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Objective: This study develops a computational model to
predict drivers’ response time and understand the underlying
cognitive mechanism for freeway exiting takeovers in conditionally
automated vehicles (AVs).

Background: Previous research has modeled drivers’
takeover response time in emergency scenarios that demand
a quick response. However, existing models may not be applicable
for scheduled, non-time-critical takeovers as drivers take longer to
resume control when there is no time pressure. A model of driver
response time in non-time-critical takeovers is lacking.

Method: A computational cognitive model of driver
takeover response time is developed based on Queuing
Network-Model Human Processor (QN-MHP) architecture.
The model quantifies gaze redirection in response to takeover
request (ToR), task prioritization, driver situation awareness,
and driver trust to address the complexities of drivers’ takeover
strategies when sufficient time budget exists.

Results: Experimental data of a preliminary driving simu-
lator study were used to validate the model. The model ac-
counted for 97% of the experimental takeover response time
for freeway exiting.

Conclusion: The current model can successfully predict
drivers’ response time for scheduled, non-time-critical freeway
exiting takeovers in conditionally AVs.

Application: This model can be applied to the human-
machine interface design with respect to ToR lead time for
enhancing safe freeway exiting takeovers in conditionally AVs. It
also provides a foundation for future modeling work towards an
integrated driver model of freeway exiting takeover
performance.

Keywords: computational cognitive model, takeover response
time, scheduled takeovers, freeway exiting, conditionally au-
tomated vehicles

INTRODUCTION

Conditionally automated vehicles (AVs),
known as the third level of automation in driving
(SAE International, 2016), are under de-
velopment with the expectation of realizing
attention-free driving within limited areas. A
common approach to defining the operational
needs and capability boundaries of automated
driving systems (ADSs) is referred to as Oper-
ational Design Domain (ODD), which is a de-
scription of specific conditions (e.g., roadway
features, speed range, weather) in which an ADS
is designed to operate adequately (NHTSA,
2017). The Highway Pilot feature, for in-
stance, enables a car to drive itself on some
designated highways, but it requires the driver to
take over control of the car before exiting
(Hungar et al., 2017). To facilitate a successful
exit and roadway safety, when the ADSs initiate
a takeover request (ToR), drivers should be
provided with appropriate information such as
the reason for takeover, the remaining time or
distance before exiting, and surrounding ve-
hicles that need attention. This information
conveyed by human-machine interfaces (HMIs)
serves to assist drivers with a quick un-
derstanding and anticipation of the situation
(namely situation awareness (SA); Endsley,
1988), getting prepared for driving maneuvers,
and performing a takeover task safely.

Existing Computational Models of Driver
Takeover Performance

The existing computational models for pre-
dicting drivers’ takeover performance were built
using methods that can be classified into two
categories: data-based modeling (e.g., statistics,
machine learning) and cognitive architecture-
based modeling. The data-based models were
developed and tested using data collected from
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driving simulator experiments with the goal to
identify the patterns in data and ultimately de-
termine the function that maps predictors to
outcomes. For example, Gold et al. (2018)
presented regression models by drawing in-
ferences from a sample of 753 time-critical
takeover events in six experiments. The mod-
els captured takeover performance measures
(i.e., takeover response time, minimum time-to-
collision, brake application, and crash proba-
bility) as a function of predictors such as time
budget, traffic density, non-driving related tasks
(NDRTs), and driver age. Supervised machine
learning classifiers were also trained on empir-
ical data (which were labeled according to the
ground truth) to recognize good or bad takeover
performance based on traffic situation- and
driver-dependent features (Braunagel et al.,
2017; Du et al., 2020).

The other category of computational mod-
eling methods for predicting drivers’ takeover
performance is based on cognitive architectures,
which is a theory-driven, top-down approach.
Adaptive Control of Thought-Rational (ACT-R)
is based on chunks of declarative knowledge and
procedural knowledge that manipulates de-
clarative knowledge and environment by firing
condition-action production rules (Salvucci,
2006). The ACT-R architecture has been used
to quantify the effects of NDRT complexity and
traffic complexity on takeover response time
(Scharfe & Russwinkel, 2019a). It has also been
used to predict the time course for the individual
takeover behavior, namely gaze on ToR, stop-
ping NDRT, hands on steering wheel, and gaze
on road (Scharfe & Russwinkel, 2019b). By
combining the ACT-R cognitive architecture
and queuing network (QN) mathematical
foundations, Cao and Liu (2013) proposed the
QN-ACTR architecture. To implement the QN-
ACTR modeling, a computerized program built
on Micro Saint Sharp is connected to a driving
simulator program to produce predictions of
driver performance, such as the trace of simu-
lated mental activities, behavioral responses,
reaction times, correct rates, and mental work-
load (Cao& Liu, 2013). To date, only Deng et al.
(2019) has made an attempt to model drivers’
response time to emergency takeovers with

visual or auditory concurrent tasks in condi-
tionally AVs.

