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is solved offline as well as the online passive model discrimination problem via a

MSC: model invalidation framework. To overcome the issues associated with non-convex and
00-01 generalized semi-infinite constraints due to the disjunctive and coupled constraints,
99-00 we propose some techniques for reformulating these constraints in a computationally

tractable manner by leveraging the Karush-Kuhn-Tucker (KKT) conditions and intro-
ducing binary variables, thus recasting the active and passive model discrimination
problems into tractable mixed-integer linear/quadratic programming (MILP/MIQP) prob-
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Intention identification lems. When compared with existing approaches, our method is able to obtain the
Fault diagnosis optimal solution and is observed in simulations to also result in less computation time.
Autonomous driving Finally, we demonstrate the effectiveness of the proposed active model discrimina-

tion approach for estimating driver intention with disjunctive safety constraints and
state-input coupled curvature constraints, as well as for fault identification.
© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to interact with the physical world through communication and control is a key enabler for future
technology developments in cyber-physical systems (CPS). However, the models or behaviors of other physical systems in
the shared environment may not be accessible or may only be partially observed and measured, such as intentions, faults
and modes of operation. To improve CPS safety, robustness and resilience, model discrimination is used to determine the
true system behavior from a set of possibilities quickly and accurately despite uncertainties, disturbances and noise.

Literature Review: Model discrimination is a widely used tool in safety—critical systems, such as CPS, robotics, chemical
processes, etc., for detecting faults, attacks, and system operating modes. The methods for model discrimination can
be generally categorized as either passive or active. Passive approaches, also known as model (in)validation methods,
separate models by exploiting the input-output data and priori information of the system [1-7]. In [2], the definition
of input-distinguishability of two linear models in a fixed time horizon was proposed and the necessary and sufficient
conditions for the distinguishability were also presented. In [3], the strict residual distinguishability of continuous-time
switched linear systems with deterministic disturbances was studied by defining an index for quantifying the degree
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Fig. 1. Coordinate frame for an overtaking scenario. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

of residual distinguishability. In [4], a distinguishability index that measures the separation between normal models
and faulty models was introduced by formulating a T-distinguishability optimization problem. In [5], by abstracting the
nonlinear system as a piecewise linear inclusion system, the model invalidation problem identifying the true intention
of nonlinear models is solved as a mixed-integer linear program (MILP). Novel frameworks of the biochemical reaction
networks with sparse noisy experimental data [6] and combining qualitative information and semi-quantitative data [7]
were also introduced in the area of passive model discrimination. Although passive approaches are broadly studied and
often effective, they are limited to problems with specific system properties and may require a long time for discrimination
since only observations are used regardless of inputs [8,9].

On the other hand, active approaches synthesize an optimal input with minimal intervention to the system dynamics
such that behaviors or outputs of all models are differentiated. In the context of active fault detection, [10-12] proposed
a framework for active model discrimination that obtains the small excitation that has a minimal effect on the desired
behavior of the system and guarantees the isolation of different fault models. In contrast to previous approaches in [10,11],
our approach does not require or compute an explicit set representation of states, while recent works that consider
implicit representations of convex polyhedrons [13-16] cannot handle disjunctive and coupled constraints considered in
this paper. Moreover, the stochastic approach in [12] also does not apply to the polyhedral constraints that we consider.
Although we found that [17] can handle disjunctive and coupled constraints for safety—critical systems, this method is
iterative and leverages a sequence of restrictions and can only obtain a suboptimal solution with the additional condition
that the first restriction iteration is feasible.

Contributions: We propose optimization-based methods for active and passive model discrimination among a finite
number of affine models subject to safety constraints that can be disjunctive and where constraints on states and inputs
can be coupled with each other. These more general constraints in safety-critical systems can be used to represent
coupled piecewise state-input constraints and disjunctive constraints. However, they often lead to generalized semi-
infinite constraints (cf. [ 18] and references therein), which, in turn, leads to a bilevel optimization problem or a Stackelberg
game. In this paper, we reformulate these constraints in a computationally tractable manner, so that the active and passive
model discrimination problems can be cast into a tractable MILP problems (or MIQP when we have a quadratic objective
function). The contributions of this paper are as follows:

1. Comparing with standard frameworks of both passive model discrimination [1,4] and active model discrimina-
tion [13,15], the proposed approaches are applicable to systems with disjunctive and coupled constraints. These
more general and practical constraints can represent (coupled) state-dependent input constraints, e.g., curvature
constraints or input saturation, as well as disjunctive state constraints, e.g., non-convex safety restrictions or
collision-free regions.

2. By leveraging the KKT conditions and introducing binary variables, our proposed approach formulates a single
tractable MILP/MIQP program to solve the non-convex active model discrimination problem optimally, while the
existing approach in [17] is iterative and has no optimality nor feasibility guarantees.

Finally, we demonstrate the effectiveness of the proposed active and passive model discrimination approaches to
discern the intentions of other human-driven or autonomous vehicles in an overtaking scenario subject to state-dependent
input constraints and disjunctive (non-convex) safety constraints, as well as to detect and identify fault models of a
permanent magnet DC motor.

2. Motivating example

While our proposed approach is applicable to a broad range of model discrimination problems, including for fault
diagnosis, we begin with a motivating example of intention estimation that also serves as an example for elucidating
the modeling framework with disjunctive and coupled constraints that we will introduce in Section 3.2. In particular, we
consider an overtaking scenario (see Fig. 1) where the ego car (in blue) is overtaking the other car (in red). The other car’s
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intention (representing its driving behavior) is unknown to the ego car. The equations of motion for this two-car system
are given by

Uxe(k + 1) = (1 — Cgdt)vge(k) + tre(k)St + wye(k)SE,

Ye(k + 1) = yo(k) + Uye(k)& + wye(k)at,

h(k 4+ 1) = h(k) — vye(k)3t + vxo(k)St,

Vxo(k + 1) = (1 — Gyt )uno(k) + Uy (k)St + wyo(k)SE,
where vy, is ego car’s longitudinal velocity, y. is the lateral position of the ego car’s geometric center, h is the headway
between both cars, vy, is the other car’s longitudinal velocity, uy. and vy, are ego car’s longitudinal acceleration inputs
and lateral velocity inputs, uy, is other car’s longitudinal acceleration input, wy., wy. and wy, are process noises, Cq is the
drag coefficient, and 4t is the sampling time.

As shown in Fig. 1, to ensure safety of the two cars and avoid entering into the unsafe zone, when the ego car attempts

to overtake the other car, the headway h and the ego car’s lateral position y, must satisfy the following disjunctive safety
constraint:

(1)

1
S={hye) e RxR:h> hpjn VY, > Ewcar + Yiane}, (2)

where wq and yjqne are car and lane widths. The above disjunctive safety constraint requires that the ego car stays behind
the other car and maintains a safe headway (i.e., h > hy;,) or drives to the side of the other car while maintaining a safe
lateral distance (i.e., Ye > 3Wear + Yiane)-

In addition, to make the car model more realistic, the velocity of the ego car in the lateral direction is required to
satisfy the following constraints:

{0}, VI < vy < v,

Vye €
ye .
{{Uye 1 B1(vxe — vff) < Upe < Bo(vxe — vfﬁ)}, Ugg S Uxe < U‘Twc»

where vffj is a dead-zone threshold (to emulate the more realistic setting where cars cannot move laterally without moving
longitudinally), and B; and B, are slopes that mimic the curvature constraints of real cars. Since v, is the state of the ego
car, this input constraint turns out to be state-dependent, i.e., there is a coupled state-input constraint.

