0(G

l) := {{ut, σt, yt}t0+T−1
t=t0 | ut ∈ U , {σt}t0+T−1

t=t0 ∈ VT
t0(ϕ

l),

xt ∈ X , wt ∈W, vt ∈ V ∀t ∈ Zt0+T−1
t0 s.t. (9) holds}.

Definition 8 (Length-T Behavior of Abstracted Model Hl):
The length-T behavior of the constrained abstracted model
Hl at time t0 is the set of all length-T input-mode-output
trajectories compatible with Hl, given by:

BT
t0(H

l) := {{ut, σt, yt}t0+T−1
t=t0 |ut∈U , {σt}t0+T−1

t0 ∈ VT
t0(ϕ

l),

xt ∈ X , wt ∈W, vt ∈ V ∀t∈Zt0+T−1
t=t0 s.t. (12)–(13) hold}.

Using the above definitions of system behaviors as well as
the fact that Hl is a piecewise affine abstraction of Gl (by
construction) with the same MTL/STL specification ϕl, we
can conclude that BT(Gl) ⊆ BT(Hl) for all t0 and T .

B. Problem Statement
Next, we describe the model discrimination problems we

consider. Specifically, we want to analyze the detectability of
the models, i.e., to determine if the models in a model set
can be distinguished from each other from finite input-mode-
output data, as well as design a model discrimination algorithm
to identify the true model at run time.

Problem 1 (Detectability Analysis for a Set of Constrained
Switched Nonlinear Models {Gl}Nm

l=1): Given a set of con-
strained switched nonlinear models, {Gl}Nm

l=l, and a time horizon
T , determine whether the set of models are T-detectable/-
distinguishable, i.e., whether ∃t0 such that:

Nm⋂

l=1

BT
t0(G

l) = ∅. (14)

Problem 2 (Model Discrimination for {Gl}Nm
l=1): Given an

input-mode-output trajectory {ut, σt, yt}t0+T−1
t=t0 , a set of

constrained switched nonlinear models {Gl}Nm
l=l and a finite

horizon T , determine which model the trajectory belongs to.
That is, to find an i that for some t0 satisfies

BT
t0(G

i) 7= ∅ ∧ (BT
t0(G

j) = ∅,∀j ∈ ZNm
1 , j 7= i). (15)
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However, since the original models Gl are nonlinear and
thus, “hard” to directly compute with, we propose to solve
a “simpler” version of the above problems by leveraging
the affine abstraction tools described in the previous section
and the property that BT

t0(G
l) ⊆ BT

t0(H
l), which is suffi-

cient for solving the original problems, i.e., in lieu of solving
Problems 1 and 2, we will solve the following.

Problem 1 (Detectability Analysis for a Set of Constrained
Piecewise Affine Models {Hl}Nm

l=1): Given a set of con-
strained abstracted piecewise affine models, {Hl}Nm

l=1 and a
time horizon T , determine whether the set of models are
T-distinguishable/detectable, i.e., whether ∃t0 such that:

Nm⋂

l=1

BT
t0(H

l) = ∅. (16)

Problem 2 (Model Discrimination for {Hl}Nm
l=1): Given an

input-mode-output trajectory {ut, σt, yt}t0+T−1
t=t0 , a set of con-

strained abstracted piecewise affine models {Hl}Nm
l=1, and a

finite horizon T , determine which model the trajectory belongs
to. That is, to find an i that for some t0 satisfies

BT
t0(H

i) 7= ∅ ∧ (BT
t0(H

j) = ∅,∀j ∈ ZNm
1 , j 7= i). (17)

Further, for the lossy data case, we aim to explicitly provide
the constraints on {σt} for the (m,k)-firm property.

Problem 3 [(m,k)-Firm Constraints]: Given the (m,k)-firm
property and a finite horizon T , find the integer constraints on
the switching signal {σt}t0+T−1

t=t0 that encode the property.

IV. MAIN RESULT

In this section, we present optimization-based approaches
to solve Problem 1.1 (and, in turn, Problem 1) and Problem
2.2 (and, in turn, Problem 2), as well as Problem 3.