While ACT-R and QN-ACTR rely on com-
puter simulations to model human performance,
Queuing Network-Model Human Processor
(QN-MHP) provides a theoretical framework to
develop computational cognitive models that rely
on a set of math equations, which are more
rigorous to make predictions and more flexible to
be integrated into systems for the purpose of
application. QN-MHP integrates queuing net-
works and model human processor for predicting
human performance and concurrent electro-
physiological activities in the brain (Liu et al.,
2006; Wu & Liu, 2008). The QN-MHP frame-
work has been used to successfully model
drivers’ takeover performance. Ko et al. (2019)
developed a QN-MHPmodel of drivers’ takeover
response time to different auditory ToR displays
(i.e., speech, spearcon, and earcon) in emergency
takeovers such as a deer, a parked car, or a service
vehicle blocking the driving lanes. Based on that,
Ko et al. (2022) enhanced the model by in-
tegrating the perceived intuitiveness and per-
ceived urgency of different auditory warnings.
Sanghavi (2020) focused on the driver state while
performing takeover tasks to avoid an obstacle on
road, specifically how anger affected drivers’
takeover response time and safety. In short, the
existing QN-MHP models of takeover response
time focused on emergency takeovers that require
timely responses.

Existing models have successfully predicted
drivers’ takeover behavior in time-critical sce-
narios. However, few attempts have been made
in developing computational models to predict
how drivers would behave in scheduled, non-
time-critical takeovers in conditionally AVs.
Drivers were found to take longer to resume
control when there was no time pressure com-
pared with that in time-critical scenarios
(Eriksson & Stanton, 2017). Summala (2000)
also argued that drivers may not be motivated to
intervene if there is sufficient time. Thus, ex-
isting driver models may not be applicable for
freeway exiting takeovers. Although less haz-
ardous than imminent collisions, the freeway
exiting entails a cautious takeover decision-
making for stable vehicle control and safe
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driving maneuvers to exit a freeway. Modeling
the driver response to freeway exiting takeovers
will contribute to a better prediction of the post-
takeover performance, and therefore improve
driving safety.

Association Between Influential Factors
and Takeover Response Time

In conditionally AVs, a takeover request
(ToR) plays a crucial role in directing drivers’
attention from non-driving activities back to the
driving task. The ToR lead time (or time budget)
is one of key design parameters. It is defined as
the time duration between the ToR onset and the
car arriving at the target exit when it maintains
the automated driving speed. Numerous em-
pirical studies have examined the ToR lead time
for the purpose of improving the HMI design for
drivers’ better takeover performance. A meta-
analysis of 129 studies (with a ToR lead time
range of 1.5–30 seconds) has revealed that
a higher urgency of the situation (with a shorter
ToR lead time) was associated with a shorter
mean takeover response time (Zhang et al.,
2019). Tan and Zhang (2022) focused on
scheduled takeovers for freeway exiting and
examined 12 levels of ToR lead time within
a range of 6–60 seconds. Results found that the
takeover response time increased with ToR lead
time, indicating drivers postponed their takeover
actions further when they were given more time.
A consistent trend was also found that a longer
ToR lead time was associated with better driver
SA, for instance, an increase of glance frequency
to the road (Lu et al., 2017) and an enhanced
ability to anticipate latent hazards (Samuel et al.,
2016; Wright et al., 2016; Vlakveld et al., 2018).
In all, the ToR lead time is an important factor
that affects driver SA and response time for
conditionally AV takeovers.

Many Human Factors researchers would
agree that driver SA is a key component in the
conditionally AV takeover process and it is
predictive of takeover performance and safety.
Van den Beukel and Van der Voort (2013), for
instance, conducted a Pearson correlation
analysis and found that the takeover success rate
was positively correlated with drivers’ self-rated
SA scores. Some studies did not conduct

correlation analysis but observed drivers’ better
SA and enhanced takeover performance under
the effect of HMI design. For example, Cortens
et al. (2019) found that drivers who had better
SAwere able to grip the steering wheel faster to
avoid collisions in traffic congestion regardless
of the ToR modality. When informed by a pre-
warning of hazards prior to the ToR, drivers
were able to build up better SA and react faster
by braking or steering to take over (Ma et al.,
2021). Stockert et al. (2015) demonstrated better
driver SA regarding the automation status and
drivers’ faster braking reactions when they were
presented with system uncertainty information.
Some other studies also provided evidence that
poor driver SA was related to the impaired
takeover performance. Agrawal et al. (2017)
ascertained drivers’ compromised ability to
anticipate possible hazards and lower variability
in vehicle velocity in the complex driving en-
vironment, which indicated that drivers were
less likely to brake for upcoming hazards. Yang
et al. (2020) found that drivers being engaged
with NDRTs in active interaction mode (i.e.,
playing games) resulted in less frequent road
checking and more time needed for making
a swerve and arriving at the safe position as
compared to NDRTs in passive interaction mode
(i.e., watching videos and reading news). To sum
up, empirical findings suggest the existence of
positive correlations between driver SA and
takeover performance. Having the dynamic
driver SA as a model input is expected to be an
effective method to predict the takeover re-
sponse time.

Drivers’ takeover performance is likely to be
impaired when they were engaged in NDRTs
during conditionally automated driving. In
particular, drivers who were distracted by
NDRTs need time for visual and cognitive
processing of the road information to re-build
SA and thus took longer to respond to ToRs
compared with those without NDRTs (Eriksson
& Stanton, 2017; Zeeb et al., 2015). A higher
level of NDRT engagement (using the pro-
portion of glance durations on NDRT and the
time between NDRT sessions as two indices)
was found to be associated with a longer delay in
drivers’ response to ToRs (Rauffet et al., 2020).
In addition to the abovementioned factors, driver
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characteristics and attitudes towards automation
systems, such as age and trust, might also in-
fluence takeover response time. Old drivers had
a significantly slower takeover response than
their young counterparts (Li et al., 2018). The
age difference also has a significant effect on
driver trust, which plays a mediating role in
explaining the variance in takeover response
time (Gold et al., 2015). An increase of drivers’
subjective trust in automation was associated
with a longer takeover response time (Jin et al.,
2021; Payre et al., 2016).

