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Abstract

Existing frameworks for probabilistic inference assume the quantity of interest

is the parameter of a posited statistical model. In machine learning applications,

however, often there is no statistical model/parameter; the quantity of interest is a

statistical functional, a feature of the underlying distribution. Model-based meth-

ods can only handle such problems indirectly, via marginalization from a model

parameter to the real quantity of interest. Here we develop a generalized infer-

ential model (IM) framework for direct probabilistic uncertainty quantification on

the quantity of interest. In particular, we construct a data-dependent, bootstrap-

based possibility measure for uncertainty quantification and inference. We then

prove that this new approach provides approximately valid inference in the sense

that the plausibility values assigned to hypotheses about the unknowns are asymp-

totically well-calibrated in a frequentist sense. Among other things, this implies

that confidence regions for the underlying functional derived from our proposed IM

are approximately valid. The method is shown to perform well in key examples,

including quantile regression, and in a personalized medicine application.

Keywords and phrases: bootstrap; empirical risk minimizer; estimating equa-

tion; M-estimator; nonparametric; plausibility function; Z-estimator.

1 Introduction

In applications, the quantities of interest—or inferential targets—are often “real” in the
sense that they are features of the population under investigation, known to exist and
have meaning. For example, moments and quantiles are real in the sense that all distri-
butions have, say, a 0.85-quantile. On the other hand, shape, concentration, tail-index,
etc. are parameters whose meaning relies on the context provided by a suitable statisti-
cal model. Consequently, any inferences drawn about, say, a shape parameter, would be
meaningless if there is no “true” shape parameter associated with the population in ques-
tion. It is important to realize that these issues cannot be remedied simply by “picking
a better model.” Indeed, modern machine learning applications often require inference
on unknowns that are defined as, say, minimizers of expected loss functions. These are
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real in the sense above and the problems are often too complex to expect that they could
be treated as parameters of an interpretable statistical model. So taking a traditional
statistical approach to this machine learning problem amounts to introducing a statis-
tical model and treating the real quantity of interest indirectly through the parameters
of the posited statistical model. However, as the mantra goes, All models are wrong, so
any inference about the real quantity of interest is immediately at risk of being rendered
useless by model misspecification bias. This is precisely the reason why machine learners
often prefer to attack the real problem directly without considering a statistical model
or using the associated statistical tools developed for model-based inference. To bridge
this gap, it is important that the statistical community address the problem of direct and
reliable (probabilistic) uncertainty quantification about inferential targets that are not
parameters of a posited statistical model. This is the goal of the present paper.

We do not consider ourselves “anti-statistical model.” There are many good reasons
to work within a model-based framework, including interpretability, computational and
statistical e�ciency, and convenience. Indeed, within the context of a statistical model,
one has a likelihood function which can be used to make likelihood-based inference. This
includes maximum likelihood estimation, likelihood ratio testing, and the asymptotic ef-
ficiency properties that these methods enjoy. In terms of probabilistic inference, both
the Bayesian and generalized fiducial (Fisher 1935; Hannig et al. 2016) frameworks rely
heavily on the likelihood function.1 Consequently, inference about, say, expected loss
minimizers under these frameworks is necessarily indirect and would put users at risk
of model misspecification bias. The latter criticism can be at least partially remedied
by making the model “nonparametric” in the sense of, e.g., Wasserman (2006), where
the model parameter is the distribution itself (or some other infinite-dimensional object).
Even this can be handled in a probabilistic way using Bayesian nonparametrics (Ghosal
and van der Vaart 2017; Ghosh and Ramamoorthi 2003; Hjort et al. 2010) or generalized
fiducial (Cui and Hannig 2019). While this might address the issue of model misspecifi-
cation bias, it does so by making any inference about a “real” inferential target even less
direct—inference about an infinite-dimensional object must be made first and then an
extreme marginalization to the often low-dimensional inferential target carried out. This
adds complexity and negatively a↵ects the interpretability and computational/statistical
e�ciency that originally motivated the model-based approach.

There is another interpretation of “nonparametric” (e.g, Conover 1971) that is more in
line with our perspective here. These methods allow for inference about certain inferential
targets with no/minimal model assumptions—classical examples include the sign and
signed-rank tests. The advantage of these methods is that they are direct in the sense
that they do not attempt anything more than to answer specific questions about the
inferential target. Unfortunately, these classical nonparametric statistical methods are
tailored to very specific problems and, to our knowledge, do not readily extend to allow
for probabilistic uncertainty quantification in any general or systematic way. In this
paper—an extended version of Cella and Martin (2021a)—we aim to develop a framework
which is general/flexible enough to handle modern machine learning applications while
simultaneously providing (imprecise) probabilistic uncertainty quantification about the
inferential target with reliability guarantees (at least approximately).

1
There are variations on the Bayesian framework that can allow for inference on real quantities of

interest (see Martin and Syring 2022, and the references therein) but we will not discuss this here.
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More specifically, our goal in the present paper is to develop a (generalized) inferential
model, or IM, a framework for direct—and valid—probabilistic inference on statistical
functionals that are not parameters of a posited statistical model. In general, an IM is
mapping that takes as input the observed data, along with any other relevant information
about the data-generating process, and returns as output a lower and upper probability
pair to be used for quantifying uncertainty about the unknowns; see Martin and Liu (2013,
2015) for the first considerations, and Martin (2019, 2021) for a modern perspective. The
need for a lower and upper probability pair, instead of just a single probability like
in the Bayesian and fiducial frameworks, is to ensure that inference drawn from the
IM are reliable, or valid. Further background on this is presented in Section 2 below.
Despite the benefits of having provably valid probabilistic uncertainty quantification,
the original Martin–Liu construction has a shortcoming: like the Bayesian and other
fiducial-like frameworks, it relies on a statistical model to define the quantity of interest
and characterize its relationship to the observable data. Therefore, direct inference on
quantiles or other statistical functionals would appear to be out of reach.

To close this gap, we draw inspiration from the work presented in Martin (2015, 2018)
and, more recently, in Cella and Martin (2021b, 2022), towards relaxing the requirement
that a connection between observable data and quantities of interest be described via
a data-generating process. The first applications of this idea focused on streamlining
the IM construction, but these still rely on specification of a statistical model. Our key
observation is that, by eliminating the requirement that the user start by writing out
the data-generating process, we create an opportunity to construct valid probabilistic
uncertainty quantification without the specification of a statistical model.

After some background on IMs and generalized IMs in Section 2, we turn to the prob-
lem of inference on statistical functional defined either as the minimizer of an expected
loss or as the solution of an estimating equation (e.g., Godambe 1991; Huber 1981, 1964);
see Section 3.1 for the relevant definitions. The simple quantile example mentioned above
fits in this framework, as do many modern machine learning problems. Having made this
connection, it is relatively simple, at least in principle, to construct a generalized IM
that is exactly valid in the sense described below. The output of this generalized IM,
defined in Section 3.2, takes the form of a data-dependent consonant belief/plausibility
function or, equivalently, a necessity/possibility measure pair and, as consequence of the
validity property, confidence regions derived from this output achieve the nominal cov-
erage probability exactly, for all sample sizes. Unfortunately, this simple construction
is impractical because it depends on aspects of the problem that would be unknown in
every real-world application. To overcome this, in Section 3.3, we leverage the powerful
bootstrap machinery (e.g., Efron 1979) to construct a principled approximation to the
aforementioned generalized IM. With the introduction of bootstrap, exact validity can-
not be achieved, but we prove, in Section 3.4, that the bootstrap-based generalized IM is
approximately valid in the large-sample limit. To our knowledge, this is the first general
implementation of (asymptotically) valid, prior- and model-free probabilistic uncertainty
quantification. Illustrations are presented in Section 4, including, quantile regression,
a classical “model-free” application. We also consider, in Section 5, an application of
the proposed generalized IM approach to a relevant problem in personalized medicine,
namely, dynamic treatment regimes (e.g., Tsiatis et al. 2020). We conclude in Section 6
with a brief summary and discussion of some open problems.
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2 Background on IMs

Let Zi, for i = 1, . . . , n, denote data points taking values in a space Z, and let Zn =
(Z1, . . . , Zn) 2 Zn. Here the space Z is very general, so, for example, this covers the
case where Zi = (Xi, Yi) is a predictor and response variable pair, where Xi could be
high-dimensional. In this background section, we introduce a statistical model, which
is a collection of probability distributions, P n

! , for Zn, indexed by a parameter ! 2 ⌦.
The key point is that the parameter ! determines everything about the distribution of
Zn. Consequently, if the real quantity of interest is some feature, ✓ 2 ⇥, of the Zn

distribution, then ✓ would be expressed as a function of !, i.e., ✓ = ✓(!). For example,
if the model is Gaussian, so that ! = (µ, �) is the mean and standard deviation pair,
and if the inferential target ✓ is the 0.75-quantile, then ✓ = µ+ �z0.75, where z0.75 is the
corresponding quantile of the standard normal distribution. Regardless of what form the
mapping ! ! ✓ takes, inferences about ✓ would be obtained by applying this mapping
to inferences about !. For example, if a confidence region for ! were available, then its
image under the mapping ! ! ✓ would be a corresponding confidence region for ✓.