First, we propose a detectability analysis algorithm for T-
distinguishability (i.e., to solve Problem 1.1) with MTL/STL
formulas of the form in (10), where only a finite number of
variables are necessary, and the (guaranteed) detection time T
is found by solving the problem below with increasing T:

Theorem 1 (T-Distinguishability): A pair of constrained
abstracted piecewise affine inclusion models Hi and Hj, i 7= j,
with MTL/STL formulas ϕi and ϕj of the form in (10)
is T distinguishable if the following is infeasible for any

t0 ∈ Zmax(φi
b,φ

j
b)+max(φi

g,φ
j
g)+1

0 (with a search over t0):

Find x+
t , w+

t , v+
t , ut, yt, σt, s+t,∗, s̃+t,†, a+

t,∗, ã+
t,†, cσ

t , zσt

s.t. ∀+ ∈ {i, j}, σ ∈ !, ∗ ∈ Zqf ,+
σ

1 , † ∈ Zqg,+
σ

1 , t ∈ Zt0+T−1
t0 :

x+
t+1 ≤ A+

σ,∗x
+
t + B+

σ,∗ut + W+
σ,∗w

+
t + hf ,+

σ,∗ + (s+t,∗ + cσ
t )1, (18a)

x+
t+1 ≥ A+

σ,∗x
+
t + B+

σ,∗ut + W+
σ,∗w

+
t + hf ,+

σ,∗ − (s+t,∗ + cσ
t )1, (18b)

Sx,+
σ,∗x+

t + Su,+
σ,∗ut + Sw,+

σ,∗w+
t ≤ β+

σ,∗ + (s+t,∗ + cσ
t )1, (18c)

yt ≤ C+
σ,†x+

t + D+
σ,†ut + V+

σ,†v+
t + hg,+

σ,† + (s̃+t,† + cσ
t )1, (18d)

yt ≥ C+
σ,†x+

t + D+
σ,†ut + V+

σ,†v+
t + hg,+

σ,† − (s̃+t,† + cσ
t )1, (18e)

Mx,+
σ,†x+

t + Mu,+
σ,†ut + Mv,+

σ,†v+
t ≤ α+

σ,† + (s̃+t,† + cσ
t )1, (18f)

a+
t,∗ ∈ {0, 1}, ã+

t,† ∈ {0, 1}, zσt ∈ {0, 1}, (18g)

SOS− 1 : (a+
t,∗, s+t,∗), SOS− 1 : (ã+

t,†, s̃+t,†), SOS− 1 : (zσt , cσ
t ),

(18h)
qf ,+
σ∑

ξ=1

a+
t,ξ = 1,

qg,+
σ∑

ξ=1

ã+
t,ξ = 1,

|!|∑

ξ=1

zξt = 1, (18i)

w+
t ∈W, v+

t ∈ V, ut ∈ U , x+
t ∈ X , (18j)

{σt}t
t=t ∈ Vt−t+1

t (ϕ+), (18k)
where s+

t,∗, s̃+
t,† and cσ

t are slack variables, zσ
t = 1 corresponds

to σt = σ , the set of valid subtraces Vt−t+1
t (ϕ+) is constructed

recursively using (2)–(8) and SOS-1 refers to Special Ordered
Set of type 1 (i.e., at most one member of the set can be non-
zero [26]), with t = t0 − max(φi

g,φ
j
g) and t = t0 + T − 1 +

max(φi
g,φ

j
g) if t0 > max(φi

b,φ
j
b), and otherwise, with t = 0

and t = max(t0 + T − 1 + max(φi
g,φ

j
g),φ

i
b,φ

j
b).