Objectives

This study makes a first attempt to develop
a computational cognitive model of drivers’
response time for scheduled, non-time-critical
freeway exiting takeovers in conditionally
AVs. The QN-MHP architecture is selected
with consideration of its previous use in pre-
dicting drivers’ response time in critical
takeover scenarios (Ko et al., 2019, 2022;
Sanghavi, 2020) and its ability in quantifying
the effects of a large range of warning lead
time on manual driving performance (Zhang
et al., 2016; 2022), which can provide a sound
foundation for the present modeling work. In
addition, the QN-MHP framework has suc-
cessfully modeled the effect of age on driver
performance (Wu & Liu, 2007; Zhao & Wu,
2013), which allows us to account for the age
differences in affecting perceptual-motor
reaction.

MODELING MECHANISM

QN-MHP Structure Involved in
Conditionally AVs Takeover

QN-MHP was developed based on the sim-
ilarities between the human cognition system
and queuing networks (Liu et al., 2006; Wu &
Liu, 2008). The QN-MHP is composed of three
subnetworks of servers: perceptual, cognitive,
and motor subnetworks. Each server represents
a brain region with similar information-
processing functions. A route represents the
neural pathway that connects servers to process
and transmit entities across the three

subnetworks. For a general structure and de-
tailed descriptions of QN-MHP and its servers,
see Wu and Liu (2008).

A few effective servers and routes of QN-
MHP were used in the model of drivers’ take-
over response time for freeway exiting in con-
ditionally AVs as illustrated in Figure 1. Drivers
using conditionally AVs are assumed to be out of
loop engaging in NDRTs without monitoring the
road. Based on Borowsky et al.’s (2022) in-
terruption management strategies of handling
scheduled, nonemergency takeover events, upon
the delivery of an auditory ToR, drivers switch
their attention to the road, possibly with an
intentional delay to perform NDRTs. Then, re-
lying mostly on visual cues, drivers build up SA
to assess the urgency level of the takeover sit-
uation, based on which priority is given to either
the takeover task or NDRT. When the takeover
situation is perceived to be urgent in that there is
shorter than acceptable remaining travel dis-
tance to exit a freeway, drivers will be more
likely to get prepared for takeover. When the
takeover situation is less urgent, drivers may
alternate attention between the NDRT and the
road until the perceived urgency becomes high
when drivers think it is necessary to intervene
for exiting a freeway safely. In the latter situa-
tion, every time when drivers redirect gaze from
NDRT to the road, they will update SA, assess
the takeover urgency, and select the task with
higher priority. The desired model therefore
involves two components: gaze redirection in
response to ToR and task prioritization and
execution.

Gaze Redirection in Response to ToR. An
auditory ToR enters the perceptual subnetwork
at Server 5. The auditory information was then
transmitted in parallel auditory pathways
through Server 6 and Server 7, which processes
content features (e.g., what does the auditory
message convey) and location features (e.g.,
where does the sound come from), respectively.
These features from two auditory pathways are
integrated at Server 8 and then transmitted to
Server B for cognitive processing.

To simulate the different pathways when
drivers process the auditory information in
cognition, a route choice mechanism developed
by Zhang et al. (2022) was adopted. The shorter
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route when the auditory entity is transmitted
from Server B directly to Server W represents an
unconditioned, immediate motor response to the
auditory stimulus. By contrast, the auditory
entity passing through the longer route would
take place when a driver is highly engaged in
a NDRT, and consequently has a relatively slow
response. In this process, the central executor
(Server C) serves to suppress automatic re-
sponses and decide to direct attention.

In the motor subnetwork, motor programs are
retrieved at Server Wand assembled at Server Y.
The Server Z transmits the neural signal to the
head and eyes for looking up and scanning the
road.

Task Prioritization and Execution. After
drivers redirecting attention to the road, visual
entities (e.g., lanes, the desired exit, the navigation
map) enter the perceptual subnetwork at Server 1.
The visual information was then transmitted in
parallel visual pathways through Server 3 for
processing location features (e.g., which lane is the
car currently in) and through Server 2 for pro-
cessing content features (e.g., which lane should

the car be in and whether the car needs to change
lanes to exit from the freeway). These features from
two visual pathways are integrated at Server 4.

In the cognitive subnetwork, the visuo-
spatial sketchpad (Server A) integrates the
individual pieces of visual and spatial in-
formation, and generates a perception of the
urgency level of takeover situation (Bear et al.,
2001). In this study, a determinant factor of
takeover urgency is the remaining travel dis-
tance to the desired exit. Drivers have their
own thresholds (or preferences) for the re-
maining distance to take over for exiting
a freeway. By comparing the actual remaining
distance with the threshold at Server F
(decision-making function), possibly weigh-
ing the loss (e.g., missing an exit) and the gain
(e.g., performing NDRTs) of maintaining the
automation mode, drivers will decide either to
return gaze to NDRTor to continue monitoring
the driving or to take over control immedi-
ately. A neural signal will be sent to Server C
(central executive function) and then the motor
subnetwork for executing the decision.

Figure 1. Servers and routes of QN-MHP used in the model.
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When drivers divert gaze away from the road
and engage in NDRT, they will store the take-
over task in the working memory (Server C).
Depending on the progress of NDRT perfor-
mance and the mental estimation of the re-
maining travel distance with the elapsed time
(Server F), they redirect attention to the road to
update the perceived takeover urgency and
starting another round of task prioritization.