In this paper, inferences are based on data-dependent, probabilistic quantifications
of uncertainty—or what Martin (2019, 2021) refers to as an inferential model (IM). An
IM is a mapping that takes the observed data Zn = zn and the information encoded in
the statistical model to a sub-additive capacity (Choquet 1954) defined on a collection
of subsets of ⌦, say, the Borel �-algebra. Specifically, a capacity � is a set function
that satisfies �(?) = 0, �(⌦) = 1, and is monotone: A ✓ B implies �(A)  �(B);
sub-additivity requires that �(A [ B)  �(A) + �(B) whenever A \ B = ?. Of course,
probability measures are capacities, so the familiar frameworks like Bayesian, fiducial
(Fisher 1935), generalized fiducial (Hannig et al. 2016), structural (Fraser 1968), and
confidence distributions (Schweder and Hjort 2016; Xie and Singh 2013) are IMs in this
sense. However, capacities are more general than ordinary probabilities, so an IM’s output
could also take the form of, say, a plausibility function (Dempster 1968, 2014; Denœux
2014; Shafer 1976), a possibility measure (Dubois and Prade 1988), or something else
more complicated. For the observed data Zn = zn, relative to the posited statistical
model, denote the IM’s capacity by ⇧zn . Define its dual/conjugate as

⇧zn(B) = 1� ⇧zn(B
c), B ✓ ⌦,

and note that sub-additivity implies ⇧zn(B)  ⇧zn(B). For this reason, the IM’s output
can be referred to as a pair (⇧zn ,⇧zn) of lower and upper probabilities. If the IM output
is additive, not just sub-additive, then ⇧zn and ⇧zn are equal and we are back to the more
familiar Bayesian or fiducial case. The motivation for non-additivity will be explained
below. Observe that, through the mapping ! ! ✓, assertions about ✓ correspond to
assertions about !, so we can quantify uncertainty about ✓ via marginalization, e.g.,

⇧zn({! : ✓(!) 2 A}), A ✓ ⇥.

This formalizes our above description of how inferences about ! are mapped to ✓.
The interpretation of the IM output is as follows. The sets B ✓ ⌦ are assertions or

hypotheses about ! and ⇧zn(B) and ⇧zn(B) are lower and upper probabilities for the
claim “! 2 B” based on the given data Zn = zn and the posited statistical model. If
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⇧zn(B) were large, then the data zn strongly supports the claim; alternatively, if ⇧zn(B)
is small, then the data zn strongly contradicts the claim. For situations in between, in
which ⇧zn(B) and ⇧zn(B) are relatively small and large, respectively, the data is not
su�ciently informative to support or contradict the claim. In such situations, the data
analyst ought to consider a “don’t know” conclusion (e.g., Dempster 2008) and either
collect more informative data or shift focus to a less complex assertion.

The quality of an IM is determined by the reliability of inferences drawn from it, so
we are concerned with the statistical properties of the IM’s output, i.e., on the properties
of ⇧Zn as a function of data Zn ⇠ P n

! . We focus here on the upper probability just for
brevity; all of what follows could also be described in terms of the lower probability, and
we show both in our presentation of the new developments in Section 3. The basic idea
is as follows. Based on the interpretation of the IM output described above, erroneous
inference could be made if, for example, to an assertion B that happened to be true,
the IM assigned small ⇧Zn(B). An IM would be unreliable if such erroneous inferences
were not controllably rare, so the validity property is designed specifically to provide the
control necessary to make its inferences reliable. This is completely in line with Fisher’s
logic behind his tests of significance (Fisher 1973, p. 42). More formally, an IM with
output ⇧Zn is said to be valid if

sup
!2B

P n
! {⇧Zn(B)  ↵}  ↵, for all ↵ 2 [0, 1] and all B ✓ ⌦. (1)

In the above expression, the true ! is contained in B, so B is a “true” assertion. Then
the event {⇧Zn(B)  ↵} is potentially problematic, especially when ↵ is small, as it
corresponds to a case where the inferences drawn could be wrong. However, the right-
most inequality in (1) ensures that this potentially problematic event has an explicit and
relatively small probability under the posited model. This calibration makes it possible
for the IM to avoid the “unacceptable” and “systematically misleading conclusions” that
Reid and Cox (2015) warn us about. The validity condition (1) can also be compared to
the (slightly weaker) fundamental frequentist principle in Walley (2002). Of course, the
validity property as stated above is relative to the posited statistical model and, therefore,
if that model happens to be wrong in some sense, then property (1) is meaningless; it is
precisely for this reason that we look to extend the IM construction and corresponding
validity property beyond those idealized cases where there is a statistical model and it is
assumed to be correctly specified.

There are a number of desirable consequences of the validity property. First, since
(1) includes the “for all B ✓ ⌦” clause, the validity property carries over immediately
to marginal inferences on the quantity of interest ✓. Second, one can readily derive
statistical procedures—hypothesis tests and confidence regions—from the IM’s output,
and the validity property guarantees that these will control the frequentist error rates of
those procedures. More details about this will be presented in Section 3.

This brings us to the motivation for considering non-additive IMs. It turns out that
IMs whose output is additive cannot be valid. This is the so-called false confidence theorem
of Balch et al. (2019); see, also, Martin (2019, 2022). Demonstrations of the challenges
with additive IMs, especially for marginal inference about a function ✓ = ✓(!) of the full
model parameter !, can be found in Fraser (2011), Martin (2021), Cunen et al. (2020),
and Martin et al. (2021), so we will not reproduce the details here. The point is, in order
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to ensure validity and to enjoy its desirable consequences, it is necessary to consider
genuinely non-additive IMs.

This begs the question: how to construct a valid IM? The first constructions were
presented in Martin and Liu (2013, 2015), and Martin (2019) gives a detailed overview.
The original formulation started by expressing the statistical model in terms of a func-
tional relationship, Zn = a(!, Un), between data Zn, unknown parameter !, and an
unobservable auxiliary variable, say, Un. This is e↵ectively the same starting point as
fiducial, but Martin and Liu’s approach di↵ers in how this auxiliary variable is handled.
At the observed value zn of Zn, the expression becomes zn = a(!, un), where un is the
unobserved value of Un, so the question turns to how we can quantify uncertainty about
the fixed, unobserved value un. On the one hand, a fiducial approach quantifies uncer-
tainty about un using the a priori distribution of Un, which leads to a zn-dependent
probability distribution for ! that does not satisfied the validity property in (1). On the
other hand, Martin and Liu argue that the epistemological status of a fixed, unobserved
value of a random variable is very di↵erent from a random variable and, therefore, uncer-
tainty about un should be quantified with something di↵erent/more conservative than a
probability distribution. Their original proposal used random sets (e.g., Molchanov 2005;
Nguyen 2006) to quantify uncertainty about un but, more recently, it was recognized that
quantifying uncertainty using possibility measures was a more direct route to a valid IM
(Liu and Martin 2021). Moreover, the latter construction ensures that the IM’s output is
also a possibility measure, and Martin (2021) argued that valid IMs of this form are the
most e�cient. Therefore, we will focus here on the case where the IM output takes the
form of a possibility measure. To avoid repetition, we save the details of this construction
for Section 3—the novelty in the main results section of this paper is in dealing with the
statistical model-free context, not the basic steps of the IM construction.

3 Direct model-free probabilistic inference

3.1 Setup

The discussion in the previous section focused on the case where a statistical model
was specified, i.e., that the data Zn = (Z1, . . . , Zn) had a distribution P n

! indexed by a
parameter ! 2 ⌦. Suppose, however, that the model parameter, !, is not directly of
interest. Instead, the goal is inference on some feature ✓ of the underlying distribution.
Under the posited model, ✓ = ✓(!) is a function of !, and marginal inference can be
carried out more or less as usual. The main obstacle is that forcing ✓ to be a function of
the model parameter, !, is potentially restrictive, since the model could be misspecified.
As a somewhat extreme example, suppose the quantity of interest, ✓, is the variance of
the distribution of Z1. If we model this with a Poisson distribution having rate parameter
! > 0, then the usual estimator of ✓ would be the sample mean, which would be a poor
estimate of the variance if the distribution is not Poisson.