Moreover, the other car may have one of the following two intentions that determine the choice of their inputs uy,:

(3)

e An annoying driver who speeds up to prevent being overtaken;
e A cautious driver who slows down such that the ego car can overtake more easily.

To improve the ego car’s driving safety and performance, the problems of active and passive model discrimination
for inferring the intention of the other car in an overtaking scenario are considered. The objective of active model
discrimination is to design a separating input offline/at design time for the ego car to identify other car’s unknown intention
over a fixed horizon, while satisfying disjunctive and coupled constraints. Then, the real-time input-output data generated
by applying the separating input from active model discrimination is leveraged to (passively) identify the other car’s true
intention at run time.

3. Preliminaries

In this section, we introduce some notations, definitions and useful constraint reformulations, as well as describe the
modeling framework we consider.

3.1. Notation and definitions

Let x € R" denote a vector and M € R™™ a matrix, with transpose MT and M > 0 denotes element-wise non-negativity.
The set of positive integers up to n is denoted by Z}, and the set of non-negative integers up to n is denoted by Zg. The

diag and vec operators are defined for a collection of matrices M;,i = 1, ..., n and matrix M as:
M; M;
. n
diagy_,{My} = cveeiMi = | - |
M, M,
. M; 0 M;
diag{My} = | . svee My =1, |,
k:{i%’}{ k} [ 0 IVIji| k={i.j}{ k} |:M]:|

diag{M} =1, ® M, vec{M} =1, ® M,
n n

where ® is the Kronecker product, while 0, 1, and I,, represent the matrix of zeros of appropriate dimensions, the vector
of ones and the identity matrix of dimension n, respectively. The binomial coefficient is denoted by (Z) which is the
number of combinations of n items taken k at a time.
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We will also make use of Special Ordered Set of degree 1 (SOS-1) constraint,! which is defined as follows:

Definition 1 (SOS-1 Constraint [19]). A special ordered set of degree 1 (SOS-1) constraint is a set of integer, continuous
or mixed-integer scalar variables for which at most one variable in the set may take a value other than zero, denoted as
SOS-1: {vy, ..., vn}. For instance, if v; # 0, then this constraint imposes that v; = 0 for all j # i, i.e, vi = -+ = vi_; =
Viyr =+~ =vy =0.

3.2. Modeling framework

Consider N discrete-time affine time-invariant models G; = (A;, Bi, By.i, G, D;, fi, &) over a time horizon of length T
with model indicator i € Zf\j, each with states ¥; € R", measurements/outputs z; € R"™, inputs u; € R™, process noise
w; € R™ measurement noise v; € R™, constant fault or additive bias f; € R", g; € R™. The models evolve according to
the following state and output equations:

x,(k 4 1) = Aix;(k) 4 B (k) + By, jwi(k) + f;, (4)
zi(k) = Cix;(k) + Diu;(k) 4 Dy jvi(k) + g;. (5)

A

In the context of the motivating example, each model can represent a two-car system in (1) with x,(k) £
[vxe(k) Ve(k) h(k) vx,,(k)]T including both states of the ego car and the other car and different u,, corresponding
to different other car’s intentions. The states x; can be divided into the controlled states x; € R™ and uncontrolled states
yi € R with n, = n —n, (e.g.,, ego and other cars’ states in the motivating example, respectively) accordingly. Similarly,
the first m, components of u; are controlled inputs (i.e., to be designed as separating inputs), denoted as u € R™ that
are the same for all u;, while the other my = m —m, components of u;, denoted as d; € R™, are uncontrolled inputs that
are model-dependent. For instance, u represents the ego car’s inputs while d; is the other car’s inputs. As a consequence,
we have

o 5] e [

Dividing the states and inputs into controlled and uncontrolled parts, the state and output equations in (4) and (5)
become:

_ Axxj Axy,i Bxu,i Bxd,i wa,i i fx,i
x(k+1) = [Ayx,i AW} x(k) + [BW BW} u,(k) + [BW_] wi(k) + [fy . (7)
zi(k) = Cx,(k) + [Dui  Da.i] (k) + Dy vi(k) + g:. (8)

The initial condition for the model i, denoted by g? = x,(0), is constrained to a polyhedral set with ¢y inequalities:
x) € Xy = {x € R": Pox < po}, Vi€ Z. (9)
To have a realistic model, the states x; and y; satisfy polyhedral state constraints with ¢, and ¢, inequalities:
xi(k) € Xyi i={x € R™ : Pyix < pyi} (10)
yi(k) € % =y € RV : Py iy < py.i}, (11)

for k € Z?. For example, (10) and (11) represent the individual constraints that the ego and other cars have to satisfy
their own speed limits.
The controlled states x; must also satisfy n; disjunctive constraints, each with ¢, inequalities:

ng
xi(k) e \/ (s}’) = (x e R™ : PUx < pgg}) . (12)
j=1

The disjunctive constraints (cf. (2) in the motivating example) are used to represent nonconvex safety restrictions or

collision-free regions, where at least one constraint must be satisfied for safety, similar to logical “OR” statements.
In addition, the controlled input is subject to the following coupled state-input constraints (for k € 22_1 andi e Z;):
u(k) € U == [u ER™ : [ € % Vi € 2 QU + QU u < g0, if PO < pﬂx),,-}}, (13)

ux,i

1 Off-the-shelf solvers such as Gurobi and CPLEX [19,20] can readily handle these constraints, which can significantly reduce the search space for
integer variables in branch and bound algorithms.
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where x; is the controlled state satisfying x; € Xy, pY X < pm is the jth partltlon of the polyhedral set Xy; with

ux,u

PY h ber of Rlﬂ)X"x 0) ¢ gpr<m Py, R, R,
UjEZ,Tp {Py.i% pw“} np,; is the number of partitions, Qw“ € Qi € € q ;. € pw‘yi

CI(’JZ) . These coupled state-input constraints can incorporate more realistic constraints, e.g., curvature constraints and input
saturation, with “IF-ELSE” statements. For example, considering the coupled constramt (3) in the motlvatmg example
w1th Xi = Uye and U = vy, W€ have two partitions defined by “) = [B1; —B2], = [-1;1], qu, = [ﬂlvxe, —ﬁzvxe

P = 11 11, g, = [ ], and @) = [0:01, @2) = [~1: 11, ¢ = [0: 0] Pixl = [1: =11, py; = [oggs —vi™.