Proof: a+
t,∗ = 1 and zσ

t = 1 imply that (18a)–(18c) hold,
since the SOS-1 constraints in (18h) ensure that s+

t,∗ = 0 and
cσ

t = 0 correspondingly. On the contrary, if a+
t,∗ = 0 and/or

zσ
t = 0, it means that s+

t,∗ and/or cσ
t , are free and thus (18a)–

(18c) hold trivially. Similarly, ã+
t,† = 1 and zσ

t = 1, or ã+
t,† = 0

and/or zσ
t = 0 imply that (18d)–(18f) hold. In addition, (18i)

ensures that, at each time step t, only one partition is valid for
each of the state and output equations, and only one switching
signal/mode is valid. Thus, if the above problem is infeasible,
it means that there exists no common behavior that is satis-
fied by both models, i.e., BT

t0(H
i)
⋂

BT
t0(H

j) = ∅; hence, the
pair of models is distinguishable from each other. Note that
horizon for σt and zσ

t is extended backwards and forwards
as determined by t, t such that the constraints induced by ϕ+

that affects switching signal/mode sequence within the horizon
from t0 and t0+T−1 can be fully expressed using (2)–(8), and
thanks to the assumed form for ϕ+ in (10) with bounded φ+

b
and φ+

g , t is bounded. Finally, from (10), it can also be deduced
that the MILP in (1) for all t0 ≥ max(φi

b,φ
j
b)+max(φi

g,φ
j
g)+1

remains the same.
Next, we present a model invalidation algorithm (see

Algorithm 1) that enables us to discriminate among all
models, i.e., to solve Problem 2.2, if all model pairs are T-
distinguishable according to Theorem 1. If not all pairs are
T-distinguishable, Algorithm 1 will instead return the set of
all models that are consistent with the given input-mode-output
data up to the current time step tc. Note that since the mode
sequence is observed, the models in (9) reduces to nonlin-
ear parameter-varying (NPV) systems, and thus, the model
invalidation algorithm derived below applies to NPV models:

Theorem 2: Given a constrained abstracted piecewise affine
inclusion model Hl and a length-T input-mode-output
sequence {ut, σt, yt}tc

t=tc−T+1 at time tc, the model is invalidated
if the following problem is infeasible for any tc ∈ Z∞0 :

Find xt, wt, vt, st,∗, at,∗, st,†, at,†

s.t. ∀t ∈ Ztc+T−1
tc , ∗ ∈ Zqf ,l

σt
1 , † ∈ Zqf ,l

σt
1 :

xt+1 ≤ A
l
σt,∗xt + Bl

σt,∗ut + Wl
σt,∗wt + h

f ,l
σt,∗ + st,∗1, (19a)

xt+1 ≥ Al
σt,∗xt + Bl

σt,∗ut + Wl
σt,∗wt + hf ,l

σt,∗ − st,∗1, (19b)

Sx,l
σt,∗xt + Su,l

σ,∗ut + Sw,l
σ,∗wt ≤ βl

σt,∗ + st,∗1, (19c)

yt ≤ C
l
σt,†xt + Dl

σt,†ut + Vl
σt,†vt + h

g,l
σt,† + s̃t,†1, (19d)

yt ≥ Cl
σt,†xt + Dl

σt,†ut + Vl
σt,†vt + hg,l

σt,†
− s̃t,†1, (19e)

Mx,l
σt,†

xt + Mu,l
σt,†

ut + Mv,l
σt,†

vt ≤ αl
σt,† + s̃t,†1, (19f)

at,∗ ∈ {0, 1}, SOS− 1 : (at,∗, st,∗),
qf ,l
σt∑

ξ=1

at,ξ = 1, (19g)

ãt,† ∈ {0, 1}, SOS− 1 : (ãt,†, s̃t,†),

qg,l
σt∑

ξ=1

ãt,ξ = 1, (19h)
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Algorithm 1: Model Discrimination With Length T

Data: Models {Gl}Nm
l=1,

Input-Output Sequence = {ut, σt, yt}t0
t=t0−T+1

1 function findModel({Gl}Nm
l=1, {ut, σt, yt}t0

t=t0−T+1)

2 valid← {Gl}Nm
l=1;

3 for l = 1:Nm do
4 Check Feasibility of Theorem 2;
5 if infeasible then
6 Remove l from valid;
7 end
8 end
9 return valid

wt ∈W, vt ∈ V, xt ∈ X . (19i)
Proof: The construction follows similar steps as in

Theorem 1, but with only one model and a given mode
sequence.