To avoid the risk of model misspecification bias, we opt to proceed without specifying
a model. That is, we assume Zn = (Z1, . . . , Zn) consists of independent and identically
distributed (iid) components with Zi ⇠ P ; the joint distribution of Zn is denoted by
P n. Note that P is free to be any distribution, no constraints due to dependence on a
parameter !. In this more general case, the quantity of interest ✓ = ✓(P ) is a functional
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of the underlying distribution. And since there is no restriction on P , there is similarly
no restriction on ✓, hence no risk of model misspecification bias.

So far, we have said very little about what specifically the quantity of interest, ✓, is.
This will be important in what follows so, to end this problem-setup section, we give
some further details about the origins of ✓.

• Start with a loss function `#(z) that takes pairs (#, z) 2 ⇥ ⇥ Z to real numbers.
This loss function is a measure of the compatibility of a data point z with a generic
value #, with large values of `#(z) indicating less compatibility. Then the inferential
target is defined as the minimizer of the expected loss, i.e.,

✓ = argmin
#2⇥

R(#), where R(#) =

Z
`#(z)P (dz).

To estimate ✓ based on data zn from P , one defines an empirical version of the risk
and take ✓̂zn to be the corresponding minimizer, i.e.,

✓̂zn = argmin
#2⇥

Rzn(#), where Rzn(#) =
1

n

nX

i=1

`#(zi).

This framework is called M-estimation.

• Alternatively, start with a (vector-valued) function  #(z) and define the inferential
target as the root of the expectation, i.e., ✓ is a solution to the (vector) equation

 (#) = 0, where  (#) =

Z
 #(z)P (dz).

As above, to estimate ✓ based on data zn from P , define a corresponding empirical
version of the expectation and take ✓̂zn to be a solution to the equation

 zn(#) = 0, where  zn(#) =
1

n

nX

i=1

 #(zi).

The above equation is sometimes referred to as an estimating equation, and this gen-
eral framework is called Z-estimation. Some authors, including Boos and Stefanski
(2013, Chap. 7), do not distinguish between M- and Z-estimation.

The familiar maximum likelihood framework is a special case of M- and sometimes
Z-estimation. Suppose the statistical model P✓ is indexed by ✓, and that p✓ is the density
function. Then `#(z) = � log p#(z) would be a loss function and the corresponding M-
estimator is the maximum likelihood estimator. Similarly, if interchange of derivatives
and integrals is allowed, then  #(z) = � @

@# log p#(z) can be used to express the maximum
likelihood estimator as a Z-estimator. But there are many other M- and Z-estimators in
the literature, this is just one very familiar case.

In the following two subsections, we describe this paper’s proposal to provide (approx-
imately) valid and distribution-free probabilistic inference through a so-called generalized
IM. We present this in two steps, starting in Section 3.2 with the main idea in order to
develop intuition. The real proposal and its justification comes in Section 3.3.
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3.2 Generalized IM: basic idea

As discussed in Section 2 above, based on the original formulation at least, to construct
a valid IM for ✓ we would require a functional relationship, à la Dawid and Stone (1982),
that describes how to simulate data Zn in terms of ✓. In our present context, however,
this is not possible because ✓ is not a “model parameter” that determines the distribution
of Zn, so a di↵erent approach is needed. Fortunately, the generalized IM construction
developed in Martin (2015, 2018), which was designed to address an altogether di↵erent
challenge, can be modified to suit our present needs.

First, we will need a function that will rank generic values # of ✓ in terms of how well
they align with the data Zn = zn. Denote this measure by Tzn(#). Throughout we will
assume that # having smaller values of Tzn(#) are higher ranked in terms of how well
they align with the data zn. Naturally, the definition of the T function would take into
consideration how the functional, ✓, is defined. For example, if there was a statistical
model, P n

✓ , indexed by ✓, then a natural choice of T would be

Tzn(#) = � log
�
pn#(z

n) / pn
✓̂
(zn)

 
,

where pn# is the model’s density function and ✓̂ is the maximum likelihood estimator. A
similar thing could be done using profile likelihoods if ✓ were a function ✓ = ✓(!) of the
model parameter !. Our focus here, however, is on the situation in which there is no
statistical model, and the functional ✓ is defined as described at the end of the previous
subsection. For the case where ✓ is a risk minimizer, a natural choice of T is

Tzn(#) = Rzn(#)�Rzn(✓̂zn), # 2 ⇥.

Similarly, for cases where ✓ is a solution to an estimating equation, a natural choice is

Tzn(#) = n zn(#)
> Szn(#)

�1 zn(#), # 2 ⇥,

where Szn(#) = n�1
Pn

i=1  #(Zi) #(Zi)> is the empirical estimate of the covariance ma-
trix of the random vector  Zn(#). The intuition behind both of these choices is that,
under certain regularity conditions, the distribution of TZn(✓)—as a function of Zn ⇠ P n

with ✓ = ✓(P )—would, at least approximately, be free of any unknowns. This is not
unlike what Wilks’s theorem provides in the classical setting of likelihood ratio tests.
Our proposal here does not rely on these asymptotic properties and, hence, does not
require regularity conditions; see Lemma 1. However, the approximate validity result in
Theorem 1 does require certain regularity, which we discuss below.

Then the basic idea behind the original generalized IM construction was to forget
about establishing a functional relationship between the full data, the quantity of interest,
and an unobservable auxiliary variable. Instead, just create a link between an appropriate
summary, TZn(✓), and an unobservable auxiliary variable, say, U . For problems involving
a statistical model, this can be done with T the log relative likelihood summary above
(Cahoon and Martin 2020, 2021); for prediction problems, this can be done with T
depending on the non-conformity score used in conformal prediction (Cella and Martin
2021b, 2022). Here we propose the following association

TZn(✓) = G�1(U), U ⇠ Q = Unif(0, 1), (2)
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where Zn ⇠ P n, ✓ = ✓(P ), and G = GP is the distribution function of TZn(✓), which
depends on P ; also, “Q = Unif(0, 1)” means that Q is the probability measure corre-
sponding to the uniform distribution on [0, 1]. Throughout, we will assume that T is
such that TZn(✓) has an absolutely continuous distribution, so that G is strictly increas-
ing and the inverse is well-defined. Next, if we set Zn equal to the observed zn, then the
above equation becomes

Tzn(✓) = G�1(u?), (3)

where u? is a fixed value, unknown to us because P and, hence, ✓ and G are unknown.
To quantify uncertainty about the unobserved u?, we introduce a possibility measure ⇧
defined on [0, 1]. What is unique about a possibility measure is that the upper probabili-
ties are determined by an ordinary point function, ⇡ : [0, 1] ! [0, 1], where the maximum
value 1 is attained, according to the formula

⇧(K) = sup
u2K

⇡(u), for all K ✓ [0, 1].

The function ⇡ is called the possibility contour. To achieve validity, we cannot choose
just any possibility measure—it must be consistent with Q = Unif(0, 1) in the sense that

Q(K)  ⇧(K), for all measurable K ✓ [0, 1], (4)

as described in, e.g., Definition 9 of Hose and Hanss (2021). This choice ensures that Q
is in the credal set corresponding to ⇧. This properties di↵ers from stochastic dominance
(e.g., Denœux 2009) because the inequality holds for all events K, not just one-sided
intervals. Since Q is one of the simplest probabilities distributions, (4) is relatively easy
to arrange. There are several di↵erent ways this can be done, but here we insist on
defining ⇧ based on the contour

⇡(u) = 1� u, u 2 [0, 1].

That this yields a possibility measure compatible with Q = Unif(0, 1) is easy to see:

⇧(K) = sup
u2K

(1� u) = 1� infK �
Z

K

du = Q(K).

The rationale behind this choice of ⇡ is that, since “good” values of # are those that make
Tzn(#) small, and small values of Tzn(#) correspond to small values of u, we want ⇡(u)
to be large for small u values. It turns out that ⇡(u) = 1 � u as above determines the
maximally specific (e.g., Dubois and Prade 1986) possibility measure ⇧ that is consistent
with Q = Unif(0, 1) in the sense above.

Following the fiducial-style logic, which is often referred to as the extension principle
in this non-additive probabilistic framework (e.g., Zadeh 1975), if the possibility measure
⇧ with contour ⇡ is a quantification of uncertainty about u?, then we push this through
(3) to get the data-dependent possibility measure ⇧zn on ⇥ with contour

⇡zn(#) = ⇡
�
G(Tzn(#))

�
= 1�G(Tzn(#)), ✓ 2 ⇥.