On the other hand, the uncontrolled mput d; must also satisfy the following polyhedral constraints (for k € qu) with
cq inequalities (e.g., other car’s input constraints):

di(k) € Dy = {d € R™ : Qq;d < qq.;}- (14)

The process and measurement noises, w; and v;, are also polyhedrally constrained with c,, and ¢, inequalities:
wi(k) € Wi = {w € R™ : Quw < qu.i), (15)
vi(k) € Vi i={v € R™ : Qv < qui}. (16)

3.3. Concatenated models and constraints

Next, we will introduce some time-concatenated and pair-concatenated notions. The time-concatenated states and
outputs over the time horizon T are defined as

T T
Xy = veclx(0),  xir = veclu(o),
k=0 k=0

T T
yir = veclyi(k)},  zir = vec{zi(k)},
k=0 k=0
while the time-concatenated inputs and noises are defined as

;= Vee(u (), ur = Vec(u(k),
r=ve

T-1 T-1
dir = ng{di(k)}, wir = ng{wi(k)}’
vir = veciui(k)).

k=0

To separate all models, we further introduce the model pair, which consists of two different models of G;, Vi € Zﬁ.
Considering N discrete-time affine models, i.e., G1, G2, - - -, Gn, there are [ = (’;’) model pairs and let the mode : € {1,...,1I}
denote the pair of models (g;, G;). Then, concatenating g?, X, 1 X1, i1, dir, Zi7, wir and v; p for each model pair, we define

X = vec {x%}, 8. = vec {x, 1}, x% = vec {xc1},
B R Ty
¥y = vec {ykr} zr = vec {zyr}, dy = vec {di 1},
k=i k=(i.) k=(i.j}
L L
wr = vec {wir}, v = vec {ver}.
T i) T iy

Thus, the pair-concatenated dynamics, in which states and outputs over the entire time horizon for each model pair ¢
are written as simple functions of the initial state x;,, input vectors uy, dy, and noise wy, vy, is given by:

Xp = Mo + Four + Diydy + T, wh + f, (17)
Yy = Mxy + Tyur + Ldy + Iy, wi + ), (18)
X, = A'Xy + Lur + Tydy + Tywr + (19)
2 = C'¥; + Dur + Dydr + Dy} + &', (20)

where the involved matrices and vectors, as well as the procedures for deriving them are given in Appendix A.
In addition, the uncertain variables for each model pair ¢ are concatenated as X' = [ d'f w{" vi"]". Therefore, the
pair-concatenated constraints on states t+ € {x, y} and uncertainties can be rewritten as

H{X <P\ — Pif{ — P{Ifur, HX <h, 21

where the definitions for the matrices and vectors Hy, P, I'},, b}, H: and h, as well as the procedures for their derivation
can be found in Appendix B.
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. . = T . .
Furthermore, to reformulate coupled state-input constraints, we define x;, = [ dl,,_, wlo, ;] satisfying
Hii.kii’k < h?i © where

Hz ;. = diag{Po, Qu.ik> Qu.ik}, (22)
hs i« = vec{po, Ga.ik: Gu.ik}, (23)
with Qqix = diagy,1{Qai} Quik = diage1{Quib Gaik = Vecki1{daid Guik = Vecka{duih diox—1 = vec—j{di(t)},

Wi gk—1 = vec’[‘;g{wi(t)}, do.—1 = 0, and wp._; = 0. Then, we rewrite the controlled and uncontrolled states, x and y, at

time instant k Z?_l for model G; as
Ti(k) = M= ki‘,k + T iklog—1 + froiks (24)

where t € {x,y}, M?’ = [Mf,i,k Iigik Ffw,i,k]y Ugk—1 = VECf;g{U([)}, and ug._; = 0. Defining Ty = by ® I"T with

b, € RT being the ith basis row vector in R”, we have My iy = YeeMs i1, ik = Vil bnits frik = Tifrit-
Then, the coupled input-state piecewise constraints in (13) for each time instant k € Z‘T’q and model i € Zﬁ with
respect to X; , and ur are given by

{Vjez,jm:Qu(’x{iM;Lkii,H[Qu(;{ifxu,i,k o, 0] ur < g% — QY feine

if PJ) ~M§Lk§z‘,k + [PU) iDui k 0] ur < p¥); — PY) fx,i,k}- (25)

ux,1 ux,1 X,

Furthermore, the state constraints in (12) for each time instant k € Z?i1 and model i € Zﬁ with respect to i,-,k and ur are
rewritten as
ng
\/ (szMii,kii.k < pg), - PSU,) ik — ngrxu,i,kuT) . (26)
j=1

Remark 1. It is important to ensure that the models are meaningful in the sense that for the range of time horizon T
and for each model i € Z,‘;, (11) holds for any given X, € X that satisfies y;(0) € x,; for alli € Zﬁ, and for any given
u(k) e U for all k € z‘;_]. If the considered affine model satisfies these assumptions, we refer to it as well-posed [13]. We
shall assume throughout the paper that the given affine models are always well-posed.

3.4. Problem formulation

Using the framework above, we can state our active model discrimination problem as follows:

Problem 1 (Active Model Discrimination). Given N well-posed affine models G; and a model separating threshold € the
active model discrimination problem can be stated as follows:

min J(ur)
ur.X7.,21

VieZi,VkeZ9 |,
s.t. va), dir, wir :(10), (12), (13) hold, (27a)
(4), (6)=(7), (9), (11),(14), (15) hold
Vi,jezy,i<j,VkeZd |,

va), dir, wir, vir
(4)-(9), (11), (14)-(16) hold

RELSy/

zi(k') — zi(K')| = €}. (27b)

In the above, the constraint (27a) means that for all possible realizations of initial states, uncontrolled states,
uncontrolled inputs, and process noise (on the left side of the brace), the controlled state constraint (10), safety constraint
(12) and state-dependent input constraint (13) should hold over the entire horizon for each intention. Meanwhile,
constraint (27b) defines the model separability condition, which means that for all possible realizations of initial states,
uncontrolled states, uncontrolled inputs, process noise and measurement noise, the output trajectories of all pairs of
models have to differ by a threshold ¢ in at least one time instant.

6
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Moreover, the active model discrimination problem is intended to be solved offline to find the optimal discriminat-
ing/separating input for guaranteeing that the models are distinct, which is then used online in conjunction with a passive
model discrimination algorithm for determining the true model at run time based on the observed input-output trajectory.
Thus, a second problem of interest is as follows:

Problem 2 (Passive Model Discrimination). Given a sequence of run-time input-output trajectory {u(k), z,,(k) [;(} (u(k) is
obtained from solving Problem 1 and z,,(k) is observed at run time) and N well-posed affine models G;, determine which

model is consistent with the given trajectory for all possible initial states g?, uncontrolled inputs d; r, process noise wj r

and measurement noise v; r, where a model g; is consistent or valid if the following is feasible:

0
Find x;, di 1, wir, virt,

(28)
s.t. (7)-(16) hold.

4. Main approach

To solve Problems 1 and 2, we propose to reformulate constraints (27a), (27b) and (28) in a computationally tractable
manner. We begin by proving a few useful lemmas and propositions, and then we provide solutions to Problems 1 and 2
via Theorems 1 and 2, respectively.

4.1. Useful lemmas and propositions
For increased readability, the proofs for all the following lemmas and propositions are provided in the Appendices.

Lemma 1 (Generalized Semi-infinite Constraint Reformulation). The following generalized semi-infinite constraint
Ax < b+ Cy.Vxe Xy 2{x:Dx<e+Fy Gx<h (29)
with variables x and y, matrices 4, C, D, F and G, and vectors b, e and A with appropriate dimensions, can be recast as

(i) Bilinear Equivalence

HT[”ﬁfy] <b+Cy.m" [Qg)] —4,17>0, (30)

where IT is a dual matrix variable, and
(ii) Mixed-Integer Equivalence

Pa=<0, vig>0, 1,>0, (31a)

Vb:0= Z v1,0,iD(i, b) + Z V2,0 G, b) — A(a, b), (31b)
i j

Pa=Aaxa— ba - Cay. (31¢)

Dx, < e+ Fy, Gx, < h,

Vi: SOS-1: {V1,a,i, Q)(i){a — €i) — f}—(i)y}, (31d)

Vj: SOS-1: {vaaj. GyyXa — fig))s

forall a € Z,ja, where n, is the number of rows of 4, x, V1.4 and V,, are additional slack variables for each a.
We denote as A(q), biqy and Cq) the a-th rows of A, b and C, respectively, while D(i, b), G(j, b) and A(a, b) are the
corresponding elements of matrices D, G and A, respectively.