Further, we consider the special case of nonlinear system
models with lossy/missing data in (11), where the lossy data
pattern satisfies the (m,k)-firm property (see Definition 5).
In this case, the model discrimination algorithm based on
Algorithm 1 and Theorem 2 remains the same, while the mode
sequence constraint corresponding to the (m,k)-firm property
for the T-distinguishability test in (18k) of Theorem 1 can be
explicitly given (Problem 3) by the following:

Proposition 1 ((m,k)-Firm Constraints): The (m,k)-firm
property for (11) corresponds to the MTL/STL formula:

ϕ = "
k−m∨

i1=0

· · ·
k−1∨

im=im−1+1




∧

j∈{i)}m
)=1

!j(σ = 1)





with φb = 0 and φg = k, and the associated constraint for
{σt}t

t=t ∈ Vt−t+1
t (ϕ) in (18k) can be explicitly written as:

∀t ∈ Zt−k+1
t :

t+k−1∑

ξ=t

zσ
ξ ≥ m. (20)

Proof: This follows directly from Definition 5.

V. SIMULATION EXAMPLES

The simulations in Sections V-A and V-C are implemented
in MATLAB 2019b with Gurobi v8.1 [26] on a 1.3 GHz
dual-core machine with 16 GB RAM, while the simulations
in Section V-B are performed on Arizona State University’s
Agave Cluster on a single thread of one of the cores of Intel
Xeon E5-2680 v4 CPU processor running at 2.40GHz with
16GB RAM using MATLAB 2017a with Gurobi v8.0.0 [26].

A. 2D Numerical Fault Detection Example
First, we consider the fault detection problem of two

2D switched affine systems {Gl}l∈{h,f}. Here l = h rep-
resents the healthy operation model and l = f the faulty
model. A fault (i.e., a permanent switching from model h
to model f) is guaranteed to be detected with a T-delay
if {Gl}l∈{h,f} is T-distinguishable. System Gl has the form
xt+1 = Al

σt
xt + hl

σt
+ wt, yt = xt + vt, where σt ∈ {1, 2} is

the discrete control input (controlled switching signal), with
disturbance wt ∈ [−0.01, 0.01] × [−0.01, 0.01], and noise
vt ∈ [−0.1, 0.1] × [−0.1, 0.1]. The states xt are restricted
within X = [−5, 5] × [−5, 5] and the initial state set

TABLE I
COMPARISON OF COMPUTATION TIMES OF DIFFERENT ENCODING

TECHNIQUES IN THE FAULT DETECTION EXAMPLE

X0 = [1.5, 2.5]× [0.5, 1.5]. The healthy system matrices are:

Ah1 =
[

0.794 0.723
−0.260 0.794

]
, hh1 =

[
0
0

]
,

Ah2 =
[

0.794 0.434
−0.434 0.794

]
, hh1 =

[
0.115
0.457

]
,

while for the faulty system, Af1 = Af2 = Ah1 , hf1 = hf2 = hh1
(i.e., a linear system, not a switched system). We also assume
that the switching signal σ = {σt}∞t=0 for the healthy model
must satisfy an MTL/STL formula ϕh = φh1 ∧ φh2 , where

φh1 = "
(
"[0,4](σ = 1)⇒ !5¬(σ = 1)

)
,

φh2 = "
(
(¬(σ = 2) ∧!(σ = 2))⇒ "[2,3](σ = 2)

)
, (21)

whereas there is no switching signal for the faulty model.
The detectability analysis for {Gl}l∈{h,f} can be formulated
as Problem 1. Note that the system is not detectable within
any finite steps unless the MTL/STL constraint ϕh is con-
sidered. This is because, without ϕh, the system is allowed
to stay at mode 1 for all time (i.e., σt = 1,∀t), in which
case the healthy model can behave identically as the faulty
one. Our proposed approach shows that the system {Gl}l∈{h,f}
is 11-detectable, which is consistent with that obtained using
the automaton-based approach proposed in [16]. Moreover, we
compared several encoding techniques for the switched affine
dynamics in the literature. Table I shows the computation time
for these methods, where the column “Big-M” corresponds to
using the implies function in YALMIP [27], the “SOS-1”
column to the encoding in Theorem 1, and the AuxVar col-
umn to the encoding of the switched dynamics as a summation
using auxiliary variables similar to [16]. It can be seen that
the SOS-1 encoding (in our approach) is the most efficient in
this fault detection example.