That is, a generalized IM for ✓ under this new distribution-free framework assigns upper
probabilities to assertions A according to the formula

⇧zn(A) = sup
#2A

�
1�G(Tzn(#))

 
, A ✓ ⇥. (5)
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The corresponding lower probability is defined by conjugacy, i.e., ⇧zn(A) = 1�⇧zn(Ac).
In certain applications (e.g., Section 5), there may be select features of the inferential

target ✓ that are also of interest. These can be represented as � = �(✓), where the
notation � is used to represent both the unknown feature and the function mapping the
original inferential target to that feature. In such cases, the extension principle can be
applied again to construct a marginal IM for � from that for ✓. That is, define the
possibility contour

⇡�
zn(') = sup

#:�(#)='
⇡zn(#), ' 2 �(⇥).

Then lower and upper probabilities for � can be obtained as we did before for ✓:

⇧
�
zn(C) = sup

'2C
⇡�
zn(') and ⇧�

zn(C) = 1� ⇧�
zn(C

c), C ✓ �(⇥).

Validity of the above-defined generalized IM, in the sense below, is a consequence
of the consistency between Q = Unif(0, 1) and the possibility measure ⇧. But it is
straightforward to check this property directly, as we do next.

Lemma 1. The generalized IM above, with output determined by the possibility measure
⇧Zn defined in (5) is valid in the sense that, for all ↵ 2 [0, 1] and all A ✓ ⇥, the two
equivalent conditions hold:

sup
P :✓(P )2A

P n
�
⇧Zn(A)  ↵

 
 ↵ and sup

P :✓(P ) 62A
P n{⇧Zn(A) > 1� ↵}  ↵.

In particular, ⇡Zn(✓(P )) ⇠ Unif(0, 1) as a function of Zn ⇠ P n.

Proof. We give the proof for the claim in terms of the upper probability; the lower
probability claim follows from this and conjugacy. Fix P and let ✓ = ✓(P ). For any A
that contains ✓, monotonicity implies that

⇧Zn(A) � ⇧Zn({✓}),

and, for the possibility measure version above, the right-hand side is simply ⇡Zn(✓), i.e.,
the possibility contour evaluated at ✓. But since ⇡Zn(✓) = 1 � G(TZn(✓)) and G is the
distribution function of TZn(✓), it follows immediately that ⇡Zn(✓) ⇠ Unif(0, 1), as a
function of Zn ⇠ P n. Therefore,

P n{⇧Zn(A)  ↵}  P n{⇡Zn(✓)  ↵} = ↵,

and, since this holds for all A and for all P such that ✓(P ) 2 A, the claim follows.

We discussed above, in Section 2, the practical interpretation of the validity prop-
erty. There is another interpretation that readers familiar with the imprecise probability
literature might be more comfortable with. If one interprets the IM output as a credal
set of probability distributions consistent with ⇧zn in the sense of (4), then the upper
probability version of the validity property states that the event “all the probabilities in
the credal set assign mass  ↵ to the true assertion A” is controllably rare. This inter-
pretation also helps to explain why, despite the use of possibility measures, etc., we can
still claim that IMs o↵er “probabilistic” uncertainty quantification.
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The following corollary gives an important consequence of the generalized IM’s validity
property. That is, denote the ↵ level sets of the possibility contour as

P↵(z
n) = {# 2 ⇥ : ⇡zn(#) > ↵}, ↵ 2 [0, 1]. (6)

We refer to these as 100(1 � ↵)% plausibility regions for ✓, i.e., these are collections of
“su�ciently plausible” values of ✓ based on data zn. Validity implies that these are also
nominal confidence regions.

Corollary 1. The generalized IM’s plausibility regions in (6) are nominal confidence
regions in the sense that

sup
P

P n
�
P↵(Z

n) 63 ✓(P )
 
 ↵, ↵ 2 [0, 1].

Proof. Fix P and let ✓ = ✓(P ). Then it is easy to see that P↵(Zn) 63 ✓ if and only if
⇡Zn(✓)  ↵. Then the claim follows immediately from Lemma 1.

Remark. For an IM whose output is a possibility measure, a stronger notion of validity
can be established. Indeed, virtually the same proof as that above shows

sup
P

P n{⇧Zn(A)  ↵ for some A 3 ✓(P )}  ↵, ↵ 2 [0, 1]. (7)

To be clear, “for some A 3 ✓(P )” corresponds to a union2 over all such A. Therefore,
the event above is much larger event than that for a fixed A that contains ✓(P ). So
the ↵ upper bound on the probability of a larger event makes for a stronger validity
conclusion. In practice, this stronger notion of validity ensures that erroneous conclusions
are controllably rare not just in ideal cases where assertions A are specified in advance, but
also in the more challenging scenarios where data are used to determine which assertions
are to be evaluated. This extension is possible due to the uniformity in (7) being inside the
event, which means that it is a rare event that the data analyst can even find a (possibly
data-dependent) true assertion to which the IM would assign small upper probability.
Since assigning small upper probability to a true assertion corresponds to a case where
inference might be erroneous, the uniformity baked in to (7) provides the data analyst
some additional comfort and security.

While the formulation just described is simple and achieves the desirable validity
property exactly, there is one major problem: its implementation requires knowledge of
the distribution function G. Even if a parametric model for P was known to be true, it
would be completely unrealistic to expect the distribution of TZn(✓) to be known, so this
would never be the case in our present situation where no statistical model is assumed.
Next, we put forth a practical version of the generalized IM approach described above.

2
In general, this is an uncountable union, so its measurability would not be automatic. But it can be

readily seen from the argument in the proof of Lemma 1 that the uncountable union equals “⇡Zn(✓)  ↵,”
so there is in fact no measurability issue.
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3.3 Generalized IM: practical construction

The above formulation is deceptively simple. The obstacle hidden in that presentation is
the fact that the distribution function G—based on the distribution of the complicated
function TZn(✓), for Zn ⇠ P n, with ✓ = ✓(P )—is unavailable. Fortunately, we can
overcome this obstacle by making use the powerful bootstrap procedure developed in the
seminal work by Efron (1979). The basic idea behind the bootstrap is that iid samples
from the empirical distribution of the observed data zn should closely resemble iid samples
from P . Our proposal, therefore, is to approximate the unknown distribution G using
this bootstrap strategy. The details of this boostrap-based generalized IM proposal, and
its (approximate) validity, are presented in this and the following subsections.

The bootstrap requires an extra level of randomization and proceeds as follows. Our
presentation below, which is based on that in Kosorok (2008), may look a bit di↵erent
from the “sample with replacement from the observed data” common in the literature,
but rest assured that it is the same. Let ⇠ = (⇠1, . . . , ⇠n) denote a random n-vector,
independent of the data Zn, with a multinomial distribution, Pboot = Multn(n�11n).
Then we define a corresponding bootstrap version of the quantity TZn(✓), the form of
which depends on whether it is based on minimizing a risk or solving an estimating
equation. Start with bootstrap versions of the driving functions Rzn and  zn :

R⇠
zn(#) =

1

n

nX

i=1

⇠i `#(zi) and  ⇠
zn(#) =

1

n

nX

i=1

⇠i  #(zi).

The corresponding minimizer/root will be denoted by ✓̂⇠zn . The intuition is that the n-
vector ⇠ represents the number of occurrences of each original observation in the bootstrap
replicate. The above expressions depend on the random vector ⇠ and their distribution
as a function of ⇠ will be relevant to us here. This distribution will be approximated in
a Monte Carlo way by sampling many copies of ⇠ from its (multinomial) distribution.

Then the corresponding bootstrap version of Tzn(✓), in the M- and Z-estimation case,
respectively, is given by

T ⇠
zn(✓̂zn) = R⇠

zn(✓̂zn)�R⇠
zn(✓̂

⇠
zn)

T ⇠
zn(✓̂zn) = n ⇠

zn(✓̂zn)
> S⇠

zn(✓̂zn)
�1 ⇠

zn(✓̂zn),
(8)

where the matrix squeezed in the middle is S⇠
zn(#) = n�1

Pn
i=1 ⇠i  #(Zi) #(Zi)>. Note

the parallels between the random variables TZn(✓) as a function of Zn ⇠ P n with ✓ = ✓(P )
fixed and T ⇠

zn(✓̂zn) as a function of ⇠ with zn fixed. That is, in the M-estimation case,
say, ✓ minimizes the expected loss with respect to P whereas ✓̂zn minimizes the expected
loss with respect to ⇠ ⇠ Pboot. If we denote by Gboot the distribution function of T ⇠

zn(✓̂zn)
as a function of ⇠ ⇠ Pboot for fixed zn, then the same argument presented in the previous
subsection can be used to justify the following formula for a possibility contour:

⇡boot
zn (#) = 1�Gboot(Tzn(#))

= Pboot{T ⇠
zn(✓̂zn) > Tzn(#)}, # 2 ⇥. (9)

And since our goal is probabilistic inference about ✓, the theory developed in the previous
subsection suggests a generalized IM whose output is a possibility measure:

⇧
boot
zn (A) = sup

#2A
⇡boot
zn (#), A ✓ ⇥. (10)
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Algorithm 1: Direct, model-free generalized IM

initialize: data zn, definition of Tzn(·) in (8), and a grid of # values;
for b in 1, . . . , B do

sample ⇠b ⇠ Pboot;

evaluate T ⇠b
zn(✓̂zn) according to (8);

for each # value on the grid do

evaluate ⇡̂boot
zn (#) as in (11);

end

end

return ⇡̂boot
zn (#) for each # on the grid and/or ⇧

boot
zn (A) ⇡ max#2A\grid ⇡̂boot

zn (#).