Remark 2. In Equivalence (i), if & = 0 (corresponding to standard semi-infinite constraints; cf. [18]), the constraints are
linear. However, when ¥ # 0 (corresponding to generalized semi-infinite constraints; cf. [18]), the constraints become
bilinear. To deal with these bilinear constraints, [17] proposed a sequence of restriction approach, but it can only find a
feasible suboptimal solution under the condition that the first restriction does not lead to infeasibility. By contrast, our
Equivalence (ii) that leverages slack variables and KKT conditions is exact for any # and avoids the bilinear constraint in
Equivalence (i), albeit with the introduction of SOS-1 constraints, which are integral constraints, leading to mixed-integer
linear constraints.

Lemma 2 (Disjunctive (“OR”) Constraint Reformulation). The disjunctive constraint, \/,-(q(i) < 0), is equivalent to
vi: e 0,1}, ¢ < s, s0s-1: {0, 50, (32a)
Y oA =1 (32b)
i
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Lemma 3 (Piecewise Constraint Reformulation). Given a partition {SPx + T (i)y < B, the following piecewise
constraint:

Vi: QUx+ Ry <o, if SO+ Ty < 9,
is equivalent to

yW € {0, 1}, 505-1 : {y, ¢0},

Vi () () (33a)
2 ][] o

Z y®=1. (33b)

Next, by leveraging the lemmas above, we provide the following propositions for reformulating the controlled states
constraints (10), disjunctive safety constraints (12), coupled state-input piecewise constraints (13) in (27a) and model
separability condition in (27b) of Problem 1. Note that in each of the following propositions, we assume that the other
constraints in Problem 1 are satisfied. Since we enforce all constraints simultaneously, they trivially hold in the uncertainty
sets of each other’s propositions and need not be explicitly included.

Proposition 1 (Polytopic State Constraint Reformulation). The polytopic state constraint, i.e., the controlled state constraint
(10), in (27a) of Problem 1 is equivalent to

: + + .
VieZy,VaeZ :

i i i
7-[r,afo’ v],r.azo 1)2ra>0

Vb: 0= Zc vi,r,a c (C b + Zd v2 r,a,d (d b) H)i(a’ b)’

7Tri,a = (H)i)(a))_(z - (px) + (Px)(a)rxuuﬂ (34)
Hix, < pi, — Piff — Pil up, HIXE < b,
Ve : SOS-1 : {u;mx, (HI YR, — (5o + (P ef! + (C)ryuuT}

vd : SOS-1 : {Ué,r,a,d’ (H,l;)(d))_{z — (hi‘()(d)}’
where the subscript r refers to polytopic state constraints.

Proposition 2 (Disjunctive State Constraints Reformulation). The disjunctive state constraints, i.e., (12), in (27a) of Problem 1
can be reformulated as

Vie ng,‘v’j €Zy VkeZy_\,Yae Ll :

€ {0, 13,5081 : {ri. shh. > r = 1,
j)

sta—Ovl Ovgsiazo’

Vb : O_Zvlmac )Myk ¢, b +Zv2510d xtk(d b) (PSU,‘l?Mii,k)(a’b)’

zk

i =()
77_5/, a= (PU)) Mﬂllxs’i’k‘a + (Ps(f,' )(a)qu,i,kuT (PS i) T+ (alfx ik =S ka (35)
=(j)
PU)M’ ,Xg,ka +PU)Fyu,i,kuT _py, +PU);fy1k <0,
=0)
H: i iXsika — M = 0,

‘U) . . e ~
Ve : S0S-1: {v?ﬁ sacr PIOMs, Xoika + (P Do Dkt — ()0 + (Py“})(c)fy,f,k},

=)
vd : SOS-1: {vz,s,i,a.d’ (Hz i 1) @Xsika — (hz i )

where the subscript s refers to disjunctive state constraints.
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Proposition 3 (Coupled State-input Constraints Reformulation). prop:piecewise he coupled state-input constraints, i.e., (13),
in (27a) of Problem 1 is equivalent to

VieZy,Vj € Z, | ,Vk e 79 1,Vaez

Cp1+Cp2 .
Vi,k € {0, 1}, S05-1 : % 0t i) 2 v =1,
0 0
nt,ia = 0 vl Ltia = 0’ v2,t,i.a = O’
0 M-
() ) X0 X
Vbh:0 = Zv1 0 (PO (e, b) + > v i ad(Hy Xd, b) — <|:PU) " D (a, b),
d ux,i*Xj
i i) = 0 )
0) quz =0) qf,’f, - mfxfk [ il i 0] 0) (36)
Teia = P M Xt ika ~ ) ) % + ur — Ly,
Xi k (a) ux, i P ,fx1k I:PquFXLllk 0] @
P)E),iMJZ/iYkXt,i,k,a + Pyo,ifyuﬁi,k“T - pﬂi + Py,;fy,i,k =0,
=)
Hs i iXeika = M5 <
=) -
Ve : SOS-1 : [vﬂ Lo (PyU YoM, Keika + (P o Twikti = (070 + (P k]
=)
Vd : S0S-1: (v o o (Hy ke ke — (i)

where the subscript t refers to coupled input-state constraints.

Proposition 4 (Separability Condition [13]). The separability constraint in (27b) of Problem 1 is equivalent to
Viez :
Sur) > €,0=1—p41,
Vme Z}; 0= py Hy(i,m +Zf L G RG, M) 4 30 (R + K, m),
Vie Z  (Hy)wx — (hy)a < 0, ;= 0,
Vj e Zg S (R)GX — (') + (S )gur <0, uy; >0, (37)
Yk € ZF (R )ernX — 8" — (Metr) + (S )erir <0, us, >0,
Vie 7 : SOS-1: {1, (Hp)mX' — (he)w),
Vj € Z7 1 S0S-1: {us j, (R)yx — (r')g) + (S)gur},
Vk € Z} : SOS-1: {1, (R e 1hX' — 8 — (e + (S e rptir}-

where the matrix definitions can be found in Appendix C.

4.2. Active model discrimination

Using Propositions 1-4, it is straightforward to show that the active model discrimination problem in Problem 1 can
be recast into a tractable MILP/MIQP as follows:

Theorem 1 (Discriminating/Separating Input Design). Given a separability index €, polytopic state constraints (10), disjunctive
state constraints (12), coupled input-state constraints (13), Problem 1 is equivalent to

uy =arg min  J(ur) (38a)
UT<5[~’?LJ![.~UE}J)Q i,a'ﬂg)i G,RE,
=) NNOIN0)] 0)

Xo,i.k,a‘sxgk'[i,k'ri,ke(o'”‘Vi,ke{o‘”
s.t. (34), (35), (36), (37) hold. (38b)
foreach e €{1,2,3},0€{1,2},and ¢ € {r,s, t}.

When compared with existing active model discrimination approaches [13,15], our approach can relax the rather
limiting assumption in these works (i.e., Assumption 1in[13,15]) that the separating input does not affect the uncontrolled
state constraints, and hence, the proposed approach is applicable to more general systems.