When entities travel to the motor sub-
network, the motor commands for each task
prioritization decision are retrieved and exe-
cuted at Server W and Y, respectively. Finally,
Server Z transmits the neural signal to the
corresponding body part, such as the head for
redirecting attention, one hand for pressing the
takeover button, etc.

Mathematical Modeling of Takeover
Response Time in QN-MHP Structure

The general process of taking over control of
conditionally AVs for freeway exiting is illus-
trated as Figure 2. AToR is issued with the lead
time (wt) before the car arriving at the freeway
exit at the current automated driving speed. The
takeover response time (RT ) is defined as the
amount of time that takes place between when
a ToR is issued and when the driver executes
a takeover action. RT consists of three com-
ponents: RTA represents the response time to an
auditory ToR, namely the time duration from
a ToR to the driver’s first gaze fixation on the
road after the ToR. TS is the total time of al-
ternating attention between monitoring AV
driving and NDRT, namely the time period from
the first to the last gaze redirection to the road. TS
collapses to zero when a driver does not return

gaze to NDRT after the first fixation on the road.
RTV represents the response time to visual el-
ements for performing the takeover task. RTV
can collapse to zero when a driver does not scan
the road before takeover. By adding up three
segments, the takeover response time for free-
way exiting can be modeled as equation (1).

RT ¼ RTA þ TS þ RTV (1)

The desired model aims to predict the take-
over response time at elapsed time t since the
first gaze redirection to the road after a ToR,
without knowing which task (i.e., returning gaze
to NDRT, or monitoring the AV driving, or
resuming control of the AV) the driver will
prioritize. Thus, the response time (RT(t)) was
modeled as a function of t as in equation (2).

RTðtÞ ¼ RTA þ t þ PtakeoverðtÞ×RTV

þ ð1% PtakeoverðtÞÞ× TðtÞ
(2)

where PtakeoverðtÞ represents the probability of
the driver deciding to take over AVs immedi-
ately at time t and RTV is the response time to
road information (i.e., visual entities) in the
takeover reaction. The probability of the driver
not taking over AVs immediately is
1% PtakeoverðtÞ, under which condition TðtÞ
represents the amount of time it takes before the
takeover action starting from the gaze re-
direction at elapsed time t. Details of the
modelling work for each component are de-
scribed in following sections.

Modeling Driver Response Time (RTA) to
Auditory ToR. As a route choice located at
Server B was utilized to simulate two different
pathways of auditory information processing,

Figure 2. A general process of conditionally automated vehicles takeover for freeway
exiting.
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the driver response time (R TA) to an auditory
ToR was modeled in a general form as below
(Zhang, et al., 2022, equation (1))

RTA ¼
X2

a¼1

½PTa×Pa,m
#

(3)

where PTa is the processing time of an auditory
entity traveling through route a (a = 1 represents
the shorter route: 5→6/7→8→B→W→Y→Z→
21; a = 2 represents the longer route: 5→6/
7→8→B→C→F→C→W→Y→Z→21). Pa,m
represents the probability of the auditory entity
passing through route a in event m.

The processing time (PTa) of an auditory
entity is modeled by summing the processing
times of the entity at all servers on route a
(Zhang et al., 2016, equation (10)). In addition,
PTa was computed by quantifying the aging

factor.where Aa was used to quantify a slowing
of auditory reaction with increasing age, which
was obtained from Forbes (1945). Tk
(k ¼ 5; 6; 8,B,C,F,W ,Y , Z, 21) denotes the
processing time of the entity at Server k. See
Table A1 in Appendix for model parameters
settings. In the longer route (a = 2), TC contains
one additional cycle for suppressing an auto-
matic response (Liu et al., 2006). TDE is the
amount of time that a driver delays the gaze
redirection in non-critical situations, which in-
cludes the time spent on phonological judge-
ment at Server F and the task switching at Server
C. TDE was modeled to be proportional to the
tolerable amount of time for takeover.

TDE ¼ ðwt % TθÞ× εa (5)

where Tθ represents a driver’s threshold of re-
maining time to exit a freeway in the wt lead time
condition. In this study, the threshold values were
simply estimated using the regression modeling
method with ToR lead time as the only input. εa is
a free parameter, which is determined by fitting the
data.

In equation (3), the probability of an auditory
entity traveling through a route was modeled by
driver trust in the previous takeover event based
on the assumption that drivers are more likely to
spend longer time to switch their attention back
to the road when they have higher trust in au-
tomation systems. It is consistent with the em-
pirical evidence that higher driver trust was
associated with longer eyes-on reaction time
(Vlakveld et al., 2018). Driver SA, which is
influenced by the level of NDRT engagement, is
also an influential factor of driver response time
to ToR. An increased level of game engagement
was found to reduce the quality of driver SA,
which resulted in a delay in eyes-on response
time to takeover requests (Rauffet et al., 2020).
The probability of the TOR (an auditory entity)
traveling through the longer route (P2,m in
equation (3)) in a takeover event was modeled as
below.

P2,m ¼ 1
2
ðPTR,m%1 þ PEN ,mÞ (6)

where PTR,m%1 and PEN ,m in percentage terms
represent driver trust in event m% 1 and NDRT
engagement in event m, respectively. For the first
takeover event, PTR, 0 is the initial driver trust
before the first use of the systems. PEN ,m can be
quantified as the proportion of glance durations on
the NDRT before ToR (Rauffet et al., 2020).

As the probability of an auditory entity
choosing two different routes sums up to 1 in
equation (3), the probability of an auditory entity
choosing the shorter route (P1,m) can be com-
puted accordingly.