As before, the lower probability ⇧boot
zn is defined by conjugacy.

This version of the possibility contour still is not practical, since evaluating probabil-
ities with respect to Pboot requires a sum over all nn possible values of ⇠. For a practical
alternative, we suggest a Monte Carlo approximation based on taking samples of ⇠ from
Pboot. That is, for a user-specified bootstrap sample size B, define

⇡̂boot
zn (#) =

1

B

BX

b=1

1{T ⇠b
zn(✓̂zn) > Tzn(#)}, ⇠b ⇠ Pboot, b = 1, . . . , B. (11)

For low-dimensional ✓, this function can be plotted to visualize our uncertainty quantifi-
cation based on data Zn; see Figures 1(a), 2(b), 3(a) and 5(a). Moreover, the possibility

measure ⇧
boot
zn (A) can be approximated by replacing the supremum with a maximum over

a user-specified grid of # values. These details are summarized in Algorithm 1.
If marginalization to some feature � = �(✓) of the inferential target were desired, then

this can be carried out exactly as described above. Just apply the extension principle to
the possibility measure defined by the contour ⇡̂boot

zn to get a marginal IM for �. All the
properties enjoyed by the IM for ✓, especially the validity property in Theorem 1, apply
equally to this marginal IM for �. In particular, marginal plausibility regions for � would
achieve the nominal frequentist coverage probability asymptotically.

Note that the proposed generalized IM requires very little input from the user: only
the data and a specification of how the inferential target is defined, which e↵ectively
identifies T . With just this essential information about the problem at hand, in particular,
no statistical model specification required, the proposed method produces a full, data-
dependent, probabilistic quantification of uncertainty about ✓, which can be used to make
(approximately) valid inference; see Section 3.4. In Section 4, we illustrate our proposed
method with several practically relevant examples.

3.4 Asymptotic validity

Here we present the (asymptotically approximate) validity property enjoyed by the pro-
posed bootstrap-based generalized IM. Recall that, if the distribution function G were
known, as in Section 3.2, then validity followed almost immediately, as shown in Lemma 1.
So, if the bootstrap version, Gboot, is an accurate approximation of G, then a suitable
approximate validity property for the more practical bootstrap-based generalized IM will
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follow. More formally, we say that the bootstrap approximation described above of the
distribution of TZn(✓), under Zn ⇠ P n with ✓ = ✓(P ), is consistent if

sup
t

��G(n)(t)�G(n)
boot(t)

�� ! 0 in P n-probability as n ! 1, (12)

where, to highlight their dependence on the sample size, G(n) denotes the exact distribu-
tion function for TZn(✓) and G(n)

boot is its bootstrap version. While the intuition behind
bootstrap consistency is clear—when n is large, iid sampling from the empirical distri-
bution of Zn should be roughly the same as iid sampling from P—the precise technical
details are complicated and non-trivial. Fortunately, there is a substantial body of lit-
erature on bootstrap consistency, starting with Bickel and Freedman (1981) and Singh
(1981) and, since then, Wellner and Zhang (1996), Chatterjee and Bose (2005), and
Cheng and Huang (2010) who deal with the general M- and Z-estimation cases; see, also,
Hall (1992), Shao and Tu (1995), van der Vaart and Wellner (1996), and Kosorok (2008)
for textbook-style introductions to the bootstrap consistency theory. The general rule of
thumb is that, if the M- or Z-estimator itself is asymptotically normal, i.e., if n1/2(✓̂Zn�✓)
converges in distribution to a Gaussian limit, which is true in a wide range of applications,
then the bootstrap would be consistent in the sense of (12).

The following theorem makes more precise our above claim that bootstrap consistency
is enough to establish approximate validity of our proposed generalized IM.

Theorem 1. Suppose that the inference problem is such that the bootstrap version of the
distribution of TZn(✓), as a function of Zn ⇠ P n, with target ✓ = ✓(P ), is consistent
in the sense of (12). Then the bootstrap-based generalized IM for ✓, whose output is

determined by the possibility measure ⇧
boot
Zn defined in (10), is approximately valid in the

sense that, for all ↵ 2 [0, 1], all A ✓ ⇥, the following two equivalent properties hold:

lim sup
n!1

P n{⇧boot
Zn (A)  ↵}  ↵, for all P with ✓(P ) 2 A

lim sup
n!1

P n{⇧boot
Zn (A) > 1� ↵}  ↵, for all P with ✓(P ) 62 A.

In particular, ⇡boot
Zn (✓(P )) ! Unif(0, 1) in distribution, as n ! 1, under Zn ⇠ P n.

Proof. Since

⇡Zn(✓) = 1�G(n)(TZn(✓)) and ⇡boot
Zn (✓) = 1�G(n)

boot(TZn(✓)),

we immediately get
⇡boot
Zn (✓) = ⇡Zn(✓) +�n, (13)

where
|�n| =

��G(n)(TZn(✓))�G(n)
boot(TZn(✓))

��  sup
t

��G(n)(t)�G(n)
boot(t)

��.

It follows from (12) that �n = oP (1). Since ⇡Zn(✓) ⇠ Unif(0, 1) for all n, from (13) and
Slutsky’s theorem we get that ⇡boot

Zn (✓(P )) ! Unif(0, 1) in distribution as n ! 1. The
other two properties in the theorem statement are a consequence of this.
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An immediate and relevant consequence of Theorem 1 is that the bootstrap-based
generalized IM’s plausibility region

P↵(z
n) = {# : ⇡̂boot

zn (#) > ↵}, ↵ 2 [0, 1], (14)

is also an approximate confidence region in the sense that its coverage probability is
converging to the nominal level 1�↵ as n ! 1. Similarly, for any A ⇢ ⇥, an asymptotic
size-↵ test of a hypothesis “✓(P ) 2 A” rejects the hypothesis if and only if ⇧zn(A)  ↵.
These claims also apply to the summaries—plausibility regions and tests—of the marginal
IMs for features � = �(✓) derived from the IM for ✓.

The theorem above is quite general, but it is not universal, i.e., there are cases when
the bootstrap fails to be consistent. These instances of bootstrap failure are associated
with certain non-regularities, so our assumption (12) implicitly imposes regularity con-
ditions on the M- or Z-estimation problem. See Section 6 for more discussion about
non-regular cases. There we also address the natural question about the accuracy of the
approximate validity claims in Theorem 1.

4 Examples

The goal of the present section is to illustrate the generalized IM construction above
in various practically relevant examples involving quantiles. Each of the examples fol-
lows, roughly, the same structure. We start by providing the appropriate loss function
or (vector-valued) estimating equation that links the observed data to the desired quan-
tile. We then explore the IM’s basic output, the possibility contour, obtained through
Algorithm 1, in several ways. In particular,

• we plot it to visualize the plausibility of di↵erent values of the quantile of interest
based on a single data set;

• we derive confidence regions for that quantile from it through (14);

• we carry out simulation studies to confirm the IM’s approximate validity, checking
its behavior for a range of sample sizes.

4.1 Quantiles

The most intuitive example of a quantity of interest that is not most naturally defined
as a model parameter is the ⌧ -th quantile, the exact point ✓ = ✓⌧ such that F (✓) = ⌧ ,
for ⌧ 2 (0, 1), where F is the distribution function of a random variable Z. Every
distribution has quantiles, but very rarely are they model parameters. Of course, one
can make model-based inference on a quantile by specifying a parametric model P!, for
! 2 ⌦, and defining ✓ = ✓(!) as the corresponding quantile, but, as argued above, this
creates a risk of bias due to model misspecification and/or model selection. Our approach
here is model-free, so these risks/challenges are avoided.

Suppose Z has a generic distribution P . Then it is well-known that a general ⌧ th

quantile of P can be defined as the minimizer of the risk function R(#) =
R
`#(z)P (dz),

where the loss function is given by

`#(z) =
1
2

�
(|z � ✓|� z) + (1� 2⌧)✓

 
.
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⌧ GIM Conservative Bootstrap
0.25 0.95 (1.12) 0.96 (1.23) 0.96 (1.20)
0.50 0.95 (0.62) 0.98 (0.69) 0.96 (0.64)
0.75 0.93 (1.12) 0.96 (1.25) 0.94 (1.15)

Table 1: Estimated coverage probabilities and mean length of 95% confidence intervals for
the quartiles based on the three following methods: generalized IM (GIM) with B = 500;
the conservative method based on the binomial distribution; the standard bootstrap
method with B = 500. The sample size is n = 100, with data coming from a Cauchy
distribution with location and scale parameters 2 and 1, respectively.