The discriminating/separating input from the optimization problem in the above theorem that is solved offline will be
applied to the system of interest and the observed measurements/outputs are obtained at run time. The collected input-
output data will then be used at run time to determine the true system model using the passive model discrimination
algorithm, as described in the next subsection.
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4.3. Passive model discrimination

Using the computed optimal input and the observed measurements (corresponding to the unknown true model), the
goal of passive model discrimination is to eliminate all models that are incompatible with the observed input-output
trajectory at run time. We propose to achieve this goal (i.e., to solve Problem 2) by using a model invalidation approach
to invalidate/eliminate each model that is inconsistent with the observed input-output trajectory, as described next:

Theorem 2 (Model Invalidation). Given a discrete-time affine time-invariant model G;, i € Zﬁ, and an input-output sequence
{u(k), Zm(k)}i;l, where u(k) is obtained from Theorem 1 and z,,(k) is observed at run time, the model G; is invalidated if the
following problem is infeasible:

Find  x,(k), di(k), wi(k), vi(k), yI(k), «P(k), yiO(k), BO(k),
Vk € Z7_,,Vj € Z;  Vt € Z,y

n

0 : .
s.t. VkeZy_ 1, Vj € Ly Nt € Ly,

n

x(k + 1) = Aix;(k) + Bi(k) + By, jwi(k) + f;, (39a)
zm(k) = Cix(k) + Diny(k) + Dy ivi(k) + &i, (39b)
POxi(k) — p¥; < (k) (39¢)
() (t) (t)
, . — k
[(Iﬁ*)} X(6) < [q qustt ‘)} + 8900, (390)
. . .
yO(k) € (0,1}, S0S-1:(a(k), yI(k)), D yOk) = 1, (39%)
j=1
p
y (k) € {0, 1}, SOS-1:(BU(K), v k), D v{(k) =1, (39f)
j=1
wi(k) € Wy, vi(k) € Vi, di(k) € Dy, (39¢)
x) € Xy, xi(k) € Xyi, yi(k) € Ay, (39h)
where x,(k) = ;133 and u;(k) £ [g((’,?)] aV(k) and BO(k) are slack variables that are free when yso)(lc) and y,Et)(k) are zero,
1 1

respectively. Otherwise, aU)(k) and BO(k) are zero due to the special ordered set of degree 1 (SOS-1) constraint (cf. Definition 1).

Proof. By leveraging Lemmas 2 and 3, the disjunctive constraint (12) and the coupled state-input constraint (13) can
be constructed as (39c) with (39d) and (39e) with (39f), respectively. If the above optimization problem is infeasible,
it means that the input-output sequence {u(k), zm(k)}[;g cannot be consistent with the model G;, hence the model is

invalidated. O

Then, to solve the passive model discrimination problem in Problem 2, we can leverage the model invalidation
approach in Theorem 2 to discard all inconsistent models. Here, the real-time T-length input-output trajectory can only
be consistent with one model, since we applied the optimal discriminating input from Theorem 1. Hence, the true model
can be identified once all other inconsistent models are eliminated, which is guaranteed by Theorem 1. This passive model
discrimination (or model selection) process is summarized in the following Algorithm 1.

Algorithm 1: Length-T Passive Model Discrimination

Data: Models {Gi} ,, Input-Output Trajectory{u(k), zn(k)};_,
1 function findModel ({Gi} |, {u(k), zm(k)};2g)

2 | valid < {G}Y;

3 fori=1:N do

4 Check Feasibility of Theorem 2;
5 if infeasible then

6 | Remove i from valid;

7 end

8 end

9

return valid

10
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Table 1
Complexity of the AMD and MI algorithms.
AMD MI
No. of CV O((co + ca 4w + ¢y + cx + ¢y + mg +m,, +m, + n5cs + (ny+ny+mg+m,, +m, +nsCs+1p(Cp1 +p2))T
np(cm + CpZ ))TNZ)
No. of IV o((ns + np)TN?) 2T
No. of SOS-1 constraints O((co + €4 + € + €y + & + ¢ + My + 15)TN?) (nsnp(ny + ny) 4+ n5cs 4+ np(cp1 + Cp2) + o +

Cx+ 6 +Ca+Cw+ )T

4.4. Computational complexity

Finally, we analyze the computational complexity of proposed active model discrimination and (AMD) and model
invalidation (MI) algorithms in terms of the number of continuous variables (CV), integer variables (IV) and SOS-1
constraints, and they are given in Table 1, where the constants/parameters are defined in Section 3.2. From the table, it
is clear that the AMD algorithm is more complex and requires more computational resources than MI, since the number
of continuous variables, the number of integer variables and the number of SOS-1 constraints in AMD are of order TN?,
while the number of continuous variables, the number of integer variables and the number of SOS-1 constraints in the MI
algorithm are of order T. It is noteworthy this is not a huge problem since the AMD algorithm is typically solved offline/at
design time, while the MI algorithm is solved at run time.

5. Simulation examples

In this section, we apply our proposed approach to the motivating example of Section 2 and a permanent magnet DC
motor example. In both examples, we solve the active model discrimination problem in Problem 1 offline to generate
an optimal discriminating input, which is then implemented at run time and the resulting outputs/measurements are
obtained. Using the collected input-output trajectory, we apply Algorithm 1 to identify the true model at run time. All the
examples are implemented on a 1.3 GHz Dual-Core machine with 16 GB of memory. For the implementation of proposed
approach, we utilized YALMIP [21] and Gurobi [19] in the MATLAB 2019b environment.

5.1. Intention identification in an overtaking scenario

In this simulation example, we return to the motivating example in Section 2 of an overtaking scenario, where the
ego car is initially behind the other car, and the other car has a constant lateral position y,. We begin by describing the
intention models in detail and then demonstrate that our approach is indeed able to identify the true intention model. In
addition, we show that our approach outperforms an approach from [17] that leverages a sequence of restrictions, which
we found to be also applicable in the presence of the disjunctive and coupled constraints.

5.1.1. Intention models
Two driver intentions i € {A, C} for the other car, corresponding to Annoying and Cautious drivers are defined as:

Uyo,i = Uxo,0 + Ki 1Ay + Ki2 Ahi + &, (40)

where Ay = Yo — Yo, Aha = hpax — h with hpg, being the maximal distance where the other car notices the overtaking
behavior of the ego car, Ah¢ = h, K; ; and K; ; are constants and §; is an input uncertainty accounting for non-deterministic
driving behavior. uy, o = —Ko(vxo — vfjs) + Cdvfjs is a baseline controller that represents other car’s default behavior to
maintain a desired speed vfgs. In (40), K41 > 0 and K42 > 0 are chosen such that the annoying driver drives aggressively
and speeds up to prevent being overtaken, while K¢ 1 < 0 and K¢ < 0 for the cautious driver who slows down and
makes it easier for the ego car to overtake. The specific parameter values in (40) are chosen as: K41 = 0.1, K42 = 0.08,
84 € [—0.147,0.147] (m/s?), Kc.; = —0.1, Kc, = —0.1, 8¢ € [-0.147,0.147] (m/s?), Ko = 0.1, hyipn = 6 (M), hpay = 32
(m), yo = 1.85 (m).

For the safety constraint (2) and the coupled state-input constraint (3), we chose wer = 1.8 (m), Yjgre = 3.7 (m),
vfj = 10 (m/s), and 81 = B2 = 1. The cost function is set as J(ur) = ||ur||2, and the time horizon is T = 4 with a sampling
time §; = 0.3 (s). The ego car’s longitudinal velocity and the other car’s velocity are measured as the output, given by

2(k) = ze(k) _ Uxe(k) + ve(k)

Zo(k) Uxo(k) + vo(K)
with ve(k) and v,(k) being the measurement noise signals. The process and measurement noise signals are limited to the
range of [—0.01, 0.01]. Other parameters in the simulation are chosen as C; = 0.15 (1/s), vy € [0, 34] (m/s), h € [—32, 32]

(m), ye € [0.9,6.5] (m), vy € [10, 28] (M/s), Uye € [—4.2,4.2] (m/s?), vye € [—2.5,2.5] (m/s), ufgs =22 (m/s), e =1
(m/s).