P1,m ¼ 1% P2,m (7)

Modeling Driver Response Time (RTV ) to
Visual Entities for Executing Takeover. When
a driver decides to take over, visual entities will
travel through the route (1→2/3→4→A→C→
W→Y→Z→24) based on queuing network. The
response time (RTV ) to visual entities in equa-
tion (2) was modeled as the sum of processing

PTa ¼
!
Aa × ðT5 þ T6 þ T8 þ TB þ TW þ TY þ TZ þ T21Þ, a ¼ 1

Aa × ðT5 þ T6 þ T8 þ TB þ TC þ TW þ TY þ TZ þ T21Þ þ TDE, a ¼ 2
(4)
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times of the entities at all servers on the route as
below.where Av was used to quantify a slowing

of visual-motor reaction with increasing age,
which was obtained from Kim et al. (2019). Tk
(k ¼ 1; 2; 4,A,C,W , Y ,Z, 24) denotes the pro-
cessing time of a visual entity at Server k. See
Table A1 in Appendix for model parameter
settings. n is the number of fixations on the road
after gaze redirection to the driving task at
elapsed time t, which is an indicator of driver
perception (Level 1 SA).

Modeling Task Prioritization Among NDRT,
Monitoring AV Driving, and Takeover. After
redirecting attention to the road at elapsed time t,
drivers’ possible behavior of alternating atten-
tion was modeled using Markov chains as il-
lustrated in Figure 3. Three distinct states
S ¼ fS1 ¼ Sroad , S2 ¼ SNDRT , S3 ¼ Stakeoverg
denote the mental state concerning the intention
for monitoring the road, engaging in NDRT, and
preparing for takeover, respectively.While using
one second as discrete time intervals, the Mar-
kov process predicts a driver’s intention for the
next second based on the current mental state,
namely predicting Sðt þ 1Þ based on SðtÞ, pre-
dicting Sðt þ 2Þ based on Sðt þ 1Þ, etc. The
initial state is a driver redirecting gaze to the road
at elapsed time t, i.e., Sð0Þ ¼ S1. The Markov
process ends when the driver intends to take
over, i.e., when S ¼ S3. During this time period,
the driver may alternate attention between the
road and NDRT or maintain attention on the
same task for successive time intervals.

The state transition probability matrix A ðtÞ ¼
faijðtÞg ð1≤ i, j ≤ 3Þ represents the probability of

the state moving from SðtÞ ¼ Si to
Sðt þ 1Þ ¼ Sj. According to the Markov chains,
constants a23 ¼ a31¼ a32 ¼ 0, and a33 ¼ 1 (asP3

j¼1a3j ¼ 1). The probability of a driver
maintaining attention on the same task (i.e., keep
monitoring the road (a11) or engaging in NDRT
(a22)) was estimated by computing the pro-
portion of occurrence, which is presumed to be
more referential compared with the alternating
attention between two tasks (a12 and a21). For
example, a driver has a sequence of 11 states
S1S1S1S2S2S2S2S1S1S1S3 from redirecting gaze
to the road to executing takeover. The transition
probabilities can be computed: a11 ¼ 0:4, a22 ¼
0:3, and a21 ¼ 0:7 ðas

P3
j¼1a2j ¼ 1Þ :

The likelihood of a driver deciding to take
over (a13ðtÞ or PtakeoverðtÞ) was assumed to be
dependent on the actual remaining travel dis-
tance (DðtÞ) to the freeway exit at elapsed time t
and the driver’s threshold of remaining distance
(Dθ). DðtÞ and Dθ were modeled as following
equations.

DðtÞ ¼ v× ðwt % RTA % tÞ (9)

Dθ ¼ v ×Tθ (10)

where v is the vehicle speed in the automated
mode. Tθ can be referred to equation (5).

The probability of a driver prioritizing the
takeover task over NDRT and monitoring AV
driving will increase as the remaining distance to
exit decreases and gets closer to the driver’s
threshold of distance (Dθ), namely the remaining
time before arriving at the exit approaches the
driver’s threshold of time (Tθ). We assumed that
when the remaining time is equal to or shorter
than Tθ, a driver will surely decide to take over
immediately and not return to NDRT, namely
a13ðtÞ ¼ 1. When the remaining time is longer
than Tθ, the probability of takeover was modeled
as the ratio of areas under the linear function (9),
which is graphed as A1=ðA1 þ A2Þ in Figure 4.
Thus, the expression can be written as (11). As
the state transition coefficients obey standardFigure 3. Markov chains of state transitions.

RTV ¼ Av × ðn× T1 þ T2 þ T4 þ TA þ TC þ TW þ TY þ TZ þ T24Þ (8)
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stochastic constraints (
P3

j¼1a1jðtÞ ¼ 1), a12ðtÞ
can be computed accordingly.

Given the time-varying state transition
probability matrix A ðtÞ, TðtÞ in equation (2) was
simply modeled as the average of the predicted
time for takeover at each timestamp after t (i.e.,
t þ 1, t þ 2, …).where int(x) returns the great-
est integer that is less than or equal to x. εv is
a free parameter to fit the experimental data.

EXPERIMENTAL STUDY
A preliminary driving simulator study was

conducted to validate the mathematical model of
takeover response time for freeway exiting in
conditionally AVs.