In the special case ⌧ = 0.5, corresponding to the median, this can be reduced to

`#(z) = |z � #|.

Consistency of the bootstrap, in the sense of (12), is established in this quantile inference
problem by both Bickel and Freedman (1981) and Singh (1981).

As an illustration, suppose that P is a Gamma(4, 1). Interest here is in the median
✓ = ✓0.5 which, in this case, is roughly equal to 3.67. Figure 1(a) shows the plausibility
contour in (11) with B = 500 and the loss function above for a single data set zn with
n = 100. The peak is at the M-estimator, i.e., the sample median, which is close to
the true median, and the horizontal line determines the corresponding 95% plausibility
interval, derived by (14). In order to check that approximate validity is attained, a
simulation study was conducted where the above scenario is repeated 1000 times and, for
each data set, ⇡̂boot

zn (✓) is evaluated at ✓ = 3.67. Figure 1(b) shows that the distribution
of ⇡̂boot

Zn (✓) is close to Unif(0, 1), so approximate validity is verified. The same simulation
is repeated for ⌧ = 0.25 and 0.75, showing that the approximate validity conclusion is
not specific to the median. Finally, Figures 1(c) and (d) show that smaller sample sizes
do not a↵ect the good conclusions observed in Figure 1(b) too much.

There are a number of di↵erent strategies available for constructing confidence inter-
vals for population quantiles. For further illustration, we compare our method to two
of them: an exact-but-conservative solution based on the binomial distribution and a
basic bootstrap procedure, which resamples the data with replacement, computes the
desired quantile and then reports, for a (1� ↵)% confidence interval, the ↵

2 and (1� ↵
2 )

quantiles of this bootstrapped distribution. For our simulation, we consider P to be a
Cauchy distribution with location and scale parameters equal to 2 and 1, respectively.
We generated 1000 data sets of size n = 100 and, from each, 95% confidence intervals
for ✓⌧ , with ⌧ 2 {0.25, 0.50, 0.75}, based on the three methods are extracted. Table 1
reports the estimated coverage probabilities and mean length of these intervals. Note
that approximately validity of the generalized IM solution is confirmed. Moreover, it is
slightly more e�cient than both the conservative and basic bootstrap methods.

4.2 Multivariate median

In univariate analysis, it is well known that the median is a more robust measure of the
distribution’s center than the mean. This is also the case in multivariate analysis. How-
ever, replacing the multivariate mean by a multivariate median is not so straightforward.
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(a) Plausibility contour in (11)
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(b) Distribution function of ⇡̂boot
Zn (✓), n = 50
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(c) Distribution function of ⇡̂boot
Zn (✓), n = 75
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(d) Distribution function of ⇡̂boot
Zn (✓), n = 100

Figure 1: Details from the quantile example in Section 4.1. The results in Panel (b), (c)
and (d) are based on 1000 data replications, and shown for ⌧ 2 {0.25, 0.5, 0.75}.

Indeed, since multivariate data do not have a natural ordering, there are various di↵erent
ways of defining an order, each leading to a definition of the multivariate median or, more
generally, multivariate quantiles (Becker et al. 2014).

The most common version of a multivariate median is the spatial median. This can
be defined similar to the univariate median described above, as the minimizer of a risk
function R(#) =

R
`#(z)P (dz) where the loss is given by

`#(z) = kz � #k2 � kzk2, z,# 2 Rq, q � 1,

where k·k2 is the usual `2-norm for vectors in Rq. Alternatively, the spatial median can be
defined as a Z-estimator, i.e., it satisfies the system of equations  (#) =

R
 #(z)P (dz) =

0 where  #(z) is a q-vector with components

 #(z)j =
zj � #j

kz � #k2
, j = 1, . . . , q.
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Figure 2: Results for the illustration in Section 4.2. Panel (c): classical 95% confidence
ellipse based on asymptotic normality (red) and the 95% plausibility region (blue).

Consistency of the bootstrap for the multivariate median was established recently as part
of Theorem 1 in Bhattacharya and Ghosal (2022).

For a quick illustration, Figure 2(a) shows the data zi 2 R2 for i = 1, . . . , n = 200,
which are samples from bivariate normal with mean ✓ = (1, 1)>, unit variances, and
correlation 0.7. In Figure 2(b), the plausibility contour in (11) is shown, based on the  #

function defined above, with T the quadratic form in (8), and B = 500. The shaded area
in Figure 2(c) represents the 95% plausibility region for ✓ derived by (14) and, in black,
the classic 95% confidence ellipse based on the asymptotic normality. Note how the IM
solution is more e�cient. Figure 2(d) shows the resulting empirical distribution of the
simulation study where the above scenario is repeated 1000 times and, for each data set,
⇡̂boot
Zn (✓) is evaluated. Approximate validity is once again verified. This is also true when

a smaller sample of size n = 50 is considered.
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4.3 Quantile regression

Let Y be a response variable coupled with a covariate X 2 Rp. The goal of quantile
regression is to estimate the quantile for the conditional distribution of Y , given X. Fix
a probability ⌧ 2 (0, 1) and let Qx(⌧) denote the ⌧ th conditional quantile of Y , given
X = x. Then the quantile regression model says

Qx(⌧) = x>✓,

where ✓ = ✓⌧ 2 Rp is the vector of regression coe�cients of interest. This “model”
describes the functional form of the quantile function, but does not determine the distri-
bution of Y , given X = x. Towards making inference on ✓, Koenker and Bassett (1978)
show that ✓ is a risk-minimizer with respect to the loss function

`#(x, y) = |y � x>#|� (2⌧ � 1)x>#.

Properties of the quantile regression M-estimator, e.g., its asymptotic normality, are
investigated in Koenker (2005) and, in particular, bootstrap consistency is established in
Hahn (1995). Here we present an illustration of the proposed generalized IM solution to
the quantile regression problem.

Let Xi
iid⇠ Unif(0, 4), i = 1, . . . , n, with n = 200, and let Yi = µ(Xi) + "(Xi), where

µ(x) = 4+0.1x, and "(x) ⇠ N
�
0, (0.1+0.1x)2

�
. Suppose the interest is ✓ = ✓⌧ for ⌧ = 0.75.

Figure 3(b) displays the data, the estimated quantile regression line corresponding to the
Z-estimator ✓̂zn . Plausibility contours are obtained for ✓ based on the loss function above
and B = 500, and the plot shows the marginal plausibility contours for µ at selected values
of x. The corresponding 95% marginal plausibility band for µ is shown in Figure 3(a).
Approximate validity of the plausibility bands is implied by the approximate validity of
the generalized IM. To check this claim empirically, we simulate 1000 data sets according
the above scheme and calculated ⇡̂boot

Zn (✓), in each replication. Figure 3(c) shows the
empirical distribution of these values over replications and it is clear this closely matches
a uniform distribution, confirming Theorem 1. The same plots for ⌧ = 0.25 and ⌧ = 0.50
are included and all suggest the uniform approximation for the distribution of ⇡̂boot

Zn (✓)
is accurate across a range of quantile levels. Figure 3(d) is analogous to Figure 3(c),
but considering n = 100. As in the previous examples, the proposed solution achieves
approximately validity even in finite-sample scenarios.

5 Dynamic treatment regimes

5.1 Introduction

Compared to the common one-size-fits-all approach in medicine, where treatment de-
cisions are developed for the “average” patient, precision medicine focuses on tailoring
treatment decisions to individual patients based on certain characteristics of their profile.
Dynamic treatment regimes provide a formal precision medicine framework, where the
individualization of treatments is dictated by a sequence of decision rules, one per stage
of intervention, that are based on the patient’s “history,” which includes both covariates
and past treatments (Chakraborty and Murphy 2014).
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Zn (✓⌧ ), n = 100

Figure 3: Results for the illustration in Section 4.3. Panel (a) shows the fitted quantile
curve, for ⌧ = 0.75, with the 95% plausibility band.

In this section, we aim to provide a generalized IM solution to relevant problems that
arise when considering dynamic treatment regimes, or regimes for short. For example,
given a specific regime, a first basic problem is quantifying uncertainty about the expected
outcome if the population under study were to receive treatment according to its rules.
This expected outcome is also referred to as the value of a regime. In Section 5.3, we
construct a generalized IM for this purpose. A more challenging problem is where there
is a large class of candidate decision rules and the goal is to identify an optimal one, i.e.,
the regime that maximizes the expected benefit to patients based on their history. In
Section 5.4 we make the notion of an optimal regime precise, and develop a generalized
IM to quantify uncertainty about its value.