11



Q. Shen, R. Niu and S.Z. Yong Nonlinear Analysis: Hybrid Systems 46 (2022) 101217

carl € {A, C} car2 € {A, C} carl € {A} car2 € {C}

(a) Ego car’s initial position is far from the unsafe zone.

t=0(s) t=1.2(s)

carl € {A, C} car2 € {A, C} carl € {A} car2 € {C}
(b) Ego car’s initial position is close to the unsafe zone.

Fig. 2. Intention estimation results when implementing the separating input obtained from the proposed active and passive model discrimination
approaches for the overtaking scenario subject to different ego car’s initial positions. The corresponding animation can be found at https:
/|youtu.be/BlboF40m4D8.

[lwrll2 [lurl2

Separating inputs
(=]
Separating inputs

—~-VUye

0 0.3 0.6 0.9 0 0.3 0.6
Time(s) Time(s)

(a) Far from unsafe zone. (b) Close to unsafe zone.

Fig. 3. Optimal inputs obtained by solving the proposed active model discrimination under different initial ego car positions.

5.1.2. Intention estimation with different initial ego car positions

In the following, we consider the intention estimation/identification problem using our proposed model discrimination
approach for two different cases, which is also used in the following subsection when we compare our approach and [17]
that leverages sequence of restrictions for tackling the coupled state-input constraints.

In the first case, the initial conditions of the ego car and the other car are v(0) € [22,26] (m/s),y.(0) €
[2,2.8] (m), h(0) € [10, 20] (m), vk (0) € [21, 23] (m/s). As seen in Fig. 2(a), the other car 1 is Annoying and attempts to
speed up so that the ego car cannot overtake it, while the other car 2 is Cautious and slows down slightly to let the ego
car overtake it. Since the ego car’s initial position is far from the unsafe zone, the computed discriminating/separating
inputs (cf. Fig. 3(a)) led the ego car to perform overtaking. Furthermore, although our approach is based on an implicit
representation of the reachable sets of the system, for the sake of illustration, we explicitly compute the reachable output
sets by using the MPT toolbox [22] at each time instance under the optimal discriminating/separating input, as depicted
in Fig. 4, where the two intentions are completely separated at k = 4 despite the considered uncertainties, noise signals
and constraints.

In the second case, the ego car’s initial position is close to the unsafe zone. The initial conditions are v, (0) €
[22,26] (m/s), y.(0) € [1.85,2.8] (m), h(0) € [9, 12] (m), vy,(0) € [21,23] (m/s). Similar to the first scenario, the
computed separating inputs discriminate the other car’s intention successfully. However, as observed in Fig. 2(b), the

12
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(d) k=3 (e) k=4
Fig. 4. Reachable output sets given the optimal separating input at k =0, ..., 4 in the case that the ego car’s initial position is far away from the

unsafe zone. The dark purple area is the overlap of the reachable output sets of the two models. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

ego car does not overtake the other car while estimating other car’s intention. Since the initial position of the ego car is
close to the unsafe zone, the ego car has to slow down (cf. Fig. 3(b)) to satisfy the safety constraint h > h.;;;. Meanwhile,
this action already reveals the intention of the other driver without performing an overtake. In addition, for illustration
purposes, the reachable output sets under the computed optimal discriminating/separating input in the case that the ego
car’s initial position is close to the unsafe zone are also shown in Fig. 5, from which we observe that the two intentions
can be separated at k = 3.

5.1.3. Comparisons with the approach leveraging a sequence of restrictions

We also compared our approach based on Equivalence (ii) of Lemma 1 with the approach leveraging a sequence of
restrictions from [17] in the overtaking scenario subject to the initial conditions in both of the cases above. Specifically, a
sequence of restrictions is only applied to the controlled state constraints, resulting in a sequence of MIQPs, while safety
constraints and separation conditions are still handled by using the KKT-based approach in Equivalence (ii) of Lemma 1.
The approach in [17] required a CPU time of 54.69 (s) and 53.37 (s) (2 iterations) for the two cases, while our approach only
needed 37.96 (s) and 38.39 (s) to achieve the same cost. This demonstrates that the proposed approach required almost
30% less computational time to find the optimal solution in both cases. Moreover, when increasing the input uncertainty
level in intention model (40) from 84, 8¢ € [—0.147, 0.147] (m/s?) to 84, 8¢ € [—0.210, 0.210] (m/s?) in the first case, the
method in [17] led to an infeasible solution, while our approach was able to obtain the optimal input with a CPU time of
38.49 (s).

Further, to test the effectiveness of our approach with more possible models, we also consider another intention
model called Inattentive i = I, which means the inattentive driver/behavior fails to notice the ego vehicle and tries
to maintain the desired velocity. The inattentive intention is modeled by setting K;; = 0 and K;, = 0 in Eq. (40).
We consider the active model discrimination problem with the input uncertainty level 84,8 € [—0.147,0.147]
and the case, ego car’s initial position is close to the unsafe zone. In this case with three intent models, our pro-
posed approach is able to a feasible separating input that can separate the models within T = 8, ie., {uxe}r =
{—4.200, —4.200, —4.200, —4.200, 3.1324, 4.200, —4.200, —4.200} and {v,.}r = {2.500, 2.500, 2.500, —2.500, 2.500,
—2.500, 2.500, —0.7874}, although the optimal solution was not yet found after running the optimization problem for
two days due to our limited simulation platform. However, since this problem is to be solved offline/at design time,
we anticipate that using a more powerful simulation platform can yield the optimal solution relatively quickly. More
importantly, while our proposed approach finds a (sub-optimal) separating input sequence, the existing method in [15]
failed to find any separating input for discriminating the three car intentions because the first subproblem in the sequence
of restrictions is already infeasible.

Based on these observations, we can conclude that our approach outperforms [17] in terms of completeness, optimality
and computational performance.

13
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Fig. 5. Reachable output sets given the optimal separating input at k =0, ..., 4 in the case that the ego car’s initial position is close to the unsafe

zone. The dark purple area is the overlap of the reachable output sets of the two models. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2

Fault model parameters.

Model Re () L (1073 H) K. (1072 Yrad) Ji (1074 %) f 107 L
1 1.2030 5.5840 8.1876 1.3528 2.3396

2 1.7725 5.5837 8.0203 1.3320 2.3769

3 1.7690 6.0798 8.7987 1.4964 2.3570

5.2. Permanent magnet DC motor

We further apply our proposed model discrimination approach to fault detection/identification of DC motors, based
on an example in [11]. The time-discretized dynamics of a permanent magnet DC motor is described in [11,23] and given

by
ik+1)= (1 - %&) i(k) — (%’&) (k) + <%5r> u(k),

(%) _ 1
ok +1)= (J 5t> i(k) + (1 chSt) w(k) + <118t> (k)

where u is the armature voltage, i is the current, w is the angular velocity of the rotor, . is the Coulomb friction, R, is
the resistance, L is the inductance, K, is torque constant, K, = 1.0005K, is the back EMF constant, J; is the motor inertia,
fr is the viscous friction coefficient, and §; is the sampling time.