Participants

Ten people (1 male, 9 females) ranging from
age 18–47%years old (M = 24.6, SD = 8.6)
participated in this study. All of the participants
were licensed drivers with an average driving
experience of 8 years (SD = 9.0) and an average
mileage of 6410 miles (10,316 km) per year (SD
= 3011.6 miles (4846.7 km)). Their frequency of
freeway driving a year was 11–20 times (10%),
21–30 times (20%), and more than 50 times
(70%). To capture the gaze point data using an
eye tracker, all of the participants either had
normal vision or wore contact lenses for vision
correction. People with hearing disabilities or
being colorblind were not eligible for partici-
pating in the study. These participants were
recruited from the general public in the United
States via Penn State’s StudyFinder website.

Each participant received a $20 eGift Card as
compensation. The study was approved by the
Institutional Review Board at Pennsylvania
State University.

Apparatus

A fixed-based driving simulator (STISIM
Drive M300WS-Console system) was used in

this study which is installed on a DellTM

Workstation. It includes three driving displays
that enable a 135° field of view, a STISIM
Drive® ADS high-fidelity, full-size steering
wheel with active force feedback and 900°

Figure 4. A graph of linear function of the remaining
distance to exit depending on the elapsed time starting
from the first gaze after ToR.

PtakeoverðtÞ¼a13ðtÞ¼

"
t

wt%RTA%Tθ

#2

, t<wt%RTA%Tθ

1, t≥wt%RTA%Tθ

8
><

>:
(11)

TðtÞ¼
Pintðwt%RTA%tÞ

i¼tþ1 fP½SðiÞ¼ S3jSði%1Þ¼ Sði%2Þ¼ ,…, ¼ Sðtþ1Þ¼ S1orS2'×RTV þ i% tg
intðwt%RTA% tÞ ×εv

(12)
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rotation, and two advanced foot pedals. The
STISIM Drive® Software is programmable and
expendable using Open Module, which allows
for automated driving programming and control
transitions from and to the human driver.

A wearable/head mounted eye tracking tool
(Tobii Pro Glasses 2) was used to capture par-
ticipants’ gaze behavior in real time. The
Glasses are equipped with 4 eye cameras (each
runs continuously at 100 Hz), a HD (1980 ×
1080) scene camera with 90° field of view, and
thin side pieces for completely unobstructed side
view, which enables to capture wide angle views
and ensures natural viewing behavior, including
peripheral viewing. The dual image sensor
technology enables accurate compensation for
head movements and is also used for pupil size
measurement compensations.

Experiment Design and Procedure

The independent variable was the lead time
(within-subjects; 16, 30, 45, and 60 seconds) of
ToRs for freeway exiting. The sequence of four
takeover events within each participant was
randomized. As a ToR, an auditory warning
“Notice! Exit the freeway in XX mile.” in
a digitized human female voice (∼150 words/
min) was issued together with a hands-on-
steering-wheel symbol in white showing up
on the car dashboard.

The driving scenario was a simulated three-
or four-lane (in the driver’s direction) freeway
environment for high-speed vehicular traffic
(Figure 5). The traffic density was 13–25 ve-
hicles per mile per lane (8–15 vehicles/km/lane)
with all vehicles observing the 4-second rule of
following distance (Smithers, 2018). To reduce
carryover effect, the freeway exit was on the left
side of the road under 30 s and 60 s ToR con-
ditions and on the right side of the road under 16

s and 45 s ToR conditions. At the time of ToR
being issued in each takeover event, the subject
vehicle was driving on the lane next to the exit-
only lane. A car was driving 250 feet (76.2 m) in
front of the driver in the same lane with its
turning signals on and it changed to the exit-only
lane when there was 10 seconds left before
arriving at the exit. There was another car
driving in the exit-only lane 80 feet (24.4 m)
behind the driver. The travel distance was
around 10,000 feet (approximately 2 minutes) in
each takeover event.

Upon arrival, participants signed a consent
form and completed a demographic questionnaire
including a 11-point Likert scale question for
rating the initial trust in automated driving systems
based on their knowledge and/or experience.
Then, they were taken through an eye tracker
calibration procedure. Only after calibrating the
eye tracker successfully, participants went through
a practice session containing four takeover events
(with a ToR lead time of 45 s in each event) to get
familiar with HMI features and practice automated
driving in the simulator while playing a video
game (Snake VS Block) on a smartphone. The
game requires players to swipe from side to side to
collect score balls and avoid numbered bricks,
which needs to do simple math. After a ToR was
issued, participants were told to intervene and
resume control by pressing a buttonwhenever they
thought it was necessary. In the formal test, par-
ticipants were encouraged to get high scores in the
game, though they can still look up and check the
driving status freely. After completing a takeover
task, participants rated their trust in the automated
systems using a single-item 11-point Likert scale.

Measurements

The measures in the experiment are sum-
marized in Table 1. The eye-tracking data were

Figure 5. An example of driving scenario.
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analyzed frame by frame using Tobii Pro Lab.
The level of engagement in NDRT was quan-
tified by subtracting the proportion of glance
duration on road from 1, as some drivers’
glances on NDRT cannot be capture when they
did not look through glasses at the smartphone.