Before tackling the above relevant problems, we provide a short background on dy-
namic treatment regimes and setup the basic notation. The details presented throughout
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this Section are largely based on Tsiatis et al. (2020).

5.2 Background and notation

For simplicity, our focus throughout this Section will be on the so called single decision
problem, where there is only one stage at which a treatment must be selected from among
a given set of available options.3 In this situation, a dynamic treatment regime consists of
a single rule that takes as input the available patient information and returns as output
one of the treatment options. Denote this set of possible treatment action options as A.
Formally, a dynamic treatment regime is defined as a decision rule d(x), a function that
maps an individual’s covariates to a treatment option in A, that is, d : X ! A, where
X is the support of the covariates X. Here, we explore only the simplest case where
A contains two treatment options, e.g., a control/active treatment scenario, so d takes
X 2 X as input and returns either 0 or 1.

Let Zi = (Xi, Ai, Yi), for i = 1, . . . , n, represent the observed data from n patients,
where Ai, Yi and Xi denote, respectively, the treatment received (either 0 or 1), the
observed outcome under treatment Ai, and the covariates collected, for the ith patient.
Central to both the definition of the value of a given regime and the notion of the
optimal regime, to be explored, respectively, in Sections 5.3 and 5.4 below, is the concept
of potential outcome for any regime d 2 D. Generally speaking, a potential outcome
(e.g., Rubin 1974, 2005) is the outcome for an individual under a potential treatment. In
our context, the random variables Y ⇤(0) and Y ⇤(1) represent the outcome that would be
achieved by a randomly chosen individual with covariates X in the population of interest
if she were to receive treatment 0 or 1, respectively. Note that potential outcomes are
hypothetical constructs, since a patient receives only one of the treatments, not both.
The idea is to consider what this outcome would have been had the patient received the
other treatment option. Now, if treatment is assigned according to regime d, the potential
outcome of a patient is defined as

Y ⇤(d) = Y ⇤(1) d(X) + Y ⇤(0) {1� d(X)}. (15)

We end this subsection by pointing out that the essential results to be explored in
the upcoming subsections depend on three fundamental assumptions that are common
in the causal inference literature.

• Stable unit treatment value assumption: the outcome Y of a patient who received
treatment A is the same as her potential outcome for that treatment, i.e.,

Y = Y ⇤(1)A+ Y ⇤(0) (1� A).

• No unmeasured confounders assumption: all of the information used to make treat-
ment decisions is captured by the observed covariates X, so that

⇥
{Y ⇤(0), Y ⇤(1)} ?? A

⇤
| X.

• Positivity assumption: For any X = x, there are individuals receiving both treat-
ment options, that is, P (A = a | X = x) > 0 for a = 0, 1.

3
We adopt the convention in Tsiatis et al. (2020) that any treatment regime, single or multistage,

whose decision rules potentially vary according to baseline and evolving patient information, is dynamic.

However, other authors (e.g., Murphy et al. 2001) consider single decision regimes as “non-dynamic.”
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5.3 Value of a regime

5.3.1 Overview

When considering a specific regime d 2 D, a fundamental question is how its use in the
entire population would a↵ect the outcome of interest, on average. With the definition
of a potential outcomes in (15), the value of any regime d 2 D is defined as

V(d) = E{Y ⇤(d)}.

Towards uncertainty quantification of V(d) based on observed data Zn = zn, the chal-
lenge is deducing the distribution of Y ⇤(d), which depends on that of (X, Y ⇤(1), Y ⇤(0)),
from the distribution of the observable (X,A, Y ). Under the assumptions stated in the
end of Section 5.2, it can be shown that

E{Y ⇤(d)} = E[E(Y | X,A = 1) d(X) + E[E(Y | X,A = 0) {1� d(X)}], (16)

where the outer expectation is with respect to the marginal distribution of X. If we
introduce an outcome regression relationship—or Q-function—for the conditional mean,

Qx,a(✓) = E(Y | X = x,A = a), (17)

depending on a parameter ✓; see (19). Then (16) becomes

E{Y ⇤(d)} = E[QX,1(✓) d(X) +QX,0(✓) {1� d(X)}]. (18)

5.3.2 Generalized IM construction

First, the simple connection between the Q-function—which depends on a parameter
✓—and the mean of the response Y allows for a straightforward IM construction for ✓
interpreted as a risk minimizer. For a given form describing the Q-function’s dependence
on the parameter ✓, we can define a loss function as

`#(z) = {y �Qx,a(#)}2, z = (x, a, y).

Then the generalized IM construction for the minimizer of the expected loss proceeds
exactly as in, say, the quantile regression application above. Asymptotic normality of
the corresponding M-estimator and consistency of the bootstrap hold for very general
Q-function specifications. Note that this generalized IM construction for inference on the
risk minimizer ✓ does not require that the posited functional form of Q to be correct.
That is, the existence of the risk minimizer does not require that Qx,a(✓) be the true
conditional mean of Y , given X = x and A = a; moreover, as we discussed in Section 1,
if the risk minimizer exists, the it is a “real” inferential target, so drawing inference on
the risk minimizer is meaningful whether there is a correctly-specfied model or not.

We are not primarily interested in the aforementioned risk minimizer since, typically,
the inferential target is some other characteristic of the problem. Fortunately, these other
characteristics can often be expressed as functions of ✓, i.e., as features � = �(✓); we will
consider two such features below. From the previously-described generalized IM for ✓,
uncertainty quantification about the value of a given regime is readily obtained through
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marginalization as discussed in Section 3.2. There is a catch, however, that deserves to
be emphasized: these features have their desired interpretation only as functions of the
parameter ✓ on which the true Q-function depends. So, in order for marginal inference
about these particular features, derived from a generalized IM for ✓, to be meaningful, it
is required to assume that the posited form of the Q-function is correctly specified; that is,
✓ is not just the risk minimizer but determines the true conditional mean function. Note,
however, that this does not require correct specification of a statistical model—which
includes distributional forms—for the observable data Zi = (Xi, Ai, Yi). The situation we
are describing here falls under the general umbrella of semiparametric inference, where
only a part of the model is assumed to be correctly specified.

We present the details of our proposed generalized IM in the context of an exam-
ple. Consider the simulated observational study presented in https://laber-labs.
com/dtr-book/booktoc.html,4 whose objective is to assess the e↵ectiveness of a fic-
titious medication developed for the treatment of hypertension. Each patient in this
study either received the new medication (A = 1) or received no treatment (A = 0)
based on patient/physician discretion. The outcome of interest Y is the change in sys-
tolic blood pressure (mmHg) after six months of treatment, i.e., Y = Y0 � Y6. The
covariates X = (X1, X2) are, respectively, the total cholesterol (mg/dl) and the potas-

sium level (mg/dl). Here is how the data are generated. Let Y0,i
iid⇠ N(160, 122),

i = 1, . . . , n, with n = 1000 and the constraint 140 < Y0,i  200. Let X1,i
iid⇠ N(211, 452),

X2,i
iid⇠ N(4.2, 0.352), Ai ⇠ Ber(⇡(x1,i, y0,i)), where

⇡(x, y) =
exp{�16.348 + 0.078y + 0.017x}

1 + exp{�16.348 + 0.078y + 0.017x} ,

and Y6,i = Y0,i � N(µ(xi, ai), 32), where

µ(x, a) = �15� 0.2x1 + 12x2 + a(�65 + 0.5x1 � 5.5x2).

This implies an outcome regression relationship Qx,a(✓) in (17) given by

Qx,a(✓) = ✓0 + ✓1x1 + ✓2x2 + ✓3a+ ✓4ax1 + ✓5ax2, (19)

depending on ✓ = (✓0, ✓1, ✓2, ✓3, ✓4, ✓5). From the definition of µ(x, a) above, the true
values of ✓0, ✓1, ✓2, ✓3, ✓4, and ✓5 are �15, �0.2, 12, �65, 0.5 and �5.5, respectively.
Note that the only aspect of the above description that the generalized IM assumes as
“true” is the Q-function specification in (19); the statements concerning the distributions
of the observables are not used at all in the generalized IM formulation nor are they
assumed true in the supporting theory presented in Section 3.4.

As a first check, we empirically verify the approximate validity claim in Theorem 1
for inference on ✓, the true parameters of the regression function. Figure 4 shows the
distribution function of ⇡̂boot

Zn (✓) based on repeated sampling from the data-generating
process described above, with ✓ the true values. As the theory predicts, we see that the
distribution of ⇡̂boot

Zn (✓) is almost exactly Unif(0, 1), which means that inference drawn on
✓ in this setting is approximately—and almost exactly—valid.