Note that in comparison to [11,23], we consider a slightly more realistic DC motor model with a dead-zone and a
Coulomb friction term that is known to be nonlinear [24]. In particular, based on [24], we consider the value of the
Coulomb friction to be state-dependent as follows (for all k):

ar, ifw(k) <0,
az, ifw(k) >0,

(41)

te(k) = { (42)

and additionally, we consider a symmetric dead-zone threshold w® (where the rotor does not rotate) and to ensure that
the rotor does not stop, we impose a disjunctive constraint (cf. (12)) that the angular velocity w(k) must satisfy:
{o(k) < —0®} V {o(k) > 0%}, (for all k > 1). (43)

14
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Fig. 6. Optimal input obtained by solving the proposed active model discrimination under different cost functions.

As described in Table 2, three models are considered based on the model parameters in Table 2 of [11]. Model 1 is
fault-free, while the fault model 2 is due to the increase of armature resistance by +0.5 (2) and the fault model 3 is due
to the wearing of the brush, leading to insufficient brush pressure.

The initial conditions are assumed to satisfy i(0) € [0.54, 0.66] (A) and w(0) € [0.02, 0.07] (rad/s) and we consider
o% = 0.1 (rad/s). Since our initial rotor angular velocity is set in the dead zone and is positive, 7.(0) = . Moreover, the
current is constrained by i(k) € [—10, 10] (A) and the rotor angular velocity is constrained by w(k) € [—150, 150] (rad/s)
for all k ZT*, while the input armature voltage is bounded by u(k) € [—12, 12] (V). The other parameters are chosen
as € = 0.0001, «; = 0.001, and @ = —0.005. Moreover, we consider two cost functions, i.e., J(ur) = |lur|le and
JCur) = llurlly with ur = {u(k)};Z,, and the time horizon is T = 2 with a sampling time § = 0.005 (s).

In order to account for parameter uncertainties, similar to [11], the state dynamics in (41) were augmented with the
term B,, jw(k), where

g . _[—00254 —0.0778] , ~_[-00231 —0.0471| , ~_[-0.0242 —0.0537
wl=1_0.3996 0.3026 |’ "2~ |—-0.3470 0.2798 |’°»3~ |—-0.3516 0.2797 |’

and the process noise is limited by w(k) € W = {w : ||w||s < 1}. The current and rotor angular velocity are measured as
the output, given by

i(k) + vi(k)
yk) = [a)(k) i vw(k)]

with v;(k) and v, (k) being the measurement noises, both being limited to the range of [—0.06, 0.06]. Fig. 6 shows the
separating inputs computed in Theorem 1 that can successfully discriminate the fault models at T = 2 with different cost
functions. Similar to the intention estimation example, for the sake of illustration, we also explicitly depict the output
reachable sets for the case with J(ur) = ||ur|l« in Fig. 7 by using the MPT toolbox [22] to verify the effectiveness of
the computed separating input. Further, to demonstrate that our approach can scale to problems with more models, we
increased the number of the fault models to 5 with the parameters for the two additional models corresponding to Models
5 and 6 in [11]. Our simulation results show that our proposed approach can obtain a separating input for discriminating
among all five fault modes within T = 2, although this result is sub-optimal given that we terminated the optimization
problem on our limited simulation platform after 2 days.

Furthermore, we also applied our proposed method to the fault detection example of DC motors in [11] that does
not consider the velocity dead-zone and the Coulomb friction, and specifically, we considered models 1, 2, 4 and 6. The
optimal separating input is shown in Fig. 8, and the corresponding output reachable sets are depicted in Fig. 9. It is clear
from Fig. 9 that our proposed method can successfully separate fault models within 2 time steps.

6. Conclusion

In this paper, we considered the active and passive model discrimination problems among a finite number of models
subject to disjunctive and coupled constraints. These general constraints can be used to represent state-dependent
piecewise input constraints, e.g., curvature constraints or input saturation, and disjunctive state constraints, e.g., non-
convex safety restrictions or collision-free regions. We proposed to reformulate these constraints by leveraging KKT
conditions and introducing binary variables, thus converting the model discrimination problems into tractable MILP/MIQP
problems. Finally, we illustrated the effectiveness of the proposed approach with simulation examples for identifying
driver intention in an overtaking scenario and for discriminating/identifying fault in an example with a permanent
magnetic DC motor. Future works would include the consideration of piecewise intention models in the context of passive
and active model discrimination. In addition, how to further reduce the computational complexity of our proposed model
discrimination approach to make it applicable to examples with a high number of models is also an interesting future
direction.
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Fig. 7. Reachable output sets given the optimal separating input at k = 0, 1, 2 for the case with J(ur) = |lur|l~. The dark blue area is the overlap
of the reachable output sets of the three models. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 8. Optimal input obtained by solving the proposed active model discrimination for the DC motor example in [11].
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Fig. 9. Reachable output sets given the optimal separating input at k = 0, 1, 2 for the case with J(ur) = |lur|« for the DC motor example in [11].
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Appendix A. Matrices and vectors pair-concatenated dynamics in (17)-(20)

The pair-concatenated dynamics in (17)-(20) can be obtained in two steps. In the first step, we concatenate the states
and outputs in (7) and (8) over the time horizon T, and re-write the time-concatenated model in terms of the uncertain
variables including the time-stacked initial state x,, input vectors ur, dr, and noise wr, vr, as follows:

Xir = My i 1% + Duirtr + Dairdir + Dairwir +firs (A.1)
Vit = Myi1& + Tywirur + Dairdit + Dywirwit + fyirs (A2)
X = AirX) + Lyirur + Dyirdir + Dyirwir + fir, (A3)
zir = E&) + Fyur + Faidir + Fovir + it (A4)
2 0 - 0 A;
Aif2 2 -0 B Al.2
To obtain the above, we first define the operator ®;(£2) = . . . ,as well as A;1 = .
AT AT - 2 A1

+ = {x,y} and » = {u, d, w}. The involved matrices and vectors in (A.1)-(A.4) can then be constructed as follows:

I . .
1. In (A 1)~(A2), Mi i1 = Aidit |:A'r 1} with A ¢ 7 = diagr {[Ai Al )
iT—

0 0 . By i .
2. In (A1)=(A2), Ttuit = At diT |:F s 0i| + By a,it With I j7—1 = @14 <|:B; zi|> and By, q,i,7 = diagr{B;..i};

_ 0 _ o _ B B
3. In (A 1)=(A2), frir = Atair |: +fiir with fir—1 = O 1(0)f ; 7_4, fi7—1 = vecr—1{fi} and f; ; 1 = vecr{f; i}

fir—
4. In(A3), I.it =O;1 <[By*,]>'f” = Oir(D)f ;r with f; 1 = vecr{fi};

5. In (A4), E; = diagr{G}, F.; = vecr{D,;}, &1 = vecr{g}.

BX*,i

Next, in the second step, building upon the time-concatenated dynamics (A.1)-(A.4) from the first step, we further
concatenate the time-concatenated dynamics for each model pair ¢ = (G;, Gj), Vi,j € Z,J; with i # j. Let 1 = {x,y}
and » = {u, d, w}. For pair t = (G;, G;), the matrices and vectors in the pair-concatenated dynamics (17)-(20) can be
constructed as follows:

1. ]~n (17)-(18), 1\~/11l» = diagk:[i,j}{MT,k,T}. F:rlu = VeCk:{i,j){FJ;u,k,T}- FTLd = diagk:[i,j}{rfd,k,T}v Fflw = diagk:{i,j}{rm,k,T}.
fi = veci—iijfikrh
= -

2.In (19), A = diag_;;{Acr}, I} = veawij{lukr)h Iy = diag_gj{larr), Iy = diagej{lukr) f£ =