MODEL VALIDATION

The current model was able to predict
drivers’ takeover response time for freeway
exiting in conditionally AVs by implement-
ing the mathematical equations described in
the modeling mechanism section. The input
of the model was ToR lead time, driver trust
ratings, and eye-tracking metrics (see Table
1), which were manipulated or measured in
the experiment. The mathematical model was
validated by comparing model predictions
with empirical data. First, some of takeover
events were extracted for estimating the free
parameters εa and εv in equations (5) and (12),
which were adjusted to fit the model pre-
dictions with the experimental data to ach-
ieve the minimum root mean square error
(RMSE). The free parameters differ

depending on the approach used to extract
data as summarized in Table 2. Two methods
of dataset splitting were used to estimate free
parameters and validate the model. One
method was to use data of seven participants
for model training and data of the rest three
participants for model testing. Another
method was to select three out of four
takeover events per participant for model
training and one takeover event per partici-
pant for model testing. Next, the model
predictions were compared with the empiri-
cal data. The R-squared and RMSE were used
to indicate how well the experimental results
were explained by the model (Wu, 2016).

Validation Method 1: Split Dataset Based
on Drivers

The analysis of eye-tracking data showed
that four participants (ID: 1, 4, 8, 10) have
alternated attention between the AV driving
task and NDRT before takeover. We divided
the data of these four participants into two
groups, one for parameter setting and the
other one for model testing. The dataset of

TABLE 1: A Summary of Measures

Measure Unit Time Segment Symbol

Eye-tracking
metrics

Proportion of glance duration on
screens

% Between the start of a takeover
event and ToR

PEN, j

Time duration second Between the first and the last
gaze redirection to screens
after ToR

t

Fixation count on screens (Level 1
SA)

1 Between the last gaze redirection
and takeover

n

Attention at 1-sec interval (for
computing the proportion of
maintaining attention on the
same task)

.01 Between the last gaze redirection
and takeover

a11a22

Subjective
evaluations

Driver trust 1 Before the experiment and after
each takeover task (using
a single-item 11-point Likert
scale)

PTR, j%1

Takeover
performance

Takeover response time second Between ToR and takeover
(recorded by the driving
simulator)

RT
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seven participants (ID: 1, 2, 3, 5, 7, 8, 9) were
used for estimating the free parameters. The
model predictions were compared to the ex-
perimental data of the remaining three par-
ticipants (ID 4, 6, 10). As shown in Figure 6,
results showed that the model was able to
explain 76% of the experimental data in terms
of the takeover response time for freeway
exiting with an RMSE of 8.10 seconds. Table
3 summarizes the R2 and RMSE for each of
the three participants in the model validation
group.

Validation Method 2: Split Dataset Based
on Takeover Events per Participant

For each participant, three out of four
takeover events were randomly selected for
estimating the free parameter, and the data of
the remaining takeover event was used for
model validation. A total of eight out of 40
takeover events involved the alternating at-
tention and they were divided into the pa-
rameter setting and model validation datasets
with a ratio of 3 to 1. As shown in Figure 7,
the model prediction explained 97% of the
experimental takeover response time for
freeway exiting with an RMSE of 3.02
seconds.

DISCUSSION

This study introduces a preliminary com-
putational model of drivers’ takeover re-
sponse time for scheduled freeway exiting in
conditionally AVs. This model aids in un-
derstanding the cognitive mechanism un-
derlying drivers’ information processing and
takeover decision-making in non-time-
critical takeovers by quantifying gaze re-
direction in response to takeover request
(ToR), task prioritization, driver situation

awareness, and driver trust. A laboratory
experiment based on a driving simulator was
conducted to validate the model. Results
demonstrated its moderate-to-good ability to
predict drivers’ takeover response time for
freeway exiting, considering that the complex

TABLE 2: Free Parameters Settings in Driver Models

Training Dataset for Estimating Free Parameters εa εv

Method 1: Data of seven out of 10 participants (7 × 4 events) .408 .105
Method 2: Data of three takeover events per participant (10 × 3 events) .718 .0802

Figure 6. The modeled takeover response time for three
participants (error bars: ±1 SE).

TABLE 3: R2 and RMSE for Model Predictions for
Each Subject in Validation Group

Participant ID

4 6 10

R2 0.84 0.40 0.95
RMSE (second) 11.49 6.64 4.53

Figure 7. The modeled takeover response time for the
last six takeover tasks (error bars: ±1 SE).
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cognitive process involved in the alternating
attention was modeled using a stochastic
approach, not at the neurological level. Using
two different methods to split the experi-
mental data into two groups (with one group
for free parameter estimation and the other
one for model validation) have generated
different model fit. Compared with Method 1
using seven participants to predict the re-
maining three, Method 2 that makes pre-
dictions based on other takeover events
within participants has improved the R2 by
27% (from 0.76 to 0.97) and reduced RMSE
by 63% (from 8.10 to 3.02 s). The im-
provement in model predictions using
Method 2 suggested that individual differ-
ences may exist in the takeover response.
When the ToR can be planned with ample
time for drivers to perform a takeover task,
four strategies have been examined by
Borowsky et al. (2022) to regain control of
conditionally AVs, varying in the prioritiza-
tion of monitoring the road, performing
NDRT, and executing takeover. Factors that
affect drivers’ strategy selection include the
long-term procedural information derived
from their manual driving experience in
freeway exiting, the mental model built upon
previous takeover occasions in the experi-
ment, and their spur-of-the-moment deci-
sions. It provides a plausible explanation for
the outperformance of predicting a driver’s
takeover decision-making based on his or her
own performance.