4
This is Tsiatis et al. (2020)’s companion website, where several examples are provided. The particular

example we explore here can be found under the “Chapter 3” tab.
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Figure 4: The plot shows the empirical distribution function of ⇡̂boot
Zn (✓) under repeated

sampling from the data-generating process described in the text.

Next, we consider three di↵erent marginalization examples. First, in treatment/control
scenarios, it is common that the first enquiry performed by the data analyst concerns the
presence of a treatment e↵ect. Here the treatment e↵ect is the average change in systolic
blood pressure, after six months, if everyone in the population took the new medication
compared to if everyone took the old medication. For the Q-function in (19), the treat-
ment e↵ect is � := ✓3 + ✓4 E(X1) + ✓5 E(X2), so interest is in the assertion “� = 0.”
For the particular data zn, the upper probability assigned to this assertion is approxi-
mately 0; this is not particularly surprising, given that the true treatment e↵ect is equal
to �65 + 0.5⇥ 211� 5.5⇥ 4.2 = 17.4 mmHg.

Second, we investigate marginal inference on the value of a fixed regime. In this case,
we consider two such regimes:

• the static regime where all individuals are recommended to receive the new medi-
cation, i.e., d(X) ⌘ 1;

• the covariate-dependent regime that assigns patients to receive the treatment if their
cholesterol level exceeds a certain threshold, i.e.,

d(X) = 1{X1 > 120 mg/dl}. (20)

From (18), the values of the static and covariate dependent regimes are, respectively,

�st := E{✓0 + ✓3 + (✓1 + ✓4)X1 + (✓2 + ✓5)X2}
�cd := E[✓0 + ✓1X1 + ✓2X2 + (✓3 + ✓4X1 + ✓5X2)1{X1 > 120}],

and Figure 5(a) shows the corresponding marginal plausibility contours for each, both
obtained from the generalized IM for ✓. The plot suggests that, not unexpectedly, the
covariate-dependent regime is no worse than the static regime.

24



10 11 12 13 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

V(d)

P
la

u
si

b
ili

ty

(a) Plausibility contour for � = V(d)

0.56 0.58 0.60 0.62 0.64

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Difference

P
la

u
si

b
ili

ty

(b) Plausibility contour for �cd � �st

Figure 5: In Panel (a), the red curve is the plausibility contour for � = V(d) under the
static regime, d(X) ⌘ 1, blue is for the covariate-dependent regime (20), and black is the
optimal regime discussed in Section 5.4. Panel (b) shows the plausibility contour for the
di↵erence between the covariate-dependent and static regimes.

Third, a relevant question in practice might be whether there is a di↵erence between
two fixed regimes. For example, given the overlap of the plausibility contours in Fig-
ure 5(a), one may wonder if the covariate-dependent regime is in fact better than the
static regime. More specifically, interest is whether �cd > �st. Figure 5(b) shows the
marginal plausibility contour for the di↵erence �cd � �st, obtained, once again, from the
generalized IM for ✓. Despite the di↵erences being small, the assertion “�cd = �st” has
zero plausibility, confirming the superiority of the covariate-dependent regime. Whether
these small di↵erences are practically relevant is a separate question.

5.4 Optimal regime

Estimating the value of a specific decision rule, d, may be of some interest in applications,
but a more challenging problem is to identify the optimal regime within a given set D,
that is, a regime that leads to the best benefit on average if used to select treatment in
the population. For situations where larger values of the response variable mean greater
benefit to the patient, like in the example in Section 5.3.2 above, the optimal regime d⇤

is defined as one that leads to the maximum value among all d 2 D, i.e.,

d⇤ = argmax
d2D

V(d)

or, equivalently,
E{Y ⇤(d⇤)} � E{Y ⇤(d)} for all d 2 D. (21)

It is possible that more than one regime satisfies (21), but we will not concern ourselves
with this technicality here. Recall that our focus is on a single stage treatment regime
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with A = {0, 1}. For such a case, Tsiatis et al. (2020) prove that (21) is satisfied by

d⇤(x) = argmax
a2A

E{Y ⇤(a) | X = x}

= 1[E{Y ⇤(1) | X = x} > E{Y ⇤(0) | X = x}]. (22)

Just like in the previous subsection, uncertainty quantification about d⇤ based on
observed data zn requires us to rewrite (22) in terms of Zn. Under the assumptions
stated at the end of Section 5.2, (22) can be equivalently written as

d⇤(x) = argmax
a2A

E{Y | X = x,A = a}, (23)

which, under the outcome regression model formulation can itself be rewritten as

d⇤(x) = argmax
a2A

Qx,a(✓) = 1{Qx,1(✓) > Qx,0(✓)}. (24)

Moreover, the value of this optimal treatment is given by

V(d⇤) = E
n
max
a2A

QX,a(✓)
o
, (25)

where, again, the outer expectation is with respect to the distribution of X. The right-
hand side of the above display is, again, a function � = �(✓) of ✓, so if we have a
generalized IM for ✓, then we can readily obtain a marginal IM for �.

As an illustration, consider again the example explored in Section 5.3.2, where Qx,a(✓)
is linear as in (19). In this case, it is clear that (24) becomes

d⇤(x) = 1{✓3 + ✓4x1 + ✓5x2 > 0}.

From (25), the value of this optimal regime is given by

V(d⇤) = E{✓0 + ✓1X1 + ✓2X2 + (✓3 + ✓4X1 + ✓5X2)1{✓3 + ✓4X1 + ✓5X2 > 0}}. (26)

Uncertainty quantification about the value V(d⇤) above is obtained through marginaliza-
tion, as it was the case for the fixed regimes considered earlier. For example, to obtain
the plausibility contour in Figure 5(a), one starts with the generalized IM for ✓ and
marginalize to the corresponding V(d⇤) in (26). Note how the value of d⇤ is significantly
greater than the values of the two fixed regimes also shown in Figure 5.

6 Conclusion

Here we focused on direct, data-driven uncertainty quantification for unknowns defined as
risk minimizers or solutions to estimating equations rather than parameters of a statistical
model. We presented a new generalized IM that not only avoids the explicit description
of the data generating process, but does not require a statistical model at all. We showed
that this construction leads to approximately valid uncertainty quantification in the sense
of Theorem 1. This provides guarantees beyond those from classical confidence regions.
That is, the IM’s validity property applies to belief assignments to all assertions about
the inferential target—even marginal inference about features of the original inferential
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target. To our knowledge, this is the first paper providing direct and valid probabilistic
uncertainty quantification in this practically relevant class of learning problems.

Applications in cases beyond the simple, low-dimensional problems above will be
reported elsewhere. Of course, larger dimension creates computational challenges, so
getting marginal plausibility contours for each component of the high-dimensional infer-
ential target in an e�cient way remains an open question. Since evaluation of ⇡̂boot

zn is
based on sampling (bootstrap or Monte Carlo), and marginalization is optimization in
this imprecise probability setting, techniques like stochastic approximation or stochastic
gradient descent seem especially promising; see, e.g., Syring and Martin (2021).

We end this section with a brief discussion of some open questions. First, it is well-
known that the bootstrap often enjoys a certain higher-order accuracy, that is, the cover-
age probability of bootstrap-based confidence regions converge to the nominal level at a
rate faster than the expected root-n; see, e.g., Hall (1992) and Lehmann (1999). Similarly,
in other settings, with simpler versions of the generalized IM framework developed here, it
was observed empirically that the uniform limit distribution approximation for “⇡̂Zn(✓)”
was quite accurate, even for small samples, suggesting some higher-order accuracy. The
proposed generalized IM in this paper borrows aspects of these two approaches that (at
least empirically) enjoy higher-order accuracy. Then the question is if this combination
of two higher-order accurate methods is also higher-order accurate?

Second, although this did not appear in our illustrations in Section 5, an especially
challenging aspect of the dynamic treatment regime problem is non-regularity, resulting
from the non-smooth “max” operator in (23), that a↵ects the limit distribution theory
of the M/Z-estimators and, in turn, the corresponding bootstrap-based inference. A
common remedy for failure of the bootstrap, e.g., due to non-regularity, is to “under-
sample” with the so-called m-out-of-n bootstrap. That is, Bickel et al. (1997) showed
that, by taking bootstrap samples of size m = o(n), bootstrap failure could be avoided.
A more sophisticated m-out-of-n bootstrap scheme was proposed in Chakraborty et al.
(2013) that could prevent bootstrap failure in the dynamic treatment regime setting
resulting from the non-regularity induced by the “max” operator. An interesting follow-
up project could investigate the reliability of the proposed generalized IM equipped with
a m-out-of-n bootstrap strategy under non-regularity.
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