B. Swarm Consensus Example
We further apply our approach to determine the distin-

guishability of models of a swarm of drones that implements a
leader-follower altitude consensus protocol. The problem setup
here is similar to that in the previous example, but with more
states and more realistic scenarios. The system {Gl}l∈{c,r} con-
sists of a complying mode and a rogue mode, both governed by
8D switched affine dynamics, where the discrete control input
σt represents the controlled switching among different com-
munication network topologies and different leading drone’s
altitude set point. We impose MTL/STL constraints similar to
(21) on the sequence σ = {σt}∞t=0 to capture the dwell-time
restriction for each set point and the communication network’s
joint connectedness condition that must hold to achieve con-
sensus. The detailed system equations and MTL/STL formulas
can be found in [16], where an MILP is also used to ana-
lyze detectability, but the MTL/STL constraints are encoded
with the binary representation of a monitor automaton con-
structed from the MTL/STL formula. Although the results
using our method, shown in Table II, match those obtained
using the approach and implementation in [16], our method
is able to reach the conclusion much faster than the method
in [16], which took more than 2 weeks to determine the
distinguishability of the models.
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TABLE II
DETECTION TIMES AND TIME TAKEN FOR VARIOUS NOISE LEVELS IN

THE SWARM CONSENSUS EXAMPLE

TABLE III
DETECTION TIMES FOR INTENT IDENTIFICATION UNDER (m,k )-FIRM

DATA LOSS WITH DIFFERENT (m,k ) PARAMETERS

Fig. 1. Model discrimination results with two different intents, i ∈ {I, II}
under (m,k )-firm data losses: (Left) m = k = 1; (Right) m = 3, k = 5.
Flag i is 1 when model i is not (yet) invalidated and is 0, if invalidated.

C. Swarm Intent Identification Example With Data Loss
In this example, we consider the swarm intent identifica-

tion scenario in [7] with two swarm intent models (see [7] for
details): the swarm intends to move towards the centroid of the
swarm (Model I), or the swarm moves away from the centroid
(Model II). An affine abstraction algorithm as described in [21]
is applied on the system dynamics to obtain each abstracted
swarm model represented by a piece-wise affine inclusion
model as in (12). We first applied the T-distinguishability algo-
rithm (Theorem 1) without (m,k)-firm constraints and found
that the two intent models are distinguishable when T = 7.
This can be viewed as a special case of (m,k)-firm speci-
fication with m = k = 1. In addition, we considered the
identification problem with (m,k)-firm data loss with various
m and k and the results are shown in Table III. Further, we
applied the model discrimination algorithm in Theorem 2 for
the first and third cases and the results are depicted in Fig. 1.
As expected, the detection time for both T-distinguishability
and model discrimination grows with increasing data loss.

VI. CONCLUSION

In this letter, we considered the model discrimination
problem for switched nonlinear systems with switching
sequences that satisfy given metric/signal temporal logic speci-
fications. In particular, we leveraged tools for abstracting/over-
approximating nonlinear dynamics with simpler inclusion
models and proposed detectability analysis and model discrim-
ination algorithms to identify the true model using finite, noisy
input-mode-output data at run time, which consist of feasibility
checks of the corresponding mixed-integer linear programs. In
addition, we explicitly provided the integer constraints for the
special case of (m,k)-firm data loss models. The effectiveness
of our proposed approaches are illustrated and compared with
existing approaches using several examples of fault detection,
swarm consensus and swarm intent identification.
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