This work is one of the first attempts to study
a driver’s behavior in non-time-critical take-
overs using analytical solutions. Previous
studies have successfully employed QN-MHP
to model the takeover response time in emer-
gency takeovers that require drivers’ quick
intervention to avoid collisions within a short
ToR lead time (7 s; Ko et al., 2019, 2022;
Sanghavi, 2020). Few attempts have been made
on the driver model in non-time-critical take-
overs, which allows a larger variance in take-
over response time among drivers. The current
model fills the research gap by focusing on
freeway exiting takeovers that enable a ToR to
be scheduled way ahead of time. Based on the
QN-MHP architecture, the current model

contributes to the literature by: a) modeling the
route choice of processing an auditory ToR as
a function of driver trust and the level of NDRT
engagement, b) modeling the response time to
visual entities for executing takeover as
a function of driver perception (Level 1 SA),
and (c) modeling the stochastic decision-
making for alternating attention using Mar-
kov chains.

The laboratory experiment has revealed
drivers’ delayed gaze redirection and takeover
decision-making in non-time-critical takeovers.
The finding is consistent with previous research
that argues for a distinction between drivers’
ability and motivation to intervene when suf-
ficient time exists (Summala, 2000). Unlike
those who respond as rapidly as possible in
emergency takeovers, drivers spend more time
for assessing the situation before takeover
when there is no time pressure (Gold et al.,
2013; Pampel et al., 2019). The preliminary
work modeled the intentional delay by in-
troducing a free parameter that was estimated
by experimental data. The time spent for al-
ternating attention was read from eye-tracking
data directly but not modeled at neurological
level. More efforts are needed to dive into the
theory of psychology and neurosciences for
understanding drivers’ selection of strategies in
non-time-critical takeovers.

This work applied Markov chains to model
drivers’ stochastic decision-making in non-
time-critical takeovers. The probabilities of
a driver’s attention state transitions were
modeled using his or her alternating attention
behavior in the same takeover event as a ref-
erence and using the driver’s threshold of re-
maining time as a baseline. The good fit of the
model suggests future work to consider each
individual driver’s preference of choosing
takeover strategies with regard to the timing as
well as the driver’s attention state transitions in
the current event, such as the proportion of
transitions from NDRTs to monitoring AV
driving.

In addition, the present study modeled driver
perception (Level 1 SA) in the response time to
visual entities for executing takeover. The dy-
namically formulated driver SA acts as the main
precursor to decision making, despite the
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probabilistic relationship between SA and per-
formance (Endsley, 1995). The time spent before
a driver executing takeover is partly used to
develop SA. Thus, the current model in-
corporates the fixation count as an input to
predict the time of cognitive processing before
implementing the takeover decision. Unlike
existing empirical studies and modeling work
that usually take driver SA as an outcome
variable with the purpose to investigate SA
bolstering approaches, this study contributes to
indicate the potential use of driver perception
(Level 1 SA) in modeling the temporal aspect of
driver decision making and takeover
performance.

Limitations and Future Work

Despite the good model performance, it is
important to acknowledge its limitations and
discuss possible ways to overcome the limitations
in future studies. First of all, the preliminary model
did not quantify the effects of driver factors on
takeover response time. For instance, drivers’
personality, driving style, and the manual driving
experience of freeway exiting might influence
their takeover strategies in conditionally AVs. The
NDRT type and task demands also could affect
drivers’ alternating attention behavior. Moreover,
many system characteristics (e.g., reliability, au-
tomation level, HMI design) and driving envi-
ronment (e.g., traffic density and complexity) that
are associated with takeover response time need to
be integrated into the model in future. Future work
could also be done to integrate the present model
with other computational cognitive models to
model different ToR characteristics, such as fun-
damental frequency and the number of repetitions
of ToRs for emergency collision avoidance take-
overs (Ko et al., 2022), warning reliability, and
speech warning style for avoiding collisions in
connected vehicle systems (Zhang et al., 2022).
After an initial ToR is issued, there could be ad-
ditional auditory and/or visual information pro-
vided to assist drivers with scanning the road and
making takeover decisions to exit a freeway.
Future efforts are suggested to model these HMI
technologies and integrate them into the current
model. Secondly, the current model was de-
veloped and validated using a small sample

experimental data (N = 10 × 4). In particular,
a portion of the data was used to estimate the free
parameters in the model. Future laboratory ses-
sions with a larger sample size can be conducted to
further improve themodel prediction accuracy and
validate the model.

Further efforts can also be made to model the
manual driving behavior after takeover, which is
crucial for the road safety. When it is still far away
from the desired exit after takeover, the driver
needs to maintain a high speed on the freeway and
keep the car centered in the exit lane or move into
the exit lane smoothly if necessary. When a driver
takes over as the car arrives at the desired exit, the
driver needs to slow down according to the exit
ramp speed limit and make an exit possibly on
a curvy road. Therefore, the post-takeover driving
performance should bemodeled in the future work
to improve the takeover safety.

KEY POINTS
· Existing driver models of takeover response time

in time-critical scenarios cannot be directly applied
to freeway exiting takeovers, which can be
scheduled and non-time-critical. Computational
models of takeover response time for freeway
exiting in conditionally AVs are still lacking.

· This work introduces a computational cognitive
model of drivers’ takeover response time for freeway
exiting in conditionally AVs. The model quantifies
the effects of ToR lead time over a large range (16–60
sec), driver Level 1 SA, driver trust, the level of
NDRT engagement on the takeover response time.

· The model validation results demonstrate its
moderate-to-good ability to predict drivers’ take-
over response time for freeway exiting, accounting
for 97% of the experimental data collected from
a driving simulator study.

· The model can be used by designers and devel-
opers to test the HMI design in an effective and less
costly way. This work also serves as a foundation
for the future modeling work towards an integrated
driver model of takeover performance in condi-
tionally AVs.

APPENDIX
The model parameters were set based on

existing studies as shown in Table A1.
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