Veck:{i,j}if:k,T}; - — —
3. In (20), € = diagi—;y {Ex}, Dy = veCk=(ijj{Fux}, Dg = diagi—j{Fax} D, = diagi—;{Fo} 8" = veci=(ij{8er}-

Appendix B. Matrices and vectors in (21)

Similar to Appendix A, the matrices and vectors of the pair-concatenated state constraints and uncertainty constraints
defined in (21) can also be obtained in two steps. Let + = {x, ¥y} and * = {u, d, w}. In the first step, the state constraints
(i.e., (10) and (11)) and uncertainty constraints (i.e., (14), (15) and (16)) of model G; over a time horizon of T are
stacked/concatenated as follows:

HiitXir < Prir — Prirfeir — PrirDhwirtr,  HyirX < hyir, (B.1)

where the time-concatenated uncertainties are denoted as X = [g?'T dip wip vl Piir = diag{P;i}, Prir =
vecr{pt,i}, Hiit = Piir [Mf,i,T Figir Tt 0]. Hz;r = diag{Po, Qu,ir, Qu,it, Quir} with Q.;7 = diagr{Q. i},
hsir = vec{po, Ga,irs Qu.iT> Qu.ir} With Guir = vecr{gar}-

Then, in the second step, stacking the time-concatenated state and uncertainty constraints (B.1) for each model pair
t=1(Gi,Gj) Vi, je Zﬁ with i # j, we obtain the pair-concatenated state and uncertainty constraints in terms of uncertain
variables for each model pair ¢ (cf. X' = [x] df wi vi']"), ie, (21), where the involved matrices and vectors can be
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constructed as follows:

P, —kdlag{PTkT} Py = v vec (Pt} Hy =P;[M; Ty Iy, 0],
={i.j}

H: = diag{ P0 Qd Q,j), Qv} with P0 = dlag{Po} and Q = ’dl{ag{Q, KT)
e={i,j}
h = vecipy, dg> 4,,» 4.} With Po = vec(po} and g, = vec (g .1}.

Appendix C. Matrices and vectors in Proposition 4

B = [FRi -Fj1 = [E -E
For x = {d, v} : F, = [—F*J- F.,; ].E = [—Ei E |

A'=E[A r; r, o]+[0 F, o F].

w

For t = {x,y}: I}, = Jec (T, Tig = di{ag{Fm,k,r},
k={i

- kdlag{r'rw kT} M - dlag{MT kT f-i- - Vec {fT kT}~
{i.j} ={i.j}

— F.i—F - g&—8 H,
F u,i u.j L 3 J ,Rl — y i
|:Fu1_Fu1:| ¢ [—g,-+gj} [A‘
rt= Py __P]fyl LSt = Pyryl“ .
—Efft ELy 4+ F

Appendix D. Proof of Lemma 1

The generalized semi-infinite constraint in (29) can be viewed as introducing a bilevel structure [18] and is equivalent
to MaXy Xy P = 0, where p 2 Ax — b— Cy, and X(y) 2 {x : Dx < e+ Fy, Gx < h}. Using this, Equivalence (i) can
be obtained as the robust counterpart of the lower level problem using duality tools from robust optimization [25,26]. On
the other hand, to obtain Equivalence (ii), since each row of p must be maximized, we introduce a slack variable p, for
each row and convert the semi-infinite constraint into finitely many linear constraints p} < 0, where p} is the maximum
p, satisfying constraints in X, i.e.,

p _al‘gpmlrl —pa
st. Dxg < e+ Fy. Gxa < b py = AXa — bay — Cwy-

Then, applying KKT conditions and rewriting the complementary slackness constraints as SOS-1 constraints, we obtain
Equivalence (ii). O

Appendix E. Proof of Lemma 2

By introducing the binary variables ) and slack variables s, by the definition of SOS-1 constraints, the constraint
(32b) guarantees that at least one 7 must be 1, thus, at least one s/ must be zero, i.e,, ¢V < s =0. O

Appendix F. Proof of Lemma 3

The binary variable y) = 1 implies that 5(")7@— 79y < B holds and by the piecewise constraint, Qx4+ Ry <a®
holds, while the SOS-1 constraint ensures that ¢? = 0. Combining them, we have (33a) with ¢ = 0. Otherwise, y) = 0
implies that ¢ is free and (33a) holds trivially. Finally, since we consider a partition, i.e., only one ¥ can be 1, (33b)
must hold. O

Appendix G. Proof of Proposition 1

Using the concatenated notations in Secti_on 3.2, this reformulation follows directly from Lemma 1 with 4 £ H]
b2 p,—Pifi, C&—PiIi, D2H, e2p,—Pifi, F2 Pl and G2 Hi, A2 hi. O

x* xu> yiyu
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Appendix H. Proof of Proposition 2
By leveraging Lemma 2, the conditional “OR” state constraints in (27a) can be reformulated as
VieZy,VjeZ; VkeZy 1:

rd) € {0, 1},508-1: {r%), sV} Zrk>1
PU)M’ k):(S ikt Pg,?[;cu,i,kuT - Ps,l- ‘l‘ PU) xik = ,U;)p
U) =0 i) =0) i)z =0)
Wsrk € {xsrk Py,iMﬁ'kxs,i,k'l_ I—l'ulkuT _py1+P pf)’,lk =0 HiszSIk hizk =0}
Then, we obtain (35) by applying Equivalence (ii) in Lemma 1 with the following corresponding matrices: 4 £ Ps(llMi,»k'
Eépg)i 3,x1k=C P Guxk.@épy({)iM):,i.k,eéP},’,),- )fytk- £ Flmtk-g xlk'ﬁéhii,k' (W
Appendix 1. Proof of Proposition 3
By leveraging Lemma 3, the coupled state-input constraints in (27a) can be reformulated as

VieZy,Vj € Z, | VkeZd | :

v €{0,1),508-1: {5, th). Y vl =1

J
0 pe ) ) i j ) 7
e, [0 b ol o F?’)‘l @ -]
)

< : . +t
i 0)) 0 F ik
ng 1M’ [Pux ,qu i,k ur pux,i - Puxyifx,i,k
DIV 07 o
\flk P M*kX,k-l-P I}U,f,’<u7_py1+P Jl”k<0 3.0 kXi hizk— }’
where the following corresponding matrices in Lemma 3 are used: x;;, £ Xk, ¥ 2 ur, Q, = xl Mz o 17{

I:Qtl;),ia“lek Uu),i 0]' Slul)c £ PIEIX)IM§,1< (IIUI)< 2 I:Puxrruhk 0]’ al(ll)c £ qg,l qurfx'k' and ﬂzk = puxz - PU)}f’”k
We further utilize Equivalence (ii) in Lemma 1 to reformulate the coupled input-state piecewise constraints above to
obtain (36), where the following matrices in Lemma 1 are used to get the result in Proposition 3: 4 & [QU)T SU)T] ,

ik
5o [y,zT ] + G c = [-xy —19]. g fen
F P Fyu,k O

>
(1>
>

) ) OF;
H;,i,k' fD L PJ’:iMJ:’i,k’ e = py,i — Py,ijl/aiak and

X0,k

Ill>

Appendix ]J. Proof of Proposition 4

This is obtained using the same steps in Theorem 1 of [13]. Similar to the previous result, the (non-convex) input,
responsibility and safety constraints are enforced in the outer problem by Propositions 1-3; thus, they trivially hold in
the inner problem of the separability condition and need not be explicitly included. O
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